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Abstract. For a general class of divergence type quasi-linear singular parabolic equations with generalized
Orlicz growth, we prove the intrinsic Harnack inequality for positive solutions. This class of singular
equations includes new cases of equations with (p, q) nonlinearity and non-logarithmic growth.

1. Introduction and main results

In this paper, we are concerned with general divergence type singular parabolic
equations with nonstandard growth conditions. Let � be a domain in R

n , T > 0,
�T := � × (0, T ), we study bounded solutions to the equation

ut − divA(x, t,∇u) = 0, (x, t) ∈ �T . (1)

Throughout the paper, we suppose that the functions A : �T × R
n → R

n are such
that A(·, ·, ξ) are Lebesgue measurable for all ξ ∈ R

n , and A(x, t, ·) are continuous
for almost all (x, t) ∈ �T . We also assume that the following structure conditions are
satisfied

A(x, t, ξ)ξ � K1 g(x, t, |ξ |) |ξ |,
|A(x, t, ξ)| � K2 g(x, t, |ξ |), (2)

where K1, K2 are positive constants and the function g(x, t, v) : �T × R+ → R+
satisfies the following conditions:

(g0) for all (x, t) ∈ �T the function g(x, t, ·) is increasing, continuous and
lim

v→+0
g(x, t, v) = 0, lim

v→+∞ g(x, t, v) = +∞;

(g1) c−1
0 � g(x, t, 1) � c0 for all (x, t) ∈ �T and some c0 > 0;
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(g2) for all (x, t) ∈ �T and for w � v > 0 there hold

(w

v

)p−1
� g(x, t, w)

g(x, t, v)
�

(w

v

)q−1
,

2n

n + 1
< p < min{2, q}, q �= 2.

Fix R0 > 0 such that QR0,R0(x0, t0) ⊂ �T , where

QR1,R2(x0, t0) := Q−
R1,R2

(x0, t0) ∪ Q+
R1,R2

(x0, t0),

Q−
R1,R2

(x0, t0) := BR1(x0) × (t0 − R2, t0),

Q+
R1,R2

(x0, t0) := BR1(x0) × (t0, t0 + R2).

In what follows, we assume that

(gλ) there exists positive, continuous and non-decreasing function λ(r) on the interval
(0, R0), 0 < λ(r) � 1, lim

r→0
r1−a/λ(r) = 0, a ∈ (0, 1), such that for any K ,

K0 > 0 and some c1(K , K0) > 0, b � 0 there holds

g(x, t, v/r) � c1(K , K0) g(y, τ, v/r)

for all br < v � Kλ(r) and (x, t), (y, τ ) ∈ Qr,r K0(x0, t0) ⊂ QR0,R0(x0, t0).
(gμ) there exists positive, continuous and non-increasing functionμ(r) on the interval

(0, R0), μ(r) � 1, lim
r→0

r1−aμ(r) = 0, a ∈ (0, 1) such that for any K , K0 > 0

and some c2(K , K0) > 0, b � 0 there holds

g(x, t, v/r) � c2(K , K0)μ(r) g(y, τ, v/r),

for all br < v � K and (x, t), (y, τ ) ∈ Qr,r K0(x0, t0) ⊂ QR0,R0(x0, t0).

As one can easily see, for λ(r) = μ(r) = 1, (gλ) and (gμ) reduce to the standard
Zhikov’s logarithmic condition. We will also need the following technical inequality

λ(ρ)

λ(r)
+ μ(r)

μ(ρ)
�

(ρ

r

)c3
,

which we assume with some c3 > 0 and for all 0 < r � ρ � R0.
We will establish that nonnegative bounded weak solutions of Eq. (1) satisfy an

intrinsic form of the Harnack inequality in a neighborhood of (x0, t0) provided that
this p.d.e. is singular, i.e., the functionψ(x, t, v) := g(x, t, v)/v satisfies the following
assumptions:

(ψ) there exist a0, b0 � 0, 0 < q1 < 1 and R0 = R0(x0, t0) > 0 such that

ψ(x, t, w)

ψ(x, t, v)
�

( v

w

)1−q1

for all (x, t) ∈ QR0,R0(x0, t0) ⊂ �T and for w � v > b0R
−a0
0 .

Condition (ψ) with q1 = q − 1 and b0 = a0 = 0 is a consequence of (g2) in the case
q < 2.
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Remark 1. We note that the continuity of solutions was proved in [34] under weaker
conditions, namely it was assumed thatψ(x0, t0, v) is non-increasing (”singular” case)
or ψ(x0, t0, v) is non-decreasing (”degenerate” case) for v � b0R

−a0
0 . Unfortunately,

we were unable to prove Harnack’s inequality under similar conditions. The following
examples show that additional conditions on the function g(x, t, v) arise naturally.

Example 1. Consider the function

g1(x, t, v) := v p−1 + a(x, t)vq−1, (x, t) ∈ �T , v > 0,

where a(x, t) � 0, q > p, oscQr,r (x0,t0)a(x, t) � Arq−pμ1(r), 0 < A < +∞,

lim
r→0

μ1(r) = +∞, lim
r→0

rq−pμ1(r) = 0.

The function g1 satisfies condition (gλ) with λ(r) = [μ1(r)]−1/(q−p) and b = 0.
Indeed,

g1(x, t, v/r)−g1(y, τ, v/r) � |a(x, t) − a(y, τ )|
(v

r

)q−1

� Aμ1(r) vq−p
(v

r

)p−1
� AKq−p

(v

r

)p−1
� AKq−pg(y, t, v/r)

if 0 < v � Kλ(r) and (x, t), (y, τ ) ∈ Qr,r (x0, t0). Condition (gμ)withμ(r) = μ1(r)
and b = 0 is verified similarly.
Note that condition (ψ) can be violated in the case q > 2 and a(x0, t0) = 0.

Example 2. Consider the function

g2(x, t, v) := v p−1 + a(x, t)vq−1(1 + ln(1 + v))β, (x, t) ∈ �T , v > 0,

where q > p, β > 0, a(x, t) � 0, oscQr,r (x0,t0)a(x, t) � Arq−pμ2(r), 0 < A <

+∞,

lim
r→0

μ2(r) = +∞, lim
r→0

rq−pμ2(r)(ln r
−1)β = 0.

Conditions (gλ) and (gμ) with λ(r) = [μ2(r)]−
1

q−p (ln r−1)
− β

q−p , μ(r) = μ2(r)×
×(ln r−1)β and b = 0 are checked similarly to Example 1. Condition (ψ) is a conse-
quence of condition (g1) in the case q+β < 2 . In the case q+β > 2 and a(x0, t0) = 0
condition (ψ) is violated. In the case q > 2 and a(x0, t0) > 0 condition (ψ) is also
fails . Let us check condition (ψ) in the case q < 2 < q + β and a(x0, t0) > 0. For
this we note that

ψ ′
v(x, t, v)v

ψ(x, t, v)
� q − 2 + β

1 + ln(1 + v)
� q − 2

2
if v � e

2β
2−q − 1,

which implies (ψ) with q1 = q/2, a0 = 0 and b0 = e
2β
2−q − 1.
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Example 3. The function

g3(x, t, v) := v p−1 (1 + L ln(1 + a(x, t)v)) , (x, t) ∈ �T , v > 0

where 0 < L < 2 − p, a(x, t) � 0, oscQr,r (x0,t0)a(x, t) � Brμ3(r), 0 < B < +∞,

lim
r→0

μ3(r) = +∞, lim
r→0

rμ3(r) = 0,

satisfies condition (gλ) with λ(r) = 1/μ3(r) and b = 0. Indeed,

g3(x, t, v/r) − g3(y, τ, v/r) � L
(v

r

)p−1
ln

(
1 + |a(x, t) − a(y, τ )|v

r

)

�L
(v

r

)p−1
ln (1 + Bμ3(r)v)�L

(v

r

)p−1
ln(1 + BK ) �L ln(1 + BK )g3(y, τ, v/r)

if 0 < v � Kλ(r) and (x, t), (y, τ ) ∈ Qr,r (x0, t0). Condition (gμ) with μ(r) =
lnμ3(r) and b = 0 we obtain similarly. Condition (ψ) holds since q = p + L < 2.
We note also that the function g̃3(x, t, v) := v p−1(1 + ln(1 + a(x, t)v)) satisfies

condition (ψ) in the case p < 2 and a(x0, t0) > 0. To check this we note that

ψ ′
v(x, t, v)v

ψ(x, t, v)
= p − 2 + va(x, t)

1 + va(x, t)

1

1 + ln(1 + a(x, t)v)

� p − 2 + 1

1 + ln(1 + a(x, t)v)
.

Choose R0 from the condition BR0μ(R0) = 1
2a(x0, t0). This choice guarantees that

1

2
a(x0, t0) � a(x, t) � 3

2
a(x0, t0), (x, t) ∈ QR0,R0(x0, t0).

So, if v � 1
4B (e

p
2−p − 1)R−1

0 , from the previous we obtain

ψ ′
v(x, t, v)v

ψ(x, t, v)
� p − 2

2
, (x, t) ∈ QR0,R0(x0, t0),

which implies condition (ψ) with b0 = 1
4B (e

p
2−p − 1), a0 = 1 and q1 = p/2 < 1.

Unfortunately, condition (ψ) is violated for the function g̃3 in the case a(x0, t0) = 0
and p < 2.

Example 4. Consider the functions

g4(x, t, v) := v p−1(1 + a(x, t) ln(1 + v)),

g5(x, t, v) := v p(x,t)−1, v > 0, (x, t) ∈ �T ,

where p < 2, p(x, t) � q < 2, a(x, t) � 0 and

oscQr,r (x0,t0)a(x, t) + oscQr,r (x0,t0) p(x, t) � L

ln r−1 .



J. Evol. Equ. Harnack’s inequality for singular parabolic equations... Page 5 of 34 45

It is obvious that g4(x, t, v) satisfies conditions (gλ),(gμ) with λ(r) = μ(r) = 1 and
b = 0.
Similarly, the function g5(x, t, v) satisfies conditions (gλ),(gμ)with λ(r) = μ(r) = 1
and b = 1. To check condition (ψ) for the function g4, we note

ψ ′
v(x, t, v)v

ψ(x, t, v)
= p − 2 + a(x, t)v

1 + v
(1 + a(x, t) ln(1 + v))−1

� p − 2 + ln−1(1 + v) � p − 2

2

if v � e
2

2−p − 1, which implies condition (ψ) with b0 = e
2

2−p − 1, a0 = 0 and
q1 = p/2.

Before describing the main results, a few words concern the history of the problem.
The study of regularity of minima of functionals with nonstandard growth has been
initiated by Kolodij [25,26], Zhikov [44–47,49], Marcellini [30,31] and Lieberman
[29], and in the last thirty years there has been growing interest and substantial devel-
opment in the qualitative theory of quasi-linear elliptic and parabolic equations with
so-called ”log-conditions” (i.e., if λ(r) = 1 and μ(r) = 1). We refer the reader to the
papers [1,3–10,12–14,18,19,21–24,36–43,51] for the basic results, historical surveys
and references.
The case when conditions (gλ) or (gμ) hold differ substantially from the logarithmic

case. To our knowledge, there are few results in this direction. Zhikov [48] obtained
a generalization of the logarithmic condition which guarantees the density of smooth
functions in Sobolev spaceW 1,p(x)(�). Particularly, this result holds if p(x) � p > 1,
and for every x, y ∈ �, x �= y,

|p(x) − p(y)| � lnμ(|x − y|)∣∣ ln |x − y|∣∣ ,

∫

0
[μ(r)]− n

p
dr

r
= +∞.

We note that the function μ(r) = (ln r−1)L , 0 � L � p/n satisfies the above
condition. Later Zhikov and Pastuchova [50] under the same condition proved higher
integrability of the gradient of solutions to the p(x)-Laplace equation.
Interior continuity, continuity up to the boundary and Harnack’s inequality to the

p(x)-Laplace equation were proved by Alkhutov, Krasheninnikova [1], Alkhutov,
Surnachev [2] and Surnachev [35] under the conditions

|p(x) − p(y)| � lnμ(|x − y|)
| ln |x − y|| , x, y ∈ �, x �= y,

∫

0
exp(−γμc(r))

dr

r
= +∞

(3)

with some γ, c > 1. Particularly, the function μ(r) = (ln ln r−1)L , 0 < L < 1/c
satisfies the above condition.
These results were generalized in [32,33] for a wide class of elliptic and parabolic

equations with non-logarithmic Orlicz growth. Later, the results from [32,33] were
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substantially refined in [20,34]. For interior continuity, instead of condition (3), it was
required that

∫

0
λ(r)

dr

r
= +∞. (4)

In addition, in [20] Harnack’s inequality was proved for quasilinear elliptic equations
under the condition

∫

0
[μ(r)]− 2n

p−1 λ(r)
dr

r
= +∞. (5)

We note that this condition is worse than condition (4), but at the same time it is much
better then condition (3).

In this paper, we establish the intrinsic Harnack inequality for nonnegative solutions
to Eq. (1) under the similar conditions as (5). To describe our results, let us introduce
the definition of a weak solution to Eq. (1).

Definition 1. We say that u is a bounded weak sub (super) solution to
Eq. (1) if

u ∈ Cloc(0, T ; L2
loc(�)) ∩ Lq

loc(0, T ;W 1,q
loc (�)) ∩ L∞(�T ),

and for any compact set E ⊂ � and every subinterval [t1, t2] ⊂ (0, T ] the integral
identity

∫

E
uη dx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫

E
{−uητ + A(x, τ,∇u)∇η} dxdτ � (�) 0 (6)

holds true for any testing functions η ∈ W 1,2(0, T ; L2(E)) ∩ Lq(0, T ;W 1,q
0 (E)),

η � 0.

It would be technically convenient to have a formulation of weak solution that
involves ut . Let ρ(x) ∈ C∞

0 (Rn), ρ(x) � 0 in R
n , ρ(x) ≡ 0 for |x | > 1 and∫

Rn ρ(x) dx = 1, and set

ρh(x) := h−nρ (x/h) , uh(x, t) := h−1
∫ t+h

t

∫

Rn
u(y, τ )ρh(x − y) dydτ.

Fix t ∈ (0, T ) and let h > 0 be so small that 0 < t < t + h < T . In (1.6) take
t1 = t , t2 = t + h and replace η by

∫
Rn η(y, t)ρh(x − y) dy. Dividing by h, since the

testing function does not depend on τ , we obtain

∫

E×{t}

(
∂uh
∂t

η + [A(x, t,∇u)]h∇η

)
dx � (�) 0, (7)

for all t ∈ (0, T − h) and for all nonnegative η ∈ W 1,q
0 (E).
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We refer to the parameters M := sup
�T

u, K1, K2, c0, c1 = c1(M, M), c2 =
c2(M, M), c3, n, p, q and q1 as our structural data, and we write γ if it can be
quantitatively determined a priori only in terms of the above quantities. The generic
constant γ may change from line to line. Note that the constants a0, b and b0 can be
equal to zero, therefore, in the proof we keep an explicit track of the dependence of
the various constants on a0, b and b0.
Our first main result concerns the Harnack inequality for the case of logarithmic

growth (i.e., λ(r) = μ(r) = 1). Fix a point (x0, t0) ∈ �T such that u(x0, t0) > 0 and
consider the cylinders

Qρ,θ (x0, t0), θ := ρ2/ψ(x0, t0, u(x0, t0)ρ
−1).

Theorem 1. Let u be a positive bounded weak solution to Eq. (1). Let the conditions
(2), (g0)– (g2), (ψ), (gλ) and (gμ) with λ(r) = μ(r) = 1 be fulfilled in the cylinder
QR0,R0(x0, t0) ⊂ �T . Then, there exist positive constants c, c̄, δ1 depending only upon
the data such that for all cylinders Q8ρ,8θ (x0, t0) ⊂ Q8ρ,8c̄ρ(x0, t0) ⊂ QR0,R0(x0, t0),
0 < ρ � Ra1

0 , a1 = 1 + a0/a, either

u(x0, t0) � c(b + b0)ρ
1−a0/a1 , (8)

or

u(x0, t0) � c infBρ(x0) u(·, t), (9)

for all times |t−t0| � ρ2/ψ(x0, t0, δ1u(x0, t0)ρ−1), and the numbers a0, ā are defined
in conditions (gλ), (gμ) and (ψ).

Our next result is the Harnack inequality for the case of non-logarithmic growth.
Having fixed (x0, t0) ∈ �T , construct the cylinder Qρ,θ̄ (x0, t0), where

θ̄ = ρ2

ψ(x0, t0, u(x0, t0)λ1(ρ)ρ−1)
, λ1(ρ) = λ(ρ)[μ(ρ)]−β,

β = 1

2 − p
+ n

1 + 2(2 − p)

p + n(p − 2)
.

Theorem 2. Let u be a positive bounded weak solution to Eq. (1). Let the conditions
(2), (g0)– (g2), (gλ), (gμ) and (ψ) be fulfilled in the cylinder
QR0,R0(x0, t0) ⊂ �T . Assume also that

(A(x, t, ξ) − A(x, t, η))(ξ − η) > 0, ξ, η ∈ R
n, ξ �= η. (10)

If additionally
∫
0 λ1(r)r−1 dr = +∞ and lim

r→0
r1−ā1/λ1(r) = 0 with some ā1 ∈

(0, 1), then there exist positive constants c, c̄, δ1 depending only upon the data such
that for all cylinders

Q8ρ,8θ̄ (x0, t0) ⊂ Q8ρ,8c̄ρ(x0, t0) ⊂ QR0,R0(x0, t0), 0 < ρ � Ra1
0 , a1 = 1 + a0/ā1,
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either

u(x0, t0) � c(b + b0)
ρ1−a0/a1

λ1(ρ)
, (11)

or

u(x0, t0) � c

λ1(ρ)
inf

Bρ(x0)
u(·, t) (12)

for all times |t − t0| � ρ2/ψ
(
x0, t0, δ1ρ−1λ1(ρ)u(x0, t0)

)
.

Remark 2. We note that in the case g1(x, t, v) = v p−1 + a(x, t)vq−1,

μ1(ρ) = (ln ρ−1)α, λ(ρ) = (ln ρ−1)
− α

q−p , 0 � α � q − p

1 + β(q − p)
,

inequality (12) translates into

u(x0, t0) � c ln ρ−1 inf
Bρ(x0)

u(·, t), |t − t0| � ρ2

ψ

(
x0, t0, δ1

u(x0, t0)

ρ ln ρ−1

) . (13)

Similar result is also valid for the function g2(x, t, v) = v p−1 + a(x, t)vq−1(1 +
ln(1 + v))β and

μ2(ρ) = (ln ρ−1)α, λ(ρ) = (ln ρ−1)
− α+β

q−p , 0 � α + β � q − p

1 + β(q − p)
.

In addition, note that in the case g3(x, t, v) = v p−1(1 + L ln(1 + a(x, t))) and

μ3(ρ) = (ln ρ−1)α, λ(ρ) = (ln ρ−1)−α, μ(ρ) = α ln ln ρ−1, 0 � α < 1,

inequality (12) can be rewritten as (13).

We would like to mention the approach taken in this paper. To prove our results,
we use DiBenedetto’s approach [15], who developed an innovative intrinsic scaling
methods for degenerate and singular parabolic equations. For the p-Laplace evolution
equation, the intrinsic Harnack inequality was proved in the famous papers [16,17].
Themain stage in the proof of our results is the so-called L1

loc– L
∞
loc Harnack inequality.

Theorem 3. Let u be a nonnegative, bounded weak solution to Eq. (1) and let (2),
(g0)– (g2), (gμ) and (ψ) be fulfilled in the cylinder QR0,R0(x0, t0) ⊂ �T . Then for
all cylinders

Q+
2r,2(t−s)(y, 2s − t) ⊂ QR0,R0(x0, t0), 0 < t − s < c̄r, r � Ra

0 , a > a0, c̄ > 0,

sup
Q+

r
2 ,t−s

(y,s)

u�γ (t − s)
1
2 ϕ−1

Q+
2r,2(t−s)(y,2s−t)

(
(t − s)−

n+1
2 inf

2s−t<τ<t

∫

B2r (y)
u(x, τ )dx

)
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+γ (t − s)
1
2 ϕ−1

Q+
2r,2(t−s)(y,2s−t)

⎛
⎝

(
r2

t − s

) n+1
2

ψ−1
Q+
2r,2(t−s)(y,2s−t)

(
r2

t − s

)⎞
⎠

+γ rψ−1
Q+
2r,(t−s)(y,2s−t)

(
r2

t − s

)
, (14)

provided that

ψ−1
Q+
2r,2(t−s)(y,2s−t)

(
r2

t − s

)
� (b + b0)r

−a0/a, (15)

the constant γ depends only on the data, c̄ and a. Here,

ϕQ(v) := vn+1

[G−1
Q (v2)]n , GQ(v) := inf

(x,t)∈Q G(x, t, v),

G(x, t, v) :=
∫ v

0
g(x, t, z) dz, ψQ(v) := sup

(x,t)∈Q
ψ(x, t, v)

and G−1
Q (·), ψ−1

Q (·) and ϕ−1
Q (·) are the inverse functions to GQ(·), ψQ(·) and ϕQ(·)

respectively.

Remark 3. Note that by our choices r−a0/a � R−a0
0 , therefore, condition (ψ) is appli-

cable and the left-hand side of inequality (15) makes sense. In addition, the function
ϕQ+

2r,2(t−s)(y,2s−t)(·) is strictly increasing (see Lemma 1 below), so, the right-hand side

of inequality (14) also makes sense.

Estimate (14) coincides with the well-known L1
loc– L

∞
loc form of Harnack’s inequal-

ity (see [15]) in the case of p-Laplace evolution equation (p < 2) :

sup
Q+
r,t−s (y,s)

u � γ

(
r p

t − s

)n/κ (
r−n inf

2s−t<τ<t

∫

B2r (y)
u(x, τ )dx

)p/κ

+ γ

(
t − s

r p

)1/(2−p)

,

where κ = p + n(p − 2) > 0.
Main difficulty arising in the proof of our main results is related to the so-called

theorem on the expansion of positivity. Roughly speaking, having information on the
measure of the ”positivity set” of u over the ball Br (x̄) for some time level t̄ :

|{x ∈ Br (x̄) : u(x, t̄) � N }| � (1 − α(r)) |Br (x̄)|,
with some r > 0, N > 0 and α(r) ∈ (0, 1), α(r) → 0, as r → 0, and using the
standard DiBenedetto’s arguments, we inevitably arrive at the estimate

u(x, t) � γ −1
1 e−γ1α

−γ2 (r)μγ3 (r)N , x ∈ B2r (x̄),

for some time level t > t̄ and with some γ1, γ2, γ3 > 1. This estimate leads us to
condition similar to that of (3) (see, e.g., [34]). To avoid this, we use a workaround
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that goes back to Landis’s papers [27,28] and his so called ”growth” lemma. So, in
Sect. 3 we use the auxiliary solutions and prove the integral and pointwise estimates
of these solutions.
The rest of the paper contains the proof of the above theorem. In Sect. 2, we give a

proof of L1
loc– L

∞
loc Harnack’s inequality, Theorem 3. Section 3 contains the upper and

lower bounds for the auxiliary solutions. Finally, in Sect. 4 we prove our main results,
Theorems 1 and 2.

2. L1
loc– L∞

loc Harnack type inequality, Proof of Theorem 3

2.1. An auxiliary lemma

The following inequalities will be used in the sequel, they are simple consequences
of the condition (g2).

Lemma 1. The following inequalities hold:

g(x, t, w)v � εg(x, t, w)w + max{ε p−1, εq−1}g(x, t, v)v (16)

if v,w, ε > 0, (x, t) ∈ �T ;

1

q
g(x, t, v)v � G(x, t, v) � 1

p
g(x, t, v)v if v > 0, (x, t) ∈ �T ;

(w

v

)p
� G(x, t, w)

G(x, t, v)
�

(w

v

)q
if w � v > 0, (x, t) ∈ �T ;

(w

v

)κ(p)/p
� ϕ(x, t, w)

ϕ(x, t, v)
�

(w

v

)κ(q)/q
if w � v > 0, (x, t) ∈ �T .

Here

ϕ(x, t, v) := vn+1

[G−1(x, t, v2)]n , κ(p)

:= p + n(p − 2) > 0, κ(q) := q + n(q − 2) > 0.

Note that the third and fourth inequalities in Lemma 1 ensure that the functions
G(·, v) and ϕ(·, v) are increasing, and therefore, the inverse functions G−1(·, v) and
ϕ−1(·, v) are exist.

2.2. An L1
loc form of Harnack’s inequality

For fixed (y, s) ∈ �T , for 0 < r � Ra , a � 1 + a0 and for 0 < t − s < c̄r , we
will assume later that inequality (15) holds, i.e.,

ε := rψ−1
Q+
2r,2(t−s)(y,2s−t)

(
r2

t − s

)
� (b + b0)r

1−a0/a . (17)
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Proposition 1. Let u be a nonnegative bounded weak solution to Eq. (1) and let (2),
(g0)– (g2), (gμ) and (ψ) be fulfilled in the cylinder QR0,R0(x0, t0). Then

sup
s<τ<t

∫

Br (y)
u(x, τ ) dx � γ inf

s<τ<t

∫

B2r (y)
u(x, τ ) dx

+ γ rn+1ψ−1
Q+
2r,2(t−s)(y,2s−t)

(
r2

t − s

)
.

(18)

To prove Proposition 2.1, we need the following lemma.

Lemma 2. Let the conditions of Proposition 1 be fulfilled. Then, there exists γ > 0
depending only on the data, such that for all σ , δ ∈ (0, 1) there holds

1

r

∫ t

s

∫

Bσr (y)
g(x, τ, |∇u|) dxdτ � δ J + γ δ−γ (1 − σ)−γ rnε, (19)

where J := sup
s<τ<t

∫
Br (y)

u(x, τ ) dx.

Proof. Assume without loss that s = 0 and let α ∈ (0, 1
q−1 ), q̃ = q − 1 if q < 2

and q̃ = q1 if q > 2, β ∈ (1,min{2, 1/q̃}). Fix σ ∈ (0, 1) and let ζ ∈ C∞
0 (Br (y)),

0 � ζ � 1, ζ = 1 in Bσr (y), |∇ζ | � 1
(1−σ)r , and set ε1 := r t−αεβ−1.

Using inequality (16), we obtain

1

r

∫ t

0

∫

Bσr (y)
g(x, τ, |∇u|) dxdτ � ε1

r

∫ t

0

∫

Br (y)
(u + ε)−βταg(x, τ, |∇u|)

× |∇u| ζ q dxdτ + 1

r

∫ t

0

∫

Br (y)
g

(
x, τ,

(u + ε)β

ε1τα

)
dxdτ = I1 + I2.

(20)

First we estimate I2, by (g2), (gμ), (ψ) (note that by (17) condition (ψ) is applicable),
we obtain

1

r

∫ t

0

∫

Br (y)
g

(
x, τ,

(u + ε)β

ε1τα

)
dxdτ

= 1

r

∫ t

0

∫

Br (y)
g

(
x, τ,

(
u + ε

ε

)β
ε

r

(
t

τ

)α
)
dxdτ

� γ

r

∫ t

0

∫

Br (y)

(
t

τ

)α(q−1) (
u + ε

ε

)βq̃

g(x, τ, ε/r) dxdτ

� γ

r
sup

Qr,t (y,0)
g(·, ·, ε/r)

∫ t

0

∫

Br (y)

(
t

τ

)α(q−1) (
u + ε

ε

)βq̃

dxdτ

� γ
ε

t

∫ t

0

∫

Br (y)

(
t

τ

)α(q−1) (
u + ε

ε

)βq̃

dxdτ

� γ (εrn)1−bq̃
(

sup
0<τ<t

∫

Br (y)
(u + ε) dx

)βq̃

� δ

4
J + γ δ−γ εrn .

(21)
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To estimate I1 we test identity (7) by η = (uh + ε)1−βταζ q , integrating over (0, t)
and letting h → 0, we obtain that

∫ t

0

∫

Br (y)
(u + ε)−βταg(x, τ, |∇u|) |∇u| ζ q dxdτ

�γ tα
∫

Br (y)×{t}
(u + ε)2−βζ q dx + γ

(1 − σ)r

∫ t

0

∫

Br (y)
(u + ε)1−βταg(x, τ, |∇u|) ζ q−1 dxdτ,

from this by inequality (16) we arrive at

ε1

r

∫ t

0

∫

Br (y)
(u + ε)−βταg(x, τ, |∇u|) |∇u| ζ q dxdτ

� γ
ε1

r
tα

∫

Br (y)×{t}
(u + ε)2−β ζ q + dx

+ γ

(1 − σ)γ

ε1

r2

∫ t

0

∫

Br (y)
(u + ε)1−βταg

(
x, τ,

u + ε

r

)
dxdτ = I3 + I4.

(22)

Let us estimate the terms on the right-hand side of (22). By our choice of β and
Hölder’s inequality, we have

I3 = γ εβ−1
∫

Br (y)×{t}
(u + ε)2−β ζ q dx

� γ (εrn)β−1
(

sup
0<τ<t

∫

Br (y)
(u + ε) dx

)2−β

� δ

4
J + γ δ−γ εrn .

(23)

The function ψ(·, v) is non-increasing for v � b0R
−a0
0 , so by (17) we estimate the

second term on the right-hand side of (22) as follows:

I4 � γ

(1 − σ)γ

εβ−1

r

∫ t

0

∫

Br (y)
(u + ε)1−βg

(
x, τ,

u + ε

r

)
dxdτ

� γ

(1 − σ)γ

εβ−1

r2

∫ t

0

∫

Br (y)
(u + ε)2−β ψ(x, τ, ε/r) dxdτ

� γ

(1 − σ)γ

tεβ−1

r2
ψQ+

r,t (y,0)
(ε/r) sup

0<τ<t

∫

Br (y)
(u + ε)2−β dx

� γ εβ−1

(1 − σ)γ
sup

0<τ<t

∫

Br (y)
(u + ε)2−β dx � δ

4
J + γ δ−γ (1 − σ)−γ εrn .

(24)

Collecting estimates (21)–(24), we arrive at the required inequality (19). This com-
pletes the proof of Lemma 2. �
2.3. Proof of Proposition 1

Assume that s = 0, and for j = 0, 1, 2, . . . set

r j :=
j∑

i=1

r

2i
, r̄ j := r j + r j+1

2
, Bj := Br j (y), B̄ j := Br̄ j (y)
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and let ζ j ∈ C∞
0 (B̄ j ), 0 � ξ j � 1, ζ j = 1 in Bj , |∇ζ j | � 2 j+2/r . Test (1.7) by

η = ζ j , integrating over (t1, t2) ⊂ (0, t) for any two time levels t1 and t2, and letting
h → 0, we obtain that

∫

B̄ j

u(x, t2) ζ j dx �
∫

B̄ j

u(x, t1) ζ j dx + γ 2 j

r

∫ t2

t1

∫

B̄ j

g(x, τ, |∇u|) dxdτ.

Fix t1 by the condition
∫

B2r (y)
u(x, t1) dx = inf

0<τ<t

∫

B2r (y)
u dx,

and set J j := sup
0<τ<t

∫
B2r (y)

u dx . By Lemma 2, choosing δ from the condition δ =
δ0γ

−12− j , δ0 ∈ (0, 1), from the previous we obtain

J j � δ0 J j+1 + γ δ
−γ
0 2 jγ

(
inf

0<τ<t

∫

B2r (y)
u dx + rnε

)
, j = 0, 1, 2, . . .

Iterating this inequality and choosing δ0 sufficiently small we arrive at (18), which
completes the proof of Proposition 1.

2.4. L1
loc − L∞

loc estimate of solution

Theorem 3 is a simple consequence of Proposition 1 and the following lemma.

Lemma 3. Let u be a nonnegative bounded weak solution to Eq. (1) and let (2), (g0)–
(g2), (gμ) and (ψ) be fulfilled in the cylinder QR0,R0(x0, t0) ⊂ �T . Assume also that
(17) holds, then there exists γ > 0 depending only upon the data, such that

sup
Q+

r
2 ,t−s

(y,s)

u �γ (t − s)1/2 ϕ−1
Q+
2r,2(t−s)(y,2s−t)

(
(t − s)−

n+1
2 −1

∫ t

2s−t

∫

Br (y)
u dxdτ

)

+ γ rψ−1
Q+
2r,2(t−s)(y,2s−t)

(
r2

t − s

)
.

(25)

Proof. Assume that s = 0 and for fixed σ ∈ (0, 1) and j = 0, 1, 2, . . . set

r j := σr + 1 − σ

2 j
r, t j := −σ t − 1 − σ

2 j
t, Bj := Br j (y), Q j := Bj × (t j , t)

and let M0 := sup
Q0

u, Mσ := sup
Q∞

u.

Next, let ζ = ζ1(x)ζ2(t), where ζ1 ∈ C∞
0 (Bj ), ζ2 ∈ C∞(−t, t),

0 � ζ1 � 1, ζ1 = 1 in Bj+1, |∇ζ1| � 2 j+1

(1 − σ)r
,

0 � ζ2 � 1, ζ2 = 1 for t � t j+1, ζ2 = 0 for t � t j , 0 � dζ2

dt
� 2 j+1

(1 − σ)t
.
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Define also the sequence k j := k − 2− j k, where k > 0 to be chosen later. Testing
(7) by η = (uh − k j+1)+ζ q , integrating over (t j , t) and letting h → 0, by inequality
(16), we obtain

sup
t j<τ<t

∫

Bj

(u − k j+1)
2+ζ q dx +

∫∫

Q j

g(x, τ, |∇(u − k j+1)+|) |∇(u − k j+1)+| ×

×ζ q dxdτ � γ 2 jγ t−1

(1 − σ)γ

∫∫

Q j

(u − k j+1)
2+ dxdτ +

γ 2 jγ r−1

(1 − σ)γ

∫∫

Q j

g

(
x, τ,

(u − k j+1)+
r

)
(u − k j+1)+ dxdτ.

If

k � rψ−1
Q+
r,s (y,0)

(r2/t) and k � M0, (26)

then by (gμ) and (ψ) we obtain

1

r

∫∫

Q j

g

(
x, τ,

(u − k j+1)+
r

)
(u − k j+1)+ dxdτ �

γ

r
sup

Q+
r,s (y,0)

g(·, ·, M0/r)
∫∫

Q j

(u − k j+1)+ dxdτ

� γ M0

t

∫∫

Q j

(u − k j+1)+ dxdτ � γ 2 j

t

M0

k

∫∫

Q j

(u − k j )
2+ dxdτ.

Therefore, the previous inequalities yield

sup
t j<τ<t

∫

Bj

(u − k j+1)
2+ ζ q dx +

∫∫

Q j

g(x, τ, |∇(u − k j+1)+|)

× |∇(u − k j+1)+|ζ q dxdτ � γ 2 jγ

(1 − σ)γ

M0

tk

∫∫

Q j

(u − k j )
2+ dxdτ.

(27)

Let us estimate the second term on the left-hand side of (27). By (16), for any b > 0,
we have

∫∫

Q j

|∇(u − k j+1)+| ζ q dxdτ =
∫∫

Q j

|∇(u − k j+1)+|
g−
Q0

(b)
g−
Q0

(b) ζ q dxdτ

� 1

g−
Q0

(b)

∫∫

Q j

g−
Q0

(|∇(u − k j+1)+|) |∇(u − k j+1)+| ζ q dxdτ
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+b
∫∫

Q j

χ [(u − k j+1)+ > 0] dxdτ

� 1

g−
Q0

(b)

∫∫

Q j

g(x, τ, |∇(u − k j+1)+|) |∇(u − k j+1)+| ζ q dxdτ

+γ
22 j b

k2

∫∫

Q j

(u − k j )
2+ dxdτ,

here we used the notation g−
Q0

(v) := inf
(x,t)∈Q0

g(x, t, v), v > 0. By (27) from the

previous, we obtain
∫∫

Q j

|∇(u − k j+1)+| ζ q dxdτ � γ 2 jγ

(1 − σ)γ

(
M0t−1

kg−
Q0

(b)
+ b

k2

) ∫∫

Q j

(u − k j )
2+ dxdτ.

Choosing b from the condition
M0t−1

kg−
Q0

(b)
= b

k2
, i.e., g−

Q0
(b)b = M0k

t
� M2

0

t
, which

by Lemma 2.1 implies∫∫

Q j

|∇(u − k j+1)+| ζ q dxdτ

� γ 2 jγ

(1 − σ)γ
k−2 G−1

Q0

(
M2

0

t

) ∫∫

Q j

(u − k j )
2+ dxdτ.

(28)

Using Hölder’s inequality, Sobolev embedding theorem, (27) and (28), we arrive at

Y j+1 :=
∫∫

Q j

(u − k j+1)
2+ dxdτ � M0

⎛
⎜⎝

∫∫

Q j

[(u − k j+1)+ζ q ] n+2
n dxdτ

⎞
⎟⎠

n
n+2

×
⎛
⎜⎝

∫∫

Q j

χ [(u − k j+1)+ > 0] dxdτ

⎞
⎟⎠

2
n+2

� γ M0

(
sup

t j<τ<t

∫

Bj

(u − k j+1)
2+ ζ q dx

) 1
n+2

×
⎛
⎜⎝

∫∫

Q j

|∇[(u − k j+1)+ζ q ]| dxdτ

⎞
⎟⎠

n
n+2

⎛
⎜⎝

∫∫

Q j

χ [(u − k j+1)+ > 0] dxdτ

⎞
⎟⎠

z
n+2

� γ 2 jγ

(1 − σ)γ
M0t

− 1
n+2

[
G−1

Q0

(
M2

0/t
)] n

n+2
k−2 Y

1+ 1
n+2

j , j = 0, 1, 2, . . .

It follows that Y j → 0 as j → ∞ provided k is chosen to satisfy

k2(n+2) = γ (1 − σ)−γ Mn+2
0 t−1

[
G−1

Q0

(
M2

0/t
)]n ∫∫

Q0

u2dxdτ.
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By this choice, we have

M2(n+2)
σ � γ (1 − σ)−γ Mn+2

0 t−1
[
G−1

Q0
(M2

0/t)
]n ∫∫

Q0

u2dxdτ. (29)

Since the function ϕQ0(v) is increasing

[
G−1

Q0
(M2

0/t)
]n

�
(
M0

Mσ

)n+1 [
G−1

Q0
(M2

σ /t)
]n

,

inequality (29) can be rewritten as

M3n+5
σ

[
G−1

Q0
(M2

σ /t)
]−n

� γ (1 − σ)−γ M2(n+2)
0 t−1

∫∫

Q0

u dxdτ.

Set

f (v) := [ϕQ0(v)] 1
2(n+2) , A := t−

n+1
4(n+2)

⎛
⎜⎝t−1

∫∫

Q0

u dxdτ

⎞
⎟⎠

1
2(n+2)

,

then from the last inequality we have

Mσ f (Mσ t
− 1

2 ) � γ (1 − σ)−γ M0A.

Using inequality (16), we obtain for any δ ∈ (0, 1)

f (Mσ t
− 1

2 ) � f (δM0t
− 1

2 ) + δ−1 f (Mσ t
− 1

2 )
Mσ

M0

� δκ0 f (Mσ t
− 1

2 ) + γ (1 − σ)−γ δ−1A, κ0 = κ(p)

2p(n + 2)
.

By standard interpolation arguments, taking into account (26), from the previous we
arrive at (25), which completes the proof of Lemma 3. �

3. Integral and pointwise estimates of auxiliary solutions

Fix (x0, t0) ∈ �T such that QR0,R0(x0, t0) ⊂ �T and assume that conditions (g0),
(g2), (gλ) and (ψ) be fulfilled in QR0,R0(x0, t0). Let r < ρ � Ra

0 with some a �
1+ a0, where a0 is the constant from condition (ψ). Fix (x̄, t̄) such that Qr,r (x̄, t̄) ⊂
QR0,R0(x0, t0), |t̄ − t0| � c̄ρ with some c̄ > 0, and E ⊂ Br (x̄), |E | > 0, 0 < N �
λ(r).
We consider the function

v ∈ C
(
t̄, t̄ + 8τ1(ξ); L2(B8ρ(x̄))

)
∩ Lq

(
t̄, t̄ + 8τ1(ξ);W 1,q

0 (B8ρ(x̄))
)
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as the solution of the following problem

vt − divA(x, t,∇v) = 0, (x, t) ∈ Q1 := B8ρ(x̄) × (t̄, t̄ + 8τ1(ξ)), (30)

v(x, t) = 0, (x, t) ∈ ∂B8ρ(x̄) × (t̄, t̄ + 8τ1(ξ)), (31)

where τ1(ξ) := ρ2

ψ(x̄,t0,ξN |E |ρ−n−1)
, and

v(x, t̄) = Nχ(E), x ∈ B8ρ(x̄), (32)

here ξ ∈ (0, 1) depends only on the data will be chosen later.
In addition, the integral identity

∫

B8ρ(x̄)×{t}

(
∂vh

∂t
η + [A(x, t,∇v)]h∇η

)
dx = 0, (33)

holds for all t ∈ (t̄, t̄ + 8τ1(ξ) − h) and for all η ∈ W 1,q
0 (B8ρ(x̄)). Here, vh is defined

similarly to (7). The existence of the solution υ follows from the general theory of
monotone operators. Testing (33) by η = (vh)− and η = (vh − N )+, integrating over
(t̄, t), t ∈ (t̄, t̄ + 8τ1(ξ)) and letting h → 0 we obtain that 0 � v � N � λ(r).

Lemma 4. Let v be a solution of (30)–(32), then for any ξ ∈ (0, 1) either

ξN |E |ρ−n � γ (b + b0)ρ
1−a0/a, (34)

or

v(x, t) � γ ξ−γ N |E |ρ−n, (x, t) ∈ B8ρ(x̄) × (t̄ + 1

8
τ1(ξ), t̄ + 2τ1(ξ)), (35)

and

v(x, t) � γ N |E |ρ−n, (x, t) ∈
(
B4ρ(x̄) \ B 3

2ρ(x̄)
)

× (t̄, t̄ + 8τ1(ξ)), (36)

with constant γ depending only on the known data and c̄.

Proof. For fixed σ ∈ (0, 1), ρ � s � s(1 + σ) � 2ρ, and j = 0, 1, 2, . . . set

s1, j := 1

8
s(1 + σ) + σ s

2 j+3 , s2, j := s(1 + σ) − σ s

2 j
, k j := k − 2− j k, k > 0,

D j := B8ρ(x̄) × (t̄ + s21, j
ψ(x̄, t0, ξN |E |ρ−n−1)

, t̄ + s22, j
ψ(x̄, t0, ξN |E |ρ−n−1)

),

and let M0 := sup
D0

v, Mσ := sup
D∞

v, and consider the function ζ(t) ∈ C∞(R1),

0 � ζ(t) � 1,

ζ(t) = 1 in D j+1, ζ(t) = 0 in R
1 \ D j , |ζt | � 22( j+3)

(σ s)2
ψ

(
x̄, t0,

ξN |E |
ρn+1

)
.
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Testing (33) by η = (vh − k j )+ζ q(t), integrating over (t̄, t), t ∈ (t̄, t̄ + 8τ1(ξ)) and
letting h → 0 and repeating the same arguments as in Sect. 2.4, similarly to (29),
using condition (gλ) and the fact that v � N � λ(r) in Q1, we arrive at

M2n+5
σ

[
G−1

Q1

(
M2

σ

τ1(ξ)

)]−n

� γ ξ−γ σ−γ M2n+3
0 τ1(ξ)−1

∫∫

D0

v2dxdτ, (37)

provided that

Mσ � ρ ψ−1
Q1

(
ρ2

τ1(ξ)

)
� γ ξN

|E |
ρn

, (38)

and

ψ−1
Q1

(
ψ(x̄, t0, ξN |E |ρ−n−1)

)
� (b + b0)ρ

−a0/a .

Since

ξN |E |ρ−n � ξN � λ(r),

by condition (gλ) the last inequality holds if

ξN
|E |

ρn+1 � γ (c1)(b + b0)ρ
−a0/a . (39)

To estimate the integral on the right-hand side of (37), we test (33) by η =
min(vh, M0), integrating over (t̄, t), t ∈ (t̄, t̄ + 8τ1(ξ) − h) and letting h → 0,
we obtain for vM0 := min(v, M0)

sup
t̄<τ<t̄+8τ1(ξ)

∫

B8ρ(x̄)
v2M0

dx +
∫∫

Q1

G(x, τ, |∇vM0 |)dx dτ � γ M0N |E |. (40)

From this and (37) since v(x, t) = vM0 for (x, t) ∈ D0, we obtain

M2n+5
σ

[
G−1

Q1

(
M2

σ

τ1(ξ)

)]−n

� γ ξ−γ σ−γ M2(n+2)
0 N |E |.

Repeating the iterative arguments similar to that of Sect. 2.4, we arrive at

sup
Dρ(ξ)

v � γ ξ−γ N
|E |
ρn

,

taking into account (38), (39), we obtain inequality (35).
To prove (36) we set

s1, j := 3

2
s(1 + σ) + σ s

2 j
, s2, j := 2s(1 + σ) − σ s

2 j
, ρ � s � 2ρ,

k j := k − 2− j k, k > 0, D j := (
Bs2, j (x̄) \ Bs1, j (x̄)

) × (t̄, t̄ + 8τ1(ξ)),
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and let M0 := sup
D0

v, Mσ := sup
D∞

v, and consider the function ζ(x) ∈ C∞(Rn),

0 � ζ(x) � 1,

ζ(x) = 1 in D j+1, ζ(x) = 0 in R
n \ D j , |∇ζ | � 22( j+1)

(σ s)2
.

Testing (33) by η = (vh − k j )+ζ q(x), integrating over (t̄, t), t ∈ (t̄, t̄ + 8τ1(ξ)) and
letting h → 0 and repeating the same arguments as in Sect. 2.4, similarly to (29),
using condition (gλ) and the fact that v � N � λ(r) in Q1, we arrive at

sup
t̄<τ<t̄+8τ1(ξ)

∫

B8ρ(x̄)
(v − k j+1)

2+ ζ q dx

+
∫∫

D j

g(x, τ, |∇(v − k j+1)+|) |∇(v − k j+1)+| × ζ q dxdτ

� γ 2 jγ σ−γ ρ−1
∫∫

D j

g

(
x, τ,

(v − k j )+
ρ

)
(v − k j )+ dxdτ,

which by (16) and condition (gλ) yields∫∫

D j

|∇(v − k j+1)+| ζ q dxdτ � γ 2 jγ σ−γ ρ−1
∫∫

D j

(v − k j )+ dxdτ.

From this by the Sobolev embedding theorem, we arrive at

M2
σ � γ σ−γ ρ−n−1g−

D0

(
M0

ρ

) ∫∫

D0

vdxdτ,

here we used the notation g−
D0

(v) = min
D0

g(x, τ, v). By inequality (16) , Poincare

inequality and (40) from the previous we obtain for any ε ∈ (0, 1)

M2
σ � εM0

g−
D0

(M0ρ
−1)

ψ(x̄, t0, ξN |E |ρ−n−1)
+ γ σ−γ ε−γ ρ−n

∫∫

D0

g−
D0

(
v

ρ

)
v

ρ
dx dt

� εM0
g−
D0

(M0ρ
−1)

ψ(x̄, t0, ξN |E |ρ−n−1)
+ γ σ−γ ε−γ ρ−n

∫∫

D0

g−
D0

(|∇v|)|∇v|dx dt

� εM0
g−
D0

(M0ρ
−1)

ψ(x̄, t0, ξN |E |ρ−n−1)
+ γ σ−γ ε−γ M0N

|E |
ρn

.

If inequality (36) is violated then the last inequality implies

M2
σ � εM2

0 + γ σ−γ ε−γ M0N
|E |
ρn

� εM2
0 + γ σ−γ ε−γ

(
N

|E |
ρn

)2

.

Repeating the iterative arguments similar to that of Sect. 2, we arrive at the required
(36),which completes the proof of the lemma. �
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The following proposition is the main result of this Section.

Proposition 2. There exist numbers ε1, α1 ∈ (0, 1) depending only on the data, c̄ and
ξ such that either (34) holds, or

|{x ∈ B4ρ(x̄) : v(x, t) � ε1N |E |ρ−n}| � (1 − α1) |B4ρ(x̄)|, (41)

for all time levels t ∈ (t̄ + 1

8
τ1(ξ), t̄ + 2τ1(ξ)).

Proof. Let ζ1 ∈ C∞
0 (B3ρ(x̄)), 0 � ζ1 � 1, ζ1 = 1 in B2ρ(x̄), |∇ζ1| � 1/ρ. Testing

(33) by η = vh − Nζ
q
1 , integrating over (t̄ + 1

8
τ1(ξ), t), t ∈ (t̄ + 1

8
τ1(ξ), t̄ +2τ1(ξ))

and letting h → 0 we obtain

N 2

2
|E | + 1

2

∫

B8ρ(x̄)
v2(x, t) dx + γ −1

t∫

t̄

∫

B8ρ(x̄)
g(x, t, |∇v|) |∇v| dxdt

� N
∫

B3ρ(x̄)
v(x, t) dx + γ

N

ρ

t∫

t̄

∫

B3ρ(x̄)\B2ρ(x̄)
g(x, t, |∇v|) ζ

q−1
1 dxdt

= I1 + I2.

(42)

Let us estimate the terms on the right-hand side of (42). Further we will assume that
(34) is violated, i.e.,

ξN |E |ρ−n � γ (b + b0)ρ
1−a0/a . (43)

Set Q̃1 = B4ρ(x̄) × (t̄ + 1

8
τ1(ξ), t̄ + 2τ1(ξ)), by Proposition 1 we obtain

I1 � γ N inf
t̄+ 1

8 τ1(ξ)<t<t̄+2τ1(ξ)

∫

B4ρ(x̄)
v(x, t) dx + γρn+1ψ−1

Q̃1

(
ρ2

τ1(ξ)

)

� γ N inf
t̄+ 1

8 τ1(ξ)<t<t̄+2τ1(ξ)

∫

B4ρ(x̄)
v(x, t) dx + γ ξN 2|E |,

which by Lemma 4 yields for all t ∈ (t̄ + 1

8
τ1(ξ), t̄ + 2τ1(ξ))

I1 � (ε1 + ξ)γ N 2|E | + γ ξ−γ N 2 |E |
ρn

|{B4ρ(x̄) : v(·, t) � ε1N |E |ρ−n}|. (44)

Let ζ2 ∈ C∞(Rn), 0 � ζ2 � 1, ζ2 = 1 in B3ρ(x̄) \ B2ρ(x̄), ζ2 = 0 in B3ρ/2(x̄) ∪
(Rn \ B4ρ(x̄)) and |∇ζ2| � γρ−1. Using inequality (16) with ε = N |E |ρ−n−1,we
obtain
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I2 � γ N

ερ

t̄+2τ1(ξ)∫

t̄

∫

B4ρ(x̄)\B3ρ/2(x̄)
g(x, t, |∇v|) |∇v| ζ q2 dxdt

+γ N

ρ

t̄+2τ1(ξ)∫

t̄

∫

B4ρ(x̄)
g(x, t, ε) dxdt = I3 + I4.

By (43) conditions (gλ) and (ψ) are applicable, so by our choice of N we have

I4 � γ N

ρ

t̄+2τ1(ξ)∫

t̄

∫

B4ρ(x̄)
g(x, t, N |E |ρ−n−1) dxdt

� γ N

ρ
g(x̄, t̄, N |E |ρ−n−1) |Bρ(x̄)|τ1(ξ) � γ ξ1−q1N 2|E |.

(45)

To estimate I3 we test (33) by η = vhζ
q
2 , integrating over (t̄, t̄ + τ1(ξ)) and letting

h → 0, we arrive at

I3 � γ N

ερ

t̄+2τ1(ξ)∫

t̄

∫

B4ρ(x̄)\B3ρ/2(x̄)
g

(
x, t,

v

ρ

)
v

ρ
dxdt.

From this, by condition (gλ) and Lemma 4 we obtain

I3 � γ N

ερ

t̄+2τ1(ξ)∫

t̄

∫

B4ρ(x̄)\B3ρ/2(x̄)
g

(
x̄, t̄,

v

ρ

)
v

ρ
dxdt

� γ
N

ε
|E | g(x̄, t0, N |E |ρ−n−1)

ψ(x̄, t0, ξN |E |ρ−n−1)
� γ ξ1−q1N 2|E |. (46)

Collecting estimates (42)–(46), we obtain for all t ∈ (t̄ + 1

8
τ1(ξ), t̄ + 2τ1(ξ))

1

2
N 2|E | �

(
ε1 + ξ + ξ1−q1

)
γ N 2|E | +

+γ ξ−γ N 2|E |ρ−n |{B4ρ(x̄) : v(·, t) � ε1N |E |ρ−n}|,

choosing ε1 and ξ so small that
(
ε1 + ξ + ξ1−q1

)
γ = 1

4 , we arrive at

|{B4ρ(x̄) : v(·, t) � ε1N |E |ρ−n}| � γ −1ξγ ρn,

for all t ∈ (t̄ + 1

8
τ1(ξ), t̄ + 2τ1(ξ)),which completes the proof of Proposition 2. �
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4. Harnack’s inequality, proof of Theorems 1, 2

4.1. Expansion of positivity

The following lemma can be found in [34]. In the case of singular p-Laplace evolu-
tion equation, this result was proved by Chen and DiBenedetto [11] (see also [15,17]);
in the case when g is independent of (x, t) this lemma was proved in [23,24].

Lemma 5. Let u be a nonnegative, bounded weak solution to Eq. (1) and let (2),
(g0)–(g2), (gλ) be fulfilled in the cylinder QR0,R0(x0, t0) ⊂ �T . Assume also that for
some 0 < r � Ra

0 , a � 1 + a0, 0 < N � λ(r) and some α, δ0 ∈ (0, 1), c̄ > 0 there
holds

Q−
8r,8c̄r (y, s) ⊂ QR0,R0(x0, t0),

|{x ∈ Br (y) : u(x, t) � N }| � (1 − α)|Br (y)| (47)

for all t ∈ (s − θ, s), θ = r2/ψ(y, s, δ0N/r).
Then, there exists σ0 ∈ (0, 1) depending only upon the data and α, δ0 such that

either

N � (b + b0)r
1−a0/a, a > a0 (48)

or

u(x, t) � σ0N f or all (x, t) ∈ B2r (y) ×
(
s − 7

8
θ, s

)
. (49)

Here, b, a0 and b0 are the numbers from conditions (gλ) and (ψ).

4.2. Proof of Theorems 1, 2

Having fixed (x0, t0) ∈ �T such that QR0,R0(x0, t0) ⊂ �T , we assume that con-
ditions (g2), (gλ), (gμ) and (ψ) hold in the cylinder QR0,R0(x0, t0). We will prove
Theorems 1 and 2 simultaneously, making the necessary remarks during the proof.
Assume without loss that (x0, t0) = (0, 0) and set u0 := u(0, 0). Further we will
assume that inequalities (8) and (11) are violated, i.e.,

u0 � C(b + b0)ρ
1−a0/a1λ−1(ρ)μβ(ρ), (50)

taking into account that in the logarithmic case (i.e., under the conditions of Theorem1)
λ(ρ) = μ(ρ) = 1.

For τ ∈ (0, 1) set Mτ := sup
Bτρ(0)

u(·, 0) and

Nτ := (1 − τ)−m λ(ρ)

λ((1 − τ)ρ)

μβ((1 − τ)ρ)

μβ(ρ)
u0,
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where m > 1 positive number to be fixed later. As τ → 1, Nτ → +∞, whereas
Mτ < +∞. So, the equation Mτ = Nτ has roots, let τ0 be the largest root of the
above equation Mτ0 = Nτ0 and Mτ � Nτ for τ > τ0.

The conditions of Theorems 1 and 2 imply the continuity of the solution u, therefore
Mτ0 is achieved at some x̄ ∈ Bτ0ρ(0). Choose τ1 from the condition (1 − τ1)

−m =
4(1−τ0)

−m , i.e., τ1 = 1−4− 1
m (1−τ0), and set 2r = (τ1−τ0)ρ = (1−4− 1

m )(1−τ0)ρ.

For these choices B2r (x̄) ⊂ Bτ1ρ(0), Mτ1 � Nτ1 , and

sup
Bτ0ρ(0)

u(·, 0) � sup
Bτ1ρ(0)

u(·, 0) � Nτ1

� 4(1 − τ0)
−m λ(ρ)

λ(4− 1
m (1 − τ0)ρ)

μβ
(
4− 1

m (1 − τ0)ρ
)

μβ(ρ)
u0

� 41+c3
1+β
m (1 − τ0)

−m λ(ρ)

λ((1 − τ0)ρ)

μβ((1 − τ0)ρ)

μβ(ρ)
u0 � 42Nτ0 ,

provided that m � c3(1+ β). Here, c3 is the constant from the technical condition of
Sect. 1.

Construct the cylinders Q−
2r,θ (x̄, 0) and Q−

2r,θ0
(x̄, 0), where

θ := (2r)2

ψ
(
x̄, 0,

Nτ0
2r

) , θ0 := (2r)2

ψQ−
2r,θ

(x̄, 0)
(
Nτ0
2r

) ,

ψQ−
2r,θ

(x̄, 0)

(
Nτ0

2r

)
:= sup

Q−
2r,θ (x̄,0)

ψ

(
·, ·, Nτ0

2r

)
.

We have an inclusion

Q−
2r,θ0

(x̄, 0) ⊂ Q−
2r,θ (x̄, 0) ⊂ Q−

2r,2c̄r (x̄, 0) ⊂ Q−
ρ,c̄ρ(0, 0),

where c̄ = c0 max(M2−p, M2−q). Indeed, by (50) we have

Nτ0 � Cb0(1 − τ0)
−m[λ(2r)]−1μβ2(2r)ρ

1− a0
a1 � Cb0ρ

1− a0
a1 � 2b0r

1− a0
a1 , (51)

provided that C � 2a0/a . So, using condition (g2), we obtain

θ0 � θ � (2r)2

ψ

(
x̄, 0,

M

2r

) � 2q max(M2−p, M2−q)r

g(x̄, 0, 1)
� 2c̄r � c̄ρ.

Lemma 6. The following inequality holds:

sup
Q−
r,θ0/2(x̄,0)

u � γ Nτ0μ(2r)m1, (52)

where m1 = n/κ(p), κ(p) = p + n(p − 2) > 0.
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Proof. We use Theorem 3 over the pair of cylinder Q−
r,θ0/2

(x̄, 0) and Q−
2r,θ0

(x̄, 0) two
times, first for the choices s = 0, t = θ0/2 and second for the choices s = −θ0/2,
t = 0. By condition (gμ)

ψQ−
2r,θ (x̄,0)

(
Nτ0

2r

)
� c2 μ(2r) ψQ−

2r,θ0
(x̄,0)

(
Nτ0

2r

)
,

which by (g2) and (51) implies

ψ−1
Q−
2r,θ0

(x̄,0)

(
ψQ−

2r,θ (x̄,0)

(
Nτ0

2r

))

� (c2μ(2r))−
1

2−p ψ−1
Q−
2r,θ0

(x̄,0)

(
c−1
2

μ(2r)
ψQ−

2r,θ (x̄,0)

(
Nτ0

2r

))

� (c2μ(2r))−
1

2−p
Nτ0

2r
� b0c

− 1
2−p Cλ−1(2r) μ(2r)β2−

1
2−p r−a0/a1 � b0R

−a0
0 ,

provided that C > c
1

2−p
2 . Therefore, Theorem 3 yields

sup
Q−
r,

θ0
2

(x̄,0)

u � γ θ
1
2
0 ϕ−1

Q−
2r,θ0

(x̄,0)

(
θ

− n+1
2

0

∫

Br (x̄)
u(x, 0)dx

)

+ γ θ
1
2
0 ϕ−1

Q−
2r,θ0

(x̄,0)

⎛
⎝

(
(2r)2

θ0

) n+1
2

ψ−1
Q−
2r,θ0

(x̄,0)

(
(2r)2

θ0

)⎞
⎠ + γ rψ−1

Q−
2r,θ0

(x̄,0)

(
(2r)2

θ0

)

� γ θ
1
2
0 ϕ−1

Q−
2r,θ0

(x̄,0)

(
θ

− n+1
2

0 rnNτ0

)
+ γ Nτ0 .

To estimate the first term on the right-hand side of the previous inequality, note

G−1
Q−
2r,θ0

(x̄,0)

(
N 2

τ0

θ0

)
= G−1

Q−
2r,θ0

(x̄,0)

(
N 2

τ0

(2r)2
ψQ−

2r,θ (x̄,0)

(
Nτ0

2r

))

� G−1
Q−
2r,θ0

(x̄,0)

(
N 2

τ0

(2r)2
μ(2r) ψQ−

2r,θ0
(x̄,0)

(
Nτ0

2r

))

� γμ(2r)1/p G−1
Q−
2r,θ0

(x̄,0)

(
GQ−

2r,θ0
(x̄,0)

(
Nτ0

2r

))
= γμ(2r)1/p

Nτ0

r
,

(53)

here we used condition (gμ) and Lemma 1.
By Lemma 1 and inequality (53), we have

ϕQ−
2r,θ0

(x̄,0)

(
μm1(2r)Nτ0θ

− 1
2

0

)
� μ(2r)m1κ(p)/pϕQ−

2r,θ0
(x̄,0)

(
Nτ0θ

− 1
2

0

)

= μ(2r)n/p θ
− n+1

2
0 Nn+1

τ0[
G−1

Q−
2r,θ0

(x̄,0)
(N 2

τ0
/θ0)

]n � γ −1θ
− n+1

2
0 rnNτ0 .

(54)
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From which the required inequality (52) follows, which completes the proof of the
lemma. �

Lemma 7. There exist numbers δ, ε, α ∈ (0, 1) depending only on the data such that

|{x ∈ Br (x̄) : u(x, t) � εμ(r)−m2Nτ0}| � αμ(r)−m1−m2 |Br (x̄)| (55)

for all

|t | � θ̄0 := r2

ψQ−
2r,θ (x̄,0)

(
δNτ0

rμm2(r)

) ,

where m1 = n/κ(p), m2 = (2 − p)n/κ(p).

Proof. We use Theorem 3 over the pair of cylinder Q−
r/2,θ̄0/2

(x̄, 0) and Q−
r,θ̄0

(x̄, 0)

for the choices s = 0 and t = θ̄0. By (51) condition (15) holds, therefore for all
|t − t0| � θ̄0

Nτ0 = u(x̄, 0) � γ θ̄
1
2
0 ϕ−1

Q−
r,θ̄0

(x̄,0)

(
θ̄

− n+1
2

0

∫

Br (x̄)
u(x, t) dx

)

+ γ θ̄
1
2
0 ϕ−1

Q−
r,θ̄0

(x̄,0)

⎛
⎝

(
r2

θ̄0

) n+1
2

ψ−1
Q−
r,θ̄0(x̄,0)

(
ψQ−

2r,θ (x̄,0)

(
δNτ0

rμm2(r)

))⎞
⎠

+ γ rψ−1
Q−
r,θ̄0(x̄,0)

(
ψQ−

2r,θ (x̄,0)

(
δNτ0

rμm2(r)

))

� γ δNτ0 + γ θ̄
1
2
0 ϕ−1

Q−
r,θ̄0

(x̄,0)

(
δrn θ̄

− n+1
2

0 μ−m2(r)Nτ0

)

+ γ θ̄
1
2
0 ϕ−1

Q−
r,θ̄0

(x̄,0)

(
θ̄

− n+1
2

0

∫

Br (x̄)
u(x, t) dx

)
= γ δNτ0 + I1 + I2.

Let us estimate the terms on the right-hand side of the previous inequality. Similarly
to (53), (54), we obtain

G−1
Q−
r,θ̄0

(x̄,0)

(
N 2

τ0

θ̄0

)
�γG−1

Q−
r,θ̄0

(x̄,0)

(
δ p−2μ(r)(2−p)m2

N 2
τ0

r2
ψQ−

2r,θ (x̄,0)

(
Nτ0

r

))

� γ δ
p−2
p μ(r)

2−p
p m2G−1

Q−
r,θ̄0

(x̄,0)

(
μ(r)

N 2
τ0

r2
ψQ−

r,θ̄0
(x̄,0)

(
Nτ0

r

))

� γ δ
p−2
p μ(r)

2−p
p (m2+1) Nτ0

r
,
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and by this and Lemma 1

ϕQ−
r,θ̄0

(x̄,0)

(
δ

κ(p)
p(n+1) Nτ0 θ̄

− 1
2

0

)
= δ

κ(p)
p Nn+1

τ0
θ̄− n+1

2

[
G−1

Q−
r,θ̄0

(x̄,0)

(
δ

κ(p)
p(n+1) 2N 2

τ0
θ̄−1
0

)]n

�
δ

κ(p)
p Nn+1

τ0
θ̄− n+1

2

[
G−1

Q−
r,θ̄0

(x̄,0)

(
N 2

τ0
θ̄−1
0

)]n � γ δrn θ̄
− n+1

2
0 μ(r)−m2Nτ0 ,

which implies

I1 � γ δ
κ(p)
p(n+1) Nτ0 .

Choose δ from the condition γ (δ+δ
κ(p)
p(n+1) ) � 1/4, from the previous and Lemma 6

we obtain for all |t | � θ̄0

3

4
Nτ0 � γ I2 � γ (δ) θ̄

1
2
0 ϕ−1

Q−
r,θ̄0

(x̄,0)
(εθ̄

− n+1
2

0 μ(r)−m2rnNτ0) + γ (δ) θ̄
1
2
0 ϕ−1

Q−
r,θ̄0

(x̄,0)

×
(

θ̄
− n+1

2
0 μ(r)m1Nτ0 |{Br (x̄) : u(·, t) � εμ(r)−m2Nτ0}|

)
= I3 + I4. (56)

First term on the right-hand side of (56), we estimate similarly to I1

I3 � ε
κ(p)
p(n+1) γ (δ)Nτ0 .

Choosing ε from the condition ε
κ(p)
p(n+1) γ (δ) = 1/4, from (56) we have

θ̄
− n+1

2
0 μm1(r)Nτ0 |{x ∈ Br (x̄) : u(x, t) � εμ(r)−m2Nτ0}|
� γ −1(δ)ϕQ−

r,θ̄0
(x̄,0)(Nτ0 θ̄

−1/2
0 ),

which similarly to I1 we estimate as follows

ϕQ−
r,θ̄0

(x̄,0)(Nτ0 θ̄
−1/2
0 ) � γ −1(δ) θ̄

− n+1
2

0 μ(r)−m2Nτ0 |Br (x̄)|.

Collecting the last two inequalities, we arrive at

|{x ∈ Br (x̄) : u(x, t) � εμ(r)−m2Nτ0}| � γ −1(δ) [μ(r)]−m1−m2 |Br (x̄)|,
for all |t | � θ̄0, which proves Lemma 7. �

4.3. Proof of Theorem 1

First note that under the conditions of Theorem 1, inequality (55) can be rewritten
as

|{x ∈ Br (x̄) : u(x, t) � εNτ0}| � (1 − α) |Br (x̄)| (57)
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for all |t | � θ̄0 := r2

ψQ−
2r,θ (x̄,0)(δNτ0/r)

, andwith somefixed ε, δ,α ∈ (0, 1) depending

only on the data, Nτ0 = (1 − τ0)
−mu0.

Apply Lemma 5 with ρ = r and N = εNτ0 , we obtain that

u(x, t) � σ0εNτ0

for all x ∈ B2r (x̄) and for all times −θ̄0 + 1

8
θ̄

(0)
0,ε � t � θ̄0, θ̄

(0)
0,ε := r2/ψ(x̄, 0,

δεNτ0r
−1).

After j iterations

u(x, t) � σ
j
0 εNτ0 , (58)

for all x ∈ B2 j+1r (x̄) and for all times

−θ̄0 + 1

8

j∑
i=0

θ̄
( j)
0,ε � t � θ̄0, θ̄

(i)
0,ε := (2i r)2

ψ

(
x̄, 0,

δεσ i
0Nτ0

2i r

) .

By our choices and condition (ψ)

ψ

(
x̄, 0,

δNτ0

r

)

ψ

(
x̄, 0,

δεσ i
0Nτ0

2i r

) �
(

εσ i
0

2i

)1−q1

, i = 1, 2, . . . , j,

provided C �
(

2

σ0

) j
(1 − τ0)

m

δε

r

ρ
. By our assumptions

θ̄0 � θ ′ := c−1
2 r2

ψ(x̄, 0, δNτ0/r)
.

Therefore, inequality (58) holds for all times

−θ ′ (1 − ε1−q1c2γ (σ0)
)

� t � θ ′.

Choose j from the condition ρ � 2 j r � 2ρ and m from the condition σ02m = 1, and
then choose ε smaller if necessary, we arrive at the required (9) for all times |t | � θ ′/2,
provided

C � 22m+1

δε(1 − 4− 1
m )m

�
(

2

σ0

) j
(1 − τ0)

m

δε

r

ρ
.

By conditions (ψ) and (gμ) with μ(r) = 1

θ ′ = c−1
2 r2

ψ(x̄, 0, δNτ0/r)
� c−1

2 r2

ψ(x̄, 0, δu0/ρ)

(
ρNτ0

ru0

)1−q1
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� c−2
2 ρ2

ψ(0, 0, δu0/ρ)

(
r

ρ

)1+q1
(1 − τ0)

−m(1−q1).

From the definition of r and choosing m � 1+q1
1−q1

, which we may assume taking σ0

smaller if necessary, we obtain

θ ′ � 1

γ

(
1 − 4− 1

m

2

)1+q1
ρ2

ψ(0, 0, δu0/ρ)
,

which completes the proof of Theorem 1.

4.4. Proof of Theorem 2

We note that under the conditions of Theorem 2, inequality (55) implies

|{x ∈ Br (x̄) : u(x, t) � N1}| � α(r)|Br (x̄)|, α(r) = αμ(r)−m1−m2 , (59)

for all |t | � θ̄
′
0 := r2

ψ

(
x̄, 0, δ

N1

r

) , where

N1 := ελ1(r)Nτ0 , Nτ0 = (1 − τ0)
−m λ(ρ)

λ((1 − τ0)ρ)

μβ((1 − τ0)ρ)

μβ(ρ)
u0,

λ1(r) = λ(r)μ(r)−m2− 1
2−p , m1 = n

κ(p)
, m2 = (2 − p)n

κ(p)
.

Aswas alreadymentioned, direct application of inequality (59) leads us to condition
(3). We will use auxiliary solutions, defined in Sect. 3.
Set E(N , t) := {Br (x̄) : u(·, t) � N } and for t ∈ [−θ̄

′
0, −θ̄

′
1], θ̄

′
1 =

r2

ψ

(
x̄, 0, δα(r)

N1

r

)

consider the equation

f (t) = t + r2

ψ

(
x̄, 0, δN1

|E(N1, t)|
rn+1

) = 0.

By our choices f (−θ̄
′
0) � 0 and f (−θ̄

′
1) � 0. By the continuity of u and by the

continuity of the Lebesgue measure, f (t) is continuous, so the previous equation has
roots. Let t̄ be the largest root of the above equation, i.e.,

t̄ = − r2

ψ

(
x̄, 0, δN1

|E(N1, t̄)|
rn+1

) .
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Taking δ smaller if necessary, we construct the auxiliary solution v with ρ = r and

ξ = δ in the cylinder Q1=B8r (x̄) × (t̄, t̄ + 8τ̄1), τ̄1 = r2

ψ

(
x̄, 0, δN1

|E(N1, t̄)|
rn+1

) .

If

σ0δN1
|E(N1, t̄)|

rn
� γ (b + b0)r

1−a0/a1 ,

then by Proposition 2 with some ε1, α1 ∈ (0, 1) depending only on the data

|{B4r (x̄)v(·, t) � ε1N1
|E(N1, t̄)|

rn
}| � (1 − α1)|B4r (x̄)|,

for all t ∈ (t̄ + 1

8
τ̄1, t̄ + 2τ̄1), which by Lemma 5 implies

v(x, t) � σ0ε1N1
|E(N1, t̄)|

rn
, (60)

for all (x, t) ∈ B2r (x̄) × (t̄ + 1

4
τ̄1, t̄ + 2τ̄1), and the constant σ0 ∈ (0, 1) depends

only on the data. By our choice of t̄ and by (55)

B2r (x̄) ×
(

−3

4

r2

ψ(x̄, 0, δα(r) N1
r )

,
r2

ψ(x̄, 0, δα(r) N1
r )

)
⊂ B2r (x̄) × (t̄ + 1

4
τ̄1, t̄ + 2τ̄1),

moreover, by (55)

|E(N1, t̄)|
rn

� α(r).

We note also that since u � v on the parabolic boundary of the cylinder B8r (x̄) ×
(t̄, t̄ + 8τ̄1), inequality (60) and the monotonicity condition (10) yield

u(x, t) � v(x, t) � σ0ε1α(r)N1, x ∈ B2r (x̄), (61)

for all t ∈ (−3

4
θ

(1)
0 , θ

(1)
0 ), θ

(1)
0 = r2

ψ(x̄, 0, δα(r) N1
r )

.

Now we can use Lemma 5, which implies that if

σ 2
0 ε1α(r)N1 � γ (b + b0)(2r)

1−a0/a1 ,

then

u(x, t) � σ 2
0 ε1α(r)N1, x ∈ B22r (x̄), (62)

for all t ∈ (−3

4
θ

(1)
0 + 1

8
θ

(2)
0 , θ

(1)
0 ), θ

(2)
0 = (2r)2

ψ(x̄, 0, σ0δε1α(r) N1
2r )

.
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After j iterations

u(x, t) � σ
j
0 ε1α(r)N1, x ∈ B2 j r (x̄), (63)

and for all times

−θ
(1)
0 + 1

4

j−1∑
i=0

θ
(i)
0 � t � θ

(1)
0 , θ

(i)
0 := (2i r)2

ψ

(
x̄, 0, σ i

0δε1α(r)
N1

2i r

) ,

provided that

σ
j
0 ε1α(r)N1 � γ (b + b0)(2

j r)1−a0/a1 . (64)

By our choices and condition (ψ)

ψ

(
x̄, 0, εε1δα(r)λ1(r)

Nτ0

r

)

ψ

(
x̄, 0, σ i

0ε1δα(r)
N1

2i r

) �
(σ0

2

)i(1−q1)
,

provided that inequality (64) holds.
Therefore, inequality (63) holds for all times

−θ
(1)
0 + 1

4
θ

(1)
0

j−1∑
i=0

2i+1σ
i(1−q1)
0 � −1

2
θ

(1)
0 � t � θ

(1)
0 .

Choose j from the condition ρ � 2 j r � 2ρ, and m from the condition σ02m = 1,
then we obtain

u(x, t) � γ −1(ε, ε1, δ,m)
λ(ρ)

λ((1 − τ0)ρ)

μβ((1 − τ0)ρ)

μβ(ρ)
λ1(r)α(r) u0 = ũ0

for all x ∈ B2ρ(x̄) and for all times |t | � 1
2θ

(1)
0 provided that (64) holds.

Let us estimate the term on the right-hand side of the previous inequality. By our
choices, we have

ũ0 � γ −1(ε, ε1, δ,m)λ(ρ)
μβ(r)

μβ(ρ)
μ(r)−m1−2m2− 1

2−p u0.

Choosing

β = m1 + 2m2 + 1

2 − p
,

we arrive at the required (12) for all times |t | � 1
2θ

(1)
0 , provided that (64) holds.
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Inequality (64) holds, if

C � 22m+1+3n

εε1(1 − 4− 1
m )m

� 8n

εε1

(
2

σ0

) j

(1 − τ0)
m r

ρ
,

and moreover, by conditions (ψ) and (gλ)

θ
(1)
0 = r2

ψ(x̄, 0, εε1λ(r)α(r)
Nτ0
r )

� ρ2

c1ψ(0, 0, εε1
λ(ρ)

μβ(ρ)

u0
ρ

)

(
r

ρ

)1+q1
(1 − τ0)

−m(1−q1).

From the definition of r and choosing m � 1+q1
1−q1

, we obtain

θ
(1)
0 � γ −1 ρ2

ψ(0, 0, εε1
λ(ρ)

μβ(ρ)

u0
ρ

)

,

which completes the proof of Theorem 2.
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