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Abstract. In this paper,we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace

equation. For any p-parabolic function u, we show that D(|Du| p−2+s
2 Du) exists as a function and belongs

to L2loc with s > −1 and 1 < p < ∞. The range of s is sharp.

1. Introduction

The elliptic p-Laplace equation has an extensive literature on the second-order
regularity. In contrast, the second-order regularity for the parabolic p-Laplace equation

ut = div(|Du|p−2Du) (1.1)

is much less studied. Throughout the paper, we have 1 < p < ∞. In the elliptic case,
one of the known estimates shows W 1,2

loc regularity for the nonlinear expression of the
gradient

|Du| p−2+s
2 Du

proven by Dong et al. [10] with s > 2 − min{p + n
n−1 , 3 + p−1

n−1 }, and then extended

to s > −1 − p−1
n−1 by the third author [20]. The aim of this paper is to prove such a

result to the parabolic p-Laplace equation. In other words, we prove in Theorem 2.2

that for any weak or viscosity solution u to (1.1), D(|Du| p−2+s
2 Du) exists, belongs to

L2
loc whenever s > −1, and this range is sharp.
In the parabolic case,Dong et al. [10] proved for p ∈ (1, 3) that theweak or viscosity

solution u to (1.1) locally belongs to W 2,2. This result is obtained as a special case
from ours by selecting s = 2− p. Our result also contains as a special case Lindqvist’s

[16] result for |Du|p−2Du and |Du| p−2
2 Du in the range p ≥ 2. As a consequence, he

also observed that the time derivative ut exists and belongs to a Sobolev space. See
also a recent paper by Cianchi and Maz’ya [5].
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The heuristic idea of the proof is to differentiate the equation (1.1), choose a test
function ϕ = |Du|s uxkφ2 and use a fundamental inequality (the name stems from
[10] for a related inequality)

|Du|4|D2u|2 ≥ 2|Du|2|D2uDu|2 + (|Du|2�u − �∞u)2

n − 1
− (�∞u)2

from [20], which holds for any smooth function. Here �u := ∑n
i=1 uxi xi denotes

the Laplacian, �∞u := ∑n
i, j=1 uxi x j uxi ux j the infinity Laplacian, and |D2u| :=

(
∑n

i, j=1 u
2
xi x j )

1/2 the Hilbert–Schmidt norm for matrices. Surprisingly, it is sufficient
for the sharp result to use the previous inequality in a rather simple form

|Du|4|D2u|2 ≥ 2|Du|2|D2uDu|2 − (�∞u)2, (1.2)

which we obtain by an elementary fact that the square (|Du|2�u − �∞u)2 is non-
negative. Naturally the fact that the form (1.2) is sufficient, simplifies the proof. At
the same time, the form of (1.2) makes the coefficient C = C(p, s) of estimate (2.3)
in Theorem 2.2 independent of n. Note that in the elliptic case, the fundamental in-
equalities in [10,20] include the parameter n so that both the range of s and C depend
on n.
Unlike the second-order regularity, the lower-order regularity of the parabolic p-

Laplace equation has been extensively studied since the 1980s, see DiBenedetto’s
monograph [6] as well as, for example [2,8,9,14,15,22,23]. In the elliptic case, the
second-order Sobolev regularity has been studied in addition to above mentioned [10],
for example, in [1,3,18], and for a different parabolic equation in [11].

2. Preliminaries and main results

Let x0 ∈ R
n , n ≥ 1 and r > 0. We denote by

Br (x0) = {x ∈ R
n : |x0 − x | < r}

the usual Euclidean ball in R
n . For a space-time point (x0, t0) ∈ R

n+1 and a radius
r > 0, we define the parabolic cylinder as

Qr (x0, t0) := Br (x0) × (t0 − r2, t0 + r2).

To ease the notation, we may write Qr := Qr (x0, t0). Let � ⊂ R
n denote an open

domain. For T > 0, we set

�T := � × (0, T ).

IfU is compactly contained in�, i.e.,U ⊂ � and the closure ofU is a compact subset
of �, we write U � � . For 0 < t1 < t2 < ∞, we set

Ut1,t2 := U × (t1, t2).
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We denote the first partial derivatives of a function u : �T → R by uxk and ut . The
spatial gradient is denoted by Du, and the second derivatives by uxi x j . Further, D

2u
stands for matrix of second derivatives with respect to the space variables. As usual,
the Sobolev space W 1,p(U ) denotes the space of measurable functions u such that
u ∈ L p(U ) and the distributional first partial derivatives uxi exist in U and belong to
L p(U ). We use the norm

‖u‖W 1,p(U ) = ‖u‖L p(U ) + ‖Du‖L p(U ).

By the parabolic Sobolev space L p(t1, t2;W 1,p(U )), with 0 < t1 < t2 < ∞, we
mean the space of measurable functions u(x, t) such that the mapping x �→ u(x, t)
belongs to W 1,p(U ) for almost every t1 < t < t2 and the norm

‖u‖L p(t1,t2;W 1,p(U )) :=
(∫ t2

t1
‖u(·, t)‖p

W 1,p(U )
dt

)1/p

is finite. The space C(�T ) denotes the space of continuous functions on �T and
C∞
0 (�T ) denotes the space of smooth, compactly supported functions on �T . A

function belongs to the local Sobolev space W 1,p
loc (�) if it belongs to W 1,p(�′) for

every open �′ � �. Other local spaces are defined analogously.
We study weak solutions to the parabolic p-Laplace equation

ut − �pu = 0 in �T , (2.1)

where

�pu := div
(|Du|p−2Du

)

is the p-Laplace operator with 1 < p < ∞.

Definition 2.1. A function u : �T → [−∞,∞] is a weak solution to Eq. (2.1) if
whenever Ut1,t2 � �T is an open cylinder, we have u ∈ C(Ut1,t2) ∩ L p(t1, t2;W 1,p

(U )), and u satisfies the integral equality

∫ T

0

∫

�

|Du|p−2 〈Du, Dφ 〉dx dt −
∫ T

0

∫

�

uφt dx dt = 0 for all φ ∈ C∞
0 (�T ).

Such solutions are called p-parabolic functions.

Under the above definition, weak solutions are equivalent to viscosity solutions to
(2.1) for 1 < p < ∞, see [13,19,21]. In this setting, gradients are bounded andHölder
continuous by a recent work of Imbert et al. [12]. Their result covers a more general
class of equations containing the parabolic p-Laplace equation and the normalized
p-parabolic equation arising from the game theory [17]. For earlier C1,α-regularity
results based on the variational approach with various assumptions, see DiBenedetto
and Friedman [7], Wiegner [24], Chen [4], and Chapter IX in [6].
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2.1. Main results

For s ∈ R, we define the vector field Vs : Rn → R
n as

Vs(z) :=
{

|z| p−2+s
2 z for z ∈ R

n \ {0};
0 for z = 0.

(2.2)

Theorem 2.2. Let u : �T → R be a weak solution to the parabolic p-Laplace equa-
tion (2.1). If s > −1, then D(Vs(Du)) exists and belongs to L2

loc(�T ). Moreover, we
have the estimate

∫

Qr

|D(Vs(Du))|2dxdt ≤ C

r2

( ∫

Q2r

|Vs(Du)|2dxdt +
∫

Q2r

|Du|s+2dxdt
)

(2.3)

where C = C(p, s) > 0 and Qr ⊂ Q2r � �T are concentric parabolic cylinders.

Note that here the range of s and the coefficient C do not depend on n. For the
parabolic case, the range of s must satisfy the constraints of both the elliptic and
parabolic terms. We get the elliptic restriction s > −1 − p−1

n−1 by [20] and s > −1
rising from the parabolic terms (see Remark 2.4). By combining them, we get the
restriction s > max{−1− p−1

n−1 ,−1} = −1; thus, the inequality (1.2) is sufficient and
further the coefficient C = C(p, s) is independent of n.

Remark 2.3. In particular, we may set s = 0, and s = p − 2 for any 1 < p < ∞
reproving Lindqvist’s result in [16] for |Du| p−2

2 Du and |Du|p−2 Du. If 1 < p < 3,
we may set s = 2− p to reprove the second-order Sobolev regularity obtained in [10].

Remark 2.4 (Counter example). The counterexample from [10] turns out to work also
in our case, and shows that the range s > −1 in Theorem 2.2 is sharp. By a direct
calculation, the function

u(x1, x2) = ( p
p−1

)p−1
t + |x1|1+

1
p−1

is a solution to (2.1) in R2 × (0,∞), and

|D(|Du| p−2+s
2 Du)| = C(p, s)|x1|

−p+2+s
2(p−1) ∈ L2

loc(R
2 × (0,∞))

if and only if s > −1.
Indeed, we have

ux1 = p
p−1 |x1|

1
p−1−1x1, ux2 = 0,

and

ux1x1 = p
(p−1)2

|x1|
1

p−1−1
, ux1x2 = ux2x1 = ux2x2 = 0.
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Then,

|D(|Du| p−2+s
2 Du)| =

( p

p − 1

) p−2+s
2 |x1|

p−2+s
2(p−1)

∣
∣
∣

p

(p − 1)2
|x1|

2−p
p−1 + p − 2 + s

2

p

(p − 1)2
|x1|

2−p
p−1

∣
∣
∣

=
( p

p − 1

) p−2+s
2 p(p + s)

2(p − 1)2
|x1|

2−p+s
2(p−1)

= C(p, s)|x1|
−p+2+s
2(p−1) .

Once we have proven the main result, Theorem 2.2, the existence and integrability
of the time derivative easily follows as pointed out by Lindqvist [16] and Dong et
al. [10]. We give the short proof for the convenience of the reader.

Corollary 2.5 (Time derivative). Let u : �T → R be a weak solution to the parabolic
p-Laplace equation (2.1). Then, the time derivative ut exists as a function and ut ∈
L2
loc(�T ).

Proof. Let s = p − 2 > −1, then p + s = 2(p − 1) > 0 and s + 2 = p > 1. By
Theorem 2.2, for all Qr ⊂ Q2r � �T , we have

∫

Qr

∣
∣D(|Du|p−2 Du)

∣
∣2dxdt

≤ C(p)

r2

( ∫

Q2r

|Du|2(p−1) dxdt +
∫

Q2r

|Du|p dxdt
)
, (2.4)

which implies

D(|Du|p−2 Du) ∈ L2
loc(�T ).

By the weak formulation
∫

Qr

uφtdxdt = −
∫

Qr

div(|Du|p−2 Du)φdxdt for all φ ∈ C∞
0 (Qr ),

we get that ut exists, and ut ∈ L2
loc(�T ). �

3. Idea of the proof

In this section, for the convenience of the reader, we present the formal idea of
the proof without excess details. In this setting, we assume that u ∈ C∞(�T ) and
Du �= 0. The detailed proof is presented in Sect. 4.
Differentiating with respect to xk in (2.1), we get

(uxk )t = div(|Du|p−2 A Duxk ) (3.1)
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where

A = I + (p − 2)
Du ⊗ Du

|Du|2 .

Here, I denotes the n × n identity matrix and Du ⊗ Du stands for the tensor product
of two vectors in Rn , resulting in a matrix in R

n×n with the entries uxi ux j .
We first study the term on the left hand side of (3.1) and choose a test function

ϕ = |Du|s uxkφ2

with s > −1 and φ ∈ C∞
0 (�T ). Summing over k, we get

n∑

k=1

∫

�T

(uxk )tϕdxdt =
n∑

k=1

∫

�T

(uxk )t |Du|s uxkφ2dxdt

=
n∑

k=1

∫

�T

1

2
(u2xk )t |Du|s φ2dxdt

=
∫

�T

1

2
(|Du|2)t |Du|s φ2dxdt

=
∫

�T

1

s + 2
(|Du|s+2)tφ

2dxdt

= −
∫

�T

1

s + 2
|Du|s+2 (φ2)tdxdt.

Recalling (3.1), we have

0 =
n∑

i=1

∫

�T

div(|Du|p−2 A Duxi )(|Du|s uxi φ2)dxdt + 2

s + 2

∫

�T

|Du|s+2 φφt dxdt.

Now the first integral on the right hand side is of the same form as in the elliptic case,
and thus, the proof of [20, Lemma3.3] gives that for any η > 0,

∫

�T

|Du|p−2+s
{ ∣

∣
∣D2u

∣
∣
∣
2 + (p − 2 + s − η) |D |Du||2 + (s(p − 2) − η)(�N∞u)2

}
φ2dxdt

≤ C(p)

η

∫

�T

|Du|p+s |Dφ|2 dxdt + 2

s + 2

∫

�T

|Du|s+2 |φ||φt |dxdt, (3.2)

where �N∞u := |Du|−2 ∑n
i, j=1 uxi x j uxi ux j stands for the normalized or game theo-

retic infinity Laplacian. Observe that on the right hand side, we have bounded terms
only. As a corollary, similarly as in [20, Corollary 3.4], we get
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∫

�T

|Du|p−2+s
∣
∣
∣D2u

∣
∣
∣
2
φ2dxdt

≤ C(p, s, η)

∫

�T

|Du|p−2+s |D |Du||2 φ2dxdt

+ C(p)

η

∫

�T

|Du|p+s |Dφ|2 dxdt + 2

s + 2

∫

�T

|Du|s+2 |φ||φt |dxdt. (3.3)

Next we estimate the first term on the right hand side in (3.3). Using the inequality of
[20, Corollary 2.2]:

|Du|4|D2u|2 ≥ 2|Du|2|D2uDu|2 + (|Du|2�u − �∞u)2

n − 1
− (�∞u)2,

dividing both sides by |Du|4, we have

|D2u|2 ≥ 2 |D |Du||2 + (�u − �N∞u)2

n − 1
− (�N∞u)2

≥ 2 |D |Du||2 − (�N∞u)2. (3.4)

On the last line, we used (�u − �N∞u)2 ≥ 0. Now we use the previous inequality in

(3.2) for the term containing
∣
∣D2u

∣
∣2, set η = min{ 14 (p + s), 1

6 (p − 1)(s + 1)}, and
obtain
∣
∣
∣D2u

∣
∣
∣
2 + (p − 2 + s − η) |D |Du||2 + (s(p − 2) − η)(�N∞u)2

≥ 2 |D |Du||2 − (�N∞u)2 + (p − 2 + s − η) |D |Du||2 + (s(p − 2) − η)(�N∞u)2

= (p + s − η) |D |Du||2 + (s(p − 2) − 1 − η)(�N∞u)2

= η |D |Du||2 + (p + s − 2η) |D |Du||2 + (s(p − 2) − 1 − η)(�N∞u)2

≥ η |D |Du||2 + (p + s + s(p − 2) − 1 − 3η)(�N∞u)2

= η |D |Du||2 + ((p − 1)(s + 1) − 3η)(�N∞u)2

≥ η |D |Du||2 = C(p, s) |D |Du||2 , (3.5)

whenever s > −1. We also used

|D |Du||2 =
∣
∣D2uDu

∣
∣2

|Du|2 ≥
( 〈D2uDu, Du〉

|Du|2
)2

= (�N∞u)2. (3.6)

Thus,
∫

�T

|Du|p−2+s |D |Du||2 φ2dxdt

≤ C(p, s)
( ∫

�T

|Du|p+s |Dφ|2 dxdt +
∫

�T

|Du|s+2 |φ||φt |dxdt
)
.
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Combining this with (3.3), we get

∫

�T

|Du|p−2+s
∣
∣
∣D2u

∣
∣
∣
2
φ2dxdt

≤ C(p, s)
( ∫

�T

|Du|p+s |Dφ|2 dxdt +
∫

�T

|Du|s+2 |φ||φt |dxdt
)
.

By a direct calculation

∫

�T

∣
∣D(|Du| p−2+s

2 Du)
∣
∣2φ2dxdt ≤ C(p, s)

∫

�T

|Du|p−2+s |D2u|2φ2dxdt, (3.7)

and combining this with the previous estimate, we finally get

∫

�T

∣
∣D(|Du| p−2+s

2 Du)
∣
∣2φ2dxdt

≤ C(p, s)
( ∫

�T

|Du|p+s |Dφ|2 dxdt +
∫

�T

|Du|s+2 |φ||φt |dxdt
)
. (3.8)

The estimate in Theorem 2.2 is obtained by choosing φ as a standard cutoff function.

4. Detailed proof

In this section, we present a detailed proof of Theorem 2.2 by regularizing Eq. (2.1).
Solutions to the regularized equation will be smooth, and thus, the differentiation of
this equation is justified. Since the obtained estimates will be uniform with respect to
the regularization, we will be able to pass to the original equation at the end.
To start with the above plan, let u : �T → R be a p-parabolic function. Fix a smooth

subdomain U � � and 0 < t1 < t2 < ∞ such that Ut1,t2 � �T . Let ε > 0 be small
and uε : Ut1,t2 → R be a weak solution to

{
uε
t − div

(
μp−2Duε

) = 0 in Ut1,t2;
uε = u on ∂pUt1,t2 ,

(4.1)

where

μ :=
√

|Duε |2 + ε

and the parabolic boundary is defined as

∂pUt1,t2 = (U × {t1}) ∪ (∂U × (t1, t2]).

According to standard parabolic theory, we get uε ∈ C∞(Ut1,t2) ∩ C(Ut1,t2), see
[7,24].
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Lemma 4.1. Let uε : Ut1,t2 → R be a weak solution to (4.1). If s > −1, then for any
φ ∈ C∞

0 (Ut1,t2), we have

∫

Ut1,t2

μp−2+s |D2uε |2φ2dxdt

≤ C
( ∫

Ut1,t2

μp−2+s |Duε |2|Dφ|2dxdt +
∫

Ut1,t2

μs+2|φ||φt |dxdt
)

where C = C(p, s) > 0 is independent of ε.

To prove Lemma 4.1, we use the inequality (1.2). In Sect. 3, under the assumption
Du �= 0, we can directly divide both sides of (1.2) by |Du|4 to get the inequality (3.4),
which gives the lower bound of

∣
∣D2u

∣
∣2. In order to get an inequality similar to (3.4),

we also need to consider the case when Du = 0. Thus, we reformulate (1.2) here in a
way that allows us to apply it in this context.
For the reformulation, we introduce some notations. Let v : Ut1,t2 → R be a smooth

function. In particular, |Dv| is locally Lipschitz continuous (by triangle inequality)
and thus, by Rademacher’s theorem, differentiable almost everywhere on each time
slice, hence also in Ut1,t2 .
Note that if (x0, t0) ∈ Ut1,t2 is a space-time point where |Dv| is differentiable and

Dv(x0, t0) = 0, then D|Dv|(x0, t0) = 0. Indeed, if we had D|Dv|(x0, t0) �= 0, then
we could find a point ξ ∈ U × {t0} (close to (x0, t0)) such that |Dv|(ξ) < 0, which is
obviously impossible. On the other hand, if Dv(x0, t0) �= 0 for some (x0, t0) ∈ Ut1,t2 ,
then |Dv| is differentiable at (x0, t0) and

D|Dv|(x0, t0) = D2v(x0, t0)Dv(x0, t0)

|Dv(x0, t0)| .

For each point in Ut1,t2 where Dv �= 0, we fix an orthonormal basis of R
n ,

{e1, . . . , en}, such that en = Dv
|Dv| . Hence, we have, for those points where Dv �= 0,

D2vDv

|Dv| = 〈e1, D|Dv|〉e1 + · · · + 〈en−1, D|Dv|〉en−1 +
〈
Dv

|Dv| , D|Dv|
〉

Dv

|Dv| .

For those points where |Dv| is differentiable, let us define the part of D|Dv| which is
tangential to the spatial level sets of v as

DT |Dv| :=
{

〈e1, D|Dv|〉e1 + · · · + 〈en−1, D|Dv|〉en−1 if Dv �= 0,

0 if Dv = 0,

and its orthogonal counterpart, the normalized infinity Laplacian, as

�N∞v :=
⎧
⎨

⎩

〈
Dv

|Dv| , D|Dv|
〉
= �∞v

|Dv|2 if Dv �= 0,

0 if Dv = 0.
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We employ these notations to write

|D|Dv||2 = |DT |Dv||2 + (�N∞v)2 a.e. in Ut1,t2 . (4.2)

In Sect. 3, without dividing |D|Dv||2 into two parts, we use the inequality (3.4) and
(3.6) to get the estimate (3.5). When using (3.6), we need to be careful and check that
if the coefficient of |D|Dv||2 is nonnegative. For the regularization, the coefficients
of each terms become more complicated, and thus, by using the equality (4.2), we can
consider the coefficients together in the last step of the estimate. Now we can restate
(1.2).

Lemma 4.2. Let v : Ut1,t2 → R be a smooth function. Then,

|D2v|2 ≥ 2|DT |Dv||2 + (�N∞v)2 a.e. in Ut1,t2 . (4.3)

Proof. Recall that |Dv| is differentiable a.e. in Ut1,t2 . From now on, consider such
points ofUt1,t2 where |Dv| is differentiable.When n = 1, by the definition of DT |Dv|,
we have DT |Dv| = 0 and (4.3) is obviously an identity. Then, we consider the case
n ≥ 2. If Dv = 0, then (4.3) holds trivially by what we defined above. If Dv �= 0,
then by [20, Corollary 2.2], we have

|Dv|4|D2v|2 ≥ 2|Dv|2|D2vDv|2 + (|Dv|2�v − �∞v)2

n − 1
− (�∞v)2.

Dividing both sides by |Dv|4, using the definitions of DT |Dv| and �N∞v, we get the
desired inequality by following:

∣
∣
∣D2v

∣
∣
∣
2 ≥ 2 |D |Dv||2 + (�v − �N∞v)2

n − 1
− (�N∞v)2

≥ 2 |D |Dv||2 − (�N∞v)2

= 2|DT |Dv||2 + (�N∞v)2.

�

Proof of Lemma 4.1. The spatial partial derivatives uε
xk , k = 1, . . . , n, solve

(uε
xk )t − div

(
μp−2ADuε

xk

) = 0 (4.4)

where

A = I + (p − 2)
Duε ⊗ Duε

μ2 .

Note that
min{1, p − 1}I ≤ A ≤ max{1, p − 1}I (4.5)

uniformly in Ut1,t2 and for ε.
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We multiply Eq. (4.4) with μsuε
xk , where s > −1, and obtain

μsuε
xk (u

ε
xk )t − μsuε

xk div
(
μp−2A Duε

xk

) = 0. (4.6)

For the first item in the above display, we note that

uε
xk (u

ε
xk )t = 1

2

(
(uε

xk )
2 + ε

n

)
t . (4.7)

Summing (4.6) over k = 1, . . . , n and taking (4.7) into account gives that

1

s + 2
(μs+2)t − μs

n∑

k=1

uε
xk div

(
μp−2A Duε

xk

) = 0. (4.8)

Observe that

div
(
μp−2+s A D2uεDuε

) =
n∑

k=1

div
(
(μsuε

xk )(μ
p−2A Duε

xk )
)

= μs
n∑

k=1

uε
xk div

(
μp−2A Duε

xk

) + μp−2+s
(
|D2uε |2

+ (p − 2 + s)
|D2uεDuε |2

μ2 + s(p − 2)
(�∞uε)2

μ4

)
.

(4.9)
Above we used

〈A Duε
xk , Duε

xk 〉 = ∣
∣Duε

xk

∣
∣2 + (p − 2)

〈Duε, Duε
xk 〉2

μ2 ,

〈A Duε
xk , D

2uεDuε〉 = 〈Duε
xk , D

2uεDuε〉 + (p − 2)
〈Duε, Duε

xk 〉�∞uε

μ2 ,

and a straightforward computation. In other words,

μs
n∑

k=1

uε
xk div

(
μp−2A Duε

xk

) = div
(
μp−2+s A D2uεDuε

) − μp−2+sσ, (4.10)

where

σ := |D2uε |2 + (p − 2 + s)
|D2uεDuε |2

μ2 + s(p − 2)
(�∞uε)2

μ4 .

By (4.8) and (4.10), we have

μp−2+sσ = div
(
μp−2+s A D2uεDuε

) − 1

s + 2
(μs+2)t . (4.11)

We claim that for s > −1, we can find a small number λ = λ(p, s) > 0 such that

λ|D2uε |2 ≤ σ a.e. in Ut1,t2 . (4.12)
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Observe that this is not a trivial inequality since not all the coefficients are positive in
σ .
If (4.12) holds, then the desired estimate follows easily. Indeed, we plug the estimate

(4.12) into Eq. (4.11) to obtain

λμp−2+s |D2uε |2 ≤ div
(
μp−2+s A D2uεDuε

) − 1

s + 2
(μs+2)t . (4.13)

Let φ ∈ C∞
0 (Ut1,t2). Multiplying (4.13) by φ2 and then integrating over Ut1,t2 yields

λ

∫

Ut1,t2

μp−2+s |D2uε |2φ2dxdt

≤
∫

Ut1,t2

(
div

(
μp−2+s A D2uεDuε

) − 1

s + 2
(μs+2)t

)
φ2dxdt.

Weemploy integration by parts, (4.5) andYoung’s inequality to obtain the upper bound
of the right hand side term in above inequality,

∫

Ut1,t2

(
div

(
μp−2+s A D2uεDuε

) − 1

s + 2
(μs+2)t

)
φ2dxdt

= −
∫

Ut1,t2

μp−2+s〈A D2uεDuε, Dφ2〉dxdt + 1

s + 2

∫

Ut1,t2

μs+2(φ2)tdxdt

≤ η

∫

Ut1,t2

μp−2+s |D2uε |2φ2dxdt + C

η

∫

Ut1,t2

μp−2+s |Duε |2|Dφ|2dxdt

+ 2

s + 2

∫

Ut1,t2

μs+2|φ||φt |dxdt

for any η > 0 and some constant C = C(p) > 0. The desired estimate follows by
choosing η = λ

2 .
It remains to prove (4.12). As explained above in this section, we can write

σ = |D2uε |2 + (p − 2 + s)
|Duε |2

μ2 |D|Duε ||2 + s(p − 2)
|Duε |4

μ4 (�N∞uε)2

= |D2uε |2 + (p − 2 + s)
|Duε |2

μ2 |DT |Duε ||2

+
(
(p − 2 + s)

|Duε |2
μ2 + s(p − 2)

|Duε |4
μ4

)
(�N∞uε)2

almost everywhere in Ut1,t2 . For λ ∈ (0, 1), we write

σ = λσ + (1 − λ)σ. (4.14)

For the latter part of σ on the right hand side of (4.14), we utilize the nonnegativity of
the |D2uε |2-term via the inequality of Lemma 4.2:

|D2uε |2 ≥ 2|DT |Duε ||2 + (�N∞uε)2.
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We obtain a lower bound

σ ≥
(
2 + (p − 2 + s)

|Duε |2
μ2

)
|DT |Duε ||2

+
(
1 + (p − 2 + s)

|Duε |2
μ2 + s(p − 2)

|Duε |4
μ4

)
(�N∞uε)2 =: τ.

Now we have
σ ≥ λ(σ − τ) + τ. (4.15)

Writing

1 = |Duε |2
μ2 + ε

μ2

allows us to divide the terms in σ and τ according to the degree of ε. This kind of
regrouping is useful, because it separates the main terms that appear also in the formal
calculation of Sect. 3 from those terms that appear as a result of the regularization.

Indeed, we write

τ =
(

2
( |Duε |2

μ2 + ε

μ2

)2 + (p − 2 + s)
|Duε |2

μ2

( |Duε |2
μ2 + ε

μ2

))

|DT |Duε ||2

+
(( |Duε |2

μ2 + ε

μ2

)2 + (p − 2 + s)
|Duε |2

μ2

( |Duε |2
μ2 + ε

μ2

)

+ s(p − 2)
|Duε |4

μ4

)

(�N∞uε)2

=
(
(p + s)

|Duε |4
μ4 + (p + s + 2)

ε|Duε |2
μ4 + 2ε2

μ4

)
|DT |Duε ||2

+
(
(p − 1)(s + 1)

|Duε |4
μ4 + (p + s)

ε|Duε |2
μ4 + ε2

μ4

)
(�N∞uε)2

(4.16)
and

σ − τ = |D2uε |2 − 2|DT |Duε ||2 − (�N∞uε)2

= |D2uε |2 − 2
( |Duε |4

μ4 + 2ε|Duε |2
μ2 + ε2

μ4

)
|DT |Duε ||2

−
( |Duε |4

μ4 + 2ε|Duε |2
μ2 + ε2

μ4

)
(�N∞uε)2.

(4.17)

As we plug (4.16) and (4.17) into (4.15), we can easily choose λ = λ(p, s) > 0 so
small that

σ ≥ λ|D2uε |2 +
(
(p + s − 2λ)

|Duε |4
μ4 + (p + s + 2 − 4λ)

ε|Duε |2
μ4

+ (2 − 2λ)
ε2

μ4

)
|DT |Duε ||2 +

(
((p − 1)(s + 1) − λ)

|Duε |4
μ4
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+ (p + s − 2λ)
ε|Duε |2

μ4 + (1 − λ)
ε2

μ4

)
(�N∞uε)2

≥ λ|D2uε |2.
This is indeed possible because s > −1. Now that we have shown (4.12), the proof is
finished. �

Proof of Theorem 2.2. To prove Theorem 2.2, we need to justify letting ε → 0 in
Lemma 4.1. For notational convenience, we introduce the regularized version of the
vector field Vs which corresponds to Lemma 4.1. Let us define V ε

s : Rn → R
n as

V ε
s (z) := (|z|2 + ε)

p−2+s
4 z for z ∈ R

n .

Similarly to (3.7), by Lemma 4.1, there exists a constant C = C(p, s) > 0 such that
∫

Ut1,t2

|D(V ε
s (Duε))|2φ2dxdt ≤ C

( ∫

Ut1,t2

|V ε
s (Duε)|2|Dφ|2dxdt

+
∫

Ut1,t2

(|Duε |2 + ε)
s+2
2 |φ||φt |dxdt

) (4.18)

for any φ ∈ C∞
0 (Ut1,t2).

The estimate (2.3) can be derived from (4.18) as follows. Let us fix a space-time
point (x0, t0) ∈ Ut1,t2 . Let r > 0 be small enough such that the parabolic cylinder with
center (x0, t0) and radius 2r fits insideUt1,t2 , that is Q2r � Ut1,t2 . Let φ ∈ C∞

0 (Ut1,t2)

be a cutoff function such that

φ ≡ 1 in Qr , |φ| ≤ 1, spt φ ⊂ Q2r , |Dφ| ≤ 10

r
and |φt | ≤ 10

r2
. (4.19)

The estimate (4.18) implies that
∫

Qr

|D(V ε
s (Duε))|2dxdt

≤ C

r2

( ∫

Q2r

|V ε
s (Duε)|2dxdt +

∫

Q2r

(|Duε |2 + ε)
s+2
2 dxdt

)
(4.20)

for C = C(p, s) > 0.
Since s > −1, we can apply, for example, [12] to conclude for the gradient

∣
∣
∣
∣Duε

∣
∣
∣
∣
Cα(Q2r )

≤ C.

Thus Duε converge uniformly (and strongly in L p) by Arzelà–Ascoli theorem. It fol-
lows that the limit u is a solution to (2.1).Moreover, the right hand side of (4.20) is thus
bounded from above by a constant independent of ε. Thus {D(V ε

s (Duε))}ε is bounded
in L2(Qr ), and consequently we may extract a subsequence that converges weakly in
L2(Qr ). Further, using integration by parts, we see that the limit is D(Vs(Du)), and
thus
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∫

Qr
|D(Vs (Du))|2dxdt ≤ lim inf

ε→0

∫

Qr
|D(V ε

s (Duε))|2dxdt

≤ lim
ε→0

C

r2

( ∫

Q2r

|V ε
s (Duε)|2dxdt +

∫

Q2r

(|Duε |2 + ε)
s+2
2 dxdt

)

≤ C

r2

( ∫

Q2r

|Vs (Du)|2dxdt +
∫

Q2r

|Du|s+2dxdt
)
,

which is the desired estimate. �

Acknowledgements

Yawen Feng was supported by China Scholarship Council, No. 202006020186. Saara
Sarsa was supported by the Academy of Finland, the Centre of Excellence in Analysis
and Dynamics Research and the Academy of Finland, Project 308759.

Funding Open Access funding provided by University of Jyväskylä (JYU).

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

[1] A. Attouchi and E. Ruosteenoja. Remarks on regularity for p-Laplacian type equations in non-
divergence form. J. Differential Equations, 265(5):1922–1961, 2018.

[2] V. Bögelein, F. Duzaar, and G. Mingione. The regularity of general parabolic systems with degen-
erate diffusion.Mem. Amer. Math. Soc., 221(1041):vi+143, 2013.

[3] B. Bojarski and T. Iwaniec. p-harmonic equation and quasiregular mappings. Partial differential
equations (Warsaw, 1984), Banach Center Publ., 19, PWN, Warsaw: 25–38, 1987.

[4] Y. Chen. Hölder continuity of the gradient of the solutions of certain degenerate parabolic equations.
Chinese Ann.Math. Ser. B, 8(3):343–356, 1987. AChinese summary appears in ChineseAnn.Math.
Ser. A 8 (1987), no. 3, 534.

[5] A. Cianchi and V.G. Maz’ya. Second-order regularity for parabolic p-Laplace problems. J. Geom.
Anal., 30(2):1565–1583, 2020.

[6] E. DiBenedetto. Degenerate parabolic equations. Universitext. Springer-Verlag, New York, 1993.
[7] E. DiBenedetto and A. Friedman. Hölder estimates for nonlinear degenerate parabolic systems. J.

Reine Angew. Math., 357:1–22, 1985.
[8] E.DiBenedetto, U.Gianazza, andV.Vespri. Harnack estimates for quasi-linear degenerate parabolic

differential equations. Acta Math., 200(2):181–209, 2008.
[9] E. DiBenedetto, U. Gianazza, and V. Vespri. Harnack’s inequality for degenerate and singular

parabolic equations. Springer Monographs in Mathematics. Springer, New York, 2012.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


6 Page 16 of 17 Y. Feng et al. J. Evol. Equ.

[10] H. Dong, F. Peng, Y. Zhang, and Y. Zhou. Hessian estimates for equations involving p-Laplacian
via a fundamental inequality. Adv. Math., 370:107212, 40, 2020.

[11] F.A. Høeg and P. Lindqvist. Regularity of solutions of the parabolic normalized p-Laplace equation.
Adv. Nonlinear Anal., 9(1):7-15, 2020 .

[12] C. Imbert, T. Jin, and L. Silvestre. Hölder gradient estimates for a class of singular or degenerate
parabolic equations. Adv. Nonlinear Anal., 8(1):845–867, 2019.

[13] P. Juutinen, P. Lindqvist, and J.J. Manfredi. On the equivalence of viscosity solutions and weak
solutions for a quasi-linear equation. SIAM J. Math. Anal., 33(3):699–717, 2001.

[14] J. Kinnunen and J.L. Lewis. Higher integrability for parabolic systems of p-Laplacian type. Duke
Math. J., 102(2):253–271, 2000.

[15] T. Kuusi. Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7(4):673–716, 2008.

[16] P. Lindqvist. On the time derivative in a quasilinear equation. Skr. K. Nor. Vidensk. Selsk., (2):1–7,
2008.

[17] J.J. Manfredi, M. Parviainen, and J.D. Rossi. An asymptotic mean value characterization for p-
harmonic functions. Proc. Amer. Math. Soc., 138:881–889, 2010.

[18] J.J. Manfredi and A. Weitsman. On the Fatou theorem for p-harmonic functions. Comm. Partial
Differential Equations, 13(6):651–668, 1988.

[19] M. Parviainen and J.L. Vázquez. Equivalence between radial solutions of different parabolic
gradient-diffusion equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 21:303–
359, 2020.

[20] S. Sarsa. Note on an elementary inequality and its application to the regularity of -harmonic func-
tions, Ann. Fenn. Math., 47(1):139–153, 2022.

[21] J. Siltakoski. Equivalence of viscosity and weak solutions for a p-parabolic equation. J. Evol. Equ.,
21(2):2047–2080, 2021.

[22] J.M. Urbano. The method of intrinsic scaling, volume 1930 of Lecture Notes in Mathematics.
Springer-Verlag,Berlin, 2008.A systematic approach to regularity for degenerate and singular PDEs.

[23] J.L. Vázquez. Smoothing and decay estimates for nonlinear diffusion equations, volume 33 of
OxfordLecture Ser.Math.Appl.OxfordUniversityPress,Oxford,2006.Equations of porousmedium
type.

[24] M. Wiegner. On Cα-regularity of the gradient of solutions of degenerate parabolic systems. Ann.
Mat. Pura Appl. (4), 145:385–405, 1986.



J. Evol. Equ. Solutions to the parabolic p-Laplace equation Page 17 of 17 6

Yawen Feng and Mikko Parviainen
Department of Mathematics and
Statistics
University of Jyväskylä
PO Box 35 40014 Jyväskylä
Finland
E-mail: yawen.y.feng@jyu.fi

Mikko Parviainen
E-mail: mikko.j.parviainen@jyu.fi

Yawen Feng
School of Mathematical Science
Beihang University
Changping District Shahe Higher Edu-
cation Park South Third Street No. 9
Beijing 102206
P. R. China

Saara Sarsa
Department of Mathematics and
Statistics
University of Helsinki
PO Box 68(Pietari Kalmin katu 5)
00014 Helsinki
Finland
E-mail: saara.sarsa@helsinki.fi

Accepted: 10 January 2022


	On the second-order regularity of solutions to the parabolic  p-Laplace equation
	Abstract
	1. Introduction
	2. Preliminaries and main results
	2.1. Main results

	3. Idea of the proof
	4. Detailed proof
	Acknowledgements
	REFERENCES




