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Abstract. In Rd , d ≥ 3, consider the divergence and the non-divergence form operators

−� − ∇ · (a − I ) · ∇ + b · ∇,

−� − (a − I ) · ∇2 + b · ∇,

where the second-order perturbations are given by the matrix

a − I = c|x |−2x ⊗ x, c > −1.

The vector field b : R
d → R

d is form-bounded with form-bound δ > 0. (This includes vector fields
with entries in Ld , as well as vector fields having critical-order singularities.) We characterize quantitative
dependence on c and δ of the Lq → W 1,qd/(d−2) regularity of solutions of the corresponding elliptic and
parabolic equations in Lq , q ≥ 2 ∨ (d − 2).
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1. Introduction

1. In this paper, we are concerned with the second-order perturbations of −�,

−� − ∇ · (a − I ) · ∇,

−� − (a − I ) · ∇2,
(1)

ai j (x) := δi j + c|x |−2xi x j , c > −1.

These are model examples of divergence/non-divergence form operators that are not
accessible by classical means such as the parametrix [8], [19, Ch. IV]. Although the
matrix a is discontinuous at the origin, it is uniformly elliptic, so, by the De Giorgi–
Nash theory, solution u ∈ W 1,2(Rd) to the elliptic equation (μ − ∇ · a · ∇)u =
f , μ > 0, f ∈ L p ∩ L2, p ∈] d

2 ,∞[, is in C0,γ , where the Hölder continuity
exponent γ ∈]0, 1[ depends only on d and c. The operators (1) and their modifications
have been studied by many authors in order to make more precise the relationship
between the regularity properties of the solutions to the corresponding parabolic and
elliptic equations and the continuity properties of the matrix, see [1,3,5], [18, Ch.1.2],
[7,9,20–26] and references therein. In fact, there is a quantitative dependence of the
regularity properties of solutions on the value of c. In this sense, the matrix a has a
critical-order discontinuity at the origin.
The critical-order perturbations of−� and its generalizations have been the subject

of intensive study over the past few decades as they reveal otherwise inaccessible as-
pects of the theory of the unperturbed operator. For example, consider the Schrödinger

operator −� − V0, V0(x) = δ
(d−2)2

4 |x |−2, on Rd , d ≥ 3. If 0 < δ < 1, then the self-
adjoint operator realization H− of−�−V0 on L2 ≡ L2(Rd) is defined as the (minus)

generator of aC0 semigroup e−t H− = s-L2- limε↓0 e−t H−(Vε), Vε(x) = δ
(d−2)2

4 |x |−2
ε ,

|x |2ε := |x |2 + ε, ε > 0. For δ > 1, however, by the celebrated result of [4] (see also
[10]),

lim
ε↓0 e−t H−(Vε)u0(x) = ∞, t > 0, x ∈ R

d , u0 ≥ 0, u0 �≡ 0,

i.e., all positive solutions explode instantly at any point. This phenomenon is not ob-

servable for any V0 = δV , V ∈ L
d
2 , regardless of how large δ > 0 is (in this sense,

the class L
d
2 does not contain potentials having critical-order singularities). The per-

turbations ∇ · (a − I ) · ∇, (a − I ) · ∇2, a − I = c|x |−2x ⊗ x , of −� can be viewed

as the second-order analogues of the critical potential V0(x) = δ
(d−2)2

4 |x |−2.
Our goal is to determine to what extent adding∇ ·(a − I ) ·∇, (a − I ) ·∇2 affects the

perturbation-theoretic and the regularity properties of −�. Our interest is motivated
by applications to diffusion processes, and so we restrict our study to the first-order
perturbations of (1).

2. The following result concerning the special case a = I (i.e.,c = 0) will serve as
the point of departure. Consider on R

d , d ≥ 3, the Kolmogorov operator

−� + b · ∇, b : Rd → R
d .
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We will need the following

Definition. Ameasurable vector field b : Rd → R
d is said to be form-bounded (with

respect to −�) if |b| ∈ L2
loc and there exist constants δ > 0 and λ = λδ ≥ 0 such that

‖|b|(λ − �)−
1
2 ‖2→2 ≤ √

δ

(write b ∈ Fδ).
Here and below, ‖ · ‖p→q denotes the ‖ · ‖L p→Lq operator norm.

The condition b ∈ Fδ is equivalent to the quadratic form inequality

〈b f, b f 〉 ≤ δ〈∇ f,∇ f 〉 + cδ〈 f, f 〉, for all f ∈ W 1,2

for a constant cδ (= λδ), where, from now on,

〈h〉 :=
∫
Rd

h(x)dx, 〈h, g〉 := 〈hḡ〉.

The constant δ is called the form-boundof b. Itmeasures the size of critical singularities
of the vector field, see examples below.
It is clear that

b1 ∈ Fδ1 , b2 ∈ Fδ2 ⇒ b1 + b2 ∈ Fδ,
√

δ := √
δ1 + √

δ2.

Examples. The class of form-bounded vector fields Fδ contains vector fields b with
|b| ∈ Ld + L∞ (i.e.,b = b1 + b2, where |b1| ∈ Ld , |b2| ∈ L∞), with δ > 0 that can
be chosen arbitrarily small (by Sobolev’s inequality).
The class Fδ also contains vector fields having critical-order singularities. For ex-

ample, by Hardy’s inequality, the vector field

b(x) := √
δ

d − 2

2
|x |−2x, δ > 0,

having a model critical-order singularity at the origin, is contained in Fδ (with λ = 0).
More generally, the class Fδ contains vector fields b with |b| in Ld,∞ + L∞ (the
weak Ld class, by Strichartz’ inequality [16]), the Campanato–Morrey class or the
Chang–Wilson–Wolff class [6], with δ depending on the norm of |b| in these classes.
For every ε > 0, one can find b ∈ Fδ such that |b| �∈ L2+ε

loc , e.g., consider a vector
field b with

|b(x)|2 = C
1B(0,1+κ) − 1B(0,1−κ)∣∣|x | − 1

∣∣−1
(− ln

∣∣|x | − 1
∣∣)α , α > 1, 0 < κ < 1.

See, e.g., [11, Sect. 4] for other examples and more detailed discussion concerning
the class Fδ .
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Here is our point of departure. By [15, Lemma 5], for b ∈ Fδ with δ < 1∧ ( 2
d−2

)2
and q ∈ [2 ∨ (d − 2), 2√

δ
[ the solution u to the elliptic equation

(
μ + 	q(b)

)
u = f, f ∈ Lq ,

where	q(b) is an operator realization of−�+b ·∇ in Lq as the (minus) generator of
a positivity preserving L∞ contraction C0 semigroup (see details in Sect. 3), satisfies

‖∇u‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q ,

‖∇u‖ qd
d−2

≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q
(∗)

for all μ > μ0, where constants μ0 = μ0(d, q, δ) > 0, Ki = Ki (d, q, δ), i = 1, 2.
In particular, if additionally q > d − 2, then by the Sobolev embedding theorem u is
in C0,γ (possibly after change on a measure zero set) with Hölder continuity exponent
γ = 1 − d−2

q .
3. In our main result, Theorem 2, we show that the perturbation −∇ · (a − I ) · ∇ of

−� preserves, under appropriate assumptions on c, the properties of −� that allow
to establish estimates (∗) for u = (

μ + 	q(a, b)
)−1

f , where 	q(a, b) is an operator
realization of the formal operator

−� − ∇ · (a − I ) · ∇ + b · ∇, b ∈ Fδ

in Lq as the (minus) generator of a positivity preserving L∞ contractionC0 semigroup,
constructed as the limit of the semigroups corresponding to smooth approximations
of a, b. The existing literature on −� − ∇ · (a − I ) · ∇ + b · ∇ dealing with discon-
tinuous/locally unbounded coefficients, provides a detailed regularity theory of this
operator in the case a = I + c|x |−2(x ⊗ x) and b(x) = c|x |−2x , see [5,7,20–24]. In
the present paper, we are dealing with a substantially larger class of singular drifts b.
Our results thus do not depend on the specific structure of b such as differentiability
or symmetry, and, in fact, follow from the a priori estimates (∗) for solutions to the
corresponding elliptic equations with smoothed out coefficients.
Now, define vector field ∇a by (∇a)k := ∑d

i=1 ∇i aik , 1 ≤ k ≤ d, where, from
now on, ∇i := ∂xi . Then ∇a = c(d − 1)|x |−2x , so by Hardy’s inequality ∇a ∈ Fδ ,

δa = 4c2(d−1)2

(d−2)2
. We construct an operator realization in Lq of the non-divergence form

(formal) operator

−a · ∇2 + b · ∇ ≡ −
d∑

i, j=1

ai j (x)∇i∇ j +
d∑

k=1

bk(x)∇k, b ∈ Fδ1

as 	q(a,∇a + b) (we have −a · ∇2 + b · ∇ ≡ −∇ · a · ∇ + (∇a + b) · ∇). As a
result, we can characterize the quantitative dependence of the regularity properties of
u = (μ + 	q(a,∇a + b))−1 f , f ∈ Lq , on c, d, q, μ and δ, see Corollary 3. In this
regard, we note that the class of admissible first-order perturbations b · ∇, b ∈ Fδ of
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−a ·∇2 cannot be achieved on the basis of the Krylov–Safonov a priori estimates [17,
Ch.4.2]. (We note that the operator −a · ∇2 with ∂xk ai j ∈ Ld,∞ has been studied
earlier in [2], see also [3].)

Concerning the application of (∗) to establishing the C0,γ continuity of u, we note
the following. Let d ≥ 4. In the proof of Theorem 2, we establish a stronger than (∗)
estimate:

‖∇|∇u| q
2 ‖22 ≤ K‖ f ‖q

q

(and so u ∈ C0,γ , γ = 1 − d−2
q ). We do not appeal, for the purpose of establishing

Hölder continuity of u, to W 2,r estimates on u for a large r . In fact, the condition
b ∈ Fδ , δ < 1 yields only u ∈ W 2,2. The latter allows to conclude that u is Hölder
continuous only in dimension d = 3.

In Theorem 2, we tried to find the least restrictive assumptions on c and δ (a measure
of discontinuity ofmatrix a and ameasure of singularity of vector field b, respectively),
permitted by the method, such that the estimates (∗) hold for a b ∈ Fδ . (We emphasize
that our result is not of Cordes type.) The weaker result that there exist sufficiently
small c and δ such that the estimates (∗) are valid (still not accessible by the existing
results prior to our work) can be obtained with considerably less effort by following
the proof and discarding the corresponding multiples of c and δ.
The question of optimality of our assumptions on c and δ in Theorem 2 is difficult.

Even in the case c = 0, it is not yet clear whether the corresponding assumption on
δ (i.e., δ < 1 ∧ 4

(d−2)2
), although dictated by the method, is optimal. (We remark that

the constant 4
(d−2)2

, incidentally, coincides with the constant in Hardy’s inequality for
d ≥ 4.) In this regard, we note the following:

1. We believe that the examples showing the optimality of the assumptions on c
and δ in Theorem 2 (at least in the limiting cases discussed in the fourth remark
after Theorem 2) could be obtained once one fully exploits the method, e.g., in
the context of the problem of constructing the corresponding diffusion process.
(In this regard, we note [12, Example 1].)

2. In [23,24], the authors constructed an operator realization Q p of −�−∇ · (a −
I ) ·∇ + b ·∇ in L p for the model vector field b(x) = c|x |−2x and characterized
the domain of Q p, establishing W 1,p and W 2,p regularity of any u in the domain
of Q p. The results in [23,24] do not follow as a special case of Theorem 2 if
we take there b(x) = c|x |−2x . In fact, for this vector field, one can modify our
method to take into account the sign of the divergence of b (cf. [11, Corollaries
4.9–4.11]); however, this still does not allow to obtain as a special case the related
result in [23,24].

We note that having a complete characterization of the domain of (an operator
realization of) −∇ · a · ∇ in Lq for some q does not help on its own to characterize
regularity of the domain of −∇ · a · ∇ + b · ∇, b ∈ Fδ in Lq (as is already apparent
in the case a = I discussed above).
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Themethod of this paper is suited to treat second-order perturbations−∇·(a− I )·∇,
−(a− I )·∇2 of−�more general than a− I = c|x |−2x⊗x , for example, a− I = v⊗v,
where a bounded v : Rd → R

d , v ∈ W 1,2
loc (Rd ,Rd) satisfies

( ∑
k

(∇vk)
2) 1

2 ∈ Fδ (2)

(although not distinguishing between positive and negative c). Our method also admits
extension to

ai j (x) = δi j +
∑

l

clκi j (x − yl), κi j (x) = |x |−2xi x j ,

c+ :=
∑
cl>0

cl < ∞, c− :=
∑
cl<0

cl > −1,

where {yl} ⊂ R
d . Let us also note that arguments in this paper can be transferred

without significant changes from R
d to the ball B(0, 1).

After this paper was written [13], in subsequent paper [14] we constructed and
investigated the diffusion process corresponding to −a · ∇2 + b · ∇ with a as in (2)
using analogues of estimates (∗), although valid, if restricted to a = I + c|x |−2x ⊗ x ,
under substantially more restrictive assumptions on c than in the present paper.

Outline of the method Let us give an informal outline of the proof of Theorem 2,
i.e., estimates (∗) for solution u to the elliptic equation (μ − ∇ · a · ∇ + b · ∇)u = f ,
μ > 0, f ∈ Lq , q > d − 2 (sufficiently close to d − 2).

Step 1: The basic equality. We multiply the equation by carefully chosen “test
function” and integrate to obtain the basic equality

μ‖∇u‖q
q + Iq + (q − 1)Jq = [. . . ] + ‖ f ‖q

q , Jq := ‖∇|∇u| q
2 ‖22. (BE)

The term Iq is greater than Jq , so if we replace it by Jq we arrive at
Step 2: The principal inequality. The terms [. . . ] in the RHS of (BE) are estimated

from above by κ Jq with a sufficiently small coefficient κ > 0 (using the structure of
the matrix a and the condition b ∈ Fδ). Thus, we obtain from (BE)

μ‖∇u‖q
q + (q − 1)Jq ≤ κ Jq + C‖ f ‖q

q ,

and so if κ < q − 1 (⇔ our assumptions on a, b are satisfied) then we obtain the
principal inequality

μ‖∇u‖q
q + ηJq ≤ C‖ f ‖q

q , η > 0.

Step 3: The sought estimates (∗) on u now follow from the previous inequality by
applying the Sobolev embedding theorem to Jq .
Structure of the paper InSect. 2,we state our results in detail. In Sect. 3,we illustrate the
use of ourmethod by applying it first to operator−�+b·∇, b ∈ Fδ . In Sect. 4,we prove
our main result, Theorem 2 concerning the divergence form operator−∇ ·a ·∇+b ·∇.
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2. Main results

1. In what follows, we consider C∞ smooth approximation of the matrix a(x) =
I + c|x |−2x ⊗ x by

aε = (aε
i j ), 1 ≤ i, j ≤ d,

where

aε
i j := δi j + c|x |−2

ε xi x j , |x |ε :=
√

|x |2 + ε, ε > 0.

For a given vector field b ∈ Fδ , we consider its C∞ smooth approximation defined
by

bn := cnγεn ∗ 1nb, n ≥ 1, cn ↑ 1, (3)

where 1n is the indicator of {x ∈ R
d | |x | ≤ n, |b(x)| ≤ n}, γε is the K.Friedrichs

mollifier, for appropriate εn ↓ 0 and cn ↑ 1 so that bn ∈ Fδ for all n ≥ 1 with
λ �= λ(n), see Remark 2 for details.

In the course of the proof of Theorem 2, we will first prove the required regularity
estimates (∗) for solution uε,n to the elliptic equation with smooth coefficients (μ −
∇ · aε · ∇ + bn · ∇)uε,n = f , f ∈ C∞

c , μ ≥ μ0 for constants μ0 > 0 and Kl , l = 1, 2
independent of ε, n. Taking ε ↓ 0 and n → ∞, we will establish estimates (∗) for
solution u to the equation (μ − ∇ · a · ∇ + b · ∇)u = f . However, first we need to
specify in what sense the operator −∇ · a · ∇ + b · ∇ is defined; we will also need the
corresponding convergence result; see Theorem 1.

Recall that there is a unique self-adjoint operator A ≡ A2 ≥ 0 in L2 associated
with the sesquilinear form t[u, v] := 〈∇u · a · ∇v̄〉, D(t) = W 1,2:

D(A) ⊂ D(t) and 〈Au, v〉 = t[u, v], u ∈ D(A), v ∈ D(t).

The operator −A is the generator of a positivity preserving L∞ contraction C0

semigroup T t
2 ≡ e−t A, t ≥ 0, on L2. Then, since T t

2 is a L∞ contraction, T t
q :=[

T t
2 �Lq∩L2

]clos
Lq→Lq determines by interpolation a contraction C0 semigroup in Lq

for all q ∈ [2,∞[ and hence, by self-adjointness, for all q ∈]1,∞[. The (minus)
generator Aq of T t

q (≡ e−t Aq ) is an operator realization of the formal operator∇ ·a ·∇
on Lq , q ∈]1,∞[.

In what follows, given a Banach space Y and a sequence of bounded linear operators
Tn, T : Y → Y , we write T = s-Y - limn Tn if T f = limn Tn f in Y for every f ∈ Y .
We will need

Theorem 1. Let d ≥3. Let b ∈ Fδ with δ1 := [1 ∨ (1 + c)−2] δ < 4. Let q > 2
2−√

δ1
.

The following is true.

(i) There exists the limit

s-Lq- lim
n→∞ e−t	q (a,bn) (locally uniformly in t ≥ 0),
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where 	q(a, bn) = Aq +bn ·∇, D(	q(a, bn)) = D(Aq), and determines a pos-
itivity preserving, L∞ contraction, quasi-contraction C0 semigroup e−t	q (a,b)

in Lq . Its (minus) generator 	q(a, b) is an appropriate operator realization of
the formal operator −∇ · a · ∇ + b · ∇ in Lq .

(ii)

‖e−t	q (a,b)‖q→q ≤ eωq t , t > 0, ωq := λδ1

2(q − 1)
.

(iii)

(μ + 	q(a, b))−1 = s-Lq- lim
n→∞ lim

ε↓0(μ + 	q(aε, bn))−1, for all μ > ωq ,

where 	q(aε, bn) = −∇ · aε · ∇ + bn · ∇, D(	q(aε, bn)) = W 2,q .

Proof. Assertions (i), (ii) are a special case of [11, Theorem 4.2] or of [11, Theorem
4.3] (both valid for an arbitrary uniformly elliptic matrix a).

Proof of (iii). By [11, Theorem 4.6], for every n ≥ 1,

(μ + 	q(a, bn))−1 = s-Lq - lim
ε↓0(μ + 	q(aε, bn))−1.

It remains to apply (i). �

2. We are in position to state the main result of the paper. Let us introduce the
following quantities:

L1(c, δ, d) := c

[
1

2(d − 1)
+

√
δ

2
(d − 2)(d + 4)

]
+

[
(d − 2)2δ

4
+ (d − 4)(d − 2)

2

√
δ

]
,

L2(c, δ, d) := −c

[
2d − 4 +

√
δ

2
(d − 2)(d + 4)

]
+

[
(d − 2)2δ

4
+ (d − 4)(d − 2)

2

√
δ

]
.

Clearly, L1, L2 are small if c, δ are small.

Theorem 2. (The operator −∇ · a · ∇ + b · ∇). Let d ≥ 3, a(x) = I + c|x |−2x ⊗ x,
c > −1, and b ∈ Fδ , δ > 0.

(i) Let d ≥ 4. Assume that c, δ (i.e., a measure of discontinuity of matrix a and a
measure of singularity of vector field b, respectively) satisfy [1∨ (1+ c)]√δ <

2 − 2
d−2 and one of the following conditions:

(1) c > 0 and 1 + c
(
1 − 1

2(d−1) − (d−2)
√

δ
4

)
> 0, and

L1(c, δ, d) < d − 3.

(2) −1 < c < 0 and 1 + c
(
1 + (d−2)

√
δ

4

)
> 0, and

L2(c, δ, d) < d − 3.
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Then for every q > d − 2 sufficiently close to d − 2 there exist constants
μ0 = μ0(d, q, c, δ) (≥ ωq) and Kl = Kl(d, q, c, δ) (l = 1, 2) such that, for all

μ > μ0 and f ∈ Lq, u := (μ + 	q(a, b))−1 f ∈ W 1,q ∩ W 1, qd
d−2 and satisfies

‖∇u‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q ,

‖∇u‖ qd
d−2

≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q .
(�)

(ii) Let d ≥ 3. Assume that c, δ satisfy δ < 1 ∧ (1 + c)2 and one of the following
conditions holds:

c > 0, 1 − c

[
4

(d − 2)2
+ √

δ

(
2

d + 3

d − 2
+ 1

)]
− δ > 0,

or

−1 < c < 0, 1 − |c|
[
1 + 4(d − 1)

(d − 2)2
+ √

δ

(
2

d + 3

d − 2
+ 1

)]
− δ > 0.

Then (�) holds with q = 2 and moreover, u ∈ W 2,2.

Remarks. 1. In Theorem 2, if c = 0, then the assumptions on δ are reduced to
δ < 1 ∧ 4

(d−2)2
, so we recover the result in [15, Lemma 5].

2. In assertion (i) of Theorem 2, we could also include d = 3, q ≥ 2; however, for
d = 3 assertion (ii) yields a stronger regularity result u ∈ W 2,2.

3. Following closely the proof of Theorem 2, one can obtain conditions on c,
δ and q > d − 2 that provide estimates (�), not necessarily assuming that
q is close to d − 2. In this case, we would have to replace hypothesis 1) in

Theorem 2, i.e., “1 + c
(
1 − 1

2(d−1) − (d−2)
√

δ
4

)
> 0 and L1(c, δ, d) < d − 3,”

by “1 + c(1 − 1
2(d−1) − q

√
δ

4 ) and (q − 1) (d−2)2

q2 − Ł1(c, δ, q, d) > 0,” where
Ł1 is defined in the proof of Theorem 2. Similarly for hypothesis 2). We opt to
work with q close to d − 2 to keep the assumptions of the theorem tractable.

4. In the assumptions of Theorem 2, the second estimate in (�) and the Sobolev
embedding theorem yield that u is Hölder continuous (possibly after a change on
a measure zero set). For the illustration purposes, let us state the corresponding
result in the case when either δ is small or c is small. Let d ≥ 3, a(x) =
I + c|x |−2x ⊗ x , c > −1, and b ∈ Fδ . Assume that

{
c ∈ ] − 1

2+ 2
d−3

, 2(d − 1)(d − 3)
[
, d ≥ 4,

c ∈] − 1
9 ,

1
4 [, d = 3,

and δ > 0 is sufficiently small,

or

|c| is sufficiently small and δ < 1 ∧ 4

(d − 2)2
.

Then, for all d ≥ 4 and all q > d − 2 sufficiently close to d − 2

(μ + 	q(a, b))−1Lq ⊂ C0,γ , γ = 1 − d − 2

q
;
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and, for d = 3,

(μ + 	2(a, b))−1L2 ⊂ C0,γ , γ = 1

2
.

3. We now consider the non-divergence form operator. By Hardy’s inequality,

∇a ∈ Fδa , δa = 4c2(d − 1)2

(d − 2)2

(where, recall, (∇a)k := ∑d
i=1 ∇i aik , 1 ≤ k ≤ d), so

∇a + b ∈ F
δ̂
,

√
δ̂ := √

δa + √
δ.

We construct an operator realization of−a ·∇2+b ·∇ (≡ −∇ ·a ·∇ +(∇a +b) ·∇) in
Lq as 	q(a,∇a + b) and obtain the following result as a consequence of Theorem 2:

Theorem 3. (The operator −a · ∇2 + b · ∇). Let d ≥ 3, a(x) = I + c|x |−2x ⊗ x,
c > −1, and b ∈ Fδ .

(i) Let d ≥ 4. Assume that c, δ satisfy the assumptions of Theorem 2(i) with δ there
replaced by δ̂. Then for every q > d − 2 sufficiently close to d − 2 there exist
constants μ0 = μ0(d, q, c, δ) > 0 and Kl = Kl(d, q, c, δ) (l = 1, 2) such that,

for all μ > μ0 and f ∈ Lq, u := (μ + 	q(a,∇a + b))−1 f ∈ W 1,q ∩ W 1, qd
d−2

and satisfies estimates (�).
(ii) Let d ≥ 3. Assume that c, δ satisfy the assumptions of Theorem 2(ii) with δ there

replaced by δ̂. Then (�) holds with q = 2 and u ∈ W 2,2.

Remark 1. One can prove Theorem 3 directly by carrying out the same analysis as in
the proof of Theorem 2. This leads to somewhat less restrictive assumptions on c, δ,
see [13] for details.

Remark 2. Let us show that the smooth vector fields bn defined by (3) are in Fδ with
λ independent of n for appropriate εn ↓ 0 and cn ↑ 1.
Indeed, let us define first b̃n = γεn ∗1nb where εn ↓ 0 is to be chosen. Since, clearly,

1nb ∈ Fδ , we have for f ∈ L2

‖|b̃n|(λ − �)−
1
2 f ‖22 � ‖|1nb|(λ − �)−

1
2 f ‖22 + ‖|b̃n − 1nb|(λ − �)−

1
2 f ‖22

� δ‖ f ‖22 + ‖|b̃n − 1nb|(λ − �)−
1
2 f ‖22

In turn, by Hölder’s inequality and the Sobolev embedding theorem,

‖|b̃n − 1nb|(λ − �)−
1
2 f ‖22 � ‖b̃n − 1nb‖2d‖(λ − �)−

1
2 f ‖22d

d−1
� CS‖b̃n − 1nb‖2d‖ f ‖22.

Since 1nb ∈ L∞ and has compact support (and hence γε ∗ 1nb → 1nb in L2d as
ε ↓ 0), for a given δ̃n > δ, δ̃n ↓ δ, we can select εn , n = 1, 2, . . . sufficiently small

so that ‖b̃n − 1nb‖2d < δ̃−δ
Cd

, and hence ‖|b̃n − 1nb|(λ − �)− 1
2 f ‖22 < (δ̃n − δ)‖ f ‖22.

Therefore, ‖|b̃n|(λ − �)− 1
2 f ‖22 < δ̃n‖ f ‖22.

It is nowclear that bn := cnb̃n as in (3)with cn :=
√

δδ̃−1
n is inFδ withλ independent

of n, as claimed.
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3. Special case: operator −� + b · ∇, b ∈ Fδ

For illustration purposes, we first prove Theorem 2 in the case c = 0.
Let d ≥ 3. Assume that b ∈ Fδ , δ < 4. We consider the approximating operators

	p(bn) := −� + bn · ∇, D(	p(bn)) = W 2,p(Rd), 1 < p < ∞.

Recall that the resolvent set of operator 	p(bn) contains {μ | μ > ωp}, ωp = λδ
2(p−1) ,

and for every p ∈] 2
2−√

δ
,∞[ we have

‖e−t	p(bn)‖p→p ≤ eωpt , (4)

cf.Theorem 1 with a = I .
The proof of our main result, Theorem 2, is modeled after the proof of the following

Theorem A. (see [15, Lemma 5], see also [11, Theorem 4.8]). Let d ≥ 3. Assume
that b ∈ Fδ , δ < 1 ∧ ( 2

d−2 )
2. Let q ∈ [2 ∨ (d − 2), 2√

δ

[
. The following is true.

The limit

s-Lq- lim
n

(μ + 	q(bn))−1, μ > ωq ,

exists and determines the resolvent of the (minus) generator 	q(b) of a positivity
preserving L∞ contraction C0 semigroup in Lq . The operator 	q(b) is an appropriate
operator realization of the formal operator −� + b · ∇ in Lq .

There exist constants μ0 = μ0(d, q, δ) (≥ ωq), Kl = Kl(d, q, δ), l = 1, 2, such

that, for all μ > μ0 and f ∈ Lq, u := (μ + 	q(b))−1 f ∈ W 1,q ∩ W 1, qd
d−2 and

satisfies

‖∇u‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q ,

‖∇u‖ qd
d−2

≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q .
(��)

In particular,

(μ + 	q(b))−1 : Lq → C0,1− d−2
q

whenever d ≥ 4, q ∈ ]
d − 2, 2√

δ

[
and μ > μ0. For d = 3, (μ + 	q(b))−1 : Lq →

C0,1− 1
q whenever q ∈ [

2, 2√
δ

[
, μ > μ0.

Proof of Theorem A. First, we show that the estimates (��) hold for 0 ≤ un := (μ +
	q(bn))−1 f, 0 ≤ f ∈ C∞

c , with constants μ0, Kl , l = 1, 2, independent of n. Since
bn is smooth and bounded, we have un ∈ W 3,q . For brevity, write u ≡ un , b ≡ bn .
We will use the following notations:
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w := ∇u, wi := ∇i u, wik := ∇iwk,

φ := −∇ · (w|w|q−2) ≡ −
d∑

i=1

∇i (wi |w|q−2).

Step 1 (The basic equality). We multiply the equation for un by the “test function” φ

and integrate to obtain

〈(μ − �)u, φ〉 = −〈b · ∇u, φ〉 + 〈 f, φ〉, (5)

where, recall,

〈h〉 :=
∫
Rd

h(x)dx, 〈h, g〉 := 〈hḡ〉.
In the LHS of (5), we integrate by parts twice to obtain

〈−�u, φ〉 = 〈 − �w,w|w|q−2〉 =
d∑

i,k=1

〈
wik, wik |w|q−2 + (q − 2)|w|q−3wk∇i |w|〉,

thus arriving at the basic equality

μ‖w‖q
q + Iq + (q − 2)Jq = 〈−b · wφ〉 + 〈 f, φ〉, (BE)

where

Iq :=
d∑

i=1

〈|∇wi |2, |w|q−2〉, Jq := 4

q2

∥∥∇|w| q
2
∥∥2
2 = 〈|∇|w||2, |w|q−2〉 ( ≤ Iq

)
.

Step 2 We bound the RHS of the basic equality (BE) in terms of Jq , ‖w‖q−2
q and ‖ f ‖2q .

These bounds will give us the principal inequality

(μ − μ0)‖w‖q
q + ηJq ≤ C‖w‖q−2

q ‖ f ‖2q , (PI)

for all μ > μ0, for some constants μ0 ≥ ωq , η = η(q, d, δ) > 0 and C =
C(q, d, δ) < ∞, from which the required estimates (��) will follow easily upon
applying the Sobolev embedding theorem to Jq (Step 3 below).
We rewrite the “test function” φ as

φ = −|w|q−2�u − (q − 2)|w|q−3w · ∇|w|,
where, using the equation for u ≡ un , we represent −�u = −μu − b · w + f. Thus,
we obtain from (BE)

μ‖w‖q
q + Iq + (q − 2)Jq = 〈

b · w − f, |w|q−2(μu + b · w − f ) + (q − 2)|w|q−3w · ∇|w|〉.
Using Iq ≥ Jq , we obtain

μ‖w‖q
q + (q − 1)Jq ≤ 〈

b · w − f, |w|q−2(μu + b · w − f ) + (q − 2)|w|q−3w · ∇|w|〉. (6)

We now estimate the RHS of (6) in terms of Jq , ‖w‖q
q−2 and ‖ f ‖q

2 . We will use (set

Bq := 〈|b · w|2|w|q−2〉):
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(1) 〈b · w, |w|q−2μu〉 ≤ μ
μ−ωq

B
1
2

q ‖w‖
q−2
2

q ‖ f ‖q . ( 2
2−√

δ
< q ⇒ ‖u‖q ≤ (μ −

ωq)−1‖ f ‖q , see (4)).
(2) 〈b · w, |w|q−2b · w〉 = Bq .

(3) |〈b · w, |w|q−2(− f )〉| ≤ B
1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

(4) (q − 2)〈b · w, |w|q−3w · ∇|w|〉 ≤ (q − 2)B
1
2

q J
1
2

q .

(5) 〈− f, |w|q−2μu〉 ≤ 0.

(6) 〈− f, |w|q−2b · w〉 ≤ B
1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

(7) 〈 f, |w|q−2 f 〉 ≤ ‖w‖q−2
q ‖ f ‖2q .

(8) (q − 2)〈− f, |w|q−3w · ∇|w|〉 ≤ (q − 2)J
1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

Using (1)–(8) and applying quadratic inequalities, we obtain (ε, κ > 0):

RHS of (6) ≤ (q − 2)εJq + (q − 2)
(
κ Jq + 1

4κ
Bq

)

+ (1 + 3ε)Bq +
(
1 + q

4ε
+ 1

4ε

μ2

(μ − ωq)2

)
‖w‖q−2

q ‖ f ‖2q . (7)

In turn,

Bq ≤ ‖b|w| q
2 ‖22

(we are using condition b(≡ bn) ∈ Fδ)

≤ δ‖∇|w| q
2 ‖22 + λδ‖w‖q

q

= δq2

4
Jq + λδ‖w‖q

q .

Thus, one sees that the RHS of (6) can be estimated, by means of (7) and the above
bound on Bq , in terms of Jq , ‖w‖q and ‖ f ‖q only. (Thenwewill re-group the resulting
Jq terms in the LHS. Since the LHS of (6) already contains (q − 1)Jq with q − 1 ≥
(1 ∨ d − 3) ≥ 1, it is clear that, by fixing ε > 0 sufficiently small, we can ignore in
(7) the terms multiplied by ε.)

Select κ = q
√

δ
4 . We obtain:

RHS of (6) ≤
[
(q − 2)

q
√

δ

2
+ δq2

4

]
Jq + (q − 2)εJq + 3ε

q2δ

4
Jq

+
(
1 + q − 2

q
√

δ
+ 3ε

)
λδ‖w‖q

q +
(
1 + q

4ε
+ 1

4ε

μ2

(μ − ωq )2

)
‖w‖q−2

q ‖ f ‖2q .

Thus,

μ‖w‖q
q +

[
q − 1 − (q − 2)

q
√

δ

2
− δq2

4
− (q − 2)ε − 3ε

q2δ

4

]
Jq

≤
(
1 + q − 2

q
√

δ
+ 3ε

)
λδ‖w‖q

q +
(
1 + q

4ε
+ 1

4ε

μ2

(μ − ωq)2

)
‖w‖q−2

q ‖ f ‖2q .
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In view of our assumptions on q and δ, the coefficient q − 1 − (q − 2) q
√

δ
2 − δq2

4 is
strictly positive, so selecting ε > 0 sufficiently small the principal inequality (PI).

Step 3. By the principal inequality (PI), (μ − μ0)‖w‖q
q ≤ C‖w‖q−2

q ‖ f ‖2q , w =
∇un , and so

‖∇un‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q , K1 := C
1
2 .

Again by (PI), ηJq ≤ C‖w‖q−2
q ‖ f ‖2q , Jq = 4

q2 ‖∇|w| q
2 ‖22, so by the previous inequal-

ity η‖∇|∇un| q
2 ‖22 ≤ q2

4 C K q−2
1 (μ − μ0)

1− q
2 ‖ f ‖q

q . The Sobolev embedding theorem
now yields

‖∇un‖q j ≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q , j := d

d − 2
K2 := CSη

− 1
q (q2/4)

1
q C

1
q K

q−2
q

1 .

It remains to pass to the limit n → ∞. For this, we will use the first assertion of
the theorem which is, in fact, the content of [15, Theorem 1]. (We could also refer to
Theorem 1with a = I .) Thus, we have un → u strongly in Lq , u := (μ+	q(b))−1 f ,
where, recall, 0 ≤ f ∈ C∞

c . Furthermore,

‖u − un‖q j
q j ≤ ‖u − un‖q

q‖u − un‖q j−q∞ ≤ ‖u − un‖q
q(2‖ f ‖∞)q j−q → 0 (n → ∞)

since ‖u‖∞, ‖un‖∞ ≤ ‖ f ‖∞ < ∞. Since ∇ is weakly closed in Lq , Lq j , a standard
weak compactness argument nowyields (��) for f ∈ (C∞

c )+. Using a standard density
argument, we obtain (��) for all f ∈ Lq

+. The assertion of theorem follows for all
f ∈ Lq upon replacing Kl by 4Kl , l = 1, 2. �

Remark 3. 1. In fact, the proof above yields a stronger variant of the principal
inequality (PI)

(μ − μ0)‖w‖q
q + ε Iq + (η − ε)Jq ≤ C‖w‖q−2

q ‖ f ‖2q , μ > μ0

for constants ε > 0, η > 0, C < ∞, where, recall Iq ≥ Jq . Indeed, it suffices
to replace (6) in the proof above by

μ‖w‖q
q + ε Iq + (q − 1 − ε)Jq = 〈

b · w − f, |w|q−2(μu + b · w − f )

+(q − 2)|w|q−3w · ∇|w|〉.
Since our assumption on δ > 0 is a strict inequality, we take ε > 0 sufficiently
small so that q − 1− ε stays as close to q − 1 as needed to repeat the rest of the
proof while keeping the extra term ε Iq .

2. In Theorem A, we could have chosen bn := b
|b| |b|n, |b|n := |b| ∧ n. Although

this would only give (μ + 	q(bn))−1C∞
c ⊂ W 2,q (rather than W 3,q ), it is still

possible to “differentiate” the equation (μ + 	q(bn))un = f, f ∈ C∞
c . Indeed,
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define φm = e
�
m φ, m > 1. We multiply the equation (μ−�)u = −bn · ∇u + f

(where u ≡ un) by φm and integrate:

〈(μ − �)u, φm〉 = 〈−bn · ∇u + f, φm〉.
We evaluate integrating by parts twice:

〈−�u, φm〉 = 〈−�e
�
m u, φ〉

= −
d∑

k=1

〈�e
�
m wk , wk |w|q−2〉

=
d∑

k,i=1

〈e �
m ∇iwk ,∇iwk |w|q−2〉 + (q − 2)

d∑
k,i=1

〈e �
m ∇iwk , wk |w|q−3∇i |w|〉

= Iq,m + (q − 2)Jq,m ,

where Iq,m = ∑d
i,k=1〈e

�
m wik, wik |w|q−2〉 and Jq,m = ∑d

i,k=1〈e
�
m wik, |w|q−3

wk∇i |w|〉. Thus, we obtain

μ〈e �
m w,w|w|q−2〉 + Iq,m + (q − 2)Jq,m = 〈−bn · w + f, φm〉.

Using the fact thatwk ,wik ∈ Lq , we can pass to the limit m → ∞ in the LHS of
the last equality appealing to Hölder’s inequality and to the standard properties
of mollifiers. Its RHS is

〈−bn · w + f, φm〉 = 〈
e

�
m (bn · w − f ), |w|q−2(μu + bn · w − f ) + (q − 2)|w|q−3w · ∇|w|〉,

so, using the inclusions u, wk , wik ∈ Lq and f ∈ C∞
c , bn ∈ L∞ and appealing

to Hölder’s inequality, we can again pass to the limit in m. Thus, we arrive at the
same basic equality:

μ〈|w|q〉 + Iq + (q − 2)Jq = 〈−bn · w + f, φ〉.
Now we continue as in the proof of Theorem A.

4. Proof of Theorem 2

Proof of assertion (i). In what follows, we will be working with a smooth approxima-
tion

aε(x) = I + c|x |−2
ε x ⊗ x |x |ε :=

√
|x |2 + ε, ε > 0

of the matrix a(x) = I +c|x |−2x ⊗x rather than with the matrix a itself (aε, generally
speaking, inherits the features of a). This is needed to ensure that the solutions to the
corresponding elliptic equations are sufficiently regular so that all manipulations with
the equations (such as integration by parts twice in Step 1 below) are justified.
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In what follows, we follow the structure of the proof of Theorem A.
By the assumptions of the theorem, [1 ∨ (1 + c)]√δ < 2 − 2

d−2 , i.e.,

2

2 − √
δ1

< d − 2, where, recall, δ1 := [1 ∨ (1 + c)−2]δ.

Therefore, by Theorem 1, for every q > d − 2 the set {μ | μ > ωq} (where ωq =
λδ1

2(q−1) ) is in the resolvent set of the operator

	q(aε, bn) = −∇ · aε · ∇ + bn · ∇, D(	q(aε, bn)) = W 2,q

for all ε > 0, n ≥ 1. Set

0 ≤ uε,n := (μ + 	q(aε, bn))−1 f, 0 ≤ f ∈ C∞
c .

Since aε, bn ∈ C∞, it is clear that uε,n ∈ W 3,q . For brevity, write

u ≡ uε,n, w ≡ wε,n := ∇uε,n .

Set

Iq :=
d∑

r=1

〈|∇rw|2|w|q−2〉, Jq := 4

q2

∥∥∇|w| q
2
∥∥2
2 = 〈|∇|w||2, |w|q−2〉.

We will use the equation for u ≡ uε,n to obtain the principal inequality: for every
q > d − 2 sufficiently close to d − 2

(μ − μ0)‖w‖q
q + ηJq ≤ C‖w‖q−2

q ‖ f ‖2q , μ > μ0, (PIb)

for some constantsη = η(q, d, c, δ) > 0,μ0 = μ0(d, q, c, δ) > 0,C = C(q, d, c, δ)
< ∞.Wewill obtain from (PIb), applying the Sobolev embedding theorem to Jq (Step
3 below), the estimates

‖∇uε,n‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q ,

‖∇uε,n‖ qd
d−2

≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q
(� � �)

for all μ > μ0 for constants (ωq ≤) μ0, Kl (l = 1, 2) independent of ε, n. Then the
required estimates (�) in Theorem 2 will follow upon taking ε ↓ 0, n → ∞ using
Theorem 1, see details below.
We will also need the following auxiliary quantities:

χ := |x |2|x |−2
ε , x · ∇w ≡

d∑
i=1

(xi∇i )w,

Īq,χ := 〈|x · ∇w|2χ |x |−2|w|q−2〉,
J̄q,χ := 〈(x · ∇|w|)2χ |x |−2|w|q−2〉,
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Hq,χ i := 〈χ i |x |−2|w|q〉, i ≥ 0,

Gq,χ i := 〈χ i |x |−4(x · w)2|w|q−2〉, i ≥ 0,

Hq ≡ Hq,χ0 := 〈|x |−2|w|q〉,
Gq ≡ Gq,χ0 := 〈|x |−4(x · w)2|w|q−2〉,

We will need

Lemma 1.

χ
( = |x |2|x |−2

ε

) ≤ 1,

Iq ≥ Īq,χ , Jq ≥ J̄q,χ ,

Iq ≥ Jq , Īq,χ ≥ J̄q,χ ,

Hq,χ i ≥ Hq,χ j , Gq,χ i ≥ Gq,χ j if i ≤ j,

Hq,χ i ≥ Gq,χ i , i ≥ 0,

Jq ≥ (d − 2)2

q2 Hq (the Hardy inequality).

If we were to ignore the necessity to work with the smooth approximation of a,
then we could take χ ≡ 1 (⇔ ε = 0), in which case we would have a more compact
albeit formal proof.
We prove (PIb) in two steps:

Step 1 (The basic equalities)

μ‖w‖q
q + Iq + cĪq,χ + (q − 2)(Jq + c J̄q,χ ) − c

(
1 + (q − 2)

d

q

)
Hq,χ + 2c(d − 1)Gq,χ2

(BE+)

+ 2c
q − 2

q
Hq,χ2 + 8cε〈|x |−6

ε (x · w)2|w|q−2〉 = β1 + 〈−bn · w,φ〉 + 〈 f, φ〉,

μ‖w‖q
q + Iq + cĪq,χ + (q − 2)(Jq + c J̄q,χ ) − c

(
1 + (q − 2)

d

q

)
Hq,χ + cdGq,χ2

(BE−)

+ 2c
q − 2

q
Hq,χ2 + 4cε〈|x |−6

ε (x · w)2|w|q−2〉 = −1

2
β2 + 〈−bn · w,φ〉 + 〈 f, φ〉,

where

φ = −∇ · (w|w|q−2) ≡ −
d∑

i=1

∇i (wi |w|q−2) ( “test function”),

β1 := −2c〈|x |−4
ε x · w, x · (x · ∇w)|w|q−2〉,

β2 := −2c(q − 2)〈|x |−4
ε (x · w)2x · ∇|w|, |w|q−3〉.
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Remarks. 1. In comparison with the basic equality (BE) in the proof of Theorem
A, here, in addition to terms Iq and Jq , we get other terms. However, we will be
able to estimate them in terms of Iq and Jq using Hardy’s inequality, see details
below.

2. We will use equality (BE−) to treat the case c > 0, and equality (BE−) to treat
the case c < 0. One can still use (BE−) if c < 0 or (BE−) if c > 0, but this
would lead to more restrictive assumptions on c.

Proof of the basic equalities (BE−), (BE−). We multiply the equation μu + Aε
qu +

bn · w = f by φ and integrate:

μ‖w‖q
q + 〈Aε

qw,w|w|q−2〉 + 〈[∇, Aε
q ]−u , w|w|q−2〉 = −〈bn · w,φ〉 + 〈 f, φ〉,

where, recall, Aε
q = −∇ · aε · ∇ = −� − c∇ · |x |−2

ε (x ⊗ x) · ∇, and we denote by
[F, G]− the commutator of two operators,

[F, G]− := FG − G F.

We evaluate 〈Aε
qw,w|w|q−2〉 by integrating by parts twice (cf. Step 1 in the proof

of Theorem A):

〈Aε
qw,w|w|q−2〉 = Iq + cĪq,χ + (q − 2)(Jq + c J̄q,χ ),

where, recall, Īq,χ = 〈|x · ∇w|2χ |x |−2|w|q−2〉, J̄q,χ = 〈(x · ∇|w|)2χ |x |−2|w|q−2〉.
Thus, we have

μ‖w‖q
q + Iq + cĪq,χ + (q − 2)(Jq + c J̄q,χ ) + 〈[∇, Aε

q ]−u , w|w|q−2〉 = 〈 f, φ〉.
(8)

It remains to evaluate:

〈[∇, Aε
q ]−u , w|w|q−2〉 ≡ 〈[∇r , Aε

q ]−u , wr |w|q−2〉 :=
d∑

r=1

〈[∇r , Aε
q ]−u , wr |w|q−2〉.

Remark. From now on, we omit the summation sign in repeated indices.

Note that

[∇r , Aε
q ]− = −∇ · (∇r aε) · ∇, (∇r aε)ik = c|x |−2

ε δri xk + c(|x |−2
ε δrk xi − 2|x |−4

ε xi xk xr ),

so

〈[∇r , Aε
q ]−u , wr |w|q−2〉 = −c〈wk∇i (|x |−2

ε δri xk) + |x |−2
ε δri xk∇iwk, wr |w|q−2〉

+ c〈(|x |−2
ε δrk xi − 2|x |−4

ε xi xk xr )wk,∇i (wr |w|q−2)〉
=: α1 + α2.
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We have

α1 = −c〈(|x |−2
ε δrk − 2|x |−4

ε δri xk xr )wk + |x |−2
ε x · ∇wr , wr |w|q−2〉

= −c〈|x |−2
ε |w|q〉 + 2c〈|x |−4

ε (x · w)2|w|q−2〉 − c〈|x |−2
ε x · ∇|w|, |w|q−1〉.

Then

α1 = −c

(
1 − d − 2

q

)
Hq,χ + 2cGq,χ2 + 2

c

q
ε〈|x |−4

ε |w|q〉

due to

〈|x |−2
ε x · ∇|w|, |w|q−1〉 = 1

q
〈|x |−2

ε x · ∇|w|q〉

= − 1

q
〈|w|q∇ · (x |x |−2

ε )〉 = −d

q
Hq,χ + 2

q
〈|x |2|x |−4

ε |w|q〉

= −d − 2

q
Hq,χ − 2

q
ε〈|x |−4

ε |w|q〉.

Next,

α2 = c〈|x |−2
ε w, x · ∇(w|w|q−2)〉 − 2c〈|x |−4

ε x · w, x · (x · ∇(w|w|q−2))〉.
Then

α2 = β1 + β2 + c〈|x |−2
ε x · ∇|w|, |w|q−1〉 + c(q − 2)〈|x |−2

ε x · ∇|w|, |w|q−1〉
= β1 + β2 − c(q − 1)

(
d − 2

q
Hq,χ + 2

q
ε〈|x |−4

ε , |w|q〉
)

.

In view of

β1 = −1

2
β2 + c(d − 2)Gq,χ2 + 4cε〈|x |−6

ε (x · w)2|w|q−2〉,

we rewrite α1 + α2 = 〈[∇, Aε
q ]−u , w|w|q−2〉 in two ways:

〈[∇, Aε
q ]−u , w|w|q−2〉 = −β1 − c

(
1 + (q − 2)

d − 2

q

)
Hq,χ + 2c(d − 1)Gq,χ2

− 2c
q − 2

q
ε〈|x |−4

ε |w|q〉 + 8cε〈|x |−6
ε (x · w)2|w|q−2〉

and

〈[∇, Aε
q ]−u , w|w|q−2〉 = 1

2
β2 − c

(
1 + (q − 2)

d − 2

q

)
Hq,χ + cdGq,χ2

− 2c
q − 2

q
ε〈|x |−4

ε |w|q〉 + 4cε〈|x |−6
ε (x · w)2|w|q−2〉.

The last two identities applied in (8) yield (BE−), (BE−). �
Step 2 The principal inequality (PIb) will follow once we estimate properly the terms
〈−bn ·w,φ〉, 〈 f, φ〉 and βi (i = 1, 2) in the RHS of the basic equalities (BE−), (BE−).
For that, we will need the next three lemmas.
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Lemma 2. For every ε0 > 0, there exist constants Ci = Ci (ε0) (i = 1, 2) and k1
such that

〈−bn · w,φ〉 ≤ |c|(d + 3)
q
√

δ

2
G

1
2
q,χ2 J

1
2

q + |c|q
√

δ

2
Ī
1
2

q,χ J
1
2

q

+
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq + k1ε0 Iq + C1‖w‖q

q + C2‖w‖q−2
q ‖ f ‖2q .

Proof of Lemma 2. We follow the argument in Step 2 of the proof of Theorem A. For
brevity, below we write b ≡ bn . We have:

〈−b · w,φ〉 = 〈−�u, |w|q−2(−b · w)〉 − (q − 2)〈|w|q−3w · ∇|w|,−b · w〉
=: F1 + F2.

Then, clearly,

F2 ≤ (q − 2)B
1
2

q J
1
2

q , where Bq := 〈|b · w|2|w|q−2〉.

Next, we bound F1. Using the equation for u (≡ uε,n), we represent

−�u = ∇ · (aε − I ) · w − μu − b · w + f,

and evaluate

F1 = 〈∇ · (aε − I ) · w, |w|q−2(−b · w)〉 + 〈(−μu − b · w + f ), |w|q−2(−b · w)〉
(we expand the first term using ∇aε = c(d + 1)|x |−2

ε x − 2c|x |2|x |−4
ε x)

= c(d + 1)〈|x |−2
ε x · w, |w|q−2(−b · w)〉

− 2c〈χ |x |−2
ε x · w, |w|q−2(−b · w)〉

+ c〈|x |−2
ε x · (x · ∇w), |w|q−2(−b · w)〉

+ 〈(−μu − b · w + f ), |w|q−2(−b · w)〉,

where, recall, x · ∇w ≡ ∑d
i=1(xi∇i )w. We bound F1 from above by applying con-

secutively the following estimates:

(1◦) |〈|x |−2
ε x ·w, |w|q−2(−b ·w)〉| ≤ G

1
2
q,χ2 B

1
2

q (where, recall, Gq,χ i := 〈χ i |x |−4

(x · w)2|w|q−2〉).
(2◦) |〈χ |x |−2

ε x · w, |w|q−2(−b · w)〉| ≤ G
1
2
q,χ4 B

1
2

q ≤ G
1
2
q,χ2 B

1
2

q .

(3◦) |〈|x |−2
ε x ·(x ·∇w), |w|q−2(−b·w)〉| ≤ Ī

1
2

q,χ B
1
2

q (recall Īq,χ := 〈|x ·∇w|2χ |x |−2

|w|q−2〉).
(4◦) 〈(−μu), |w|q−2(−b · w)〉 ≤ μ

μ−ωq
B

1
2

q ‖w‖
q−2
2

q ‖ f ‖q (here ‖un‖q ≤ (μ − ωq)−1

‖ f ‖q by Theorem 1).
(5◦) 〈b · w, |w|q−2b · w〉 = Bq .
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(6◦) 〈 f, |w|q−2(−b · w)〉| ≤ B
1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

In (4◦) and (6◦), we estimate B
1
2

q ‖w‖
q−2
2

q ‖ f ‖q ≤ ε0Bq + 1
4ε0

‖w‖q−2
q ‖ f ‖2q (ε0 > 0).

Therefore,

〈−b · w,φ〉 (9)

≤ |c|(d + 3)G
1
2
q,χ2 B

1
2

q + |c| Ī
1
2

q,χ B
1
2

q + Bq + (q − 2)B
1
2

q J
1
2

q + ε0Bq + C2(ε0)‖w‖q−2
q ‖ f ‖2q .

Since b ∈ Fδ is equivalent to the inequality

〈|b|2|ϕ|2〉 ≤ δ〈|∇ϕ|2〉 + λδ〈|ϕ|2〉, ϕ ∈ W 1,2,

we have

Bq ≤ ‖b|w| q
2 ‖22 ≤ δ‖∇|w| q

2 ‖22 + λδ‖w‖q
q = q2δ

4
Jq + λδ‖w‖q

q ,

and so

B
1
2

q ≤ q
√

δ

2
J

1
2

q + √
λδ‖wq‖ q

2 .

We apply the last two bounds in (9) and estimating the resulting terms that contain√
λδ‖w‖

q
2
q as

G
1
2
q,χ2

√
λδ‖wq‖ q

2 ≤ ε0Gq,χ2 + λδ

4ε0
‖wq‖q ,

Ī
1
2

q

√
λδ‖wq‖ q

2 ≤ ε0 Īq + λδ

4ε0
‖wq‖q ,

J
1
2

q

√
λδ‖wq‖ q

2 ≤ ε0 Jq + λδ

4ε0
‖w‖q

q .

We use Lemma 1 to bound Gq,χ2 , Īq , Jq in terms of Iq , and obtain that there exists a
constant k1 = k1(c, d, q, δ) > 0 such that

|c|(d + 3)ε0Gq,χ2 + |c|ε0 Īq + (q − 2)ε0 Jq + q2δ

4
ε0 Jq ≤ k1ε0 Iq .

The assertion of Lemma 2 now follows. �

Next, we estimate the term 〈 f, φ〉 in the RHS of (BE−), (BE−).

Lemma 3. For each ε0 > 0, there exist constants C = C(ε0) and k2 such that

〈 f, φ〉 ≤ k2ε0 Iq + C(ε0)‖w‖q−2
q ‖ f ‖2q .

where, recall, Iq := ∑d
r=1〈(∇rw)2|w|q−2〉.
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Proof of Lemma 3. Clearly,

〈 f, φ〉 = 〈 f, (−�u)|w|q−2〉 − (q − 2)〈 f, |w|q−3w · ∇|w|〉 =: F1 + F2.

Since −�u = ∇ · (aε − I ) · w − μu + f , where aε − I = c|x |−2
ε x ⊗ x , and

F1 = 〈∇ · (aε − I ) · w, |w|q−2 f 〉 + 〈(−μu + f ), |w|q−2 f 〉
(we expand the first term using ∇aε = c(d + 1)x |x |−2

ε − 2c|x |2|x |−4
ε x)

= c(d + 1)〈|x |−2
ε x · w, |w|q−2 f 〉 − 2c〈χ |x |−2

ε x · w, |w|q−2 f 〉
+ c〈|x |−2

ε x · (x · ∇w), |w|q−2 f 〉 + 〈(−μu + f ), |w|q−2 f 〉,

where, recall, x ·∇w := ∑d
i=1(xi∇i )w. We bound F1 and F2 from above by applying

consecutively the following estimates:

(1) 〈|x |−2
ε x · w, |w|q−2 f 〉 ≤ H

1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

(2) 〈χ |x |−2
ε x · w, |w|q−2 f 〉 ≤ H

1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

(3) 〈|x |−2
ε x · (x · ∇w), |w|q−2 f 〉 ≤ ( Īq,χ )

1
2 ‖w‖

q−2
2

q ‖ f ‖q (recall Īq,χ := 〈|x ·
∇w|2χ |x |−2|w|q−2〉).

(4) 〈− f, |w|q−2μu〉 ≤ 0.
(5) 〈 f, |w|q−2 f 〉 ≤ ‖w‖q−2

q ‖ f ‖2q .

(6) (q − 2)〈− f, |w|q−3w · ∇|w|〉 ≤ (q − 2)J
1
2

q ‖w‖
q−2
2

q ‖ f ‖q .

Now, (1)–(6), the quadratic inequality and Lemma 1 yield the lemma. �

It remains to estimate the terms β1 and − 1
2β2 in the RHS of the basic equalities

(BE−), (BE−).

Lemma 4. We have

β1 ≤ cθ Īq,χ + cθ−1Gq,χ2 ,

and

|β2| ≤ 2|c|(q − 2)
(
θ J̄q,χ + 4−1θ−1Gq,χ2

)
.

In both inequalities, θ > 0 will be chosen later.

Proof.

β1 ≤ 2c〈|x |−4
ε |x · w|2|w|q−2〉 1

2 〈|x |−4
ε |x |2|x · ∇w|2|w|q−2〉 1

2

≤ 2cG
1
2
q,χ2 Ī

1
2

q,χ

(we are applying quadratic inequality)

≤ cθ Īq,χ + cθ−1Gq,χ2 .

|β2| = ∣∣2c(q − 2)〈|x |−4
ε |x · w|2x · ∇|w|, |w|q−3〉∣∣
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(we apply quadratic inequality)

≤ 2|c|(q − 2)
(
θ J̄q,χ + 4−1θ−1Gq,χ2

)
.

�

We are in position to complete the proof of the principal inequality (PIb).
Proof of (PIb) in the case c > 0. We will need

Lemma 5. (Hardy-type inequality).

d2

4
Hq,χ − (d + 2)Hq,χ2 + 3Hq,χ3 ≤ q2

4
J̄q,χ (HI)

Proof. Set F := |x |−1
ε |w| q

2 . Then

q2

4
J̄q,χ = 〈(|x |−1

ε x · ∇|w| q
2
)2〉 = 〈

(x · ∇F + χ F)2
〉 = 〈(x · ∇F)2〉 + 〈χ2F2〉 + 2〈x · ∇F, χ F〉.

Now (HI) follows from the inequality

〈(x · ∇F)2〉 ≡ ‖x · ∇F‖22 ≥ d2

4
‖F‖22 ≡ d2

4
Hq,χ

and the equalities

2〈x · ∇F, χ F〉 = −d〈χ F2〉 − 〈F2, x · ∇χ〉, x · ∇χ = 2
( |x |2
|x |2ε

− |x |4
|x |4ε

) = 2χ(1 − χ).

�

Put

k := k1 + k2,

where k1 and k2 are the constants in Lemmas 2 and 3. Thus, applying Lemmas 2–4 in
the RHS of (BE−), we obtain

μ‖w‖q
q + (1 − kε0)Iq + c(1 − θ) Īq,χ + (q − 2)(Jq + c J̄q,χ ) − c

(
1 + q − 2

q
d

)
Hq,χ

+ c
(
2(d − 1) − θ−1)Gq,χ2 + 2c

q − 2

q
Hq,χ2 (10)

≤ c(d + 3)
q
√

δ

2
G

1
2
q,χ2 J

1
2

q + c
q
√

δ

2
Ī

1
2

q,χ J
1
2

q +
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1(ε0)‖w‖q
q + C̃2(ε0)‖w‖q−2

q ‖ f ‖2q ,

where C̃1(ε0) = C1(ε0), C̃2(ε0) = C2(ε0) + C(ε0).
We have to consider two sub-cases:
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Case 1. Suppose that 1 − cq
√

δ
4 > 0. Let 0 < θ < 1 (one can verify that the choice

of θ ≥ 1 leads to more restrictive constraints on c). Using inequality J̄q,χ ≤ Īq,χ , we
replace c(1 − θ) Īq,χ by c(1 − θ) J̄q,χ in (12), arriving at

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + c[q − 1 − θ ] J̄q,χ

− c

(
1 + q − 2

q
d

)
Hq,χ + c

(
2(d − 1) − θ−1)Gq,χ2

+ 2c
q − 2

q
Hq,χ2 ≤ RHS of (12).

Next, we apply to J̄q,χ the inequality (HI) to obtain

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + c

[
2(d − 1) − θ−1]Gq,χ2

+ c〈M(χ)|x |−2|w|q〉 ≤ RHS of (12),

where

M(χ) :=
[(

q − 1 − θ
) 4

q2

(
d2

4
− (d + 2)χ + 3χ2

)
−

(
1 + q − 2

q
d

)
+ 2

q − 2

q
χ

]
χ.

We take θ := 1
2(d−1) , so that

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + c〈M(χ)|x |−2|w|q〉 ≤ RHS of (12).

Next, we claim that, for q > d − 2 sufficiently close to d − 2,

min
0≤t≤1

M(t) = M(1) = (
q − 1 − 1

2(d − 1)

) (d − 2)2

q2 − (
1 + q − 2

q
(d − 2)

)
< 0.

(It is easily seen that if q ↓ d − 2, then M(1) ↓ − 1
2(d−1) < 0. To show that the

minimum is attained in t = 1, we argue as follows. Put C = 4
q2 (q − 1 − θ). Then

M(t) = 3Ct f (t), where f (t) = t2 + 1
3 (2

q−2
qC − d − 2)t + d2

12 − 1
3C (1 + q−2

q d).
Since f (1) < 0, f (t) = 0 has real roots t1 < t2. Clearly, it is enough to show that
t1+t2
2 ≥ 1. One has t1 + t2 = 1

3 (d + 2− 2 q−2
Cq ), and so, since q > d − 2 is assumed to

be sufficiently close to d −2, we have t1+t2
2 ≥ 1 (equivalently d ≥ 4+ q

2 (1− 1−θ
q−1−θ

))
for d ≥ 5. Another elementary calculation also gives the desired for d = 4.)

Since 0 < χ < 1, we obtain

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + cM(1)Hq ≤ RHS of (12).
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Thus, applying Hq ≥ Gq,χ2 in the RHS of (12), we obtain

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + cM(1)Hq

≤ c(d + 3)
q
√

δ

2
H

1
2

q J
1
2

q + c
q
√

δ

2
Ī
1
2

q,χ J
1
2

q +
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

Applying the quadratic inequality twice in the RHS, we obtain (let θ2, θ3 > 0)

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + cM(1)Hq

≤ c(d + 3)
q
√

δ

4
(θ2 Jq + θ−1

2 Hq ) + c
q
√

δ

4
(θ3 Īq,χ + θ−1

3 Jq ) +
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

We select θ2 = q
d−2 , θ3 = 1. Then

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + cM(1)Hq

≤ c(d + 3)
q
√

δ

4

(
q

d − 2
Jq + d − 2

q
Hq

)
+ c

q
√

δ

4
( Īq,χ + Jq ) +

(
q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

Since by our assumption 1 − cq
√

δ
4 > 0, selecting ε0 > 0 sufficiently small so that

1 − kε0 − cq
√

δ
4 > 0, we can estimate, using Iq ≥ Īq,χ and Iq ≥ Jq ,

(1 − kε0)Iq − cq
√

δ

4
Īq,χ ≥ (1 − kε0 − cq

√
δ

4
)Iq ≥ (

1 − kε0 − cq
√

δ

4

)
Jq .

Thus, the previous inequality becomes

μ‖w‖q
q +

(
q − 1 − kε0 − cq

√
δ

4

)
Jq + cM(1)Hq

≤ c(d + 3)
q
√

δ

4

(
q

d − 2
Jq + d − 2

q
Hq

)
+ c

q
√

δ

4
Jq +

(
q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

We now regroup the Jq terms together in the LHS. Then, applying Hardy’s inequality

Jq ≥ (d−2)2

q2 Hq to the Hq terms (which enter the LHS with a negative coefficient), we
obtain

μ‖w‖q
q +

[(
q − 1 − kε0

) (d − 2)2

q2 − Ł1(c, δ, q, d)

]
q2

(d − 2)2
Jq

≤ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q ,
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where

Ł1(c, δ, q, d) := c

[
1 + q − 2

q
(d − 2) −

(
q − 1 − 1

2(d − 1)

)
(d − 2)2

q2

+
√

δ

2

(
(d − 2)2

q
+ (d + 3)(d − 2)

)]

+
[

q2δ

4
+ (q − 2)

q
√

δ

2

]
(d − 2)2

q2 .

By the assumption of the theorem, d − 3 − L1(c, δ, d) > 0. It is easily seen that the

latter yields, for all q > d −2 sufficiently close to d −2, the inequality (q −1) (d−2)2

q2 −
Ł1(c, δ, q, d) > 0. Thus, selecting ε0 > 0 sufficiently small, we obtain the principal
inequality (PIb) (with μ0 := C̃1, C := C̃2).

Case 2. Let 1 − cq
√

δ
4 ≤ 0. Similar argument applied in (12) yields (the only

difference with the case 1 is that we keep for a moment the term θ Īq,χ , θ := 1
2(d−1)

intact, and so we define M(1) differently):

μ‖w‖q
q + (1 − kε0)Iq + (q − 2)Jq + c(1 − 1

2(d − 1)
) Īq,χ + cM(1)Hq

≤ c(d + 3)
q
√

δ

4

(
q

d − 2
Jq + d − 2

q
Hq

)
+ c

q
√

δ

4
( Īq,χ + Jq ) +

(
q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

where M(1) := (
q − 2

)
(d−2)2

q2 − (
1 + q−2

q (d − 2)
)

< 0.

If 1 − 1
2(d−1) − q

√
δ

4 < 0, then, regrouping the terms Īq,χ together, we have c
(
1 −

1
2(d−1) − q

√
δ

4

)
Īq,χ ≥ c

(
1 − 1

2(d−1) − q
√

δ
4

)
Iq since Iq ≥ Īq,χ . Hence

(1 − kε0)Iq + (q − 2)Jq + c(1 − 1

2(d − 1)
− q

√
δ

4
) Īq,χ

≥ [
1 − kε0 + c

(
1 − 1

2(d − 1)
− q

√
δ

4

)]
Iq

(by the assumptions of the theorem 1 + c
(
1 − 1

2(d − 1)
− q

√
δ

4

)
> 0,

so we select ε0 sufficiently small to have coefficient [. . . ] > 0)

≥ [
1 − kε0 + c

(
1 − 1

2(d − 1)
− q

√
δ

4

)]
Jq .

Applying the latter in the previous inequality, we obtain

μ‖w‖q
q + [

1 − kε0 + c
(
1 − 1

2(d − 1)
− q

√
δ

4

)]
Jq + (q − 2)Jq + cM(1)Hq

≤ c(d + 3)
q
√

δ

4

(
q

d − 2
Jq + d − 2

q
Hq

)
+ c

q
√

δ

4
Jq +

(
q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .
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We regroup the Jq and the Hq terms:

μ‖w‖q
q +

[
q − 1 − kε0 + c

(
1 − 1

2(d − 1)
− q

√
δ

4

)
− c(d + 3)

q2
√

δ

4(d − 2)

− c
q
√

δ

4
−

(
q2δ

4
+ (q − 2)

q
√

δ

2

)]
Jq

+
[

cM(1) − c(d + 3)

√
δ(d − 2)

4

]
Hq ≤ C̃1‖w‖q

q + C̃2‖w‖q−2
q ‖ f ‖2q .

Applying Hardy’s inequality Jq ≥ (d−2)2

q2 Hq to the Hq term (which, clearly, enters
the LHS with negative coefficient), we finally obtain

μ‖w‖q
q +

[(
q − 1 − kε0

) (d − 2)2

q2 − Ł1(c, δ, q, d)

]
q2

(d − 2)2
Jq ≤ C̃1‖w‖q

q + C̃2‖w‖q−2
q ‖ f ‖2q ,

(11)

where, by the assumption d−3−L1(c, δ, d) > 0 of the theorem, (q−1−kε0)
(d−2)2

q2 −
Ł1(c, δ, q, d) > 0 for all q > d−2 sufficiently close to d−2 and all ε0 > 0 sufficiently
small. The principal inequality (PIb) follows (with μ0 := C̃1, C := C̃2).

If 1 − 1
2(d−1) − q

√
δ

4 ≥ 0, then clearly (1 − kε0)Iq + c
(
1 − 1

2(d−1) − q
√

δ
4

)
Īq,χ ≥

(1−kε0)Jq +c
(
1− 1

2(d−1) − q
√

δ
4

)
J̄q,χ . Arguing as above, we obtain (11) and therefore

(PIb).
Proof of (PIb) in the case −1 < c < 0. Set s := −c > 0 and

k := k1 + k2,

where k1 and k2 are the constants in Lemmas 2 and 3. Applying Lemmas 2–4 in the
RHS of (BE−), we obtain

μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(Jq − s(1 + θ) J̄q,χ ) + s

(
1 + (q − 2)

d

q

)
Hq,χ

− 2s
q − 2

q
Hq,χ2 − sdGq,χ2 − 4sGq,χ2 + 4sGq,χ3 − s(q − 2)

1

4θ
Gq,χ2 (12)

≤ s(d + 3)
q
√

δ

2
G

1
2
q,χ2 J

1
2

q + s
q
√

δ

2
Ī

1
2

q,χ J
1
2

q +
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q ,

where C̃1(ε0) = C1(ε0), C̃2(ε0) = C2(ε0) + C(ε0). Applying Hq,χ ≥ Hq,χ2 and
Jq ≥ J̄q,χ (recall that this and similar inequalities appearing below is the content of
Lemma 1), we have
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μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(1 − s(1 + θ))Jq + s

(
1 + (q − 2)

d − 2

q

)
Hq,χ

− sdGq,χ2 − 4sGq,χ2 + 4sGq,χ3 − s(q − 2)
1

4θ
Gq,χ2 ≤ RHS of (12).

Since s
(
1 + (q − 2) d−2

q

)
> 0, we can apply Hq,χ ≥ Gq,χ to obtain

μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(1 − s(1 + θ))Jq + s

(
1 + (q − 2)

d − 2

q

)
Gq,χ

− sdGq,χ2 − 4sGq,χ2 + 4sGq,χ3 − s(q − 2)
1

4θ
Gq,χ2 ≤ RHS of (12),

that is,

μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(1 − s(1 + θ))Jq

+ s〈M(χ)|x |−4(x · w)2|w|q−2〉 ≤ RHS of (12),

where

M(χ) :=
[
1 + (q − 2)

d − 2

q
+

(
−d − 4 + 4χ − (q − 2)

1

4θ

)
χ

]
χ.

Select θ := 1
2

q
d−2 . Next, we claim that, for q > d − 2, d ≥ 4,

min
0≤t≤1

M(t) = M(1) = −d + 1 + 1

2
(q − 2)

d − 2

q
< 0.

Indeed, write M(t) = 4t f (t), where f (t) = t2 − 1
4 (d + 4+ q−2

4θ )t + 1
4 + q−2

4q (d − 2).

Then f (1) < 0 and so f (t) = 0 has real roots t1 < t2. It suffices to note that
t1+t2
2 ≥ 1.

Indeed, t1 + t2 = d+4
4 + q−2

16θ ≥ 2 or d + q−2
4θ ≥ 4 clearly holds for d ≥ 4.

Since 0 < χ < 1, we obtain

μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(1 − s(1 + θ))Jq

+ s M(1)Gq ≤ RHS of (12),

and so, applying Gq ≥ Gq,χ2 in the RHS of (12),

μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(1 − s(1 + θ))Jq + s M(1)Gq

≤ s(d + 3)
q
√

δ

2
G

1
2
q J

1
2

q + s
q
√

δ

2
Ī
1
2

q,χ J
1
2

q +
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

Applying the quadratic inequality twice in the RHS of the last inequality, we obtain
(θ2, θ3 > 0),
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μ‖w‖q
q + (1 − kε0)Iq − s Īq,χ + (q − 2)(1 − s(1 + θ))Jq + s M(1)Gq

≤ s(d + 3)
q
√

δ

4
(θ2 Jq + θ−1

2 Gq ) + s
q
√

δ

4
(θ3 Īq,χ + θ−1

3 Jq ) +
(

q2δ

4
+ (q − 2)

q
√

δ

2

)
Jq

+ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q .

Selecting θ2 = q
d−2 , θ3 = 1, applying inequality Iq ≥ Īq,χ and regrouping the terms,

we obtain

μ‖w‖q
q +

[
1 − kε0 − s

(
1 + q

√
δ

4

)]
Iq

+
[
(q − 2)

(
1 − s

(
1 + 1

2

q

d − 2

))
− s

q
√

δ

4
− s(d + 3)

q
√

δ

4

q

d − 2

− q2δ

4
− (q − 2)

q
√

δ

2

]
Jq

+ s

[
M(1) − (d + 3)

q
√

δ

4

d − 2

q

]
Gq ≤ C̃1‖w‖q

q + C̃2‖w‖q−2
q ‖ f ‖2q .

By the assumptions of the theorem, 1 − s
(
1 + q

√
δ

4

)
> 0, so selecting ε0 sufficiently

small we may assume that the coefficient of Iq above is positive. Now, using inequal-

ities Jq ≤ Iq and Jq ≥ (d−2)2

q2 Hq ≥ (d−2)2

q2 Gq , we arrive at

μ‖w‖q
q +

[
(q − 1 − kε0)

(d − 2)2

q2 − Ł2(−s, δ, q, d)

]
q2

(d − 2)2
Jq

≤ C̃1‖w‖q
q + C̃2‖w‖q−2

q ‖ f ‖2q ,

where

Ł2(−s, δ, q, d) := s

[
d − 1 + (q − 1)

(d − 2)2

q2 +
√

δ

2

(
(d − 2)2

q
+ (d + 3)(d − 2)

)]

+
[

q2δ

4
+ (q − 2)

q
√

δ

2

]
(d − 2)2

q2 .

By the assumptiond−3−L2(c, δ, d) > 0of the theorem,
(
q−1

)
(d−2)2

q2 −Ł2(−s, δ, q, d)

> 0 for all q > d − 2 sufficiently close to d − 2. Thus, selecting ε0 even smaller, if
needed, we obtain (PIb) (with μ0 := C̃1, C := C̃2).

Step 3. Repeating Step 3 in the proof of Theorem A, we obtain that the principal
inequality (PIb), the Young inequality and the Sobolev embedding theorem yield the
estimates (� � �):

‖∇uε,n‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q ,

‖∇uε,n‖ qd
d−2

≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q
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with constants K1 := C
1
2 , K2 := CSη

− 1
q (q2/4)

1
q C

1
q K

q−2
q

1 and μ0 independent of ε,

n. Since the weak gradient in Lq , L
qd

d−2 is closed, Theorem 1 and a weak compactness

argument in Lq , L
qd

d−2 allow us to pass to the limit in the above estimates in ε ↓ 0 and
then in n → ∞, obtaining (�):

‖∇u‖q ≤ K1(μ − μ0)
− 1

2 ‖ f ‖q ,

‖∇u‖ qd
d−2

≤ K2(μ − μ0)
1
q − 1

2 ‖ f ‖q .

for u := (μ+	q(a, b))−1 f , 0 ≤ f ∈ C∞
c . Now, a standard density argument allows

to conclude that these bounds hold for all 0 ≤ f ∈ Lq . Finally, we note that these
bounds hold for all f ∈ Lq with Kl above replaced by 4Kl , l = 1, 2.

The proof of assertion (i) of Theorem 2 is completed.
Proof of assertion (ii). The proof of the basic equalities (BE−), (BE−) works for q = 2
as well. Let us write for brevity w = ∇uε,n , where 0 ≤ uε,n = (μ+	2(aε, bn))−1 f ,
0 ≤ f ∈ C∞

c , ε > 0. We multiply the equation for uε,n by the “test function”
φ = −∇ · w ≡ −∑d

i=1 ∇iwi , obtaining

μ‖w‖22 + 〈Aε
2w,w〉 + 〈[∇, Aε

2]−u , w〉 = 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉. (13)
For c > 0, we evaluate in (13) (arguing as in the proof of (BE−)):

〈[∇, Aε
2]−u, w〉 = −β1 − cH2,χ + 2c(d − 1)G2,χ2 + 8cε〈|x |−6

ε (x · w)2〉,
so

μ‖w‖22 + I2 + cĪ2,χ − β1 − cH2,χ + 2c(d − 1)G2,χ2 + 8cε〈|x |−6
ε (x · w)2〉

= 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉,
where β1 = −2c〈|x |−4

ε x · w, x · (x · ∇w)〉 and, recall,

I2 =
d∑

r=1

〈|∇rw|2〉, Ī2,χ = 〈|x · ∇w|2χ |x |−2〉, x · ∇w ≡
d∑

i=1

(xi∇i )w,

H2,χ := 〈χ |x |−2|w|2〉, G2,χ2 := 〈χ2|x |−4(x · w)2〉.
We estimate β1 as in Lemma 4 (with θ = 1), arriving at

μ‖w‖22 + I2 − cH2,χ + c
(
2(d − 1) − 1

)
G2,χ2 ≤ 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉. (14)

For c < 0, we evaluate in (13) (arguing as in the proof of (BE−)):

〈[∇, Aε
2]−u, w〉 = 1

2
β2 − cH2,χ + cdG2,χ2 + 4cε〈|x |−6

ε (x · w)2〉, β2 = 0,

so

μ‖w‖22 + I2 + cĪ2,χ − cH2,χ + cdG2,χ2
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+ 4cε〈|x |−6
ε (x · w)2〉

= 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉,

and hence by I2 ≥ Ī2,χ and H2,χ ≥ G2,χ

μ‖w‖22 + (1 − |c|)I2 + |c|G2,χ − |c|dG2,χ2 − 4|c|G2,χ2 + 4|c|G2,χ3

≤ 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉,
i.e.,

μ‖w‖22 + (1 − |c|)I2 + |c|〈M(χ)|x |−4(x · w)2〉 ≤ 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉,
where M(χ) = (

1− (d +4)χ +4χ2
)
χ . Since min0≤t≤1 M(t) = M(1) = 1−d < 0,

we arrive at

μ‖w‖22 + (1 − |c|)I2 + |c|(1 − d)G2 ≤ 〈−bn · w,−∇ · w〉 + 〈 f,−∇ · w〉. (15)

In theRHSof (14), (15),we estimate 〈−bn ·w,−∇·w〉 usingLemma2, and 〈 f,−∇·w〉
using Lemma 3. All the terms that appear in these estimates are further bounded from

above by I2 using inequalities I2 (≥ J2 ≥ (d−2)2

4 H2 ≥)
(d−2)2

4 H2,χ i ,
(d−2)2

4 G2,χ i ,
i ≥ 0 (Lemma 1).

We estimate the LHS in (14), (15) repeating the argument in the proof of (i) above.
In the resulting inequalities, taking into account our assumptions on c and δ, we

arrive at I2(uε,n) ≤ K‖ f ‖2 with K independent of ε, n. So, by passing to the limit in ε

and then in n using Theorem 1, we arrive at I2(u) ≤ K‖ f ‖2, u = (μ+	2(a, b))−1 f
⇒ u ∈ W 2,2. By the density argument, the latter holds for all f ∈ L2 (with K replaced
by 4K ).
The proof of assertion (ii) is completed.
The proof of Theorem 2 is completed. �
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