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Abstract. We show that the Reynolds defect measure for a dissipative weak solution of the compressible
Euler systemvanishes for large time. Thismay be seen as a piece of evidence that the dissipative solutions are
asymptotically close to weak solutions in the turbulent regime, whence suitable for describing compressible
fluid flows in the long run.

1. Introduction

In [2], we proposed the concept of dissipative weak (DW) solution to the compress-
ible (isentropic) Euler system:

∂t� + divx m = 0,

∂t m + divx

(
m ⊗ m

�

)
+ ∇x p(�) = 0, p(�) = a�γ , a > 0, γ > 1,

(1.1)

considered on a bounded domain � ⊂ Rd , d = 1, 2, 3, with impermeable boundary

m · n|∂� = 0, (1.2)

and the initial conditions

�(0, ·) = �0, m(0, ·) = m0. (1.3)

A dissipative solution is a trio [�, m, E], where �, m satisfy (in the sense of distri-
butions) the augmented system

∂t� + divx m = 0,

∂t m + divx

(
m ⊗ m

�

)
+ ∇x p(�) = −divxR,

(1.4)
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with the “turbulent” total energy E = E(t)—anon-increasing functionof t—satisfying

E(τ±) ≤ E0 =
∫

�

[
1

2

|m0|2
�0

+ P(�0)

]
dx,

E(τ±) ≥
∫

�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx for any τ > 0,

P(�) ≡ a

γ − 1
�γ .

(1.5)

Note that the total energy is defined as a convex l.s.c. function of [�, m] ∈ Rd+1,

1

2

|m|2
�

+ P(�) =

⎧⎪⎨
⎪⎩

1
2

|m|2
�

+ P(�) if � > 0,

0 if � = 0, m = 0,
∞ otherwise.

The quantity R is a matrix-valued measure, specifically,

R ∈ L∞([0,∞);M+(�; Rd×d
sym )) (1.6)

called Reynolds defect. Here, the symbol M+(�; Rd×d
sym )) denotes the cone of posi-

tively semi-definite symmetric matrix-valued measures on �, specifically,

〈R : [ξ ⊗ ξ ]; g〉 ≥ 0 for any g ∈ C(�), g ≥ 0, ξ ∈ Rd .

The crucial property of (DW) solutions is the compatibility condition

E(τ+) −
∫

�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx

≥ d
∫

�

d (trace[R])(τ ) for any τ ∈ [0,∞) (1.7)

for a certain constant d > 0. A detailed definition is given in Sect. 2 below.
Relation (1.7) can be interpreted in the way that the energy defect dominates the

Reynolds defect. As shown in [2], the (DW) solutions exist globally in time for any
finite energy initial data. Moreover, they can be identified as limits of consistent ap-
proximations arising in numerical analysis (see [11,12]) or as vanishing viscosity
limits of solutions to the Navier–Stokes system (see [10]). Note that, despite the large
number of ill-posedness results (see, e.g., Chiodaroli et al. [3–6]), the standard (admis-
sible) weak solutions that correspond to the caseR = 0 are not known to exist globally
in time for arbitrary initial data. (DW) solutions share many important properties with
the standard (admissible) weak solutions:

• Compatibility. Any (DW) solution, for which [�, m] are continuously differen-
tiable functions, is a classical solution. In particular, R = 0.

• Weak–strong uniqueness. A (DW) solution coincides with the strong solution
starting from the same initial data as long as the latter exists.
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Moreover, we have shown in [2] that the class of all (DW) solutions admits a
semiflow selection. In particular, the selected solutions are minimal with respect to
the relation “≺”:

[�1, m1, E1] ≺ [�2, m2, E2] ⇔ E1(τ±) ≤ E2(τ±) for any τ > 0.

The minimal solutions dissipate the maximal amount of the total energy, which is
in agreement with the commonly accepted maximal dissipation principle, see, e.g.,
Dafermos [7–9].

In this note, we show another interesting property of minimal (DW) solutions,
namely

E(τ ) −
∫

�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx → 0 as τ → ∞. (1.8)

In view of (1.6), (1.7), the Reynolds defect R vanishes in the asymptotic limit for
large times. This fact may be seen as another piece of evidence supporting physical
relevance of (minimal) (DW) solutions.
The paper is organized as follows. In Sect. 2, we introduce the necessary preliminary

material and state the main result. In Sect. 3, we prove (1.8).

2. Preliminaries and main result

We recall the concept of dissipative weak solution introduced in [2, Definition 2.1].

Definition 2.1. (Dissipative weak (DW) solution) Let � ⊂ Rd , d = 1, 2, 3 be a
bounded domain. We say that [�, m, E] is a dissipative weak (DW) solution of the
Euler system (1.1)–(1.4) in [0,∞) × � if the following holds:

• � ≥ 0, and

� ∈ Cweak,loc([0,∞); Lγ (�)), m ∈ Cweak,loc([0,∞); L
2γ

γ+1 (�; Rd)),

E ∈ BV [0,∞), E ≥ 0;
• [∫

�

�ϕ dx

]t=τ

t=0
=

∫ τ

0

∫
�

[
�∂tϕ + m · ∇xϕ

]
dx dt

for any τ ≥ 0, ϕ ∈ C1
c ([0,∞) × �);

• [∫
�

m · ϕ dx

]t=τ

t=0

=
∫ τ

0

∫
�

[
m · ∂tϕ + m ⊗ m

�
: ∇xϕ + p(�)divxϕ

]
dx dt

+
∫ τ

0

(∫
�

∇xϕ : dR(t)

)
dt
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for any τ ≥ 0, ϕ ∈ C1
c ([0,∞) × �; Rd), ϕ · n|∂� = 0, where

R ∈ L∞(0, T ;M+(�; Rd×d
sym ))

is called Reynolds defect;
• E : [0,∞) → [0,∞) is a non-decreasing function,

E(0−) ≡
∫

�

[
1

2

|m0|2
�0

+ P(�0)

]
dx,

E(τ+) −
∫

�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx

≥ d
∫

�

d (trace[R])(τ ) for a certain constant d > 0 (2.1)

for any τ ≥ 0.

As a matter of fact, the (DW) solutions introduced in [2] are defined as a barycenter
of a Young measure {νt,x }t>0,x∈�, specifically

�(t, x) = 〈
νt,x ; �̃

〉
, m(t, x) = 〈

νt,x ; m̃
〉
,

with the associated total energy

E =
∫

�

〈
νt,x ; 1

2

|m̃|2
�̃

+ P(�̃)

〉
dx +

∫
�

dE,

where E is the so-called energy concentration defect. As observed in [10], the two
definitions are equivalent.
Following [2], we introduce the relation≺ for two (DW) solutions [�1, m1, E1] and

[�2, m2, E2] starting from the same initial data [�0, m0],
[�1, m1, E1] ≺ [�2, m2, E2] ⇔ E1(τ±) ≤ E2(τ±) for all τ > 0.

Finally, we introduce the admissible (DW) solution, cf. [2, Definition 2.3].

Definition 2.2. (Admissible (DW) solutions) A dissipative weak solution [�, m, E]
is called admissible if it is minimal with respect to the relation ≺. Specifically, if
[�̃, m̃, Ẽ] is another dissipative solution starting from the same initial data and such
that

[�̃, m̃, Ẽ] ≺ [�, m, E],
then

E(τ±) = Ẽ(τ±) for any τ > 0.

We are ready to state our main result.
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Theorem 2.3. Let � ⊂ Rd be a bounded Lipschitz domain. Let [�, m, E] be an
admissible (DW) solution of the isentropic Euler system in the sense of Definition 2.2.

Then,

lim
τ→∞ E(τ ) = lim

τ→∞

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx, (2.2)

in particular,

ess sup
t>τ

‖R(t)‖M(�;Rd×d
sym )

→ 0 as τ → ∞.

The rest of the paper is devoted to the proof of Theorem 2.3.

3. Asymptotic behavior: proof of Theorem 2.3

The analysis leans on the following two results proved in [2].

Proposition 3.1. ([2, Proposition 3.2])
Let T ≥ 0 and the initial data �T , mT ,

�T ≥ 0, ET =
∫

�

[
1

2

|mT |2
�T

+ P(�T )

]
dx < ∞,

be given.
Then, the Euler system admits a global in time dissipative solution [�, m, E] in

[T ;∞) in the sense of Definition 2.1, specifically,

� ∈ Cweak,loc([T,∞); Lγ (�)), m ∈ Cweak,loc([T,∞); L
2γ

γ+1 (�; Rd)),

E ∈ BV [T,∞) non-increasing,

such that

0 ≤ E(τ±) ≤ ET ,

E(τ+) −
∫

�

1

2

|m(τ, ·)|2
�(τ, ·) P(�(τ, ·)) dx ≥ min

{
1

2
,

1

γ − 1

} ∫
�

d (trace[R])

for all τ > T .

Proposition 3.2. ([2, Theorem 2.5]) Given the initial data �0, m0,

�0 ≥ 0, E0 =
∫

�

[
1

2

|m0|2
�0

+ P(�0)

]
dx < ∞,

the Euler system admits a global in time admissible (DW) solution

� ∈ Cweak,loc([0, ∞); Lγ (Td )), m ∈ Cweak,loc([0, ∞); L
2γ

γ+1 (Td ; Rd )), E ∈ BV [0, ∞)

in the sense of Definition 2.2.



2812 E. Feireisl J. Evol. Equ.

We are ready to prove Theorem 2.3. Let [�, m, E] be an admissible (DW) solution
of the Euler system in [0,∞)×�, the existence of which is guaranteed by Proposition
3.2. As E is a non-increasing function, it admits a limit

E∞ = lim
τ→∞ E(τ ) ≥ 0.

Moreover, in view of (2.1),

E∞ ≥ lim sup
τ→∞

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx . (3.1)

Next, we claim the following result.

Lemma 3.3. Let T > 0 be arbitrary and denote

ET =
∫

�

[
1

2

|m|2
�

+ P(�)

]
(T, ·) dx .

Then,

E∞ ≤ ET .

Proof. Supposing the contrary, meaning

ET > E∞, (3.2)

wemay use Proposition 3.1 to construct a solution �̃, m̃ defined on the interval [T,∞),
with the initial data

�̃(T, ·) = �(T, ·), m̃(T, ·) = m(T, ·),
with the non-decreasing total energy Ẽ such that

Ẽ(τ±) ≤ ET for all τ ∈ (T,∞).

Finally, set

�̂ =
⎧⎨
⎩

� for t ∈ [0, T ),

�̃ for t ∈ [T,∞),

m̂ =
⎧⎨
⎩

m for t ∈ [0, T ),

m̃ for t ∈ [T,∞),

and

Ê(t) =
⎧⎨
⎩

E for t ∈ [0, T ),

E(T −)(≥ ET ≥)Ẽ(T +), t = T,

Ẽ for t ∈ (T,∞).

Obviously, [̂�, m̂] with the energy Ê is a dissipative solutions (cf. [2, Proposi-
tion 5.1 - continuation property]), and, in view of (3.2),

[̂�, m̂, Ê] ≺ [�, m, E] and lim
τ→∞ Ê(τ ) ≤ ET < E∞

in contrast with maximality of [�, m, E]. �
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In view of Lemma 3.3, any maximal (DW) solution satisfies

E∞ = lim
τ→∞ E(τ ) ≤

∫
�

[
1

2

|m|2
�

+ P(�)

]
(T, ·) dx

for any T > 0, in particular,

E∞ ≤ lim inf
τ→∞

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx,

which, together with (3.1), yields (2.2). We have proved Theorem 2.3.

4. Conclusion

We have shown that the “turbulent” energy E and the “intrinsic” energy

∫
�

[
1

2

|m|2
�

+ P(�)

]
dx

of any admissible (DW) solution [�, m] of the compressible Euler system coincide in
the asymptotic limit as τ → ∞, in particular, the limit

∫
�

[
1

2

|m|2
�

+ P(�)

]
(τ, ·) dx → E∞ as τ → ∞

exists. Accordingly, the Reynolds defect measureR in the momentum equation (1.4)
vanishes for τ → ∞, and the (DW) solutions behave asymptotically as the standard
weak solutions. As turbulent phenomena are usually attributed to the properties of the
system in the long run, this may be seen as a positive argument concerning physical
relevance of the (DW) solutions. We expect similar properties to hold for the (DW)
solutions of the complete Euler system introduced in [1].
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