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Abstract. In this paper, the limit behavior of solutions for the nonlinear Schrödinger equation i∂t u +
γ (ωt)�u + θ(ωt)|u|αu = 0 in RN (N = 1, 2, 3) is studied. Here α is an H1- subcritical exponent and the
coefficients γ , θ are periodic functions. The coefficient γ is further assumed to be one sign, bounded, and
bounded away from zero. We prove local and global well-posedness results in H1 and that the solution uω

converges as |ω| → ∞ to the solution of the limiting equation with the same initial condition. Furthermore,
we also prove that if the limiting solution is global and has a certain decay property, then uω is also global
for |ω| sufficiently large.

1. Introduction

The interest in nonlinear Schrödinger equationswith variable coefficients is found in
a large number of physicalmodels and their descriptions, for example, see [5,10,12,13]
and the references therein. In the paper,we consider the nonlinear Schrödinger equation
with time periodic coefficients

{
i∂t u + γ (ωt)�u + θ(ωt)|u|αu = 0,
u(0) = ϕ,

(1)

in RN , N = 1, 2, 3, where {
0 < α < ∞ N = 1, 2,
0 < α < 4 N = 3,

(2)

ω ∈ R and γ, θ are τ–periodic functions for some τ > 0. Moreover, we assume that
θ ∈ C1(R) and the function γ is one sign, bounded and bounded away from zero on
[0, τ ].
As usual, we consider the integral form via Duhamel’s formula:

u(t) = ei
ω(t,0)�ϕ + i
∫ t

0
ei
ω(t,s)�θ(ωs)|u(s)|αu(s) ds, (3)

where ei
ω(t,s)� is the unitary group determined by the associated linear Schrödinger
equation, i.e., when θ = 0; see Sect. 2.1 for more details.
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It is well known that the Cauchy problem (1) when γ = 1 and θ ∈ L∞(R) is
well-posed in H1, see [3] for the subcritical and [6] for the critical cases. The standard
techniques they used also give us the following fundamental result for our case.

Proposition 1. Given any ϕ ∈ H1(RN ) and ω ∈ R, there exists a unique H1–solution
u of (3) defined on the maximal interval [0, Tmax) with 0 < Tmax ≤ ∞. Moreover, the
following properties hold:

(i) u ∈ C([0, Tmax), H1(RN ))∩ Lq
loc((0, Tmax), W 1,r (RN )) for all admissible pair

(q, r).
(ii) (Blow-up alternative) If Tmax < ∞, then ‖u(t)‖H1(RN ) → ∞ as t ↑ Tmax.
(iii) If α < 4/N, then the solution u is global, i.e., Tmax = ∞.

The main purpose is to study the behavior of solutions uω for (1) as |ω| → ∞.
Since γ and θ are periodic, we expect it to be close to the solution of the limiting
equation

{
i∂tU + I (γ )�U + I (θ)|U |αU = 0,
U (0) = ϕ,

(4)

or its equivalent integral form

U (t) = ei I (γ )t�ϕ + i
∫ t

0
ei I (γ )(t−s)� I (θ)|U (s)|αU (s) ds, (5)

where I (γ ) and I (θ) are averages of γ and θ , respectively, i.e.,

I (γ ) = 1

τ

∫ τ

0
γ (s) ds and I (θ) = 1

τ

∫ τ

0
θ(s) ds. (6)

The existence of the maximal solution U for the Cauchy problem (4) or (5) has been
extensively studied, e.g., [2]. So we investigate that our expectation is true on the
maximal interval in which solution U exists. In the following theorem, we state our
main consequences.

Theorem 1. Fix an initial value ϕ ∈ H1(RN ). Given ω ∈ R, denote by uω the
maximal solution of (3). Let U be the solution of (5) defined on the maximal interval
[0, Smax).

(i) For each 0 < S < Smax, the solution uω exists on [0, S] provided that |ω| is
sufficiently large.

(ii) uω converges to U in L∞((0, S), H1(RN )) as |ω| → ∞.

Remark 1. The averaging theorem of NLS has widely been studied considering vari-
ous forms of the time-dependent coefficients. In [1], the authors consider in the case
of θ = 1 and the fast dispersion management γ of the form γ (t/ε), where γ is given
by 2–periodic and piecewise constant, a typical example being γ = 1 on the interval
[0, 1) and γ = −1 on the interval [1, 2). Moreover, they proved the scaling limit of
fast dispersion management and the convergence in H2 to an effective model with
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averaged dispersion. In [5,13] an Eq. (1) with the strong dispersion management γ

of the form ε−1γ (t/ε) and lumped amplification was studied in dimension N = 1,
which is closely related to a physical phenomenon. In contrast, the averaging theorem
for γ = 1 were obtained by Cazenave and Scialom [3] .

If α ≥ 4/N and Smax = ∞, one may question whether uω is also global for |ω|
sufficiently large. The following theorem gives us an affirmative answer under the
condition that U has suitable decay as t → ∞. Moreover, the convergence holds
globally in time.

Theorem 2. Assume (2) and further that α ≥ 4/N. Let r and a be defined by

r = α + 2 and a = 2α(α + 2)

4 − (N − 2)α
.

Fix an initial value ϕ ∈ H1(RN ). Given ω ∈ R, denote by uω the maximal solution of
(3). Let U be the solution of (5) defined on the maximal interval [0, Smax). Suppose
that

Smax = ∞ and U ∈ La((0,∞), Lr (RN )). (7)

Then uω is global for |ω| sufficiently large. Moreover, uω converges to U in L∞((0,∞),

H1(RN )) as |ω| → ∞.

The existence of solutions satisfying (7) is guaranteed by the scattering theory
(the details can be referred in [2,7,11]). Thus by applying Theorem 2, we obtain the
following.

Corollary 1. Assume (2). Fix an initial value ϕ ∈ H1(RN ), let U be the maximal
solution of (5). Given ω ∈ R, denote by uω the maximal solution of (3). If one of the
following conditions is satisfied,

(i) I (γ )I (θ) < 0 and α > 4/N
(ii) I (θ) = 0 and α ≥ 4/N
(iii) I (γ )I (θ) > 0, α ≥ 4/N and ‖ϕ‖Ḣ s is sufficiently small, where s = (Nα −

4)/2α ∈ [0, 1),
then it follows that the solution uω of (3) is global for |ω| sufficiently large. Moreover,
uω converges to U in L∞((0,∞), H1(RN )) as |ω| → ∞.

Note that in case I (θ) = 0, i.e., linear equation, U (t) = ei I (γ )t�ϕ. Using the
change of variables V (t, x) = U (t/I (γ ), x), V solves

i∂t V + �V + I (θ)

I (γ )
|V |αV = 0 (8)

with the initial value V (0) = ϕ. The behavior of (8) is focusing or defocusing which
depend only the sign of I (θ)/I (γ ). Thus, we refer to defocusing equation when
I (γ )I (θ) < 0, otherwise we refer to focusing equation.
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Notation. We use C > 0 to denote various constants. For 1 ≤ r, q ≤ ∞, the norm of
mixed space Lr (I, Lq(RN )) is denoted by ‖ · ‖Lr (I,Lq ).

The paper is organized as follows: In Sect. 2, we establish some preliminaries and
lemmas and derive thewell-posedness results. In Sect. 3, we give the proof of Theorem
1. Finally, the proof of Theorem 2 is devoted to Sect. 4.

2. Preliminaries and well-posedness results

2.1. The linear propagator

Before proving Proposition 1, we collect some properties for the propagator asso-
ciated with the linear Schrödinger equation

{
i∂t ulin + γ (ωt)�ulin = 0,
ulin(0) = f,

(9)

for all ω ∈ R, where the τ–periodic function γ satisfies our assumptions. Here and
below, we denote by


ω(t, s) :=
∫ t

s
γ (ωt ′) dt ′ = 1

ω

∫ ωt

ωs
γ (t ′) dt ′ (10)

for all s, t ∈ R. One can express the associated propagator ei
ω(t,0)� that describes
the solution ulin(x, t) for (9) as

ei
ω(t,0)� f (x) = 1

(2π)N/2

∫
RN

e−i |ξ |2
ω(t,0)eix ·ξ f̂ (ξ) dξ (11)

for f ∈ L2(RN ), where f̂ denotes the Fourier transform of f ∈ L2(RN ). We now
define the operator ei
ω(t,s)� by

ei
ω(t,s)� := ei
ω(t,0)� e−i
ω(s,0)�

on L2(RN ). Then, fixed s ∈ R, it is a unitary operator on L2(RN ) also on H1(RN )

satisfying

‖ei
ω(t,s)� f ‖L2 = ‖ f ‖L2 and ‖ei
ω(t,s)� f ‖H1 = ‖ f ‖H1

for every ω ∈ R. Moreover, fixed s ∈ R, it follows from (11) that the mapping
t �→ ei
ω(t,s)� f is continuous for every f ∈ L2(RN ).

From our assumption of γ , it follows that for any s, t ∈ R, there exists C > 0 such
that ∣∣∣∣

∫ t

s
γ (τ) dτ

∣∣∣∣ ≥ C |t − s|,

which allows us to obtain the following result.
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Lemma 1. Let ω ∈ R. There exists a constant C independent of ω such that if s �= t ,
then

‖ei
ω(t,s)� f ‖L∞ ≤ C

|t − s|N/2 ‖ f ‖L1

for any f ∈ L1(RN ).

Proof. Using the explicit form of the solution operator for the free Schrödinger equa-
tion

eit� f (x) = 1

(4iπ t)N/2

∫
RN

ei |x−y|2
4t f (y) dy, t �= 0,

we obtain that

‖ei
ω(t,s)� f ‖L∞ ≤ 1

(4π |
ω(t, s)|)N/2 ‖ f ‖L1 . (12)

Note that since γ is one sign and bounded away from zero, we have

|
ω(t, s)| =
∣∣∣∣ 1ω

∫ ωt

ωs
γ (t ′) dt ′

∣∣∣∣ ≥ C |t − s|.
This together with (12) completes the proof of Lemma 1. �
Observe that the usual Strichartz estimates hold for the semigroup ei
ω(t,0)�. To

this end, for any 1 ≤ p ≤ ∞, let p′ be the Hölder conjugate, that is, 1/p + 1/p′ = 1,
and a pair of exponents (q, r) is said to be admissible if

2

q
= N

2
− N

r
and

⎧⎨
⎩
2 ≤ r ≤ ∞ N = 1,
2 ≤ r < ∞ N = 2,
2 ≤ r ≤ 6 N = 3.

Using Lemma 1, we can show the following standard Strichartz estimates with an
argument similar to that of, for example, [2] and [9]. So we omit the details of the
proof.

Lemma 2. (Strichartz’s estimates) Let (q, r) and (q0, r0) be admissible pairs. For
any ω ∈ R, the following properties hold:

(i) For every f ∈ L2(RN ), the map t �→ ei
ω(t,0)� f belongs to Lq(R, Lr (RN )) ∩
C(R, L2(RN )). Furthermore, there exists a constant C independent of ω such
that

‖ei
ω(·,0)� f ‖Lq (R,Lr ) ≤ C‖ f ‖L2 .

(ii) Let I be an interval of R. For every F ∈ Lq ′
0(I, Lr ′

0(RN )), the map

t �→
∫

I
ei
ω(t,τ )�F(·, τ ) dτ for t ∈ I,

belongs to Lq(I, Lr (RN ))∩C(I , L2(RN )). Furthermore, there exists a constant
C independent of ω such that∥∥∥∥

∫
I

ei
ω(·,τ )�F(·, τ ) dτ

∥∥∥∥
Lq (I,Lr )

≤ C‖F‖
Lq′

0 (I,Lr ′
0 )

.
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2.2. Well-posedness results

This subsection concentrates on proving the existence and uniqueness of solutions
for (1), i.e., Proposition 1. For any ω ∈ R, we consider the integral equation

uω(t) = ei
ω(t,0)�ϕ + i
∫ t

0
ei
ω(t,s)�θ(ωs)|uω(s)|αuω(s) ds. (13)

Recall that θ ∈ C1(R) and 
ω(t, s) is given by (10). For this subsection, we only need
to assume θ ∈ L∞(R) which is slightly more general that (3).

We start with the local well-posedness of (13). Based on Strichartz’s estimate men-
tioned in (2), the well-posedness results are quite standard, see, for example, [2,8]. In
fact, the proof of in the case γ = 1 can be found in [3]. For brevity we only state the
results without detailed proofs.

Proposition 2. Assume (2).

(i) Given A, M > 0, there exists T = T (A, M) > 0 such that if ‖θ‖L∞ ≤ A and if
ϕ ∈ H1(RN ) satisfying ‖ϕ‖H1 ≤ M, then for any ω ∈ R, there exists a unique
local solution uω ∈ C([0, T ], H1(RN )) of (13). In addition,

‖uω‖Lq ((0,T ),W 1,r ) ≤ 2C‖ϕ‖H1

for all admissible pair (q, r).
(ii) Assume further that α < 4/N. Given A, M ′ > 0, there exists T ′ = T ′(A, M ′) >

0 such that if ‖θ‖L∞ ≤ A and if ϕ ∈ L2(RN ) satisfying ‖ϕ‖L2 ≤ M ′, then for
any ω ∈ R, there exists a unique local solution uω ∈ C([0, T ′], L2(RN )) of
(13).

Remark 2. (i) Fix an initial value ϕ ∈ H1(RN ). Given ω ∈ R, the solution
uω of (13) obtained in Proposition 2 can be extended to a maximal interval
[0, Tmax(ω)). Moreover, we have the blowup alternative holds: If Tmax(ω) < ∞,
then

lim
t→Tmax(ω)

‖uω(t)‖H1 = ∞.

(ii) Arguing as in the case of constant coefficients, one can show that the mass is
conserved, that is,

‖uω(t)‖L2 = ‖ϕ‖L2

for all 0 ≤ t < Tmax(ω). However, in our case, the energy is neither conserved
nor decreasing.

(iii) Supposeα < 4/N . FromProposition 2 (ii), we know that the local existence time
T ′ depends on the L2 norm of the initial value. It follows from the conservation
of mass that the L2–solution uω is globally defined for each ω ∈ R.
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Proof of Proposition 1. The existence and uniqueness of the local H1–solution of (13)
follow from Proposition 2 (i). The maximal existence time and the blowup alternative
are a consequence of Remark 2 (i), moreover u is in Lq

loc((0, Tmax), W 1,r (RN )) for
all admissible pair. If α < 4/N , then we can establish H1 regularity of the global L2–
solution, seeTheorem5.2.2 in [2] for details. Thus,weobtainu ∈ C([0,∞), H1(RN )).

�

We have the following results, which are the same as [3, Proposition 2.3] and [3,
Corollary 2.4]. For proofs, the reader can consult, for example, [3, Proposition 2.3 and
Corollary 2.4] and [4, Propositions 2.3 and 2.4].

Proposition 3. Assume (2) and suppose further that α ≥ 4/N. Let r, q, and a be
defined by

r = α + 2, q = 4(α + 2)

Nα
, a = 2α(α + 2)

4 − (N − 2)α
. (14)

Given any A > 0, there exists ε = ε(A) and � such that for any ω ∈ R, if ‖θ‖L∞ < A
and if ϕ ∈ H1(RN ) satisfies

‖ei
ω(·,0)�ϕ‖La((0,∞),Lr ) ≤ ε,

then the corresponding solution uω of (13) is global and satisfies

‖uω‖La((0,∞),Lr ) ≤ 2‖ei
ω(·,0)�ϕ‖La((0,∞),Lr )

and

‖uω‖Lq ((0,∞),W 1,r ) + ‖uω‖L∞((0,∞),H1) ≤ �‖ϕ‖H1 .

Conversely, if the solution uω of (13) is global and satisfies

‖uω‖La((0,∞),Lr ) ≤ ε,

then

‖ei
ω(·,0)�ϕ‖La((0,∞),Lr ) ≤ 2‖uω‖La((0,∞),Lr ).

Corollary 2. Assume (2) and α ≥ 4/N. Let r, q, and a be defined by (14). Let A > 0
and consider ε = ε(A) and � as in Proposition 3. Given ϕ ∈ H1(RN ) and ‖θ‖L∞ ≤
A, let uω be the corresponding solution of (13) defined on the maximal interval
[0, Tmax). If there exists 0 < T < Tmax such that

‖ei
ω(0,·)�uω(T )‖La((0,∞),Lr ) ≤ ε,

then the solution uω is global, i.e., Tmax = ∞. Moreover,

‖uω‖La((T,∞),Lr ) ≤ 2ε and ‖uω‖Lq ((T,∞),W 1,r ) ≤ �‖ϕ‖H1 .
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3. Proof of Theorem 1

The following lemmas below play a key role in our proof of the convergence result
stated in Theorem 1. Similar results are considered also in [1,3].

Lemma 3. If g ∈ L1((0, L), H1(RN )) for some 0 < L ≤ ∞, then∫ t

0
θ(ωs)ei
ω(t,s)�g(s) ds −→|ω|→∞ I (θ)

∫ t

0
ei
ω(t,s)�g(s) ds (15)

in L∞((0, L), H1(RN )).

Proof. Set

ψ(t) = θ(t) − I (θ) and �(t) =
∫ t

0
ψ(t ′) dt ′.

Since θ is τ–periodic, � is also τ–periodic, therefore, ‖�‖L∞ < ∞. Using
Minkowski’s inequality and the fact that the operator ei
ω(·,·)� is unitary, it follows
that ∥∥∥∥

∫ ·

0
ψ(ωs)ei
ω(·,s)� f (s) ds

∥∥∥∥
L∞((0,L),H1)

≤ C‖ψ‖L∞‖g‖L1((0,L),H1)

for every g ∈ L1((0, L), H1(RN )). Therefore, by density, we only need to prove (15)
for g ∈ C1

c ((0, L),S(RN )). Since d
ds �(ωs) = ωψ(ωs), an integration by parts shows

that ∫ t

0
ψ(ωs)ei
ω(t,s)�g(s) ds = 1

ω
�(ωt)g(t)

− 1

ω

∫ t

0
�(ωs)ei
ω(t,s)�

[
gt (s) − iγ (ωs)�g(s)

]
ds.

Since γ is bounded, we see that∥∥∥∥ 1

ω

∫ ·

0
�(ωs)ei
ω(·,s)�[

gt (s) − iγ (ωs)�g(s)
]

ds

∥∥∥∥
L∞((0,L),H1)

≤ 1

|ω| ‖�‖L∞‖gt (s) − iγ (ωs)�g(s)‖L1((0,L),H1)

≤ C

|ω| ‖�‖L∞
(‖gt‖L1((0,L),H1) + ‖�g‖L1((0,L),H1)

)
,

where the constant C is independent of ω. This yields∥∥∥∥
∫ ·

0
ψ(ωs)ei
ω(·,s)�g(s) ds

∥∥∥∥
L∞((0,L),H1)

≤ C

|ω| ‖�‖L∞

(
sup

t∈(0,L)

‖g(t)‖H1 + ‖gt‖L1((0,L),H1) + ‖�g‖L1((0,L),H1)

)
.

Letting |ω| → ∞, we obtain the desired convergence, which completes the proof of
Lemma 3. �
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Lemma 4. If f ∈ H1(RN ) for some 0 < L ≤ ∞, then for a fixed s ∈ [0, L), we
have

sup
t∈(0,L)

∥∥∥(
ei
ω(t,s)� − ei I (γ )(t−s)�

)
f
∥∥∥

H1
−→|ω|→∞ 0. (16)

Proof. Since γ is τ–periodic, we can decompose 
ω as


ω(t, s) = I (γ )(t − s) + 1

ω

∫ ωt

ωs
γ0(t

′) dt ′

for every s, t ∈ R, where I (γ ) ∈ R − {0} denotes the average defined by (6) and γ0

is a τ–periodic function with mean zero. Denote by

ϑω(t, s) =
∫ ωt

ωs
γ0(t

′) dt ′,

since ∣∣∣∣
∫ t

s
γ0(t

′) dt ′
∣∣∣∣ ≤ τ(M − I (γ ))

we obtain that ϑω ∈ L∞(R2) uniformly. Hence, using Plancherel’s identity and
Minkowski’s inequality, we have

sup
t∈(0,L)

∥∥∥(
ei
ω(t,s)� − ei I (γ )(t−s)�

)
f
∥∥∥2

H1

= sup
t∈(0,L)

∫
RN

(1 + |ξ |2)
∣∣∣ei I (γ )(t−s)|ξ |2(ei 1

ω
ϑω(t,s)|ξ |2 − 1)

∣∣∣2 | f̂ (ξ)|2 dξ

≤
∫
RN

(1 + |ξ |2)| f̂ (ξ)|2 sup
t∈(0,L)

∣∣∣ei 1
ω

ϑω(t,s)|ξ |2 − 1
∣∣∣2 dξ

for a fixed s ∈ [0, L). Thus (16) follows from the Lebesgue dominated convergence
theorem. �

Lemma 5. If g ∈ L1((0, L), H1(RN )) for some 0 < L ≤ ∞, then

sup
t∈(0,L)

∥∥∥∥
∫ t

0

(
ei
ω(t,s)� − ei I (γ )(t−s)�

)
g(s) ds

∥∥∥∥
H1

−→|ω|→∞ 0.

Proof. Since g(s) ∈ H1(RN ), it follows from Lemma 4 that

hω(s) := sup
t∈(0,L)

∥∥∥(
ei
ω(t,s)� − eI (γ )(t−s)�

)
g(s)

∥∥∥
H1

−→|ω|→∞ 0.

Using Minkowski’s inequality, we get

sup
t∈(0,L)

∥∥∥∥
∫ t

0

(
ei
ω(t,s)� − ei I (γ )(t−s)�

)
g(s) ds

∥∥∥∥
H1

≤
∫ L

0
hω(s) ds −→|ω|→∞ 0
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because the Lebegsue dominated convergence theorem with the fact that

hω ≤ C‖g(·)‖H1 ∈ L1(0, L).

Recall the followingGronwall-type estimatewhose proof can be found in [3, Lemma
A.1] �

Lemma 6. Assume that 0 < T < ∞, 1 ≤ p < q ≤ ∞, and A, B ≥ 0. If f ∈
Lq(0, T ) satisfies

‖ f ‖Lq (0,t) ≤ A + B‖ f ‖L p(0,t)

for all 0 < t < T , then there exists a constant K = K (B, p, q, T ) such that

‖ f ‖Lq (0,T ) ≤ AK .

For the proof of Theorem 1, we introduce the special admissible pairs (q, r) such
that

⎧⎪⎨
⎪⎩

q = α + 4, r = 2N (α + 4)

N (α + 4) − 4
if N = 1, 2

q = α + 4

2
, r = 6(α + 4)

3(α + 4) − 8
if N = 3.

(17)

Then since α < q and N < r , it follows from the Sobolev embedding theorem that

Lq((0, L), W 1,r (RN )) ↪→ Lq((0, L), L∞(RN )). (18)

Key for our proof of Theorem 1 is the following lemma.

Lemma 7. Assume (2). Fix an initial value ϕ ∈ H1(RN ), and given ω ∈ R, denote
by uω the maximal solution of (3). Let U be the maximal solution of (5) defined on
the interval [0, Smax). For 0 < L < Smax, we assume that uω exists on [0, L] for |ω|
sufficiently large and

lim sup
|ω|→∞

‖uω‖L∞((0,L),H1) < ∞ (19)

and

lim sup
|ω|→∞

‖uω‖Lq ((0,L),W 1,r ) < ∞

where (q, r) is given by (17). Then it follows that

‖uω − U‖L∞((0,L),H1) −→|ω|→∞ 0.

Proof. From (3) and (5), we have

uω(t) − U (t) =
(

ei
ω(t,0)� − ei I (γ )t�
)

ϕ + i

(
I1(t) + I2(t) + I3(t)

)
, (20)
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where

I1(t) =
∫ t

0
ei
ω(t,s)�θ(ωs)

(
|uω(s)|αuω(s) − |U (s)|αU (s)

)
ds,

I2(t) =
∫ t

0
ei
ω(t,s)�

(
θ(ωs) − I (θ)

)
|U (s)|αU (s) ds,

I3(t) =
∫ t

0

(
ei
ω(t,s)� − ei I (γ )(t−s)�

)
I (θ)|U (s)|αU (s) ds.

For the first term on the right hand side of (20), it follows from Lemma 4 that

sup
t∈(0,L)

∥∥∥(
ei
ω(t,0)� − ei I (γ )t�

)
ϕ

∥∥∥
H1

−→|ω|→∞ 0. (21)

Observe that |U |αU ∈ L1((0, L), H1(RN )). Indeed, using Hölder’s inequality and
(18), we see that

∫ L

0
‖|U (s)|αU (s)‖H1 ds ≤

∫ L

0
‖U (s)‖α

L∞‖U (s)‖H1 ds

≤ ‖U‖α
Lq ((0,L),L∞)‖U‖

L
q

q−α ((0,L),H1)

≤ C‖U‖α
Lq ((0,L),W 1,r )

‖U‖L∞((0,L),H1).

Thus Lemmas 3 and 5 imply that

‖I2‖L∞((0,L),H1) + ‖I3‖L∞((0,L),H1) −→|ω|→∞ 0. (22)

We now estimate I1 to show L∞L2–convergence. Denote the nonlinearity by g(u) =
|u|αu for simplicity. Recall that for all u, v ∈ C, it holds

|g(u) − g(v)| ≤ C
(|u|α + |v|α) |u − v|.

Applying the Hölder inequality in both space and time together with the Sobolev
embedding (18), we see that

‖g(uω) − g(U )‖L1((0,t),L2)

≤ C
(
‖uω‖α

Lq ((0,t),L∞) + ‖U‖α
Lq ((0,t),L∞)

)
‖uω − U‖

L
q

q−α ((0,t),L2)

≤ C
(
‖uω‖α

Lq ((0,t),W 1,r )
+ ‖U‖α

Lq ((0,t),W 1,r )

)
‖uω − U‖

L
q

q−α ((0,t),L2)

for all 0 < t ≤ L . With this we can estimate I1, using Strichartz’s estimate, via

‖I1‖L∞((0,t),L2) ≤ C‖g(uω) − g(U )‖L1((0,t),L2)

≤ C
(‖uω‖α

Lq ((0,t),W 1,r )
+ ‖U‖α

Lq ((0,t),W 1,r )

)‖uω

− U‖
L

q
q−α ((0,t),L2)

(23)
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for all 0 < t ≤ L . From (21), (23), and (22) there exists a εω > 0 and a constant
C > 0 independent of ω such that we have

‖uω − U‖L∞((0,t),L2) ≤ εω + C‖uω − U‖
L

q
q−α ((0,t),L2)

for all 0 < t ≤ L , which implies from Lemma 6 that

‖uω − U‖L∞((0,L),L2) ≤ Cεω −→|ω|→∞ 0. (24)

We next prove convergence in L∞((0, L), H1(RN )). For this, we use an argument of
Kato [8]. Observe that by (20)

∇uω(t) − ∇U (t) =
(

ei
ω(t,0)� − ei I (γ )t�
)

∇ϕ + i

(
∇I1(t) + ∇I2(t) + ∇I3(t)

)
.

Here ∇I1(t) can be rewritten as

∇I1(t) = J1(t) + J2(t),

where

J1(t) =
∫ t

0
ei
ω(t,s)�θ(ωs)g′(uω(s)) ·

(
Duω(s) − DU (s)

)
ds,

J2(t) =
∫ t

0
ei
ω(t,s)�θ(ωs)

(
g′(uω(s)) − g′(U (s))

)
· DU (s) ds,

with

g′(u) =
(

α+2
2 |u|α

α
2 |u|α−2u2

)
and Du =

(∇u
∇u

)
.

Since |g′(uω)| ≤ C |uω|α , using Strichartz’s estimate, Hölder’s inequality in time and
(18), we obtain

‖J1‖L∞((0,L),L2) ≤ C‖g′(uω) · (Duω − DU ) ‖L1((0,L),L2)

≤ C‖uω‖α
Lq ((0,L),W 1,r )

‖∇uω − ∇U‖
L

q
q−α ((0,L),L2)

≤ C‖∇uω − ∇U‖
L

q
q−α ((0,L),L2)

.

(25)

Again, applying Strichartz’s estimate and Hölder’s inequality, we see that

‖J2‖L∞((0,L),L2) ≤ C‖(g′(uω) − g′(U )) · DU‖Lρ′
((0,L),L(α+2)′ )

≤ C‖∇U‖Lρ((0,L),Lα+2)‖g′(uω) − g′(U )‖
L

ρ
ρ−2 ((0,L),L

α+2
α )

,

where (ρ, α + 2) is an admissible pair, i.e., ρ = 4(α + 2)/Nα.
If we assume

‖g′(uω) − g′(U )‖
L∞((0,L),L

α+2
α )

−→|ω|→∞ 0, (26)
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we can obtain

‖J2‖L∞((0,L),L2) −→|ω|→∞ 0, (27)

which, by (21), (22), (25), and (27), and virtue of Lemma 6, implies that

‖∇uω − ∇U‖L∞((0,L),L2) −→|ω|→∞ 0.

Hence to completes the proof, it suffices to show (26). It follows from (19) and (24)
that uω → U in C([0, L], Hs(RN )) as |ω| → ∞ for all 0 ≤ s < 1. Choosing s < 1
sufficiently close to 1 so that Hs(RN ) ↪→ Lα+2(RN ), we deduce that uω → U in
C([0, L], Lα+2(RN )). From the well-known fact

|g′(u) − g′(v)| ≤
{

C |u − v|α if 0 < α ≤ 1
C(|u|α−1 + |v|α−1)|u − v| if α > 1,

we obtain the mapping u �→ g′(u) is continuous Lα+2(RN ) → L(α+2)/α(RN ), which
yields (26). This completes the proof of Lemma 7. �

Now, we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. From Lemma 7, we only show that the conditions of Lemma 7
hold under the assumptions of Theorem 1. Fix 0 < S < Smax and set

M = 2 sup
0≤t≤S

‖U (t)‖H1 .

It follows from Proposition 2 that for ‖ϕ‖H1 ≤ M there exists T = T (A, M) > 0,
where A = ‖θ‖L∞ , such that uω exists on [0, T ] for all ω ∈ R, moreover,

sup
ω∈R

‖uω‖L∞((0,T ),H1) ≤ C‖ϕ‖H1

and

sup
ω∈R

‖uω‖Lq ((0,T ),W 1,r ) ≤ C‖ϕ‖H1

where (q, r) is given by (17). Next, let 0 < L ≤ S be such that uω exists on [0, L] for
|ω| sufficiently large,

lim sup
|ω|→∞

‖uω‖L∞((0,L),H1) < ∞, (28)

and

lim sup
|ω|→∞

‖uω‖Lq ((0,L),W 1,r ) < ∞. (29)

Note that L = T is always a possible choice. Then by Lemma 7, we have that

‖uω − U‖L∞((0,L),H1) −→|ω|→∞ 0
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and, since uω − U ∈ C([0, L], H1(RN )), it follows that

‖uω(L) − U (L)‖H1 −→|ω|→∞ 0.

Hence ‖uω(L)‖H1 ≤ M for |ω| sufficiently large. Applying Proposition 2 to (3)
translated by L , we deduce that for |ω| sufficiently large, uω exists on [0, L + T ],
moreover, applying (28) and (29) yields

lim sup
|ω|→∞

‖uω‖L∞((0,L+T ),H1) < ∞,

and

lim sup
|ω|→∞

‖uω‖Lq ((0,L+T ),W 1,r ) < ∞.

This means that the estimates (28) and (29) hold with L replaced by L + T , provided
L + T ≤ S. Iterating this argument, we see that the estimates (28) and (29) hold L
replaced by S, which proves Theorem 1. �

4. Proof of Theorem 2

We give the proof of Theorem 2 at the end of this section after some lemmas.

Lemma 8. Assume (2) and α ≥ 4/N. Let r and a be defined by (14). Then there exists
a constant C > 0 such that

‖ei
ω(·,0)� f ‖La(R,Lr ) ≤ C‖∇ f ‖
Nα−4
2α

L2 ‖ f ‖
4−(N−2)α

2α
L2

for all f ∈ H1(RN ).

Proof. Using the Strichartz estimates in Lemma 2, the proof is virtually identical to
the proof of [3, Lemma 3.2]. �

Lemma 9. Assume (2) and α ≥ 4/N. Let r and a be defined by (14). If f ∈ H1(RN ),
then we have ∥∥∥(

ei
ω(·,0)� − ei I (γ )·�)
f
∥∥∥

La((0,∞),Lr )
−→|ω|→∞ 0. (30)

Proof. In the following, we denote the operator by A(t) := ei
ω(t,0)� − ei I (γ )t� for
simplicity. First, we consider the case α > 4/N . Then we have a > q, where q is
given by (14). The Hölder inequality yields

‖A(·) f ‖La((0,∞),Lr ) ≤ ‖A(·) f ‖
(α+2)(Nα−4)

Nα2

L∞((0,∞),Lr )‖A(·) f ‖
8−2(N−2)α

Nα2

Lq ((0,∞),Lr ).
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Since (q, r) is an admissible pair, we use the triangle inequality and the Strichartz
estimate to see that there exists a constant C > 0, independent of ω, such that

‖A(·) f ‖Lq ((0,∞),Lr ) ≤ C
(
‖ei
ω(·,0)� f ‖Lq ((0,∞),Lr ) + ‖ei I (γ )·� f ‖Lq ((0,∞),Lr )

)
≤ C‖ f ‖L2 . (31)

From Gagliardo–Nirenberg’s inequality, we also obtain

‖A(t) f ‖Lr ≤ C‖∇(A(t) f )‖
Nα

2(α+2)

L2 ‖A(t) f ‖
4−(N−2)α
2(α+2)

L2

≤ C‖A(t) f ‖
Nα

2(α+2)

H1

(
‖ei
ω(t,0)� f ‖L2 + ‖ei I (γ )t� f ‖L2

) 4−(N−2)α
2(α+2)

≤ C‖ f ‖
4−(N−2)α
2(α+2)

L2 ‖A(t) f ‖
Nα

2(α+2)

H1 ,

(32)

where we used the fact that ei
ω(t,0)� and ei I (γ )t� are unitary operators in L2(RN ).
Collecting (31) and (32), if follows that

‖A(·) f ‖La((0,∞),Lr ) ≤ C‖ f ‖
4−(N−2)α

2α
L2 ‖A(·) f ‖

Nα−4
2α

L∞((0,∞),H1)
.

Applying Lemma 4 to the second factor of the right-hand side above, we conclude
(30).

Next, in the case of α = 4/N , since (a, r) = (α + 2, α + 2) is an admissible pair,
it follows from Strichartz’s estimate that

‖A(·) f ‖La((0,∞),Lr ) ≤ C
(
‖ei
ω(·,0)� f ‖La((0,∞),Lr ) + ‖ei ·I (γ )� f ‖La((0,∞),Lr )

)
≤ C‖ f ‖L2 .

Given any ε > 0, therefore, we can choose 0 < T̃ = T̃ (ε) < ∞ such that

‖A(·) f ‖La((T̃ ,∞),Lr ) ≤ ε

2
(33)

for every ω ∈ R. Note from the embedding H1(RN ) ↪→ Lr (RN ) that

‖A(·) f ‖La((0,T̃ ),Lr ) ≤ ‖A(·) f ‖La((0,T̃ ),H1) ≤ T̃ 1/r ‖A(·) f ‖L∞((0,T̃ ),H1) .

Thus, applying Lemma 4 together with (33), we have

‖A(·) f ‖La((0,∞),Lr ) ≤ ε (34)

for |ω| sufficiently large, which finishes the proof of Lemma 9. �
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Now we are ready to give

Proof of Theorem 2. By Theorem 1, we know that the existence time S of uω goes to
infinity as |ω| → ∞ and that

‖uω − U‖L∞((0,S),H1) −→|ω|→∞ 0

for all S < ∞. In particular,

‖uω(S) − U (S)‖H1 −→|ω|→∞ 0. (35)

To prove the global existence of uω for |ω| sufficiently large, let ε > 0 such that
ε ≤ ε(A), where A = ‖θ‖L∞ and ε(A) is defined in Proposition 3. Since U ∈
La((0,∞), Lr (RN )), we can choose S sufficiently large so that

‖U‖La((S,∞),Lr ) ≤ ε

6
.

Moreover, it follows from Proposition 3 with 
ω(t, 0) replaced by I (γ )t , see also [3,
Proposition 2.4] or [4], that

‖ei I (γ )·�U (S)‖La((0,∞),Lr ) ≤ 2‖U‖La((S,∞),Lr ) ≤ ε

3
. (36)

Notice that

‖ei
ω(·,0)�uω(S)‖La((0,∞),Lr ) ≤ ‖ei
ω(·,0)�(uω(S) − U (S))‖La((0,∞),Lr )

+ ‖
(

ei
ω(·,0)� − ei I (γ )·�)
U (S)‖La((0,∞),Lr )

+ ‖ei I (γ )·�U (S)‖La((0,∞),Lr ).

By Lemma 8 and (35), we infer

‖ei
ω(·,0)�(uω(S) − U (S))‖La((0,∞),Lr ) ≤ C‖uω(S) − U (S)‖H1 ≤ ε

3
. (37)

Combining (36), (37), and Lemma 9, we conclude

‖ei
ω(·,0)�uω(S)‖La((0,∞),Lr ) ≤ ε.

for |ω| sufficiently large. By virtue of Corollary 2, we see that uω is global and that

‖uω‖La((S,∞),Lr ) ≤ 2ε

and

‖uω‖Lq ((S,∞),W 1,r ) + ‖uω‖L∞((S,∞),H1) ≤ �‖uω(S)‖H1 (38)

provided |ω| is sufficiently large. In the same way, we also obtain

‖U‖La((S,∞),Lr ) ≤ 2ε
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and

‖U‖Lq ((S,∞),W 1,r ) + ‖U‖L∞((S,∞),H1) ≤ �‖U (S)‖H1 . (39)

Hence there exits a constant M such that for L sufficiently large,

sup
ω≥L

sup
t≥0

‖uω(t)‖H1 + sup
t≥0

‖U (t)‖H1 ≤ M < ∞. (40)

We now prove uω → U in L∞((0,∞), H1(RN )) as |ω| → ∞. Observe that

‖uω − U‖L∞((0,∞),H1) ≤ ‖uω − U‖L∞((0,S),H1) + ‖uω − U‖L∞((S,∞),H1),

where S > 0 to be chosen later. Theorem 1 implies that

‖uω − U‖L∞((0,S),H1) −→|ω|→∞ 0.

We claim that for every η > 0, there exists S > 0 such that

‖uω − U‖L∞((S,∞),H1) ≤ η (41)

for |ω| sufficiently large. To prove this, note that

uω(S + t) − U (S + t) = ei
ω(t,0)�(uω(S) − U (S)) + (
ei
ω(t,0)� − ei I (γ )t�)

U (S)

+ i(a(t) − b(t)),

where

a(t) :=
∫ t

0
ei
ω(t,s)�θ(ω(S + s))|uω(S + s)|αuω(S + s) ds

and

b(t) :=
∫ t

0
ei I (γ )(t−s)� I (θ)|U (S + s)|αU (S + s) ds.

Using Strichartz’s estimate and Hölder’s inequality in time, there exists a constant
C > 0, independent of S, such that

‖a‖L∞((0,∞),H1) ≤ C‖|uω|αuω‖Lq′
((S,∞),W 1,r ′

)

≤ C‖uω‖α
La((S,∞),Lr )‖uω‖Lq ((S,∞),W 1,r ),

and similarly,

‖b‖L∞((0,∞),H1) ≤ C‖|U |αU‖Lq′
((S,∞),W 1,r ′

)

≤ C‖U‖α
La((S,∞),Lr )‖U‖Lq ((S,∞),W 1,r ).

Given now η > 0, we choose ε > 0 sufficiently small so that 2α+1εαC M ≤ η/2. We
then fix S sufficiently large so that

‖U‖La((S,∞),Lr ) ≤ ε

4
.



44 Page 18 of 19 M. Choi and D. Kim J. Evol. Equ.

Then it follows from (38), (39) and (40) that

‖a‖L∞((0,∞),H1) + ‖b‖L∞((0,∞),H1) ≤ 2α+1εαC M ≤ η

2

for |ω| sufficiently large. It follows from (35) and Lemma 4 that

sup
t≥0

‖ei
ω(t,0)�(uω(S) − U (S))‖H1 + sup
t≥0

‖(ei
ω(t,0)� − ei I (γ )t�)
U (S)‖H1 ≤ η

2

for |ω| sufficiently large, which proves (41). This completes the proof of Theorem 2.
�
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