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A minimising movement scheme for the p-elastic energy of curves

Simon Blatt , Christopher P. Hopper and Nicole Vorderobermeier

Abstract. We prove short-time existence for the negative L2-gradient flow of the p-elastic energy of curves
via aminimisingmovement scheme. In order to account for the degeneracy caused by the energy’s invariance
under curve reparametrisations, we write the evolving curves as approximate normal graphs over a fixed
smooth curve. This enables us to establish short-time existence and give a lower bound on the solution’s
lifetime that depends only on the W 2,p-Sobolev norm of the initial data.

1. Introduction

For closed curves γ : R/Z → R
n in the W 2,p-Sobolev class, we shall consider the

energy

E(γ ) = 1

p

∫
R/Z

|κ|pds + λ

∫
R/Z

ds, (1.1)

i.e. the sum of the p-elastic energy E (p)(γ ) = 1
p

∫
R/Z

|κ|pds and a positive multiple
λ > 0 of the length of the curve. A family of regular curves γ = γ (t, x) : [0, T ) ×
R/Z → R

n in the class

L∞([0, T ),W 2,p(R/Z,Rn)
) ∩ W 1,2([0, T ), L2(R/Z,Rn)

)

is said to be a weak solution of the negative L2-gradient flow of E if one has
∫ T

0

∫
R/Z

〈∂tγ,ψ〉 dsdt =
∫ T

0
δψt E(γt ) dt (1.2)

for all test functions ψ ∈ C∞
c (R/Z × (0, T ),Rn), i.e. the curve γ satisfies ∂tγ =

−∇L2E(γ )weakly, where δψt E(γt ) = d
dε

E(γt + εψt )|ε=0 is the first variation of the
functional E at the curve γt = γ (t, ·) in the direction of the test functionψt = ψ(t, ·).
While the L2-gradient flow of (1.1) has been extensively studied when p = 2, both

in the Euclidean (cf. [4,5,9,15]) andmanifold constrained (cf. [3,15,20]) settings, very
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little is know in the degenerate p 	= 2 case. For example, a second-order evolution
equation has been considered for closed curves and planar networks (cf. [21,22]) and
the asymptotic of the flow has been studied away from degenerate points (cf. [24]);
however, short-time existence for the Eq. (1.2) has yet to be established when p 	= 2.
The aim of this article is to address both short and long time existence in the case
p > 2 for the geometric evolution (1.2) with initial data in the W 2,p-Sobolev class.
Our approach is to rewrite the evolving curves as approximate normal graphs in order
to utilise de Giorgi’s method of minimising movements (cf. [6]).
It is well-known that the invariance of the energy (1.1) under reparametrisations

of the curve γ leads to an evolution equation (1.2) that fails to be strongly parabolic
(even in the p = 2 case). This characteristic is in common with many other geometric
evolution equations. For example, the failure of the strong ellipticity of the Ricci
tensor is principally due to the second Bianchi identities.1 For this reason, short-time
existence for the Ricci flow was originally established in [13] by appealing to the
Nash–Moser implicit-function theorem (and the earlier exposition in [12]). DeTurck
[7] subsequently showed that the Ricci flow is equivalent to an initial value problem for
a parabolic system modulo the action of the diffeomorphism group of the underlying
manifold. Thus, in a dramatic simplification that bypassed the Nash–Moser argument,
one can pass from a weakly parabolic to a strongly parabolic system of equations by
an appropriate choice of a 1-parameter family of diffeomorphisms. Perelman [23] also
exploited the same diffeomorphism invariance in his gradient flow formalism for the
Ricci flow. Versions of the DeTurck trick have also been used to obtain short-time
existence for the mean curvature flow (cf. [2,14]), the Willmore flow (cf. [16]) and
the gradient flow of the elastic energy in both the Euclidean and manifold constrained
cases.
In seeking to pass from the degenerate flow (1.1) to a strongly parabolic system,

one can consider a time-dependent family of curves γt = γ (t, · ) that are written as
normal graphs over a given fixed smooth curve γ̃ , i.e. a family of curve of the form
γt = γ̃ + φt where φt = φ(t, · ) is a perturbation normal to the fixed curve γ̃ . In this
way, we obtain an evolution equation of the form

∫ T

0

∫
R/Z

〈γ, ∂⊥
t ψ〉 dsdt =

∫ T

0
δψt E(γt ) dt (1.3)

for all test functions ψ ∈ C∞
c ((0, T ) × R/Z,Rn), i.e. the curve γ satisfies ∂⊥

t γ =
−∇L2E(γ ) weakly, where the normal velocity ∂⊥

t γ is the vector component of ∂tγ

normal to the fixed curve γ̃ . Then in order to obtain a solution of (1.2) from a solution
of (1.3), one can consider solutions
t = 
(t, · ) of the ordinary differential equation

∂t
(t, x) = F(t,
(t, x))


(0, x) = x,
(1.4)

1In fact, the diffeomorphism invariance of the Riemannian curvature tensor naturally yields the Bianchi
identities (cf. [17]). Thus, the strongly ellipticity failure of the Ricci tensor is due entirely to this geometric
invariance.
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where F(t, y) = −〈∂tγ (t,y),γ ′(t,y)〉
|γ ′(t,y)|2 and γ is a solution of (1.3). The existence of ODE

solutions can thus be established on a time interval 0 ≤ t < ε for some ε > 0
independent of the initial point x ∈ R/Z. Therefore, if 
t = 
(t, · ) is a solution of
(1.4) and γt = γ (t, · ) is a solution of (1.3), the composition γt ◦ 
t is a solution of
(1.2). By taking this approach, one can thus establish the existence of solutions for
geometric flows with initial data in the C2,α-Hölder class even though the original
equations may be ill-defined (see, e.g. [10,19,26]). In fact, a recent paper by LeCrone,
Shao and Simonett [18] showed how to reduce the regularity of the initial data to the
C1,α-Hölder class.

In order to carry out the aforementioned programme, one has to guarantee that a
given initial curve � can be written as a normal graph over a fixed smooth curve γ̃ .
Since it is not possible to write every curve � in the W 2,p-Sobolev class as a normal
graph over a smooth curve, we are spurred on to introduce the notion of a unit quasi-
tangent τ (cf. Definition 2.4) which then defines an approximate tangential projection
PT

τ and an approximate normal projection P⊥
τ = I − PT

τ (cf. Definition 2.6). In
which case one can write the curve � as equal to γ̃ + � up to a reparametrisation,
i.e. as an approximate normal graph over a smooth curve γ̃ with some perturbation �

orthogonal to τ (cf. Lemma 2.12). Then by applying aminimisingmovements scheme,
it is possible to establish the existence of a family of curves of the form γt = γ̃ + φt ,
for a suitable perturbation φt orthogonal to τ , that satisfies ∂⊥

t γ = −∇L2E(γ )weakly.
Indeed, we have:

Theorem 1.1. (Existence) For any given initial curve � ∈ W 2,p(R/LZ,Rn)

parametrised by arc-length there exists a smooth curve γ̃ ∈ C∞(R/LZ,Rn)

parametrised by arc-length, a quasi-tangent τ to the curve γ̃ , a finite time T =
T (p, λ, E(�)) > 0 and a family of perturbations φ in the class

L∞([0, T ),W 2,p(R/LZ,Rn)
) ∩ (

W 1,2 ∩ C1/2)([0, T ), L2(R/LZ,Rn)
)

which are orthogonal to τ such that the family of curves

γ (t, s) = γ̃ (s) + φ(t, s), 0 ≤ t < T,

satisfies the initial condition γ (0, · ) = � ◦ σ for some reparametrisation σ of R/LZ
and ∫ T

0

∫
R/LZ

〈∂⊥
t γ,ψ〉 dsdt = −

∫ T

0
δψt E(γt )dt (1.5)

for all test functions ψ ∈ C∞
c ((0, T ) × R/LZ,Rn) orthogonal to τ .

Note that the time of existence only depends on the energy of the initial curve. So
we are very close to restarting the flow and deduce long time existence. We discuss in
the final section, why this is not as straightforward as it might seem.
By assuming the solution has some additional regularity, one can show that Eq. (1.5)

holds for all test functions (i.e. our solution solves the original weak form of the desired
evolution equation).
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Corollary 1.2. If the solution γ (t, · ) of Theorem 1.1 belongs to the W 3,p-Sobolev
class for almost all 0 ≤ t < T , then

∫ T

0

∫
R/LZ

〈∂⊥
t γ,ψ〉dsdt = −

∫ T

0
δψt E(γ )dt

for all test functions ψ ∈ C∞
c ((0, T ) × R/LZ,Rn).

2. Minimising movements scheme

It is remarked by De Giorgi [6] that a generalised minimising movements scheme
could provide a formalism for the existence of steepest descent curves of a functional
in a metric space. In order to establish the existence of weak solutions for (1.2), we
need to take care of the twofold degeneracies arising from the invariance of (1.1) under
curve reparametrisation and the fact that p > 2. We tackle this issue by writing the
evolving curve as an approximate normal graph over a fixed smooth curve so that we
can work with the normal velocity (rather than the time derivative) of the evolving
curve.

2.1. Tubular neighbourhoods

For an embedded Ck-submanifold M of Rn without boundary, the normal bun-
dle (TM)⊥ → M is only of the class Ck−1. If we define the ‘endpoint’ map
E : (TM)⊥ → R

n by sending

(x, v) �→ x + v

and assume k ≥ 2, one can use the inverse function theorem to show that there exists
a tubular neighbourhood U of M in R

n that is the diffeomorphic image under the
Ck−1-map E of an open neighbourhood of the zero section of (TM)⊥. Moreover, the
squared distance function ζ(x) = 1

2dist(x,M)2 is a function in Ck(U ) (cf. [11]) and
the Hessian matrix ∇2ζ(x) represents the orthogonal projection on the normal space
to M at a point x (cf. [1, p. 704]). Of course, these results no longer hold in the case
k = 1, i.e. when the inverse function theorem is not applicable.

2.2. Approximate normal graphs

As the normal bundle of an embedded W 2,p-curve in Rn is only of the class W 1,p,
one cannot directly apply the standard methods of Sect. 2.1. In particular, we need to
overcome the loss of regularity on the level of the tangent space in order to write the
solution of our equation locally as a graph over a fixed smooth curve. This problem
can be resolved by regularising the tangent using Friedrichs mollifiers (whilst taking
into consideration the size of the constructed tubular neighbourhood). We will call
this smoothened tangent quasi-tangent.
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Definition 2.1. Afunctionη ∈ C∞(R) is called amollifier if it satisfies the conditions:
(i) η ≥ 0 on R, (ii) η(x) = 0 for all |x | ≥ 1, and (iii)

∫
R

η(x)dx = 1. The associated
rescaled mollifier is the function ηε(x) = 1

ε
η( x

ε
) for any ε > 0.

Now consider a curve γ ∈ W 2,p(R/Z,Rn) parametrised by arc-length. The molli-
fication of γ is defined to be the function

γε(x) = (γ ∗ ηε)(x) =
∫
R

γ (x − y)ηε(y)dy,

i.e. the convolution of the given curve γ and the rescaled mollifier ηε.
For the mollified curve γε, we derive the following well-known estimates. Firstly,

from the mean value theorem and the Sobolev embeddings, we find that

|γε(x) − γ (x)| =
∣∣∣∣
∫
R

(γ (x − y) − γ (x))ηε(y)dy

∣∣∣∣
≤ ε‖γ ′‖L∞

≤ Cε‖γ ′‖W 1,p . (2.1)

Likewise, we find that

|γ ′
ε(x) − γ ′(x)| =

∣∣∣∣
∫
R

ηε(y)(γ
′(x − y) − γ ′(x))dy

∣∣∣∣
≤ √

ε‖γ ′‖C1/2

≤ C
√

ε‖γ ′‖W 1,p . (2.2)

For higher derivatives, we can use the Sobolev embeddings, Hölder’s inequality and
integration by parts to obtain the L∞-bound

|γ (k+2)
ε (x)| =

∣∣∣∣
∫
R

η(k)
ε (y)γ ′′(x − y)dy

∣∣∣∣
≤ ‖η(k)

ε ‖Lq‖γ ′′‖L p

≤ Cε
−k−1+ 1

q ‖γ ′′‖L p

= Cε
−k− 1

p ‖γ ′′‖L p (2.3)

for integers k ≥ 0 with 1
p + 1

q = 1.
We will use the next lemma to fix the smoothing parameter ε.

Lemma 2.2. If for an M > 0, we have a curve γ ∈ W 2,p(R/Z,Rn) parametrised by
arc-length which satisfies ‖γ ′‖W 1,p ≤ M, then there exists an ε = ε(p, M) > 0 such

that the unit tangent τ = γ ′
ε|γ ′
ε | satisfies

‖τ − γ ′‖L∞ ≤ 1

4
. (2.4)
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Proof. Using (2.2), we get ‖γ ′
ε − γ ′‖L∞ ≤ C

√
ε‖γ ′‖W 1,p . As the retraction map

� : x �→ x
|x | is locally Lipschitz on R

n\{0}, the tangent τ = �(γ ′
ε) = γ ′

ε|γ ′
ε | to the

mollified curve γε satisfies (2.4) for some ε > 0 sufficiently small. �
Corollary 2.3. If for an M > 0, we have a curve γ ∈ W 2,p(R/Z,Rn) parametrised
by arc-length which satisfies ‖γ ′‖W 1,p ≤ M, then for an ε = ε(p, M) > 0 as in
Lemma 2.2 the mollified curve γε has a unit tangent map τ : R/Z → Sn−1 that is
smooth and satisfies

‖τ ′‖L∞ , ‖τ ′′‖L∞ ≤ C (2.5)

for a constant C = C(p, M) > 0.

Definition 2.4. We say τ is unit quasi-tangent to the W 2,p-curve γ if it is the unit
tangent to the mollified curve γε for some ε = ε(p, M) > 0 as in Lemma 2.2.

Definition 2.5. We denote by PT
v w = 〈w, v

|v| 〉 v
|v| the orthogonal projection ofw onto

the lineRv for any vectors v,w ∈ R
n . Likewise, we denote by P⊥

v w = w − PT
v w the

orthogonal projection of w onto the orthogonal complement (Rv)⊥ of the line Rv.

Definition 2.6. If τ is unit quasi-tangent to a W 2,p-curve γ , we denote by (W 2,p)Tτ
(resp. (W 2,p)⊥τ ) the set of all w ∈ W 2,p(R/Z,Rn) such that P⊥

τ w = 0 a.e.
(resp. PT

τ w = 0 a.e.).

Wewill now prove the following statement that gives a lower bound on the thickness
of the set of regular curves around γ .

Lemma 2.7. If for an M > 0 we have a curve γ ∈ W 2,p(R/Z,Rn) parametrised
by arc-length which satisfies ‖γ ′‖W 1,p ≤ M, then there exists a constant K =
K (p, M) > 0 and a unit quasi-tangent τ to the curve γ such that the curve γ + φ

satisfies

inf
x∈R/Z

〈γ ′ + φ′, τ 〉 ≥ 1

2

and hence

inf
x∈R/Z

|γ ′(x) + φ′(x)| ≥ 1

2

for each φ ∈ (W 2,p)⊥τ with ‖φ‖L∞ ≤ K. In particular, γ + φ is a regular curve.

Proof. We first note that 〈γ ′, τ 〉 = |γ ′|2 + 〈γ ′, τ − γ ′〉 ≥ 1 − |τ − γ ′| ≥ 3
4 by

Lemma 2.2 and the fact that |γ ′| = 1. Upon differentiating the orthogonality condition
〈φ, τ 〉 = 0, we get 〈φ′, τ 〉 = −〈φ, τ ′〉. In which case the estimate (2.5) implies that
|〈φ′, τ 〉| = |〈φ, τ ′〉| ≤ C‖φ‖L∞ ≤ 1

4 whenever ‖φ‖L∞ ≤ 1
4C = K . Thus,

〈γ ′ + φ′, τ 〉 ≥ 3

4
− 1

4
= 1

2

whenever ‖φ‖L∞ ≤ K , i.e. γ + φ is a regular curve. As τ is of unit length, we also
have |γ ′ + φ′| ≥ 1

2 on R/Z. �
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We will now deduce the following lower bound for the L p-norm of the curvature
of a curve γ̃ + φ in terms of the L p-norm of the second derivative of φ. This bound
extends to our situation the well-known analogous result for the case of a real normal
graph over a smooth curve.

Lemma 2.8. If for an M > 0 we have a curve γ ∈ W 2,p(R/Z,Rn) parametrised
by arc-length which satisfies ‖γ ′‖W 1,p ≤ M and a unit quasi-tangent τ to the curve
γ , then for the constant K = K (p, M) > 0 from Lemma 2.7 we have for each
φ ∈ (W 2,p)⊥τ with ‖φ‖L∞ ≤ K

|v| ≤ C |P⊥
γ ′+φ′v|

for all v ∈ R
n pointing in an approximate normal direction and

∫
R/Z

|φ′′|pds ≤ C

(
1 +

∫
R/Z

|κγ+φ |pds
)

for some C = C(M, p).

Proof. Since 〈γ ′ + φ′, τ 〉 ≥ 1
2 from Lemma 2.7 and |γ ′ + φ′| ≤ |γ ′| + |φ′| ≤ 1+ �,

we see that 〈 γ ′+φ′
|γ ′+φ′| , τ 〉 ≥ 1

2
1

1+�
. Hence, the angle between γ ′ + φ′ and τ is bounded

strictly away from π
2 . In which case we have

|v| ≤ C |P⊥
γ ′+φ′v|

for all v ∈ R
n pointing in an approximate normal direction.

For the second estimate, we recall the curvature formula given by

κγ+φ = P⊥
γ ′+φ′(γ ′′ + φ′′)

|γ ′ + φ′|2 .

Now by the triangle inequality, we see that
∣∣∣P⊥

γ ′+φ′(φ′′)
∣∣∣ ≤

∣∣∣P⊥
γ ′+φ′(γ ′′ + φ′′)

∣∣∣ +
∣∣∣P⊥

γ ′+φ′(γ ′′)
∣∣∣ ≤ C(|κγ+φ | + |γ ′′|),

since |γ ′ + φ′| ≤ |γ ′| + |φ′| ≤ 1 + �. To control the tangential part PT
τ φ′′, we

differentiate the equation 〈φ, τ 〉 = 0 twice to get 〈φ′′, τ 〉 = −2〈φ′, τ ′〉 − 〈φ, τ ′′〉. It
then follows that

|PT
τ φ′′| = |〈φ′′, τ 〉| ≤ |〈φ, τ ′′〉| + 2|〈φ′, τ ′〉| ≤ C(K + �),

since both τ ′ and τ ′′ are bounded by Corollary 2.3. In combining both the tangential
and normal parts of φ′′ and using the fact that the angle between γ ′ + φ′ and τ is
bounded strictly away from π

2 , we find that

|φ′′| ≤ C(|P⊥
γ ′+φ′φ′′| + |PT

τ φ′′|) ≤ C(1 + |γ ′′| + |κγ+φ |)
from which the desired integral estimate follows (since ‖γ ′′‖L p ≤ M by
Lemma 2.12). �
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Next we show that there exists a good substitute for the nearest neighbourhood
projection which yields a local tubular neighbourhood. We also obtain a lower bound
on thickness of the tubular neighbourhood that only depends on theW 2,p-norm of the
curve.

Definition 2.9. If τ is a unit quasi-tangent to aW 2,p-curve γ , the (n−1)-dimensional
subspace

Nx0 = {v ∈ R
n : PT

τ(x0)v = 0}
is called an approximate normal space to γ at a given fixed point x0 ∈ R/Z.

By considering the map Hx0 : Bδ(x0) × Nx0 → R
n given by

(x, v) �→ γ (x) + P⊥
τ(x)v (2.6)

for some 0 < δ < 1, we obtain the following:

Lemma 2.10. If for an M > 0, we have a curve γ ∈ W 2,p(R/Z,Rn) parametrised
by arc-length which satisfies ‖γ ′‖W 1,p ≤ M and a unit quasi-tangent τ to the curve γ ,
then there exists a sufficiently small constant δ = δ(p, M) > 0 such that (2.6) maps
Bδ(x0) × Bδ(0) diffeomorphically onto its image and

Bδ/4
(
γ (Bδ/4(x0))

) ⊂ Hx0

(
Bδ(x0) × Bδ(0)

)
. (2.7)

Proof. Wefirst show that Hx0 is a local diffeomorphism byway of the inverse function
theorem. To do so, we calculate the partial derivatives

∂Hx0

∂x
= γ ′(x) − 〈v, τ ′(x)〉τ(x) − 〈v, τ (x)〉τ ′(x)

∂Hx0

∂v
= P⊥

τ(x)v = v + P⊥
τ(x)v − P⊥

τ(x0)v,

since v ∈ Nx0 and hence P
⊥
τ(x0)

v = v. Then from the estimates (2.4) and (2.5) together

with the Sobolev embeddingW 2,p(Bδ(x0),Rn) ↪→ C1,1− 1
p (Bδ(x0),Rn), we find that

∣∣∣∂Hx0

∂x
− τ(x0)

∣∣∣ ≤ |γ ′(x0) − τ(x0)| + C |v| + |γ ′(x) − γ ′(x0)|

≤ 1

4
+ C |v| + Cδ

1− 1
p

for some constant C = C(p, M) > 0. By taking some δ > 0 sufficiently small
(depending only on p and M), we have

∣∣∣∂Hx0

∂x
− τ(x0)

∣∣∣ ≤ 1

2

for all x ∈ Bδ(x0) ⊂ R/Z and v ∈ Bδ(0) ⊂ Nx0 . Likewise, whenever δ > 0 is
sufficiently small, we also have

∣∣∣∂Hx0

∂v
− v

∣∣∣ ≤ 1

2
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for all (x, v) ∈ Bδ(x0) × Bδ(0).
Let us now assume that τ(x0) = e1 without loss of generality. From the above

estimates, we see that the Jacobi matrix DHx0 satisfies

‖DHx0 − I‖ ≤ 1

2
, (2.8)

where ‖ · ‖ denotes the operator norm. Therefore, DHx0 is invertible and so Hx0 maps
Bδ(x0) × Bδ(0) diffeomorphically onto its image by the inverse function theorem.
Moreover, (2.8) implies that

|Hx0(z1) − Hx0(z2)| =
∣∣∣∣
∫ 1

0
DHx0(z2 + θ(z1 − z2))(z1 − z2)dθ

∣∣∣∣
≥ |z1 − z2| − 1

2 |z1 − z2|
= 1

2 |z1 − z2|.
In which case themap Hx0 is bi-Lipschitz and hence injective on Bδ(x0)×Bδ(0). From
the fact that dist(∂(Bδ(x0) × Bδ(0)), Bδ/2(x0) × {0}) ≥ δ

2 and the latter bi-Lipschitz
estimate, we have

dist
(
Hx0

(
∂(Bδ(x0) × Bδ(0))

)
, γ (Bδ/2(x0))

)
≥ δ

4

which then gives (2.7). �

We can now use Lemma 2.10 to show that any W 2,p-curve γ can be written as
an approximate normal graph over a given W 2,p-curve γ̃ whenever the curves are
C1-close to each other.

Lemma 2.11. If for an M > 0, we have a curve γ ∈ W 2,p(R/Z,Rn) parametrised
by arc-length that satisfies ‖γ ′‖W 1,p ≤ M and a unit quasi-tangent τ to the curve γ ,
then there exists a sufficiently small constant ρ = ρ(p, M) > 0 such that for each
curve γ̃ ∈ W 2,p(R/Z,Rn) satisfying ‖γ − γ̃ ‖C1 ≤ ρ we have some φ ∈ (W 2,p)⊥τ
and a reparametrisation σ of R/Z for which γ̃ ◦ σ = γ + φ.

Proof. Firstly, choose δ > 0 as in Lemma 2.10. Since R/Z is compact, there exist
points x1, …, x� in R/Z such that the balls Bδ/4(x1), …, Bδ/4(x�) cover R/Z. Let the
mappings Hx j for j = 1, . . . , � be defined by (2.6) and let�x j : Bδ/4

(
γ (Bδ/4(x j ))

) →
R/Z be the corresponding retraction maps given by

�x j = π ◦ H−1
x j

where π : Bδ(x j ) × Nx j → R/Z sends (x, v) �→ x , i.e. the projection onto the first
coordinate. We can then set

σ(x) = �x j (γ̃ (x)) (2.9)

for any x ∈ Bδ(x j ) in order to get a well-defined C1-mapping. Note that the affine
subspaces γ (x) + Nx and not their parametrisations determine the projections Hx j .
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Hence, they agree for different x j if the domains of definition overlap. Furthermore,
from the inverse function theorem applied to �x j and the estimate (2.8) we see that
σ ′(x) > 0 whenever ρ > 0 is sufficiently small (i.e. σ is bi-Lipschitz). In addition,
by setting φ̃ = γ̃ − γ ◦ σ we see from (2.6) that φ̃ belongs to (W 2,p)⊥τ◦σ . Therefore,
γ ◦ σ is a regular curve equal to γ̃ − φ̃. In order to change the roles of γ and γ̃ , we
apply the inverse function theorem to σ to justify the reparametrisation γ̃ ◦ σ−1 =
γ ◦ σ ◦ σ−1 + φ̃ ◦ σ−1 = γ + φ, where we set φ = φ̃ ◦ σ−1 ∈ (W 2,p)⊥τ .

�

Using the above lemma,we canwrite everyW 2,p-curve γ as an approximate normal
graph over a smooth curve γ̃ . Be aware that from now on till the end of this article we
consider normal graphs over the curve γ̃ instead of γ.

Lemma 2.12. Let γ ∈ W 2,p(R/Z,Rn) be a curve parametrised by arc-length. For
every ε0 > 0, there exists a smooth curve γ̃ ∈ C∞(R/Z,Rn) parametrised by arc-
length with ‖γ − γ̃ ‖W 2,p ≤ ε0, a unit quasi-tangent τ to the curve γ̃ and some
φ ∈ (W 2,p)⊥τ such that

γ ◦ σ = γ̃ + φ (2.10)

for a reparametrisation σ of R/Z.

Proof. Firstly, there exists a smooth curve γ̃ ∈ C∞(R/Z,Rn) parametrised by arc-
length such that

‖γ̃ − γ ‖W 2,p ≤ ε0

by the density of C∞(R/Z,Rn) in W 2,p(R/Z,Rn). Moreover, we have

‖γ − γ̃ ‖C1 ≤ Cε0 = ρ

by theSobolev embeddings.Thus, by taking some ε0 > 0 sufficiently small, Lemma2.11
implies that there exists some φ ∈ (W 2,p)⊥τ and a reparametrisation σ of R/Z such
that γ ◦ σ = γ̃ + φ. �

The representation of γ by a normal graph φ over γ̃ we obtain from Lemma 2.12
satisfies the following C1 estimates. These enable us to control the second derivative
of φ by the curvature of γ using Lemma 2.8.

Corollary 2.13. For the decomposition (2.10), there exists a constant C > 0 depend-
ing on an upper bound M on ‖γ ′‖W 1,p and p such that

‖φ‖L∞ ≤ C‖γ − γ̃ ‖L∞ and ‖φ′‖L∞ ≤ C(1 + ‖γ ′ − γ̃ ′‖L∞).

Proof. From the construction of σ given by (2.9), we see that

|σ(x) − x | = |σ(x) − σ ◦ σ−1(x)| ≤ ‖σ ′‖L∞|x − σ−1(x)|
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and

|x − σ−1(x)| = |�x j (γ̃ (x)) − �x j (γ (x))| ≤ (
max

j
‖D�x j ‖L∞

)|γ̃ (x) − γ (x)|,

since there exists some ball Bδ(x j ) such that x = �x j (γ̃ (x)). As we have

|φ(x)| = |γ (σ (x)) − γ̃ (x)| ≤ |γ (σ (x)) − γ (x)| + |γ (x) − γ̃ (x)|
and |γ (σ (x)) − γ (x)| ≤ ‖γ ′‖L∞|σ(x) − x |, it follows that

‖φ‖L∞ ≤ (1 + C‖γ ′‖W 1,p )‖γ − γ̃ ‖L∞

by the Sobolev embeddings. In addition, we have

‖φ′‖L∞ = ‖(γ ◦ σ)′ − γ̃ ′‖L∞ ≤ ‖γ ′ − γ̃ ′‖L∞ + ‖γ ′‖L∞ + ‖(γ ◦ σ)′‖L∞

≤ ‖γ ′ − γ̃ ′‖L∞ + C‖γ ′‖W 1,p

from the uniform bi-Lipschitz property of σ and the Sobolev embeddings. �

2.3. Existence of discrete-time approximations

After breaking the reparametrisation invariance of (1.1) by way of the approximate
normal graphs, it is now a straight forward matter to prove the short-time existence of
solutions for the minimising movement scheme.
Let us first consider an initial curve� ∈ W 2,p(R/LZ,Rn) of length L parametrised

by arc-length. In the following, it will be essential that all estimates only depend on
an upper bound on the energy of this curve.
We first note that an upper bound on the energy also implies a lower bound on the

length, since by Fenchel’s theorem together with Hölder’s inequality we have

2π ≤
∫
R/LZ

|κ|ds ≤ L1− 1
p

( ∫
R/LZ

|κ|pds
) 1

p

so that

L p−1 ≥ (2π)p

p E (p)(�)
.

By scaling the results of Sect. 2.2, we can drop the assumption that the curve is of unit
length and recover all the previous estimates concerning approximate normal graphs
(with proviso that the relevant constants now depend on λ and the energy bound). In
particular, we say that the unit vector field τ is quasi-tangent to a W 2,p-curve γ of
length L whenever τ( ·

L ) is quasi-tangent to the curve γ ( ·
L ).

Now for the initial curve, the result of Lemma 2.12 implies that there exists a
smooth curve γ̃ parametrised by arc-length, a unit quasi-tangent τ to the curve γ̃ and
a perturbation � ∈ (W 2,p)⊥τ such that � ◦ σ = γ̃ + �. Moreover, by combining the
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norm bounds of Lemma 2.12 with Corollary 2.13 and the Sobolev embeddings, we
see that

‖�‖L∞ ≤ μ and ‖�′‖L∞ ≤ W

for some sufficiently small constant μ = μ(p, λ, E(�)) > 0 and some constant
W = W (p, λ, E(�)) > 2.
For a series of discrete time steps 0 = t0 < t1 < t2 < · · · , we seek to define the

curves

γt j = γ̃ + φt j (2.11)

with the initial case γt0 = γ̃ + �. The time differences t j+1 − t j = h are set to be
equal to a fixed parameter h > 0 (that we shall ultimately send to zero). We want to
recursively define φt j+1 for the next time step as the minimiser

φt j+1 = argmin
φ ∈V

{
E(γ̃ + φ) + 1

2h

∫
R/LZ

|P⊥
γ ′
t j
(γ̃ + φ − γt j )|2|γ ′

t j |dx
}
,

where the class of admissible perturbations is given by

V = V (μ,W ) = {φ ∈ (W 2,p)⊥τ : ‖φ‖L∞ < 3μ, ‖φ′‖L∞ < 3W }.
The following lemma states that these discrete-time solutions can be constructed for
at least a short time.

Lemma 2.14. There exists a finite time T > 0 depending only on p, λ and E(�) such
that the solutions γt j = γ̃ + φt j exist for the series of discrete times 0 = t0 < t1 <

t2 < · · · < tN ≤ T where N = � T
h �.

Proof. We seek to establish the existence of the perturbations φt j+1 that areminimisers
of the functionals

F j (φ) = E(γ̃ + φ) + 1

2h

∫
R/LZ

|P⊥
γ ′
t j
(γ̃ + φ − γt j )|2|γ ′

t j |dx

over the admissible class V . To do so, we proceed by an induction argument with an
initial base case φt0 = � given by the decomposition of the initial curve �. Indeed, let
us assume there exist minimisers φti+1 of Fi over the class V for i = 0, 1, . . . , j − 1.
Now as Fi (φti+1) ≤ Fi (φti ) for i = 0, 1, . . . , j − 1 (i.e. φti is a competitor), we

note that

E(γt j ) ≤ E(γt0) = E(�)

and

1

2h

∫
R/LZ

|P⊥
γ ′
ti
(γti+1 − γti )|2|γ ′

ti |dx ≤ E(γti ) − E(γti+1).
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In which case Lemma 2.8 implies that the L p-norm of γ ′′
t j is uniformly bounded by a

constant which depends only on p and E(�). In addition, we have

1

h

∫
R/LZ

|γti+1 − γti |2dx ≤ C
(
E(γti ) − E(γti+1)

)
.

Then by summing up the latter inequalities, we get the a priori estimate

j−1∑
i=0

1

h

∫
R/LZ

|γti+1 − γti |2dx ≤ C
(
E(γt0) − E(γt j )

)
. (2.12)

We also recall from Hölder’s inequality that

‖γt0 − γt j ‖L2 ≤
j−1∑
i=0

‖γti+1 − γti ‖L2√
h

√
h

≤
⎛
⎝

j−1∑
i=0

1

h

∫
R/LZ

|γti+1 − γti |2dx
⎞
⎠

1
2
⎛
⎝

j−1∑
i=0

h

⎞
⎠

1
2

≤ C
√
E(γt0)

√
t j (2.13)

and from the Gagliardo–Nirenberg interpolation inequality we get

‖γ ′
t0 − γ ′

t j ‖L∞ ≤ C‖γ ′′
t0 − γ ′′

t j ‖α
L p‖γt0 − γt j ‖1−α

L2

with α = 3p
5p−2 . Since Lemma 2.8 implies that the L p-norm of the second derivatives

of γ0 and γt j are uniformly bounded, we conclude that

‖γ ′
t0 − γ ′

t j ‖L∞ ≤ C(
√
t j )

1−α

for a constant C > 0 depending on p, λ and E(�). Furthermore, there exists a
sufficiently small T > 0 depending on p, λ and E(�) such that

‖φ′
t j ‖L∞ ≤ ‖φ′

t0‖L∞ + ‖γ ′
t j − γ ′

t0‖L∞

≤ W + C(
√
t j )

1−α

< 2W (2.14)

whenever 0 < t j < T . Since

‖γt0 − γt j ‖L∞ ≤ C‖γ ′′
t0 − γ ′′

t j ‖β
L p‖γt0 − γt j ‖1−β

L2

with β = p
5p−2 by the Gagliardo–Nirenberg interpolation inequality, we also have

‖φt j ‖L∞ < 2μ (2.15)

whenever 0 < t j < T .
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In fact, we can show that the same estimates hold for a suitably chosen minimising
sequence. Let us assume that (φn) is a minimising sequence for the functional F j in
the class V , i.e. F j (φn) → infφ∈V F j (φ) and note that F j is bounded from below
by construction. As φt j is still a competitor, we can assume without loss of generality
that

F j (φn) ≤ F j (φt j ) = E(γt j ) ≤ E(γt0)

for all n ∈ N. In which case we can repeat the argument from the above to obtain the
bound

‖γ ′
t0 − γ ′

n‖L∞ ≤ C(
√
t j+1)

1−α

with γn = γ̃ + φn . It then follows that

‖φ′
tn‖L∞ < 2W (2.16)

for all 0 < t j+1 < T . We then use the Gagliardo–Nirenberg interpolation inequality
to obtain as above

‖φtn‖L∞ < 2μ. (2.17)

Compactness. As a consequence of Lemma 2.8, the minimising sequence (φn) is
uniformly bounded in W 2,p(R/LZ,Rn). It then follows that there exists a weakly
converging subsequence inW 2,p(R/LZ,Rn)which we also denoted by (φn). In addi-
tion, the Rellich–Kondrašov compactness theorem implies that the subsequence (φn)

is strongly convergent inC1(R/LZ,Rn). Let us denote the limit of this sequence by φ.
Since we have already established that ‖φn‖L∞ < 2μ and ‖φ′

n‖L∞ < 2W , it follows
that ‖φ‖L∞ ≤ 2μ and ‖φ′‖L∞ ≤ 2W . Therefore, the limit φ also belongs to V .

Lower semi-continuity. Let us finally prove that

F j (φ) ≤ lim inf
n→∞ F j (φn).

As the L2-term in the functional F j converges by the theorem of Rellich–Kondrašov
and the angle between τ and γ ′

t j is uniformly bounded strictly away from π
2 , it suffices

to show that

E (p)(γ̃ + φ) ≤ lim inf
n→∞ E (p)(γ̃ + φn). (2.18)

Note that the length term λ
∫
R/LZ ds appearing in the considered energy E , cf. (1.1),

can be dropped as well due to the convergence of the sequence (φn) inC1(R/LZ,Rn).
In order to prove (2.18), we use the curvature formula for κγ̃+φn to rewrite

E (p)(γ̃ + φn) =
∫
R/LZ

∣∣∣P⊥
γ̃ ′+φ′

n
(γ̃ ′′ + φ′′

n )

∣∣∣p
|γ̃ ′ + φ′

n|2p
|γ̃ ′ + φ′

n|ds



J. Evol. Equ. A minimising movement scheme for the p-elastic Page 15 of 25 41

as the expression

E (p)(γn) =
∫
R/LZ

∣∣∣P⊥
γ̃ ′+φ′(γ̃ ′′ + φ′′

n )

∣∣∣p
|γ̃ ′ + φ′|2p |γ̃ ′ + φ′|ds + I1 + I2 + I3,

where

I1 =
∫
R/LZ

(∣∣P⊥
γ̃ ′+φ′

n
(γ̃ ′′ + φ′′

n )
∣∣p − ∣∣P⊥

γ̃ ′+φ′(γ̃ ′′ + φ′′
n )

∣∣p
) |γ̃ ′ + φ′

n|
|γ̃ ′ + φ′

n|2p
ds,

I2 =
∫
R/LZ

(
1

|γ̃ ′ + φ′
n|2p

− 1

|γ̃ ′ + φ′|2p
) ∣∣∣P⊥

γ̃ ′+φ′(γ̃ ′′ + φ′′
n )

∣∣∣p |γ̃ ′ + φ′
n|ds,

I3 =
∫
R/LZ

∣∣∣P⊥
γ̃ ′+φ′(γ̃ ′′ + φ′′

n )

∣∣∣p
|γ̃ ′ + φ′|2p

(
|γ̃ ′ + φ′

n| − |γ̃ ′ + φ′|
)
ds.

The terms I1, I2 and I3 vanish in the limit due to the convergence of the sequence
(φn) in C1(R/LZ,Rn) and the uniform bound on the W 2,p-norm of φn . Moreover,
the expression

I (γ̃ + φn) =
∫
R/LZ

∣∣∣P⊥
γ̃ ′+φ′(γ̃ ′′ + φ′′

n )

∣∣∣p
|γ̃ ′ + φ′|2p |γ̃ ′ + φ′|ds

is convex and continuous on W 2,p(R/LZ,Rn) and hence lower semi-continuous by
the following standard argument: Mazur’s lemma [25, Theorem 3.13] gives for every
n0 ∈ N a sequence of convex combinations

Pl =
l∑

n=n0

αl
nφn, 0 ≤ αl

n ≤ 1,
l∑

n=n0

αl
n = 1

such that Pl → φ strongly in W 2,p(R/LZ,Rn). The convexity of I now implies

I (γ̃ + Pl) = I (

l∑
n=n0

αl
n(γ̃ + φn)) ≤

l∑
n=n0

αl
nI (γ̃ + φn) ≤ sup

n≥n0
I (γ̃ + φn).

Passing to the limit l → 0 on the left-hand side, we get from the continuity of I and
Pl → φ in W 2,p that

I (γ̃ + φ) ≤ sup
n≥n0

I (γ̃ + φn)

for all n0 ∈ N. This yields

I (γ̃ + φ) ≤ inf
n0∈N

sup
n≥n0

I (γ̃ + φn) = lim inf
n→∞ I (γ̃ + φn).

�
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For later reference, let us also state the following a priori estimate for the piecewise
linear interpolations that results from (2.12) and (2.13).

Corollary 2.15. The piecewise linear interpolations

φ(h)(t, · ) = φt j + t − t j
h

(
φt j+1 − φt j

)
, t j ≤ t ≤ t j+1,

satisfies the estimates

‖φ(h)

t ′′ − φ
(h)

t ′ ‖L2 ≤ C
√
t ′′ − t ′

and

∫ t ′′

t ′

∫
R/LZ

|∂tφ(h)(t, s)|2dsdt ≤ C
(
E(γt ′) − E(γt ′′)

)

for any 0 ≤ t ′ < t ′′ < T < ∞.

Remark 2.16. We thus obtain a piecewise linearly interpolated solution

γ
(h)
t = γ̃ + φ

(h)
t , 0 ≤ t < T, (2.19)

for the minimising movements scheme.

3. Weak solutions

3.1. Euler–Lagrange equations for the approximations

In order to improve the regularity of the approximations, we derive the Euler–
Lagrange equations related to the minimising movement scheme.
We recall the following expression (cf. [9, Lemma 2.1]) for the first variation of the

p-elastic energy, namely

δψ E (p)(γ ) =
∫
R/LZ

|κ|p−2〈κ, δψκ〉ds + 1

p

∫
R/LZ

|κ|p〈∂sγ, ∂sψ〉ds (3.1)

where δψκ = (
∂2s ψ

)⊥ − 〈κ, ∂sψ〉∂sγ − 2〈∂sγ, ∂sψ〉κ , cf. Proposition A.1. The first
variation of the length term appearing in the definition of the energy E , cf. (1.1), is
given by

δψ

(
λ

∫
R/LZ

ds
)

= λ

∫
R/LZ

〈∂sγ, ∂sψ〉ds. (3.2)

Combining (3.1) and (3.2) with the fact that

∂sψ = 1

|γ ′|∂xψ,
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where |γ ′| = |∂xγ |, we get

∂2s ψ = 1

|γ ′|∂x
( 1

|γ ′|∂xψ
)

= 1

|γ ′|2 ∂2xψ − 1

|γ ′|3
〈 γ ′

|γ ′| , γ
′′〉∂xψ

so that

δψ E(γ ) =
∫
R/LZ

|κ|p−2

|γ ′| 〈κ, ∂2xψ〉dx + R(ψ),

where R(ψ) has the form

R(ψ) =
∫
R/LZ

〈b, ∂xψ〉dx

for

b = |κ|p−2

|γ ′|3 〈γ ′, γ ′′〉κ − |κ|p−2〈κ, γ ′〉κ − (2 − 1

p
)|κ|pγ ′.

Note that b ∈ L∞L1 for any time-dependent family of curves γ ∈ L∞W 2,p, whereas
a notational shorthand L∞L1 stands for L∞([0, T ), L1(R/Z,Rn)

)
.

On the other hand, solutions of the minimising movement scheme solve

〈∂tγ, P⊥
τ ψ〉 = −δψ E(γ ) (3.3)

for all ψ ∈ (
W 2,p

)⊥
τ
. Therefore, we conclude that

∫
R/LZ

|κ|p−2

|γ ′| 〈κ, ∂2xψ〉dx + R̃(ψ) = 0, (3.4)

where

R̃(ψ) =
∫
R/LZ

〈b, ∂xψ〉dx +
∫
R/LZ

〈P⊥
τ (∂tγ ), ψ〉dx .

3.2. Higher regularity for the approximations

To deduce regularity from the equation above, we consider a smooth local orthonor-
mal basis ν1, . . . , νn−1 for our approximate normal spaces. If ψ is a test function that
is decomposed into the form

ψ =
n−1∑
i=1

ψiνi

such that the scalar functions ψi vanish away from the neighbourhood, we find that

∂2xψ =
n−1∑
i=1

(
∂2xψiνi + 2∂xψi∂xνi + ψi∂

2
x νi

)
.
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Therefore, the evolution equation for the approximation yields

n−1∑
i=1

∫
R/LZ

|κ|p−2

|γ ′| ∂2xψi 〈κ, P⊥
τ νi 〉dx = Q(h), (3.5)

where

Q(h) =
∫
R/LZ

〈bt , ∂xψ〉 + 〈ct , ψ〉 + 〈P⊥
τ (∂tγ (t, · )), ψ〉dx .

The following lemma helps us to deduce regularity from this form of the equation.

Lemma 3.1. (L1-estimates) Let I = (a, b) be an open subset of R. If there exist
functions u, f and F in L1(I ) such that∫

I

(
u∂2xϕ + F∂xϕ

)
dx =

∫
I
f ϕdx

for all ϕ ∈ C∞
c (I ), then

u(x) =
∫ x

a

(
F(y) +

∫ y

a
f (z)dz

)
dy + m(x − a) + d

with d = limx↘a u(x) and

m(b − a) = lim
x↗b

u(x) −
(∫

I

(
F(y) +

∫ y

a
f (z)dz

)
dy + d

)
.

Moreover, the function u ∈ W 1,1(I ) with

‖u‖W 1,1 ≤ C(‖ f ‖L1 + ‖F‖L1).

Proof. Let us first set

w(x) = F(x) +
∫ x

a
f (y)dy

v(x) =
∫ x

a
w(y)dy

and note that v ∈ W 1,1(I ) with v′ = w. Then integration by parts implies that∫
I
v(x)∂2xϕ(x) dx = −

∫
I
v′(x)∂xϕ(x) dx

= −
∫
I

(
F(x)∂xϕ(x) +

( ∫ x

a
f (y)dy

)
∂xϕ(x)

)
dx

= −
∫
I
(F(x)∂xϕ(x) − f (x)ϕ(x)) dx .

Therefore, ∫
I
(u − v)∂2xϕ dx = 0

for all ϕ ∈ C∞
c (I ). In which case u−v is an affine function fromwhich the conclusion

easily follows. �
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We can now use the latter lemma to establish:

Theorem 3.2. (Higher regularity) If γ
(h)
t is a solution to the minimising movements

scheme given by (2.19), there exists a constant C > 0 independent of h such that∥∥∥|κ|p−2P⊥
τ κ

∥∥∥
L2([0,T ),W 1,1)

≤ C. (3.6)

In particular, we have κ uniformly bounded in L2Lq and γ ′ uniformly bounded in
L2([0, T ),W 1,q) for all 1 ≤ q < ∞.

Proof. This higher regularity result directly follows from the application of Lemma3.1
to our evolution equation for the minimising movement scheme approximations. In
particular, from Corollary 2.15 we see that γ (h)

t satisfies
∫ T

0

∫
R/LZ

|∂tγ (h)(t, s)|2dsdt ≤ CE(γ0).

Applying Lemma 2.8 to (3.5) together with a covering argument hence yields

∥∥∥ |κ|p−2

|(γ (h))′| P
⊥
τ κ

∥∥∥
L2([0,T ),W 1,1)

< C.

Since (γ (h))′ is uniformly bounded inW 1,1 andW 1,1 is a Banach algebra, this implies

‖|κ|p−2P⊥
τ κ‖L2([0,T ),W 1,1) < C.

�
3.3. Convergence to weak solutions

We will use the following result in order to obtain the convergence of solutions.
This result is crucial for the control of the terms involving the energy.

Theorem 3.3. Let γn = γ + φn be a sequence bounded in L∞W 2,p ∩ C
1
2 L2 such

that |κn|p−2κn is uniformly bounded in L2W 1,1. Then there exists a subsequence γn j

such that the curvatures κn j converge in L2W 2,p.

The proof of this theorem relies on the following interpolation estimate.

Lemma 3.4. There exists a constant C0 > 0 depending on p such that for any W 2,p-
curves γ1 and γ2 with curvatures κ1 and κ2 we have

‖κ1 − κ2‖L p ≤ C0(‖|κ1|p−2κ1‖L2W 1,1 + ‖|κ2|p−2κ2‖L2W 1,1)‖γ ′
1 − γ ′

2‖L2L∞ .

If these curves are furthermore approximate normal graphs over γ̃ as for the solutions
to the minimising movement scheme, we get

‖κ1 − κ2‖L p

≤ C0(‖|κ1|p−2P⊥
τ κ1‖L2W 1,1 + ‖|κ2|p−2P⊥

τ κ2‖L2W 1,1)‖γ ′
1 − γ ′

2‖L2L∞

where now C = C(λ, p, E(�)).
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Proof. First note that

∫
|κ1 − κ2|pds ≤ C0

∫ (
|κ1|p−2κ1 − |κ2|p−2κ2

)
(κ1 − κ2)ds

(cf. [8, §1, Lemma 4.4]). Then integration by parts and Hölder’s inequality implies
that

∫
|κ1 − κ2|pds ≤ −C0

∫
∂s

(
|κ1|p−2κ1 − |κ2|p−2κ2

)
(∂sγ1 − ∂sγ2)ds

≤ C0

(∥∥∥|κ1|p−2κ1

∥∥∥
W 1,1

+
∥∥∥|κ2|p−2κ2

∥∥∥
W 1,1

)
‖γ ′

1 − γ ′
2‖L∞ .

So by integrating over time and using Hölder’s inequality again, we get

∫∫
|κ1 − κ2|pdsdt

≤ C0

(∥∥∥|κ1|p−2κ1

∥∥∥
L2W 1,1

+
∥∥∥|κ2|p−2κ2

∥∥∥
L2W 1,1

)
‖γ ′

1 − γ ′
2‖L2L∞ .

For the second estimate, we proceed in a similar way.We apply Lemma 2.8 to improve
the first inequality to

∫
|κ1 − κ2|pds ≤ C0

∫ (
|κ1|p−2P⊥

τ κ1 − |κ2|p−2P⊥
τ κ2

)
(κ1 − κ2)ds.

Integrating by parts then yields

∫
|κ1 − κ2|pds ≤ −C0

∫
∂s

(
|κ1|p−2P⊥

τ κ1 − |κ2|p−2P⊥
τ κ2

)
(∂sγ1 − ∂sγ2)ds

≤ C0

(∥∥∥|κ1|p−2P⊥κ1

∥∥∥
W 1,1

+
∥∥∥|κ2|p−2P⊥

τ κ2

∥∥∥
W 1,1

)
‖γ ′

1 − γ ′
2‖L∞ .

�

Proof of Theorem 3.3. Using a diagonal argument and the compact embedding
W 2,p ↪→ L2, we get a subsequence γn j converging in L2 for all times t ∈ Q∩ [0, T )

(and hence for all 0 ≤ t < T due to the uniform bound inC
1
2 L2). This result, together

with the uniform bound on the W 2,p-Sobolev norm and interpolation estimates, im-
plies that γn j → γ ∈ Cα([0, T ),W 1,∞) with α = p−1

5p−2 . Thus, γn j converge to γ in

L2W 2,p by Lemma 3.4. �

Proof of Theorem 1.1. From the construction in Sect. 2.3, there exists a solution γ
(h)
t

to the minimising movement scheme given by (2.19) for all 0 ≤ t < T up to some
positive final time T that depends only on p, λ and the energy E(�) of the initial data.
We think of this solution as solving a discrete version of the negative L2-gradient flow
of E . Theorem 3.3 and Corollary 2.15 can then be applied to get a subsequence that
converges in L2W 2,p such that ∂tγ (h) weakly converges in L2. Now in order to show
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that the limit satisfies the desired evolution equations, we use the fact that the solutions
of the minimising movement scheme satisfy

∫ T

0

∫
R/LZ

〈∂⊥
t γ

(h)
t , ψ〉dsdt =

∫
R/LZ

δψt E(γ̃
(h)
t )dt (3.7)

for all test functions ψ ∈ C∞
c ((0, T ) × R/LZ,Rn). Here, γ̃

(h)
t = γ

(h)
nh for t ∈

[nh, (n+1)h), n ∈ N, denotes the piecewise constant interpolation of the minimising
movement scheme.
Let us now take a sequence hn → 0 for which the piecewise linear interpola-

tions of the minimising movement scheme γ (hn) converge to a family of curves γ in
L2W 2,p such that ∂tγ

(hn) converges to ∂tγ weakly in L2([0, T ),R/LZ). Then also
the piecewise constant interpolations γ̃ (hn) converge to γ in L2W 2,p. As γ ′(hn) con-
verges strongly to γ ′ in L2, we see that the weak convergence of ∂tγ

(hn) to ∂tγ in L2

implies
∫ T

0

∫
R/LZ

〈∂⊥
t γ

(hn)
t , ψ〉dsdt →

∫ T

0

∫
R/LZ

〈∂⊥
t γt , ψ〉dsdt. (3.8)

Convergence for the right-hand side of (3.7) is also straight forward. If we denote by
κn the curvature of γ̃

(hn)
t and integrate (3.1), we find that

∫ T

0
δψt E(γ̃

(hn)
t )dt =

∫ T

0

∫
R/LZ

|κn|p−2〈κn, δψκn〉dsdt

+ 1

p

∫ T

0

∫
R/LZ

|κn|p〈∂s γ̃ (hn), ∂sψ〉dsdt

+ λ

∫ T

0

∫
R/LZ

〈∂s γ̃ (hn), ∂sψ〉dsdt.

Since κn converges to κ in L2([0, T ), L p(R/LZ)) and ∂s γ̃
(hn) converges to ∂sγ uni-

formly, the second term on the right-hand side of the latter equation converges to the
corresponding term for γ in lieu of γ̃ (hn). One can deduce the same fact for the first
term via the formula

δψκn =
(
∂2s ψ

)⊥ − 〈κn, ∂sψ〉τn − 〈∂sψ, τn〉κn,
since it implies that δψκn converges to δψκ in L2([0, T ), L p(R/LZ)). Therefore, we
get

∫ T

0
δψt E(γ̃ (hn))dt →

∫ T

0
δψt E(γ )dt. (3.9)

In which case Eqs. (3.7), (3.8) and (3.9) imply that
∫ T

0

∫
R/LZ

〈γt , ∂⊥
t ψ〉dsdt = −

∫ T

0
δψt E(γt )dt.

�
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3.4. Flow in the direction of the normal velocity

Using the fact that the unit tangent belongs to W 2,p, we can finally prove Corol-
lary 1.2 under the conditions of Theorem 1.1.

Proof of Corollary 1.2. In abuse of notation, let τ = γ ′
|γ ′| ∈ W 2,p(R/LZ,Rn) be the

unit tangent and the vectors ν1, . . . , νn−1 be a smooth local orthonormal basis of our
approximate normal space. Due to the fact that any ψ ∈ C∞

c (R/LZ,Rn) can be
written as

ψ = ψ0τ +
n−1∑
i=1

ψiνi

with functions ψi ∈ W 2,p(R/LZ,Rn), we find that

∫ T

0

∫
R/LZ

〈∂⊥
t γ,ψ〉dsdt =

n−1∑
i=1

∫ T

0

∫
R/LZ

〈∂⊥
t γ,ψiνi 〉dsdt

= −
∫ T

0
δψt E(γt )dt,

since both δψ0τ E(γ ) = 0 and 〈∂⊥
t ψ0, τ 〉 = 0. �

4. Epilogue

Although the minimising movement scheme leads in a rather straight forward way to
the short-time existence of weak solution for our gradient flow, there are three key
questions one would like to resolve, namely:

(1) Areweak solutions unique and do they have long-time existence for 0 ≤ t < ∞?
(2) Can one use test functions for the gradient flow that are not orthogonal to a

quasi-tangent?
(3) Does our notion of solution depend on the choice of the reference curve and the

approximate normal directions?

For long-time existence, it looks as if one could, in principle, restart the flow and
the above short-time existence result to get an eternal solution. However, one should
be aware that this solution might have kinks which our methods cannot rule out. If
one has uniqueness and some way of modifying the approximate normal, long-time
existencewould bepossible.OurCorollary 1.2 is afirst indication that amore fastidious
regularity theory is needed in order to resolve the above issues.

The question of uniqueness seems to be completely open. For themore standard non-
homogeneous evolution equations involving the p-Laplace operator, papers discussing
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uniqueness haveonly appeared rather recently. In particularly, themethodused to prove
uniqueness in [3] breaks down for our curvature equations.
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Appendix A: First variation for the p-elastic energy

Recall that for closed curves γ : R/Z → R
n in theW 2,p-Sobolev class the p-elastic

energy is given by

E (p)(γ ) = 1
p

∫
R/Z

|κ|pds.

For the convenience of the reader, we give further details on the derivation of its
first variation. The upcoming statement is proven along the line of [9, Lemma 2.1], for
whichwe identify the arclength element by ds = |∂xγ | dx and the arclength derivative
by ∂s = |∂xγ |−1∂x .

Proposition A.1. The first variation of the p-elastic energy E (p) for γ ∈ W 2,p(R/

Z,Rn) in direction of ψ ∈ W 2,p(R/Z,Rn) is given by

δψ E (p)(γ ) =
∫
R/Z

|κ|p−2〈κ, δψκ〉ds + 1
p

∫
R/Z

|κ|p〈∂sγ, ∂sψ〉ds.

where δψκ = (
∂2s ψ

)⊥ − 〈κ, ∂sψ〉∂sγ − 2〈∂sγ, ∂sψ〉κ .
Proof. We first observe

δψ E (p)(γ ) = 1
p

∫
R/Z

δψ(|κ|p)ds + 1
p

∫
R/Z

|κ|pδψ(ds).

By applying the notation from above and the chain rule, we get

δψ(|κ|p) = d
dε

[
|∂2s (γ + εψ)|p

]
ε=0

=
[
p |〈∂2s (γ + εψ), ∂2s (γ + εψ)〉| p−2

2 〈 d
dε

∂2s (γ + εψ), ∂2s (γ + εψ)〉
]
ε=0

= p |κ|p−2〈δψ(κ), κ〉

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and

δψ(ds) = d
dε

[|∂x (γ + εψ)|dx]
ε=0

=
[

1
|∂x (γ+εψ)| 〈∂x (γ + εψ), ∂xψ〉dx

]
ε=0

= 〈 ∂xγ
|∂xγ | ,

∂xψ
|∂xγ | 〉|∂xγ |dx

= 〈∂sγ, ∂sψ〉ds.
Similarly, we achieve

δψ(κ) = d
dε

[
1

|∂x (γ+εψ)|∂x
(

1
|∂x (γ+εψ)|∂x (γ + εψ)

)]
ε=0

=
[
− 1

|∂x (γ+εψ)|3 〈∂x (γ + εψ), ∂xψ〉∂x
(

1
|∂x (γ+εψ)|∂x (γ + εψ)

)]
ε=0

+
[

1
|∂x (γ+εψ)|∂x (− 1

|∂x (γ+εψ)|3 〈∂x (γ + εψ), ∂x h〉∂x (γ + εψ) + 1
|∂x (γ+εψ)|∂x h)

]
ε=0

= −〈 ∂xγ|∂xγ | ,
∂xψ|∂xγ | 〉 1

|∂xγ |∂x (
∂xγ|∂xγ | ) − 1

|∂xγ |∂x
(
〈 ∂xγ|∂xγ | ,

∂xψ|∂xγ | 〉 ∂xγ|∂xγ |
)

+ 1
|∂xγ |∂x (

∂xψ|∂xγ | )

= −〈∂sγ, ∂sψ〉κ − ∂s(〈∂sγ, ∂sψ〉∂sγ ) + ∂2s ψ

and hence by rearranging and the Leibniz rule

δψ(κ) = ∂2s ψ − 〈∂sγ, ∂2s ψ〉∂sγ − 〈∂2s γ, ∂sψ〉∂sγ − 2〈∂sγ, ∂sψ〉∂2s γ

= P⊥
∂sγ

(∂2s ψ) − 2〈∂sγ, ∂sψ〉κ − 〈κ, ∂sψ〉∂sγ.

�

REFERENCES

[1] L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in arbitrary codimension,
J. Differential Geom. 43 (1996), no. 4, 693–737.

[2] C. Baker, The mean curvature flow of submanifolds of high codimension, 2011. arXiv:1104.4409
[math.DG].

[3] A. Dall’Acqua, T. Laux, C.-C. Lin, P. Pozzi, and A. Spener, The elastic flow of curves on the sphere,
Geom. Flows 3 (2018), 1–13.

[4] A. Dall’Acqua, C.-C. Lin, and P. Pozzi, A gradient flow for open elastic curves with fixed length
and clamped ends, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 17 (2017), no. 3, 1031–1066.

[5] A. Dall’Acqua, C.-C. Lin, and P. Pozzi, Elastic flow of networks: long-time existence result, Geom.
Flows 4 (2019), 83–136.

[6] E. De Giorgi, New problems on minimizing movements, Boundary value problems for partial
differential equations and applications. Dedicated to Enrico Magenes on the occasion of his 70th
birthday, 1993, pp. 81–98. (repr. in Ennio DeGiorgi: Selected papers, Springer, 2006, pp. 699–713).

[7] D.M.DeTurck, Deformingmetrics in the direction of their Ricci tensors, J. Differ. Geom. 18 (1983),
157–162.

[8] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, 1993.
[9] G. Dziuk, E. Kuwert, and R. Schatzle, Evolution of elastic curves inRn : Existence and computation,

SIAM J. Math. Anal. 33 (2002), no. 5, 1228–1245
[10] J. Escher, U. F. Mayer, and G. Simonett, The surface diffusion flow for immersed hypersurfaces,

SIAM Journal on Mathematical Analysis 29 (1998), no. 6, 1419–1433.
[11] R. L. Foote, Shorter notes: Regularity of the distance function, Proceedings of the American Math-

ematical Society 92 (1984), no. 1, 153–155

http://arxiv.org/abs/1104.4409


J. Evol. Equ. A minimising movement scheme for the p-elastic Page 25 of 25 41

[12] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7
(1982), no. 1, 65–222.

[13] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982),
no. 2, 255–306.

[14] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20
(1984), no. 1, 237–266.

[15] G. Huisken and A. Polden, Geometric evolution equations for hypersurfaces, Calculus of variations
and geometric evolution problems (Cetraro, 1996), vol. 1713 of Lecture Notes in Math., 1999, pp.
45–84.

[16] R. Jakob, Short-time existence of the Möbius-invariant Willmore flow, J. Geom. Anal. 28 (2018),
no. 2, 1151–1181.

[17] J. L. Kazdan, Another proof of Bianchi’s identity in Riemannian geometry, Proc. Amer. Math. Soc.
81 (1981), 341–342.

[18] J. LeCrone, Y. Shao, and G. Simonett, The surface diffusion and the Willmore flow for uniformly
regular hypersurfaces, Discrete and Continuous Dynamical Systems. Series S 13 (2020), no. 12,
3503–3524.

[19] U. F. Mayer and G. Simonett, Self-intersections for the surface diffusion and the volume-preserving
mean curvature flow, Differ. Integral Equ. 13 (2000), no. 7-9, 1189–1199.

[20] M. Müller and A. Spener, On the convergence of the elastic flow in the hyperbolic plane, Geom.
Flows 5 (2020), 40–77.

[21] M. Novaga and P. Pozzi, A second order gradient flow of p-elastic planar networks, SIAM Journal
on Mathematical Analysis 52 (2020), no. 1, 682–708.

[22] S. Okabe, P. Pozzi, and G. Wheeler, A gradient flow for the p-elastic energy defined on closed
planar curves, Math. Ann. 378 (2020), no. 1-2, 777–828.

[23] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.
arXiv:math/0211159 [math.DG].

[24] M. Pozzetta, Convergence of elastic flows of curves into manifolds, Nonlinear Analysis (2022).
[25] W. Rudin, Functional analysis, Second, International Series in Pure and Applied Mathematics,

McGraw-Hill, Inc., New York, 1991. MR1157815
[26] G. Simonett, The Willmore flow near spheres, Differential Integral Equations 14 (2001), no. 8,

1005–1014

SimonBlatt, ChristopherP.Hopper and
Nicole Vorderobermeier
Departement of Mathematics
Paris Lodron Universität Salzburg
Hellbrunner Strasse 34
5020 Salzburg
Austria
E-mail: simon.blatt@sbg.ac.at

Christopher P. Hopper
E-mail: christopher.hopper@sbg.ac.at

Nicole Vorderobermeier
E-mail: nicole.vorderobermeier@sbg.ac.at

Accepted: 19 February 2022

http://arxiv.org/abs/math.DG/0211159

	A minimising movement scheme for the p-elastic energy of curves
	Abstract
	1. Introduction
	2. Minimising movements scheme
	2.1. Tubular neighbourhoods
	2.2. Approximate normal graphs
	2.3. Existence of discrete-time approximations

	3. Weak solutions
	3.1. Euler–Lagrange equations for the approximations
	3.2. Higher regularity for the approximations
	3.3. Convergence to weak solutions
	3.4. Flow in the direction of the normal velocity

	4. Epilogue
	Appendix A: First variation for the p-elastic energy
	REFERENCES




