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Global existence of a nonlinear Schrödinger equation with viscous
damping
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Abstract. In this note, we consider a Schrödinger evolution equation with a power nonlinearity i |u|αu and
a viscous damping term ν�u. Then, we demonstrate that the Cauchy problem always admits the global
existence of classical solutions with finite mass. Moreover, we can also observe that our proof is applicable
for a nonlinear complex Ginzburg–Landau equation.

1. Introduction

In this note, we consider the nonlinear Schrödinger equation with viscous damping

∂t u = i(�u + |u|αu) + ν�u, u|t=0 = u0 (1.1)

on Rd , where α, ν > 0 and u0 is a prescribed C-valued function on Rd . We shall seek
for an unknown function u = u(t, x) : [0,∞) × R

d → C governed by the Cauchy
problem (1.1). Here, it should be noted that equation (1.1) is a particular case of the
complex Ginzburg–Landau equation

∂t u = (ν + iκ)�u + (λ + iμ)|u|αu + γ u, (1.2)

where κ, λ, μ, γ ∈ R (see e.g. [1,13]).
In the case of ν = 0 in (1.1), some solutions of the purely nonlinear Schrödinger

equation blow up in finite time under suitable assumptions on α and u0. As is well
known, if α < 4/(d − 2)+, then the Cauchy problem is locally well-posed in the
energy space H1(Rd). In particular, if α < 4/d, then we obtain the maximal existence
time T∗ = +∞ for every u0 ∈ H1(Rd). On the other hand, if 4/d ≤ α < 4/(d−2)+,
then T∗ = T∗(u0) < ∞ for every initial value u0 satisfying |x |u0 ∈ L2(Rd) and

E(u0) := 1

2
||∇u0||2L2 − 1

α + 2

∫
Rd

|u0|α+2dx < 0.

That is, we have that lim supt↑T∗ ||u(t)||H1 = +∞ (see for instance [6]). Later on,
Cazenave et. al. [3,4] extended the blowup result to the Ginzburg–Landau equation
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(1.2) in the case when κ = μ and ν = λ :

∂t u = (ν + iκ)(�u + |u|αu) + γ u. (1.3)

Our purpose of this note is to show that the Cauchy problem (1.1) always admits
the global existence of classical solutions with finite mass due to the viscous damping
term. More precisely, we shall establish the following result.

Theorem 1.1. Given any u0 ∈ L∞(Rd) ∩ L2(Rd), there exists a unique function
u ∈ Cw([0,∞), L∞(Rd))∩C([0,∞), L2(Rd)) with u|t=0 = u0,which is a classical
solution of equation (1.1) on (0,∞) × R

d .

It seems that the standard strategy of compactness or monotonicity method is not
available for deriving the global existence of such strong solutions at least when
α > 2d/(d − 2)+ and ν is sufficiently small (cf. [7–9,11,12]). Therefore, we need
another approach to prove Theorem 1.1.

The outline of this note is as follows. In Sect. 2, we collect some preliminary results
for demonstrating Theorem 1.1. In Sect. 3, we complete the proof of Theorem 1.1.

2. Preliminaries

Let Aνϕ := (ν + i)�ϕ with domain H2(Rd). Then, it is well known that Aν

generates an analytic semigroup (et Aν )t≥0 on L2(Rd), which is given by the explicit
representation

et Aν ψ = 1

(4π(ν + i)t)
d
2

∫
Rd

e
(i−ν)

|x−y|2
4(1+ν2)t ψ(y) dy. (2.1)

In addition, (et Aν )t≥0 is a strongly continuous semigroup on L p(Rd) for 1 ≤ p < ∞.
Moreover, there is a constant C = C(d, ν) > 0 such that

||et Aν ψ ||Lr ≤ C

t
d
2 ( 1

p − 1
r )

||ψ ||L p (2.2)

and

||∇et Aν ψ ||Lr ≤ C

t
1
2+ d

2 ( 1
p − 1

r )
||ψ ||L p (2.3)

for all t > 0, where 1 ≤ p ≤ r ≤ ∞.
Our problem (1.1) can be converted into the integral equation

u(t) = et Aνu0 + i
∫ t

0
e(t−s)Aν |u(s)|αu(s) ds (2.4)

for an unknown function u = u(t) = u(t, ·) : [0,∞) × R
d → C. By applying the

standard fixed point argument to (2.4), we can immediately obtain the local-in-time
solvability of (1.1) on L∞(Rd). More precisely, we have the following.
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Proposition 2.1. There is a constant ε0 = ε0(d, ν, α) > 0 such that for every u0 ∈
L∞(Rd), there exist a unique function u ∈ Cw([0, T ], L∞(Rd)) for a time T ≥
ε0/||u0||αL∞ with u(0) = u0, which is a classical solution of equation (1.1) on (0, T )×
R
d .
In particular, for any T0 ≤ T/2, there is a constant C = C(d, ν, α, T0, M(T )) > 0

with M(T ) := sup0≤t≤T ||u(t)||L∞ such that

sup
T−T0≤t<T

||∇u(t)||L∞ ≤ C. (2.5)

Moreover, if in addition u0 ∈ L2(Rd), then u ∈ C([0, T ], L2(Rd)) and

||u(t)||2L2 + 2ν
∫ t

0
||∇u(s)||2L2ds = ||u0||2L2 (2.6)

for all t ∈ [0, T ].
Remark 2.1. By standard parabolic regularity theory, we know that the resulting
solution u is a classical solution in C((0, T ),C3(Rd)) ∩ C1((0, T ),C(Rd)) with
∇∂t u ∈ C((0, T ) × R

d). However, for small α > 0, say, 0 < α < 1, one cannot
expect these solutions to be in C((0, T ),C4(Rd)) (cf. [5, Theorem 3.2 and A.1]).

Proof. For the uniqueness part, see [2, Lemma 9]. The estimate (2.5) is derived by
applying the L∞ smoothing estimate in (2.3) to the Cauchy problem (1.1) with the
initial condition u|t=T−2T0 = u(T −2T0) via a singular Gronwall’s lemma [6, Lemma
8.1.1]. We omit the details of the proof of Proposition 2.1 �

Let us denote the Newtonian potential on Rd by

�−1 f := (E ∗ f )(x) =
∫
Rd

E(x − y) f (y)dy (2.7)

for a function f : Rd → R, where E(x) is the fundamental solution of the Laplacian
� on Rd , i.e.,

E(x) =

⎧⎪⎨
⎪⎩

− 1

(d − 2)|Sd−1| |x |
2−d (for d �= 2),

1

2π
log |x | (for d = 2).

Here, |Sd−1| denotes the surface area of the unit ball in Rd . It is well known that there
are constants C = C(d, r, ρ) > 0 and C ′ = C ′(d, r, ρ) > 0 such that

||∇�−1 f ||L∞ ≤ C || f ||Lr (B(z;ρ)) (for d < r ≤ ∞) (2.8)

and

||�−1 f ||L∞ ≤ C ′|| f ||Lr (B(z;ρ)) (for d/2 < r ≤ ∞) (2.9)
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for any f ∈ Lr (Rd) supported on B(z; ρ) (cf. for instance [10, Theorem 10.2]). Here,
B(z; ρ) denotes the open ball centered at z ∈ R

d of radius ρ > 0.
Let us recall a dyadic partition of unity of Littlewood–Paley type: there exists a

nonnegative, smooth, spherically symmetric function ϕ : Rd → R supported on the
annulus {2−1 ≤ |x | ≤ 2} such that

1 =
∑
n∈Z

ϕ(2nx) (∀x �= 0).

Let φ = {φn
z (x)}n∈Z

z∈Rd denote a family of localization functions on R
d given by

φn
z (x) :=

∞∑
k=n

ϕ(2k(x − z)).

Note that φn
z = 1 on B(z; 2−n) and φn

z = 0 on R
d\B(z; 2−n+1). Moreover, we

have the generalization φ = {φn
z (x)}n∈R

z∈Rd via interpolation. For f ∈ L1
loc(R

d), let us
introduce the operator

f (n)
z = f (n)

z (x) := (
�−1(φn

z � f )
)
(x) (2.10)

for x ∈ R
d . Then, we have the following identities

f (n)
z = φn

z f − 2∇�−1(∇φn
z f ) + �−1(�φn

z f ) (2.11)

and

f (n)
z = ∇�−1(φn

z ∇ f ) − �−1(∇φn
z · ∇ f ) (2.12)

for f ∈ C2(Rd). Moreover, we can observe from integration by substitution the
following identities

||∇�−1(φn
z ∇ f )||L∞ = ||∇�−1(φ0

0∇ f −n
z )||L∞ (2.13)

and

||�−1(∇φn
z · ∇ f )||L∞ = ||�−1(∇φ0

0 · ∇ f −n
z )||L∞ (2.14)

with f −n
z (x) := f (z + 2−nx) for all f ∈ C1(Rd).

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1

Proof of Theorem 1.1. Weargue by contradiction. Suppose that there exist some initial
data u0 ∈ L∞(Rd) ∩ L2(Rd) such that the solution u obtained in Proposition 2.1
develops singularities at t = T∗ < ∞, that is,

lim
t↑T∗

||u(t)||L∞ = +∞. (3.1)
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Thus we can find a sequence of (tk)k≥1 ⊂ (0, T∗) with tk ↑ T∗ such that

2mk−1 < ||u(tk)||L∞ = sup
0≤t≤tk

||u(t)||L∞ ≤ 2mk ↑ +∞ (3.2)

with an associated sequence (mk)k≥1 ∈ N.
Let us introduce the function

q(t) = q(t, x) := (1 + |u(t, x)|2)θ (0 < θ < 1/d). (3.3)

Since the identity (2.11) gives

φn
z q(t) = q(n)

z (t) + 2
(∇�−1(∇φn

z q(t))
) − (

�−1(�φn
z q(t))

)

with q(n)
z (t) := �−1(φn

z �q(t)), we deduce that

||q(t)||L∞(B(z;2−n)) ≤ ||φn
z q(t)||L∞(B(z;2−n+1))

≤ ||q(n)
z (t)||L∞ + 2||∇�−1(∇φn

z q(t))||L∞

+ ||�−1(�φn
z q(t))||L∞ . (3.4)

We thus estimate

||∇�−1(∇φn
z q(t))||L∞ = ||∇�−1(∇φ0

0q
−n
z (t))||L∞(

by(2.13)with q−n
z (t, x) := q(t, z + 2−nx)

)
≤ C ||q(t)||L1/θ (B(z;2−n+1))(

by (2.8) with r = 1/θ > d
)

= C ||1 + |u(t)|2||θL1(B(z;2−n+1))

= C
(|B(z; 2−n+1)| + ||u(t)||2L2

)θ

≤ C
(
1 + ||u0||2θL2

)

for all (n, z, t) ∈ R
+ × R

d × (0, T∗), where we used the bound ||u(t)||L2 ≤ ||u0||L2

from (2.6) in the last inequality. Similarly, by using (2.14) and (2.9) with r = 1/θ , we
get

||�−1(�φn
z q(t))||L∞ = ||�−1(�φ0

0q
−n
z (t))||L∞

≤ C ||q(t)||L1/θ (B(z;2−n+1))

≤ C
(
1 + ||u0||2θL2

)

for every (n, z, t) ∈ R
+ × R

d × (0, T∗). Hence, it follows from (3.4) that

||q(t)||L∞(B(z;2−n)) ≤ ||q(n)
z (t)||L∞ + C

(
1 + ||u0||2θL2

)
(3.5)

for any (n, z, t) ∈ R
+ × R

d × (0, T∗).
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For the time sequence (tk)k≥1 in (3.2), let us choose a point xk ∈ R
d such that

|u(tk, xk)| > 2mk−1 for each k ≥ 1. Then for any sequence (nk)k≥1 ↑ +∞, we have
that

lim
k→∞ ||q(tk)||L∞(B(xk ;2−nk )) = +∞. (3.6)

Let Mk := 2mkα/2 and let us rescale the blowup solution u at (tk, xk) ∈ (0, T∗)×R
d

by

U(k) = U(k)(t, x) := M
− 2

α

k u(tk + M−2
k t, xk + M−1

k x) (3.7)

By our construction, U(k) is a function defined on the rescaled interval [−M2
k tk, 0]

such that

sup
−M2

k tk≤t≤0

||U(k)(t)||L∞ ≤ 1. (3.8)

Furthermore, by the scaling invariance of equation (1.1), the functionU(k) is a solution
of the Cauchy problem (1.1) on [−M2

k tk, 0]×R
d for any k ≥ 1. Then, we can deduce

from the L∞ estimate (2.5) that

sup
−1≤t<0

||∇U(k)(t)||L∞ ≤ Cα (3.9)

for all k � 1 with a constant Cα = C(d, ν, α) > 0.
Define the function

w(k)(t, x) := u(tk + M−2
k t, xk + M

−( 2
α
+1)

k x) = M
2
α

k U(k)(t, M
− 2

α

k x).

By differentiation, we have

sup
−1≤t<0

||∇w(k)(t)||L∞ = sup
−1≤t<0

||∇U(k)(t)||L∞

≤ Cα

for all k � 1. Furthermore, we see that the function

Q(k)(t, x) := q(tk + M−2
k t, xk + M

−( 2
α
+1)

k x)

=
(
1 + |w(k)(t, x)|2

)θ

(3.10)

(cf. (3.3)) satisfies

sup
−1≤t<0

||∇Q(k)(t)||L∞ = sup
−1≤t<0

2θ || w(k)(t) · ∇w(k)(t)

(1 + |w(k)(t)|2)1−θ
||L∞

≤ 2 sup
−1≤t<0

||∇w(k)(t)||L∞

≤ Cα, (3.11)
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since 0 < θ < 1/d and 2(1 − θ) > 1.
We are now a position to complete the proof of Theorem 1.1. Since (3.6) implies

||q(tk)||L∞(B(xk ;2−nk )) ↑ +∞ (as k → ∞)

with nk := mk(α + 2)/2, we deduce from the inequality (3.5) that

lim
k→∞ ||q(nk)

xk (tk)||L∞ = +∞. (3.12)

On the other hand, we observe that

||q(nk )
xk (tk)||L∞ ≤ ||∇�−1(φnk

xk ∇q(tk))||L∞

+ ||�−1(∇φnk
xk · ∇q(tk))||L∞

(
since 2.12

)
≤ sup

−1/M2
k ≤t<0

||∇�−1(φnk
xk ∇q(tk + t))||L∞

+ sup
−1/M2

k ≤t<0

||�−1(∇φnk
xk · ∇q(tk + t))||L∞

= sup
−1≤t<0

||∇�−1(φ0
0∇Q(k)(t))||L∞

+ sup
−1≤t<0

||�−1(∇φ0
0 · ∇Q(k)(t))||L∞

(
since 2.13−2.14 and 2−nk = M

−( 2
α
+1)

k

)
≤ C sup

−1≤t<0
||∇Q(k)(t)||L∞(B(0;2))

(
since 2.8 and 2.9 with r = ∞)

≤ C sup
−1≤t<0

||∇Q(k)(t)||L∞

≤ Cα

for all k � 1, since (3.11). This contradicts (3.12). Hence, we have proved Theorem
1.1. �

We finish this note to state that our argument is available to establish the global
existence of classical solutions for the following complex Ginzburg–Landau equation

∂t u = (ν + iκ)�u + (λ + iμ)|u|αu (λ < 0), (3.13)

and furthermore, for the derivative-type nonlinear Schrödinger equation with viscous
damping

∂t u = i(�u + |∇u|βu) + ν�u (1 ≤ β < 2). (3.14)

Theorem 3.1. Consider the Cauchy problem for the equation (3.13) (resp. (3.14))
on R

d . Given any u0 ∈ L∞(Rd) ∩ L2(Rd), there exists a unique function u ∈
Cw([0,∞), L∞(Rd)) ∩ C([0,∞), L2(Rd)) with u|t=0 = u0, which is a classical
solution of equation (3.13) (resp. (3.14)) on (0,∞) × R

d .



39 Page 8 of 8 D. Hirata J. Evol. Equ.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

[1] I. S. Aranson and L. Kramer, The world of the complex Ginzburg–Landau equation, Rev. Modern
Phys., 74 (2002), no. 1, 99–143.

[2] H. Brézis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68
(1996), 277–304.

[3] T. Cazenave, J.-P. Dias, and M. Figueira, Finite-time blowup for a complex Ginzburg–Landau
equation with linear driving, J. Evol. Equ., 14 (2014), no. 2, 403–415.

[4] T. Cazenave, F. Dickstein, and F. B. Weissler, Finite-time blowup for a complex Ginzburg–Landau
equation, SIAM J. Math. Anal., 45 (2013), no. 1, 244–266.

[5] T. Cazenave, F. Dickstein, and F. B. Weissler, Non-regularity in Hölder and Sobolev spaces of
solutions to the semilinear heat and Schrödinger equations, Nagoya Math. J., 226 (2017), 44–70.

[6] T. Cazenave and A. Haraux, An introduction to semilinear evolution equations. Translated from
the 1990 French original by Yvan Martel and revised by the authors. Oxford Lecture Series in
Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York,
1998.

[7] P. Clément, Philippe, N. Okazawa, M. Sobajima, and T. Yokota, A simple approach to the Cauchy
problem for complex Ginzburg–Landau equations by compactness methods, J. Differ. Equ. 253
(2012), 4, 1250–1263.

[8] J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau
equation. I. Compactness methods, Phys. D, 95 (1996), no. 3-4, 191–228. 5The Cauchy problem in
local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, 5Comm. Math.
Phys., 187 (1997), no. 1, 45–79.

[9] C. D. Levermore and M. Oliver, The complex Ginzburg–Landau equation as a model problem,
Dynamical systems and probabilisticmethods in partial differential equations (Berkeley, CA, 1994),
141–190, Lectures in Appl. Math., 31, Amer. Math. Soc., Providence, RI, 1996.

[10] E.H. Lieb and M. Loss, Analysis, Second edition, Graduate Studies in Mathematics, 14, American
Mathematical Society, Providence, RI, 2001.

[11] N.Okazawa andT.Yokota Subdifferential operator approach to strongwellposedness of the complex
Ginzburg–Landau equation, Discrete Contin. Dyn. Syst., 28 (2010), no. 1, 311–341.

[12] D. Shimotsuma, T. Yokota, and K. Yoshii, Existence and decay estimates of solutions to complex
Ginzburg–Landau type equations, J. Differ. Equ. 260 (2016), no. 3, 3119–3149.

[13] Y.Yang,On theGinzburg–Landauwave equation, Bull. Lond.Math. Soc., 22 (1990), no. 2, 167-170,

Daisuke Hirata
Institute for Mathematics and
Computer Science
Tsuda University
Tsuda-chou
Kodaira-shi, Tokyo 187-8577
Japan
E-mail: hiradice@gmail.com

Accepted: 21 March 2022


	Global existence of a nonlinear Schrödinger equation with viscous damping
	Abstract
	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	REFERENCES




