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Abstract. We investigate limit models resulting from a dimensional analysis of quite general heterogeneous
catalysis models with fast sorption (i.e. exchange ofmass between the bulk phase and the catalytic surface of
a reactor) and fast surface chemistry for a prototypical chemical reactor. For the resulting reaction–diffusion
systems with linear boundary conditions on the normal mass fluxes, but at the same time nonlinear boundary
conditions on the concentrations itself, we provide analytic properties such as local-in-time well-posedness,
positivity, a priori bounds and comment on steps towards global existence of strong solutions in the class

W(1,2)
p (J × �;RN ), and of classical solutions in the Hölder class C(1+α,2+2α)(J × �;RN ). Exploiting

that the model is based on thermodynamic principles, we further show a priori bounds related to mass
conservation and the entropy principle.

1. Introduction

In chemical engineering, catalytic processes often play an important, if not pre-
dominant role: Certain chemical reactions taking place within a chemical reactor are
supposed to be accelerated, whereas other, usually undesirable, side reactions should
be suppressed. This aim can be accomplished by adding substanceswhich catalytically
act in the fluid mixture (homogeneous catalysis), or e.g. by using suitable coatings
for the reactor surface (active surface) which may then act as a catalytic surface to
accelerate the desirable reactions on the surface. In many cases, such heterogeneous
catalysis mechanisms are actually more efficient by several orders of magnitude than
homogeneous catalysts, and, moreover, one may often avoid the need for filtration
technology to separate the desired product from the catalyst. Heterogeneous cataly-
sis mechanisms and sorption processes may be modelled starting from a continuum
thermodynamic viewpoint by reaction–diffusion systems in the chemical reactor and
on the active surface which are coupled via sorption processes, i.e. the exchange of
mass between the boundary layer of the bulk phase and the active surface, cf. [20]. In
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accord with their purpose, catalytic accelerated chemical reactions on the surface are
very fast, i.e. both the surface chemistry (at least for the desired reactions) as well as
sorption processes take place on very small time scales. Hence, it is natural to consider
limit models, for which the surface chemistry and sorption are taken to be infinitely
fast, i.e. surface chemistry and sorption processes are modelled as if they would attain
an equilibrium configuration instantaneously. Using a dimensionless formulation of
such coupled reaction–diffusion–sorption bulk-surface systems, several of such limit
models have been proposed in [5], including a general formulation of such a fast sorp-
tion and fast surface chemistry model. The mathematical analysis of such systems has
been accomplished for the case of a three-component system with chemical reactions
of type A�

1 + A�
2 � A�

3 on the surface, neglecting any bulk chemistry (the latter
being no severe obstacle, and for the construction of (uniquely determined) strong
solutions not a highly relevant assumption). In the present manuscript, the mathemat-
ical analysis is continued for limit systems of the same structure, but for general bulk
and surface chemistry. In particular, the results on local-in-time existence of strong
solutions, positivity, first blow-up criteria as well as a priori estimates for the solutions
will be extended to the generic case.
The paper is organised as follows: In Sect. 2 some basic notation is introduced and

some preliminary results are recalled. Thereafter, in Sect. 3, the class of heteroge-
neous catalysis models considered in this manuscript is introduced and the underlying
modelling assumptions recalled from the article [5]. Section 4 constitutes the core
of this article and is split into subsections on Lp-maximal regularity of a linearised
version of the fast-sorption-fast-surface-chemistry model, on local-in-time existence
of strong W(1,2)

p -solutions and classical solutions in the Hölder class C(1,2)·(1+α), on
an abstract blow-up criterion as well as a priori bounds, e.g. entropy estimates, on the
solution. There is a vast amount of literature on reaction–diffusion-systems or general
parabolic systems in the bulk phase with homogeneous or inhomogeneous, linear or
nonlinear boundary conditions, e.g. [14,17] for a start, and quite recently thermody-
namic principles have become a resourceful driving force for entropy methods, e.g.
[11–13]. Astonishingly, however, up to now (at least to our knowledge) combined type
boundary conditions, i.e. systems where at a fixed boundary point z ∈ ∂� Dirichlet
type boundary conditions are imposed on some of the variables (or, a linear com-
bination thereof), whereas the remaining variables satisfy Neumann type boundary
conditions, have only been considered rarely in the literature, see, for example, [14,
Chapter 7, Section 10] and the references given therein. Instead, so far most authors
focussed on other types of generalisations: for example, in [1,16,21] parabolic sys-
tems with nonlinear boundary conditions have been considered, but these were always
assumed to be of a common order, cf., for example, the non-tangentiality condition
in [16]. In, for example, [6,10,19], general parabolic systems or reaction–diffusion-
systems with dynamic boundary conditions have been considered, i.e. typically two
parabolic systems in the bulk phase and on the surface are coupled. In [9], on the other
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hand, the authors consider more general structures leading to parabolic systems based
on the notion of a Newton polygon.

2. Notation and preliminaries

Throughout, all Banach spaces appearing are Banach spaces over F, the field of
real numbers R or complex numbers C, and |z| denotes the modulus of a real or
complex number z,Rz its real and Iz its imaginary part. Real or complex vectors (or,
vector fields) v = (v1, . . . , vN )T ∈ F

N will be typically denoted by small, Roman

letters in boldface and have Euclidean norm |v| =
√∑N

i=1 |vi |2, whereas matrices

M = [mi j ]i, j ∈ R
n×m (or Cn×m) most of the time are written in Roman capitals

and boldface. The set of natural numbers or integers are denoted by N = {1, 2, . . . , }
(or N0 = {0, 1, 2, . . .}) and Z = {. . . ,−1, 0, 1, . . .}, respectively, and vectors of
integers α = (α1, . . . , αN )T ∈ Z

N by small Greek letters in boldface, and with length
|α| = ∑N

i=1 |αi |, but ν = [νi, j ]i, j ∈ Z
N×M may also denote integer-valued matrices.

� ⊆ R
n typically denotes an open and nonempty subset of Rn , � its closure, ∂�

its boundary, and J ⊆ R an interval. Function spaces that are frequently used are
C(�) and C(�) (continuous functions on � and �, resp.), Ck(�) and Ck(�) (k ∈ N0

times continuous differentiable functions on � and �, resp.), Ck+γ (�) (k ∈ N0 times
continuously differentiable functions with bounded and γ ∈ (0, 1] Hölder continuous
derivatives of order k), Lp(�) (Lebesgue spaces of order p ∈ [1,∞], where as usual
function classes are identified with its representatives), Wk

p(�) (Sobolev spaces of
differentiability order k ∈ N0 and integrability order p ∈ [1,∞)), Ws

p(�) (Sobolev–
Slobodetskii spaces, s ∈ R+, p ∈ [1,∞]). Similarly, one also has their corresponding
boundary (for sufficiently regular boundary), Banach space E-valued and anisotropic
versions, e.g. Lp(�; E) (E-valued Lebesgue spaces), Lp(∂�) (Lebesgue spaces w.r.t.
surface measure) and

C(1,2m)·α(J × �) = Cα(J ;C0(�)) ∩ L∞(J ;C2mα(�)), m ∈ N, α ∈ R+,

W(1,2m)·s
p (J × �) = Ws

p(J ;Lp(�)) ∩ Lp(J ;W2ms
p (�)), m ∈ N, s ∈ R+

etc.

Remark 2.1. (Sobolev–Slobodetskii spaces and Besov spaces) Recall that for suffi-
ciently regular domains � ⊆ R

n , one has Bs
pp(�) = Ws

p(�) for s ∈ R+ \N0, but
Bk
pp(�) �= Wk

p(�) for k ∈ N and p �= 2.

For the definitions, basic properties and more information on these spaces, the
interested reader is referred to the literature, e.g. [2,3,15].

3. The model

In this paper, the following, rather general fast sorption and fast surface chemistry
limit model will be considered:
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⎧
⎪⎪⎨
⎪⎪⎩

∂t c+ div J = r(c) in (0,∞) × �,

〈ek, J · n〉 = 0 on (0,∞) × �, k = 1, . . . , N − m� =: n�,

exp(〈ν�,a,μν�,a 〉) = 1 on (0,∞) × �, a = 1, . . . ,m�,

(GFLM)

where the appearing variables and coefficients have the following physical interpreta-
tion and relations with each other.
Thermodynamic and geometric variables and vectors:

• c = (c1, . . . , cN )T : R×� → R
N denotes the vector field of molar concentra-

tions, i.e. ci (t, z) ∈ R is the molar concentration of the chemical substance Ai

at time t ∈ R in position z ∈ �, for i = 1, . . . , N ;
• J = [ j1 · · · jN ] : R×� → R

n×N for j i : R×� → R
n the vector field of

individual mass fluxes of species Ai , i = 1, . . . , N ;
• n : ∂� → R

n , the outer normal vector field to � on ∂�;
• r(c) = ∑m

a=1 Ra(c)νa , the vector field of total molar reaction rates in the bulk
phase, modelling chemical reactions given by the formal (reversible) chemical
reaction equations

N∑
i=1

αa
i Ai �

N∑
i=1

βa
i Ai , a = 1, . . . ,m,

where αa = (αa
1 , . . . , α

a
N )T, βa = (βa

1 , . . . , βa
N )T ∈ N

N
0 and the stoichiomet-

ric vector of the a-th reaction is given by νa = βa − αa ∈ Z
N . Moreover,

Ra(c) denotes the molar reaction rate (forward minus backward rate) for the
a-th chemical reaction in the bulk phase;

• ν�,a = β�,a − α�,a ∈ Z
N , a = 1, . . . ,m� , are the stoichiometric vectors of

the surface chemical reactions

N∑
i=1

α
�,a
i A�

i �
N∑
i=1

β
�,a
i A�

i , a = 1, . . . ,m�,

where α�,a = (α
�,a
1 , . . . , α

�,a
N )T, β�,a = (β

�,a
1 , . . . , β

�,a
N )T ∈ N

N
0 and the

adsorbed versions A�
i of species Ai .

Modelling assumptions:

• The bulk concentrations are assumed to be very small (compared to a charac-
teristic reference concentration cref of some solute which is not included in the
model, 0 ≤ ci (t,z)/cref � 1, dilute mixture), and the fluid in the bulk is at rest (the
basic problemwith vanishing barycentric velocity field which will be considered
here) or 〈v,∇ci 〉, i.e. the inner product between the barycentric velocity field v

and the gradient of individual concentrations, is considered as a perturbation, so
that Fickian diffusion,

ji = −di∇ci with some diffusion coefficients di > 0, i = 1, . . . , N
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is a reasonable (though, not thermodynamically consistent) model for the
diffusive fluxes;

• the chemical potentials μi in the bulk phase are modelled as those of an ideal
mixture with

μi (c, ϑ) = μ0
i (ϑ) + Rϑ ln xi , i = 1, . . . , N ,

whereμ0
i (ϑ) corresponds to some temperature-dependent chemical equilibrium

and xi = ci
c is the scalar field of molar fractions, where c = ∑N+1

i=1 ci is the total
concentration in the bulk phase, including the concentration of some solvent
AN+1. Instead of including the solvent AN+1 in the model, we replace c by
some constant approximation cref to the actual total concentration c, so that we
may consider the vector x = (x1, . . . , xN )T = c/cref and its dynamics instead
of c. Formally assuming cref = eRϑ , we then have μi (c, ϑ) = μ0

i (ϑ) + ln ci .
Additionally, an isothermal system is assumed; hence, μ0

i (ϑ) = μ0
i ∈ R is

simply a constant;
• themolar reaction rate Ra(c) of the a-th reaction is modelled (consistently with
the entropy principle) as Ra(c) = k f

a cα
a − kba c

βa
with k f

a , kba > 0 satisfying the
relation

k f
a

kba
= exp(〈νa,μ0〉),

for μ0 = (μ0
i )i .

• Throughout, we assume that all equilibria of the surface chemistry are detailed-
balanced, i.e.

ν�,1, . . . , ν�,m�

are linearly independent.

Then, ek ∈ R
N , k = 1, . . . , n� := N − m� , characterises linearly indepen-

dent conserved quantities under the surface chemistry, spanning the orthogonal
complement of the surface stoichiometric vectors {ν�,a : a = 1, . . . ,m�}.

Moreover, we use the notation ab := (ab11 , . . . , abmm ) for any two vectors a ∈ (0,∞)k ,
b ∈ R

k , k ∈ N.
Under these assumptions, and the additional assumption that the sorption processes

and surface chemistry take place very fast, i.e. on much smaller time scales than the
bulk diffusion and the bulk chemistry, it has been demonstrated in [5] that (GFLM)
is a reasonable limit model for the limiting case of infinitely fast surface chemistry
and sorption processes (actually, independent of whether one of these two fast ther-
modynamic mechanism is even ultra-fast), and the condensed form of the limit model
(including initial values) reads

∂t ci − di
ci = ri (c) in (0,∞) × �, i = 1, . . . , N , (1)

〈ek, D∂nc〉 = 0 on (0,∞) × �, k = 1, . . . , n�, (2)
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k f
a

N∏
i=1

c
α

�,a
i

i = kba

N∏
i=1

c
β

�,a
i

i on (0,∞) × �, a = 1, . . . ,m� = N − n�, (3)

c(0, ·) = c0, in (0,∞) × � (4)

where � = ∂� denotes the boundary of �, acting as an active surface, D =
diag(d1, . . . , dN ) is the diagonal matrix of (Fickian) diffusion coefficients, and some
initial values c0 : � → R

N are given.

4. Local-in-time well-posedness for general bulk and surface chemistry

This section is devoted to the local-in-time well-posedness analysis for generic fast
sorption and fast surface chemistry limit models of the form (1)–(4).

Under the imposedmodelling assumptions, the system (GFLM)under consideration
takes the form:

∂t c − D
c =
∑
a

ka
(
exp(〈αa, μ〉) − exp(〈 βa, μ〉)

)
νa f in (0,∞) × �,

〈ek , D∂n c〉 = 0 f on (0,∞) × �, k = 1, . . . , n�,

cν�,a = κa f on (0,∞) × �, a = 1, . . . ,m�,

(5)

with the equilibrium constant κa = exp(−〈ν�,a,μ0〉). A possible linearised (around
some sufficiently smooth reference vector field c∗ : (0,∞) × � → (0,∞)) version
of this nonlinear system is obtained by taking the partial derivatives

∂

∂ci
c|ν�,a

� = ν�
i

1

ci |� c|ν�,a

�

for ci |� �= 0, and reads

∂tv − D
v = f in (0,∞) × �,

〈ek, D∂nv〉 = gk on (0,∞) × �, k = 1, . . . , n�,

N∑
i=1

ν
�,a
i

vi

c∗
i
(c∗)ν�,a = ha on (0,∞) × �, a = 1, . . . ,m�,

or, for short,

∂tv − D
v = f , in (0,∞) × �, (LP)

〈ek, D∂nv|�〉 = gk on (0,∞) × �, k = 1, . . . , n�,

〈C∗
aν

�,a, v|�〉 = ha on (0,∞) × �, a = 1, . . . ,m�,

where C∗
a = (c∗|�)ν

�,a
diag(c∗

i |−1
� )Ni=1 : (0,∞) × � → R

N×N .

Remark 4.1. Since only concentrations ci , c�
i ≥ 0 have physical significance, only

linearisations around states for which all components are (uniformly) strictly positive,
i.e. only uniformly strict positive initial values, will be feasible by this approach
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towards linearisation. Regularisation effects for reaction–diffusion systems (cf. the
strict parabolic maximum principle), however, suggest that this is no severe restriction
as (under slight structural assumptions on the chemical reaction network) for any
initial values c0i ≥ 0, but not identically zero, the solution immediately becomes
strictly positive, cf. the strict maximum principle for reaction–diffusion equations
(see, for example, [18]).

The program of the remainder of this section is the following:

• Show Lp-maximal regularity of the linearised problem, provided sufficient reg-
ularity of the reference function c∗. This can be done based on abstract theory in
a slightly extended version of the results in [7,8], or with techniques presented in
[14, Chapter 7, Section 10], so thatmainly the validity of theLopatinskii–Shapiro
condition and regularity properties have to be checked.

• Use Lp-maximal regularity of the linearised problem and the contraction map-
ping principle to establish local-in-time existence for the fast sorption and fast
surface chemistry limit, provided the initial values are regular enough, have
uniformly strictly positive entries and satisfy suitable compatibility conditions.

• Moreover, this procedure will give a “natural” blow-up criterion for global-in
time existence, where by “natural” it is meant that this norm appears in the
contraction mapping argument for the local-in-time existence.

4.1. Lp-maximal regularity for the associated linear problem

To show that the linearised problem (LP) possesses the property of Lp-maximal
regularity, let us first consider the case of constant coefficients (i.e. a constant reference
function c∗ ∈ (0,∞)N ) and aflat boundary (i.e. consider the special case of a boundary
� = R

n−1 ×{0} for the half-space domain � = R
n−1 ×(0,∞)). The corresponding

linear initial-boundary value problem to be investigated, on the half-space, then takes
the general form of a parabolic reaction–diffusion system with boundary conditions
of inhomogeneous type. For technical reasons (unboundedness of the domain �), we
include a damping constant μ ≥ 0. The system then reads as

∂tv − D
v + μv = f , (t, z) ∈ J × � = (0,∞) × R
n−1 ×(0,∞),

〈ek, D ∂

∂zn
v〉 = gk, (t, z′) ∈ J × � = (0,∞) × R

n−1 ×{0}, k = 1, . . . , n�,

〈C∗
aν

�,a, v〉 = ha, (t, z′) ∈ J × �, a = 1, . . . ,m�,

v(0, ·) = v0, z ∈ R
n−1 ×(0,∞). (6)

Here, we write z = (z′, zn) ∈ R
n−1 ×R+ for the spatial variables, and the right-

hand sides—as the analysis of the linearised problem will reveal—have to satisfy the
following regularity conditions:

(1) f ∈ Lp(J × �;RN );

(2) g ∈ W(1,2)·(1/2−1/2p)
p (J × �;Rn�

);
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(3) h ∈ W(1,2)·(1−1/2p)
p (J × �;Rm�

);

(4) v0 ∈ W2−2/p
p (�;RN ).

The corresponding maximal regularity result on the half-space reads as follows:

Proposition 4.2 (Lp-maximal regularity on the half-space for constant coefficients).
Assume that c∗ ∈ (0,∞)N is a constant and let p ∈ (1,∞). Then, there is μ0 ≥
0 such that for all μ ≥ μ0, the half-space problem (6) admits a unique solution
v ∈ W(1,2)

p (J × �;RN ) if and only if f ∈ Lp(J × �;RN ), g ∈ W(1,2)·(1/2−1/2p)
p (J ×

�;Rn�

), h ∈ W(1,2)×(1−1/2p)
p (J×�;Rm�

)andv0 ∈ W2−2/p
p (�;RN ), and,moreover,

the following compatibility conditions are satisfied, if the respective time traces exist:

〈ek, D ∂

∂zn
v0〉 = gk |t=0, z′ ∈ R

n−1, k = 1, . . . , n�, (if p > 3),

〈C∗
aν

�,a, v0|�〉 = ha |t=0, z′ ∈ R
n−1, a = 1, . . . ,m�, (if p >

3

2
).

In this case, there is C = C(p, μ) > 0, independent of the boundary and initial
values, such that

∥∥v∥∥
W(1,2)

p
≤ C(p, μ)

(∥∥ f
∥∥
Lp

+ ∥∥g∥∥
W(1,2)·(1/2−1/2p)

p
+ ∥∥h∥∥

W1−1/2p
p

+ ∥∥v0∥∥
W2−2/p

p

)
.

Proof. Starting with the system of PDEs (6), taking the partial Laplace–Fourier trans-

formF for (λ, ξ ′) ∈ C
+
0 ×R

n−1, and setting y = zn , leads (formally) to the following
parameter-dependent initial value problems

(λ + di
∣∣ξ ′∣∣2)v̂i − di

∂2

∂y2
v̂i

+μv̂i (λ, ξ ′, y) = f̂i (λ, ξ ′, y), (λ, ξ ′, y) ∈ C
+
0 × R

n−1 ×(0,∞), i = 1, . . . , N ,

〈ek , D ∂
∂y v̂(λ, ξ ′, 0)〉 = ĝk(λ, ξ ′), (λ, ξ ′) ∈ C

+
0 × R

n−1, k = 1, . . . , n�,

〈C∗
aν

�,a, v̂(λ, ξ ′)〉 = ĥa(λ, ξ ′), (λ, ξ ′) ∈ C
+
0 × R

n−1, a = 1, . . . ,m�,

v̂(0, ξ , y) = v̂
0
(ξ , y), (ξ ′, y) ∈ R

n−1 ×(0,∞),

(7)

where v̂i = Fvi , f̂i = F fi etc. For fixed (λ, ξ) ∈ C
+
0 × R

n−1 \{(0, 0)}, the general
solution to the ODE in the first line of this system is

v̂i (λ, ξ ′, y) = exp

(((
λ+μ
di

+ ∣∣ξ ′∣∣2)1/2
)
y

)
v̂i,+(λ, ξ ′)

+ exp

((
−
(

λ+μ
di

+ ∣∣ξ ′∣∣2)1/2

y

))
v̂i,−(λ, ξ ′).

Aswe look for a solution in the class vi = F−1(v̂i ) ∈ Lp((0, T );Lp(R
n−1 ×(0,∞))),

one necessarily needs to have limy→∞ v̂i (λ, ξ ′, y) = 0 and hence, (provided the
square root z1/2 is chosen such that Rz1/2 > 0 for all z ∈ C

+
0 ) v̂i,+(λ, ξ ′) = 0 for a.e.

(λ, ξ ′) ∈ C
+
0 × R

n−1, and in that case

di
∂

∂y
v̂i (λ, ξ ′, 0) = −di

((
λ+μ
di

+ ∣∣ξ ′∣∣2)1/2
)

v̂i (λ, ξ ′, 0).
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To match the solution with the boundary conditions at � = R
n−1 ×{0}, we thus need

to solve the linear system

−〈ek, DRv(λ, ξ ′, 0)〉 = ĝk(λ, ξ), (λ, ξ ′) ∈ C
+
0 × R

n−1, k = 1, . . . , n�,

〈C∗
aν

�,a, v(λ, ξ ′, 0)〉 = ĥa(λ, ξ ′), (λ, ξ ′) ∈ C
+
0 × R

n−1, a = 1, . . . ,m�,

where R = diag
(
(
λ+μ
di

+ |ξ |2)1/2
)N
i=1

. This system is uniquely solvable for all (λ, ξ ′) ∈
C

+
0 × R

n−1 if and only if the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(e1)T

...

(en
�
)T

(D−1R−∗C∗
1ν

�,1)T

...

(D−1R−∗C∗
m�ν�,m�

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
N×N is invertible.

All matrices D, R and C∗
a are diagonal and the matrices

C∗
a = (c∗|�)ν

�,a
C̃, a = 1, . . . ,m

coincide with the N × N diagonal matrix C̃ = diag(c∗
i |�)−1

i=1,...,N up to a nonzero

factor (c∗|�)ν
�,a

. The matrix M is invertible if and only if

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( D̃ν�,1)T

...

( D̃ν�,m�
)T

(e1)T

...

(en
�
)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
N×N is invertible,

where D̃ = D−1R−∗C̃ is an N × N diagonal matrix with entries [ D̃]i i ∈ C
+
0 on

the diagonal. Due to Lemma 4.3, this is the case. Using the inverse partial-Fourier–
Laplace transformation F−1, system (6) for f = 0 thus has a unique solution which
is given by

v(t, x ′, y) = F−1(v̂)(t, x ′, y)

= F−1

(
diag

(
exp

(
−
(

λ + μ

di
+ ∣∣ξ ′∣∣2

)1/2

y

))
R−1D−1M−1

(− ĝ
ĥ

))
(t, x ′, y)

=: F−1
(
T̂λ,μ(ξ ′, y)R−1D−1M−1

(− ĝ
ĥ

))
(t, x ′, y).
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By Duhamel’s formula, the general solution of (6) is then given by

v(t, x ′, y) = F−1(T̂λ,μ(ξ ′, y)R−1D−1M−1

(
− ĝ
ĥ

)
+ (

T̂λ,μ ∗ f̂
)
(ξ ′, y)

)
(t, x ′, y),

where ∗ denotes convolution with respect to the variable y > 0, and v lies in
W(1,2)

p (R+ ×R
n), provided μ ≥ μ0 and μ0 ≥ 0 is chosen sufficiently large. This

solves the problem of Lp-maximal regularity for the constant coefficient case on the
half-space. �
For validation of the Lopatinskii–Shapiro condition, we employed the following:

Lemma 4.3. Let s,m ∈ N and N = s +m. Let v1, . . . , vm ∈ R
N and w1, . . . ,ws ∈

R
N be linearly independent, real vectors such that

〈vi ,w j 〉 = 0, i = 1, . . . ,m, j = 1, . . . , s.

Let δ j ∈ C, j = 1, . . . , N, be such that 0 �∈ conv{δ j : j = 1, . . . , N } and the matrix
M ∈ C

N×N be defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( Dv1)T
...

( Dvm)T

( w1)T

...

( ws)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where D = diag(δ1, . . . , δN ) ∈ C
N×N .

Then, M is invertible, i.e. Dv1, . . . , Dvm, w1, . . . ,ws form a basis of CN .

Proof. As M ∈ C
N×N is a square matrix, it suffices to demonstrate injectivity of M.

Let u ∈ N(M). Then, in particular,

0 = [Mu]m+ j =
N∑
i=1

w
j
i ui , i.e. u⊥w j , j = 1, . . . , s.

Therefore, there are γ i ∈ C, i = 1, . . . ,m, such that

u =
m∑
i=1

γiv
i .

Writing V = [
v1 · · · vm

] ∈ R
N×m , from Mu = 0 it follows VTDu = 0, thus

0 = VTDu = VTDVγ , for γ = (γ1, . . . , γm)T ∈ C
m .

In particular, since VT = V ∗ (as V has real entries), for the inner product on Cm one
finds

0 = 〈 V T D V γ , γ 〉Cm = 〈 D V γ , V γ 〉Cm =
m∑
i=1

δi

∣∣∣( V γ )i

∣∣∣
2
.
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As |(Vγ )i |2 ≥ 0 and 0 �∈ conv{δi : i = 1, . . . ,m}, this can only hold true if
u = Vγ = 0, hence M is injective. �

The general Lp-maximal regularity theorem (for bounded C2-domains �) can then
be derived via the standard technique, i.e. first a generalisation to the bend-space
problem and, thereafter, a localisation procedure. For these techniques to work prop-
erly, one needs additional conditions on the (then non-constant) reference function
c∗ : � → R

N . In our case, the bulk diffusion operator −D
 does not depend on
the spatial position z ∈ �. Therefore, there is no need to consider perturbations of
it, i.e. Asm = 0 in the language of [7,8]. Neither do the conserved quantities ek ,
k = 1, . . . , n� , but only the matrix C̃(z) = diag(c∗|�)−1(z) (which is C∗

a up to an

a-dependent factor (c∗|�)ν
�,a

) depends on the spatial position z ∈ �. Using the same
strategy as in [7], one may write

〈C∗
a(z)ν

�,a, v|�〉 = 〈C∗
a(z0)ν

�,a, v〉 + 〈(C∗
a(z) − C∗

a(z0))ν
�,a, v〉

=: 〈C∗
a(z0)ν

�,a, v〉 + 〈Csmall
a (z)ν�,a, v〉,

where Csmall
a (z) corresponds to a small perturbation of C∗

a(z0). As in [7], one may
then consider the problem

(λ − D
)v(λ, z) = f (λ, z), λ ∈ C
+
0 , z ∈ R

n−1 ×(0,∞),

〈ek , D ∂

∂y
v̂(λ, z′, 0)〉 = 0, λ ∈ C

+
0 , z′ ∈ R

n−1, k = 1, . . . , n�,

〈C∗
aν

�,a, v(λ, z′, 0)〉 = −〈Csmall
a ν�,a, v(λ, z′, 0)〉, λ ∈ C

+
0 , z′ ∈ R

n−1 .

Letting A0 = −D
 on the domain

D(A0) =
{
v ∈ W2

p(�;RN ) :
〈
ekD

∂

∂y
v|�

〉
= 0

(k = 1, . . . , n�), 〈Cν�,a, v|�〉 = 0 (a = 1, . . . ,m�)

}
,

one then derives a fixed point equation of the form:

v = (λ + A0)
−1 f −

m∑
j=1

S j
λ〈Csmallν�,a, v|�〉.

Proceeding as in [8], cf. the upcoming paper [4], one finds that one should demand
the following regularity of C̃ , hence of c∗:

There are s, r ≥ p with 1
s + n−1

2r < 1 − 1
2p such that

̃C ∈ W(1,2)·(1−1/2p)
s,r (J × �; R N×N ) := W1−1/2p

s

(J ;Lr (�; R N×N )) ∩ Ls(J ;W2−1/p
r (�; R N×N )),
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hence, the reference function c∗ should be uniformly positive and

c∗ ∈ W(1,2)·(1−1/2p)
s,r (J × �;RN )

:= W1−1/2p
s (J ;Lr (�;RN )) ∩ Ls(J ;W2−1/p

r (�;RN )).

Details will be provided in [4].

Remark 4.4. Note that for regularity of C̃, one has to consider the regularity of the
functions (c∗

k )
−1, hence of

∂

∂t

1

c∗
k

= − ∂t c∗
k

(c∗
k )

2 ,
∂

∂zi

1

c∗
k

= − ∂zi c
∗
k

(c∗
k )

2 ,
∂2

∂zi∂z j

1

c∗
k

= −∂zi ∂z j c
∗
k

(c∗
k )

2 − 2
∂zi c

∗
k∂z j c

∗
k

(c∗
k )

3 .

Provided c∗
k ≥ ε > 0 is (a.e.) uniformly positive, this implies that

∥∥1/c∗
k

∥∥
W(1,2)

p (J×�)
� 1

ε
+ 1

ε2

∥∥c∗
k

∥∥
W(1,2)

p (J×�)
+ 1

ε3

∥∥ ∣∣∇c∗
k

∣∣2 ∥∥
Lp(J×�)

,

where, provided W2
p(�) ↪→ L2p(�) (which is true for p ≥ n

4 ),
∥∥ ∣∣∇c∗

k

∣∣2 ∥∥
Lp(J×�)

�
∥∥c∗

k

∥∥2
Lp(J ;W2

p(�))
. Hence, for p ≥ n, it follows from c∗

k ∈ W(1,2)
p (J × �) and c∗

k ≥
ε > 0 that 1/c∗

k ∈ W(1,2)
p (J × �) as well.

Since the reference function should lie in the function class c∗ ∈ W(1,2)·(1−1/2p)
p (J ×

�;RN ) and be uniformly positive, one naturally may take s = r = p (other choices
are possible as long as the parabolic Sobolev index stays the same, namely 2 − n+2

p ),
and then the condition on the values of s and r (here, both equal p) reads

n + 1

2p
< 1 − 1

2p
⇔ p >

n + 2

2
.

Note that in this case the embeddingsW(1,2)
p (J×�) ↪→ C(J×�) andW2−2/p

p (�) ↪→
C(�) are continuous.

Theorem 4.5. Let p > n+2
2 and c∗ ∈ W(1,2)

p (J × �; (0,∞)N ), where J = (0, T )

for some T > 0 and � ⊆ R
n is a bounded C2-domain. Then, the linearised problem

∂tv − D
v = f , (t, z) ∈ (0,∞) × �,

〈ek, D ∂

∂n
v〉 = gk, (t, z) ∈ (0,∞) × �, k = 1, . . . , n�,

〈C∗
aν

�,a, v|�〉 = ha, (t, z) ∈ (0,∞) × �, a = 1, . . . ,m�,

v(0, ·) = v0, z ∈ �

has a unique solution in the function class v ∈ W(1,2)
p (J × �;RN ) if the data are

subject to the following regularity and compatibility conditions:

(1) f ∈ Lp(J × �;RN ) = Lp(J ;Lp(�;RN )),
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(2) g ∈ W(1,2)·(1/2−1/2p)
p (J×�;Rn�

) = W
1/2−1/2p
p (J ;Lp(�;Rn�

))∩Lp(J ;W1−1/p
p

(�;Rn�

),
(3) h ∈ W(1,2)·(1−1/2p)

p (J × �) = W1−1/2p
p (J ;Lp(�;Rm�

)) ∩ Lp(J ;W2−1/p
p

(�;Rm�

)),
(4) v0 ∈ W2−2/p

p (�;RN ),
(5) 〈C∗

aν
�,a, v0|�〉 = ha |t=0,

(6) 〈ek, D ∂
∂nv0|�〉 = gk |t=0 (if p > 3).

In this case, the solutiondepends continuously on thedata, i.e. for someC = C(n,�) >

0 independent of the data it holds that

∥∥v∥∥
W(1,2)

p
≤ C

(∥∥ f
∥∥
Lp

+ ∥∥g∥∥
W(1,2)·(1/2−1/2p)

p
+ ∥∥h∥∥

W(1,2)·(1−1/2p)
p

+ ∥∥v0∥∥
W2−2/p

p (�)

)
.

A proof of this result will follow from a subsequent paper on the extension of the
abstract results in [7,8] to the case of combined type boundary conditions, see [4].

More precisely, the following result will be demonstrated in [4].

Theorem 4.6. (Lp-maximal regularity) Let E be a Banach space of classHT , m ∈ N

and � ⊆ R
n be a domain with compact boundary of class ∂� ∈ C2m. For j =

1, . . . ,m let m j ∈ N0 and linear, continuous projections P j,k ∈ B(E) such that
P j,kP j,k′ = 0 for k �= k′ and E = ⊕m j

k=0 R(P j,k) for every j = 1, . . . ,m j , be given.
Let p ∈ (1,∞) and suppose that assumptions (E), (LS), (SD), (SB) and (RB) hold
true:
Let linear differential operators A(t, x, D) and B j (t, x, D) and their principle

parts be defined via their symbols

A(t, z, ξ) =
∑

|α|≤2m

αα(t, z)ξ α, B j (t, z, ξ) =
m j∑
k=0

∑
∣∣∣ β
∣∣∣≤k

β j,k, β(t, z)ξ βP j,k .

(E) Ellipticity of the interior symbol: For all t ∈ J , z ∈ � and ξ ∈ §n−1 it holds
that

σ(A(t, z, ξ)) ⊆ C
+
0 ,

i.e. A(t, z, D) is normally elliptic. If � is unbounded, the same condition is
imposed at z = ∞.

(LS) Lopatinskii–Shapiro condition: For all t ∈ J , z ∈ ∂� and all ξ ∈ R
n with

ξ ·n(z) = 0, and all λ ∈ C
+
0 such that (λ, ξ) �= (0, 0), the initial value problem

λv(y) + A#(t, z, ξ + i n(z) ∂
∂y )v(y) = 0, y > 0,

B j,#(t, z, ξ + i n(z)
∂

∂y
)v(0) = h j , j = 1, . . . ,m,

has a unique solution in the class v ∈ C0(R+; E).
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(SD) There are rl , sl ≥ p with 1
sl

+ n
2mrl

< 1 − l
2m such that

aα ∈ Lsl (J ; [Lrl + L∞](�;B(E))), |α| = l < 2m,

aα ∈ Cl(J × �;B(E)), |α| = 2m.

(SB) There are s j,k,l , r j,k,l ≥ p with 1
s j,k,l

+ n−1
2mr j,k,l

< κ j,k + l−k
2m such that

b j,k,β ∈ W
(1,2m)·κ j,k
s j,k,l ,r j,k,l (J × ∂�;B(E)), |β| = l ≤ k ≤ m j .

(RB) For every j = 1, . . . ,m and k = 0, 1, . . . ,m j it holds that

b j,k,β(R(P jk)) ⊆ R(P jk), |β| = k.

Then, the problem

∂t u + A(t, z, D)u = f (t, z), t ∈ J, z ∈ �,

B j (t, z, D)u = g j (t, z), t ∈ J, z ∈ ∂�, j = 1, . . . ,m,

u(0, z) = u0(z), z ∈ � (8)

has a unique solution in the class

u ∈ W(1,2m)
p (J × �; E)

if and only if the data f , g and u0 are subject to conditions (D) as follows:

(D) Assumptions on the data:
(i) f ∈ Lp(J × �; E),

(ii) g j,k ∈ W
(1,2m)·κ j,k
p (J × ∂�; E), where κ j,k = 2m−k−1/p

2m , and we then set

g j = ∑m j
k=0 g j,k .

(iii) u0 ∈ W2m(1−1/p)
p (�; E),

(iv) if κ j,k > 1/p, then B j (0, z)P j,ku0(z) = g j,k(0, z) for z ∈ ∂�.

In the concrete situation of this manuscript, we may choose m = 1 and E = R
N ,

aα(t, z) = D for α = 2ei , i = 1, . . . , N , and aα(t, z) = 0 otherwise. Moreover
b j,1,ek (t, z)v = 〈e j , ν · Dv〉ek for k = 1, . . . , n� , and b1,0,0(t, z)v = b1,1,0v =∑

a〈C∗
a(t, z)ν

�,a, v〉en�+a , a = 1, . . . ,m� . Furthermore, P1,1 is the (orthogonal)
projection in R

N onto span{D−1ek : k = 1, . . . , n�} and P1,0 is the (orthogonal)
projection in RN onto {D−1ek : k = 1, . . . , n�}⊥. Thus,

[B1(t, x, D)u]k = 〈ek, ν · D∇(P1,1u)〉 + 0 · P1,0u

= 〈ek, D∂νu〉, k = 1, . . . , n�,

[B1(t, x, D)u]n�+a = 〈C∗
a(t, z)ν

�,a, u〉P1,1 + 〈C∗
a(t, z)ν

�,a, u〉P1,0

= 〈C∗
a(t, z)ν

�,a, u〉, a = 1, . . . ,m� = N − n�.

As typical for many semi-linear systems, Lp-maximal regularity, and (in this case)
Lp-Lq -estimates can be employed to find a (unique) strong solution of the quasi-linear
problem. This will be the aim of the next subsection.
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4.2. Local-in-time existence of strong solutions, blow-up criteria and a priori bounds

Having maximal regularity for the linearised problem at hand, we may now come
back to the semilinear problem. Lp-maximal regularity will play the typically crucial
role in the construction of strong solutions via the contraction mapping principle.
Thereby, rather as a by-product, a condition for continuation of the solution to a
maximal solution will be established, where in general the solution may be global
in time (which might be expected for a large subclass of the systems considered
here), or one may observe a blow-up in finite time. Whereas the boundedness of the
W2−2/p

p -norm cannot be guaranteed in general, or more precisely, it is unclear whether
boundedness holds true without any restriction on the bulk and surface chemistry,
for slightly weaker norms a priori bounds are possible, indeed. The latter will be
considered in the second part of this subsection.

4.2.1. Local-in-time existence and maximal continuation of solutions

Recall the form of the fast sorption and fast surface chemistry limit (5), and addi-
tionally consider given initial values c0 : � → R

N which should be regular enough
(in a sense to be made precise later on):

∂t c− D
c =
∑
a

(
k f
a c

αa − kba c
βa
)

νa, (t, z) ∈ (0,∞) × �, (5’)

〈ek, D∂nc〉 = 0, (t, z) ∈ (0,∞) × �, k = 1, . . . , n�,

cν
�,a = exp(−〈ν�,a,μ0(ϑ)〉), (t, z) ∈ (0,∞) × �, a = 1, . . . ,m�,

c|t=0 = c0, z ∈ �.

Moreover, let T0 > 0 be any fixed, finite time horizon and c∗ : (0, T0) × � → R
N

be a (sufficiently regular) auxiliary function which admits a time trace and c∗|t=0 =
c0. Introducing v(t, z) := c(t, z) − c∗(t, z) leads to the reaction–diffusion–sorption
system for v as follows:

∂tv − D
v = ∑
a

(
k f
a (v + c∗)αa − kba (v + c∗)βa

)
νa

−[∂t − D
]c∗ in (0, T0) × �,

〈ek , D∂nv〉 = −〈ek , D∂nc∗〉 on (0, T0) × �, k = 1, . . . , n�,

〈C∗
aν

�,a, v〉 = 〈C∗
aν

�,a, v〉−(c∗+v)ν
�,a +exp(−〈ν�,a, μ0(ϑ)〉) on (0, T0) × �, a = 1, . . . ,m�,

v|t=0 = 0 in �,

where C∗
a = (c∗)−ν�,a

diag(c∗)−1 : (0, T0) × � → R
N×N . Next, assume that p >

n+2
2 , and for τ > 0 consider the nonlinear solution operator

�τ : D0 ⊆ W(1,2)
p

(
(0, τ ) × �;RN

)
→ W(1,2)

p

(
(0, τ ) × �;RN

)

given by v �→ w, where

D0 =
{
v ∈ W(1,2)

p ((0, τ ) × �;RN ) : v|t=0 ≡ 0
}
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and w is the unique strong solution to the linear problem

∂tw − D
w =
∑
a

(
k f
a (v + c∗)αa − kba(v + c∗)β

a
)

νa

−(∂t − D
)c∗ in (0, τ ) × �,

〈ek, D∂nw〉 = −〈ek, D∂nc∗〉 on (0, τ ) × �, k = 1, . . . , n�,

〈C∗
aν

�,a,w〉 = 〈C∗
aν

�,a, v〉 − (c∗ + v)ν
�,a

+ exp(−〈ν�,a,μ0(ϑ)〉) on (0, τ ) × �, a = 1, . . . ,m�,

w|t=0 = 0 in �.

This problem can now be handled in the way typical for semi-linear parabolic prob-
lems, employing the maximal regularity of the linearised problem and the regularity
of the nonlinear maps on the right-hand side, which allows for a fixed point argument
via the contraction mapping principle. To establish the regularity properties which
are needed, one first needs the following auxiliary result on embedding properties of
W(1,2)

p (J × �) for bounded intervals J and bounded C2-domains �.

Lemma 4.7. Let p ∈ ( n+2
2 ,∞) and � ⊆ R

n be a bounded C2-domain. Fix T0 > 0.
For T ∈ (0, T0] and

D0(T ) = W̊(1,2)
p ((0, T ] × �) :=

{
u ∈ W(1,2)

p ((0, T ) × �) : u(0) = 0
}

,

the embedding constants for the continuous embeddings

D0(T ) ↪→ C(J × �)

can be chosen independently of T ∈ (0, T0), e.g. Cp = 21/pCp(T0) where Cp(T0) is
an embedding constant for T = T0.

Proof. Since for u ∈ D0(T ) one has u(0) = 0, it follows that

ũ(t, ·) :=

⎧
⎪⎪⎨
⎪⎪⎩

u(t, ·), t ∈ [0, T ],
u(T − t, ·), t ∈ (T, 2T ],
0, t > 2T

defines a function ũ ∈ W(1,2)
p (R+ ×�) and for its restriction to [0, T0] × � it holds

that

∥∥ũ∥∥
W(1,2)

p ((0,T0)×�)
≤ 21/p

∥∥u∥∥
W(1,2)

p ((0,T )×�)
,

∥∥ũ∥∥∞ = ∥∥u∥∥∞.

From here the assertion follows easily. �
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Theorem 4.8 (Local-in-time existence of strong solutions). Let p > n+2
2 and assume

that � ⊆ R
n is a bounded domain of class ∂� ∈ C2. Then, the fast sorption and fast

surface chemistry limit problem (5’) admits a unique local-in-time strong solution, if

c0 ∈ I+p (�) := {c0 ∈ W2−2/p
p (�; (0,∞)N ) : 〈ek, D∂nc0|�〉 = 0,

c0|ν�,a

� = exp(−ν�,a · μ0(ϑ))}.
More precisely, for every reference initial values cref ∈ I+p (�), there are T > 0, ε > 0
and C > 0 such that the following statements hold true:

(1) For all c0 ∈ I+p (�) with
∥∥c0 − cref

∥∥
Ip(�)

< ε, there is a unique strong solution

c ∈ W(1,2)
p (J × �; (0,∞)N ) of (5’) for J = [0, T ].

(2) Forany two initial values c0, c̃0 ∈ I+p (�)with
∥∥c0−cref

∥∥
W2−2/p

p
,
∥∥c̃0−cref

∥∥
W2−2/p

p

< ε and corresponding strong solutions c, c̃ ∈ W(1,2)
p (J × �;RN ) one has

∥∥c− c̃
∥∥
W(1,2)

p (J×�)
≤ C

∥∥c0 − c̃0
∥∥
W2−2/p

p (�)
.

(3) Any strong solution c ∈ W(1,2)
p (J × �) can be extended in a unique way to a

maximal (Hölder) strong solution c : [0, Tmax) × � → (0,∞)N (with Tmax ∈
(0,∞]), where c ∈ W(1,2)

p ((0, T ) × �; (0,∞)N ) for every T ∈ (0, Tmax).

Proof. Let η > 0 and initial values

c0 ∈ Iηp(�) := {c0 : c0i ≥ η (i = 1, . . . , N ) on �}
be given. Let ρ0, T0 > 0 be such that

∥∥v∥∥∞ ≤ η

4
for all v ∈ Dρ,T := {v ∈ W(1,2)

p ((0, T ) × �; R N ) :
v(0, ·) = 0,

∥∥v∥∥
W(1,2)

p ((0,T )×�)
≤ ρ},

where ρ ∈ (0, ρ0], T ∈ (0, T0]. (Such a choice is possible, e.g. by Lemma 4.7.)More-
over, letE be a linear, continuous extensionoperator fromW2−2/p

p (�) toW(1,2)
p ((0, T0)

× �) and from C(�) to C([0, T0] × �). Moreover, w.l.o.g. assume that Ev ≥ η
2 on

(0, T0) × � whenever v ≥ η on �, and let ρ0 ≤ η
3C(T0)

where C(T0) > 0 is a

common embedding constant for the continuous embeddings W̊(1,2)
p ((0, T ] × �) ↪→

C([0, T ] × �) from Lemma 4.7. Then, Ec0 + v ≥ η
6 for all ρ ∈ (0, ρ0], T ∈ (0, T0]

and v ∈ Dρ,T on (0, T ) × �.

We are looking for a solution c ∈ W(1,2)
p ((0, T )×�;RN ) of the reaction–diffusion

system with linear, combined type boundary conditions

∂t c− D
c = r(c) in (0, T ) × �,

−〈ek, D∂nc〉 = 0 on (0, T ) × �, k = 1, . . . , n�,

cν
�,a = κa(> 0) on (0, T ) × �, a = 1, . . . ,m�,
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c(0, ·) = c0 in �.

We set c∗ := Ec0 ∈ W(1,2)
p ((0, T0) × �;RN ) and v := c− c∗. Then, in order for c to

be the solution to the reaction–diffusion–sorption system considered here, v has to be
the solution to the following initial-boundary value problem:

∂tv − D
v = r(c∗ + v) − (∂t − D
)c∗ in (0, T ) × �, (∗)

−〈ek, D∂nv〉 = 〈ek, D∂nc∗〉 on (0, T ) × �, k = 1, . . . , n�,

(c∗ + v)ν
�,a = κa on (0, T ) × �, a = 1, . . . ,m�,

v(0, ·) = 0 in �.

To derive a semilinear formulation of this problem, we rewrite the nonlinear boundary
conditions on v as follows. By Taylor’s series, we may write

(c∗ + v)ν
�,a = (c∗)ν�,a +

N∑
i=1

ν
�,a
i vi

(c∗)ν�,a

c∗
i

+ Qq(v, c∗)

for a function Qa which is continuously differentiable of arbitrary order, at least on
{
(v, c∗) ∈ R

N ×(0,∞)N : vi + c∗
i > 0

}
.

Hence, we may express the nonlinear boundary condition (c∗ + v)ν
�,a = κa in the

equivalent semilinear form

〈C∗
aν

�,a, v〉 =
N∑
i=1

ν
�,a
i vi

(c∗)ν�,a

c�
i

= κa − (c∗)ν�,a − Qa(v, c∗).

Then, v ∈ Dρ,T is a solution v ∈ W(1,2)
p ((0, T ) × �;RN ) of (∗) if and only if

∂tv − D
v = r(c∗ + v) − (∂t − D
)c∗ in (0, T ) × �, (∗∗)

−〈ek, D∂nv〉 = 〈ek, D∂nc∗〉 on (0, T ) × �, k = 1, . . . , n�,

〈C∗
aν

�,a, v〉 = κa − (c∗)ν�,a − Qa(v, c∗) on (0, T ) × �, a = 1, . . . ,m�,

v(0, ·) = 0 in �.

Therefore, v ∈ Dρ,T is a solution to (∗), if and only if v ∈ Dρ,T is a fixed point of

the (well defined, due to the choice of ρ0, T0) map � : Dρ,T → W(1,2)
p ((0, T ) ×

�;RN ) defined as follows: For v ∈ Dρ,T let �(v) := w be the unique solution to the
inhomogeneous, parabolic initial-boundary value-problem

∂tw − D
w = r(c∗ + v) − (∂t − D
)c∗ =: f (c∗, v) in (0, T ) × �,

−〈ek , D∂nw〉 = 〈ek , D∂nc∗〉 =: gk(c∗) on (0, T ) × �, k = 1, . . . , n�,

C∗
aν

�,aw = κa − (c∗)ν�,a − Qa(v, c∗) =: ha(c∗, v) on (0, T ) × �, a = 1, . . . ,m�,
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w(0, ·) = 0 in �.

By Lp-maximal regularity of the linearised problem, the solutionw ∈ W(1,2)
p ((0, T )×

�;RN ) exists and is uniquely determined, for every v ∈ Dρ,T . That is, � is well
defined. Since the initial values w(0, ·) = 0 are zero for all the functions constructed
in this way, the constant CT = CT0 > 0 in the maximal regularity estimate
∥∥�(v)

∥∥
W(1,2)

p ((0,T )×�)
≤ CT0

(∥∥ f (c∗, v)
∥∥
Lp((0,T )×�)

+ ∥∥g(c∗)
∥∥
W(1,2)·(1/2−1/2p)

p ((0,T )×�)
+ ∥∥h(c∗, v)

∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)

)

for v ∈ Dρ,T can be chosen independently of T ∈ (0, T0]. This can be seen, for
example, by using the following mirroring type argument: Set

f̃ (t, ·) =
{
f (t, ·), t ∈ [0, T ],
0, t > T,

, g̃(t, ·) =

⎧
⎪⎪⎨
⎪⎪⎩

g(t, ·), t ∈ [0, T ],
g(2T − t, ·), t ∈ (T, 2T ),

0, t > 2T,

h̃(t, ·) =

⎧
⎪⎪⎨
⎪⎪⎩

h(t, ·), t ∈ [0, T ],
h(2T − t), ·), t ∈ (T, 2T ),

0, t > 2T,

and consider the problem with time horizon T0:

∂tw − D
w = f̃ in (0, T0) × �,

−〈ek, D∂nw〉 = g̃k on (0, T0) × �, k = 1, . . . , n�,

C∗
aν

�,aw = h̃a on (0, T0) × �, a = 1, . . . ,m�,

w(0, ·) = 0 in �.

Then, there is a constant C = C(T0) (from Lp-maximal regularity) such that
∥∥w∥∥

W(1,2)
p ((0,T0)×�)

≤ C
(∥∥ f̃

∥∥
Lp((0,T0)×�)

+ ∥∥ g̃∥∥
W(1,2)·(1/2−1/2p)

p ((0,T0)×�)

+∥∥h̃∥∥
W(1,2)·(1−1/2p)

p ((0,T0)×�)

)
.

Then, by construction (and uniqueness of solutions), w|[0,T ]×� is the solution to the
problem with time horizon T ∈ (0, T0] for the given data ( f , g, h) and
∥∥w|[0,T ]×�

∥∥
W(1,2)

p ((0,T )×�)
≤ ∥∥w∥∥

W(1,2)
p ((0,T0)×�)

≤ C

(∥∥ f̃
∥∥
Lp((0,T0)×�)

+ ∥∥ g̃∥∥
W(1,2)·(1/2−1/2p)

p ((0,T0)×�)
+ ∥∥h̃∥∥

W(1,2)·(1−1/2p)
p ((0,T0)×�)

)

≤ 21/pC

(∥∥ f
∥∥
Lp((0,T0)×�)

+ ∥∥g∥∥
W(1,2)·(1/2−1/2p)

p ((0,T0)×�)
+ ∥∥h∥∥

W(1,2)·(1−1/2p)
p ((0,T0)×�)

)
.

We will demonstrate that ρ ∈ (0, ρ0] and T ∈ (0, T0] can be chosen such that �

is a contractive self-mapping on Dρ,T , and hence attains a unique fixed point by the
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contractionmapping principle. To this end, we show that for suitably small ρ ∈ (0, ρ0]
and T ∈ (0, T0], � is a strictly contractive mapping from Dρ,T into Dρ,T .
First, note that since

∥∥v∥∥∞ ≤ η
3 for every v ∈ Dρ,T with ρ ∈ (0, ρ0], T ∈ (0, T0], we

may denote by
∥∥r∥∥ and ∥∥Qa

∥∥ the respective norms as functions on [ η
6 ,
∥∥c∗∥∥∞ + η

4 ]N .
Secondly, we will frequently use that v(0, ·) = ṽ(0, ·) ≡ 0, g(c∗)|t=0 = g(c0) ≡ 0
(as c0 satisfies the compatibility conditions) and h(c∗, v) = h(c∗, ṽ) ≡ 0. Therefore,
for every v, ṽ ∈ Dρ,T and ρ ∈ (0, ρ0], T ∈ (0, T0], and after fixing some auxiliary

value p̃ ∈ (
n+2/2, p

)
, hence W̊(1,2)

p̃ ((0, T ]×�) ↪→ C([0, T ]×�)with an embedding
constant C(T0) that can be used uniformly for all T ∈ (0, T0], we obtain estimates

∥∥r(c∗ + v)
∥∥
Lp((0,T )×�)

≤ (T |�|)1/p∥∥r∥∥∞,
∥∥r(c∗ + v) − r(c∗ + ṽ)

∥∥
Lp((0,T )×�)

≤ ∥∥r ′∥∥∞
∥∥v − ṽ

∥∥
Lp((0,T )×�)

= ∥∥r ′∥∥∞

(∫ T

0

∥∥
∫ t

0
∂tv(s, ·) − ∂t ṽ(s, ·) ds∥∥p

Lp(�)
dt

)1/p

≤ ∥∥r ′∥∥∞T 1/p
∥∥∂tv − ∂t ṽ

∥∥
Lp((0,T )×�)

≤ ∥∥r ′∥∥∞T 1/p
∥∥v − ṽ

∥∥
W(1,2)

p ((0,T )×�)
,

∥∥gk(c∗)
∥∥
W(1,2)·(1/2−1/2p)

p ((0,T )×�)
≤ C

∥∥∂nc∗
∥∥
W(1,2)·(1/2−1/2p)

p ((0,T )×�)
,

∥∥ha(c∗, v)
∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)
≤ ∥∥(c∗)ν�,a − κa

∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)

+ ∥∥Qa(v, c∗)
∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)
,

∥∥ha(c∗, v) − ha(c∗, ṽ)
∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)

= ∥∥Qa(v, c∗) − Qa(ṽ, c∗)
∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)
.

Here, the critical terms in the estimates for the norms of ha can be estimated as follows:
∥∥Qa(v, c∗) − Qa(ṽ, c∗)

∥∥
W(1,2)·(1−1/2p)

p ((0,T )×�)

≤ C(T0)
∥∥Qa(v, c∗) − Qa(ṽ, c∗)

∥∥
W(1,2)

p ((0,T )×�)
as v|t=0 = ṽ|t=0 = 0, with

∥∥Qa(v, c∗) − Qa(ṽ, c∗)
∥∥
Lp((0,T )×�)

≤ ∥∥∂vQa
∥∥∞

∥∥v − ṽ
∥∥
Lp((0,T )×�)

≤ ∥∥∂vQa
∥∥∞(T |�|)1/p∥∥v − ṽ

∥∥
W(1,2)

p ((0,T )×�)
;

and for the time derivative
∥∥∂t (Qa(v, c∗) − Qa(ṽ, c∗))

∥∥
Lp((0,T )×�)

≤ ∥∥∂vQa(v, c∗) · ∂tv − ∂vQa(ṽ, c∗) · ∂t ṽ
∥∥
Lp((0,T )×�)

+ ∥∥∂c∗Qa(v, c∗) · ∂t c∗ − ∂c∗Qa(ṽ, c∗) · ∂t c∗
∥∥
Lp((0,T )×�)

≤ ∥∥∂vQa(v, c∗) · (∂tv − ∂t ṽ)
∥∥
Lp((0,T )×�)

+ ∥∥(∂vQa(v, c∗)

− ∂vQa(ṽ, c∗)) · ∂t ṽ)
∥∥
Lp((0,T )×�)
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+ ∥∥∂c∗Qa(v, c∗) · ∂t c∗ − ∂c∗Qa(ṽ, c∗) · ∂t c∗
∥∥
Lp((0,T )×�)

≤ ∥∥∂2vQa
∥∥∞

∥∥v∥∥∞
∥∥∂tv−∂t ṽ

∥∥
Lp((0,T )×�)

+∥∥∂2vQa
∥∥∞

∥∥v − ṽ
∥∥∞

∥∥∂t ṽ
∥∥
Lp((0,T )×�)

+ ∥∥∂v∂c∗Qa
∥∥∞

∥∥v − ṽ
∥∥∞

∥∥∂t c∗
∥∥
Lp((0,T )×�)

≤ C(T0)T
1/p−1/p̃

∥∥v − ṽ
∥∥
W(1,2)

p ((0,T )×�)
;

for the second-order spatial derivatives,
∥∥∇2Qa(v, c∗) − ∇2Qa(ṽ, c∗)

∥∥
Lp((0,T )×�)

≤ ∥∥∂2vQa(v, c∗) : (∇v ⊗ ∇v) − ∂2vQa(ṽ, c∗) : (∇ṽ ⊗ ∇ṽ)
∥∥
Lp((0,T )×�)

+ 2
∥∥∂v∂c∗Qa(v, c∗) : (∇v ⊗ ∇c∗) − ∂v∂c∗Qa(ṽ, c∗) : (∇ṽ ⊗ ∇c∗)

∥∥
Lp((0,T )×�)

+ ∥∥∂2c∗Qa(v, c∗) : (∇c∗ ⊗ ∇c∗) − ∂2c∗Qa(ṽ, c∗) : (∇c∗ ⊗ ∇c∗)
∥∥
Lp((0,T )×�)

≤ ∥∥∂2vQa(v, c∗) : (∇v ⊗ ∇v − ∇ṽ ⊗ ∇ṽ)
∥∥
Lp((0,T )×�)

+
∥∥(∂2vQa(v, c∗) − ∂2vQa(ṽ, c∗)) : (∇ṽ ⊗ ∇ṽ)

∥∥
Lp((0,T )×�)

+ 2
∥∥∂v∂c∗Qa(v, c∗) : ((∇v − ∇ṽ) ⊗ ∇c∗)

∥∥
Lp((0,T )×�)

+ 2
∥∥(∂v∂c∗Qa(v, c∗) − ∂v∂c∗Qa(ṽ, c∗)) : (∇ṽ ⊗ ∇c∗)

∥∥
Lp((0,T )×�)

+ ∥∥(∂2c∗Qa(v, c∗) − ∂2c∗Qa(ṽ, c∗)) : (∇c∗ ⊗ ∇c∗)
∥∥
Lp((0,T )×�)

≤ ∥∥∂2vQa
∥∥∞(

∥∥∇v
∥∥∞ + ∥∥∇ṽ

∥∥∞)
∥∥∇v − ∇ṽ

∥∥
Lp((0,T )×�)

+
∥∥∂3vQa

∥∥∞
∥∥v − ṽ

∥∥∞
∥∥∇ṽ

∥∥2
L2p((0,T )×�)

+ 2
∥∥∂v∂c∗Qa

∥∥∞
∥∥∇v − ∇ṽ

∥∥
Lp((0,T )×�)

∥∥∇c∗
∥∥∞

+ 2
∥∥∂2v ∂c∗Qa

∥∥∞
∥∥v − ṽ

∥∥∞
∥∥∇ṽ

∥∥
Lp((0,T )×�)

∥∥∇c∗
∥∥∞

+ ∥∥∂v∂
2
c∗Qa

∥∥∞
∥∥∇v − ∇ṽ

∥∥∞
∥∥∇c∗

∥∥2
L2p((0,T )×�)

≤ 2C∗∗∥∥∂2vQa
∥∥∞(T |�|)1/2pρ∥∥v − ṽ

∥∥
W(1,2)

p ((0,T )×�)

+ C∗∗∥∥∂3vQa
∥∥∞(T |�|)1/2pρ2

∥∥v − ṽ
∥∥
W(1,2)

p ((0,T )×�)

+ 2C∗∗∥∥∂v∂c∗Qa
∥∥∞(T |�|)1/2p∥∥∇c∗

∥∥∞
∥∥v − ṽ

∥∥
Lp((0,T )×�)

+ 2
∥∥∂2v ∂c∗Qa

∥∥∞(T |�|)3/2pρ∥∥∇c∗
∥∥∞

∥∥v − ṽ
∥∥
W(1,2)

p ((0,T )×�)

+ C∗∗∥∥∂v∂
2
c∗Qa

∥∥∞
∥∥∇c∗

∥∥2
L2p((0,T )×�)

∥∥v − ṽ
∥∥
W(1,2)

p ((0,T )×�)
,

where C∗∗ = C∗∗(T0) > 0 is a common constant for the continuous embeddings
W̊(1,2)

p ((0, T ]×�) ↪→ C([0, T ];C1(�)) and W̊(1,2)
p ((0, T ]×�) ↪→ L2p((0, T );W1

2p
(�)) with T ∈ (0, T0]. Standard arguments now give that for suitable choice of
ρ ∈ (0, ρ1], T ∈ (0, T1] (for some ρ1 ∈ (0, ρ0] and T1 ∈ (0, T0]), the map �

is a strictly contractive mapping from Dρ,T into Dρ,T (here, �(Dρ,T ) ⊆ Dρ,T as
0 ∈ Dρ,T ), thus by the strict contraction principle admits a unique fixed point vfix =
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�(vfix) ∈ W̊(1,2)
p ((0, T ] × �). Then, c := c∗ + vfix is the unique solution of the

fast sorption and fast surface chemistry limit reaction diffusion system. Here, the
uniqueness is valid first only in the class c ∈ c∗ + Dρ,T , then arguing by contradiction

shows that c is actually unique in the class c ∈ W(1,2)
p ((0, T ) × �;RN ).

Moreover, for c∗,0 ∈ Iηp(�),η > 0 sufficiently small and initial values c0 ∈ Bη(c∗,0) ⊆
Iηp(�) close to c∗,0, there is a common choice of parameters ρ0 and T2 to make the

respective maps � = �c0 strictly contractive self-mappings for any ρ ∈ (0, ρ0] and
T ∈ (0, T2], so that for all these initial values the solution exists and is unique at least
on the time interval (0, T2). Also it can be seen that as the maps �c0 continuously
depend on the initial values, so do the fixed points, hence the solutions to the fast
sorption and fast surface chemistry reaction–diffusion-limit system. �

From the proof we may extract blow-up criteria for solutions which are not global
in time.

Corollary 4.9 (Blow-up criterion). Either Tmax = ∞ (global existence), or Tmax <

∞ and
∥∥c(t)∥∥

W2−2/p
p (�;RN )

→ ∞ (blow-up) or minz∈� ci (t, z) → 0 (degeneration)

for some i ∈ {1, . . . , N } as t → Tmax.

Remark 4.10. The inclusion of the case min ci (t, z) → 0 for some i is due to the
chosen linearisation around the reference function. To have enough regularity for
C = diag(c|�)−1, one needs uniform positivity of the solution candidate c, thus on
the initial value c0. Therefore, this approach breaks down as min ci (t, ·) → 0.

4.2.2. Local-in-time existence of classical solutions in Hölder class

Analogous to the case of strong W(1,2)
p -solutions, we may also deduce existence of

local-in-time classical solutions in the Hölder class

c ∈ C(1,2)·(1+α)([0, T ] × �;RN ) = C1+α([0, T ];C(�);RN )) ∩ L∞([0, T ];
C2+2α(�);RN ).

Theorem 4.11 (Local-in-time existence of classical solutions in Hölder class). Let
α ∈ (0, 1/2) and � ⊆ R

n be a bounded domain of class ∂� ∈ C2+2α . Then, the
fast sorption and fast surface chemistry limit problem (5’) admits a unique classical
solution in the Hölder class C(1,2)·(1+α), if

c0 ∈ I+α (�) :=
{
c0 ∈ C2+2α(�; (0,∞)N ) : 〈ek, D∂nc0|�〉 = 0,

c0|ν�,a

� = exp(−〈ν�,a,μ0(ϑ)〉)
}

.

More precisely, for every reference initial value cref0 ∈ I+α (�), there are T > 0, ε > 0
and C > 0 such that the following statements hold true:

(1) For all c0 ∈ I+α (�)with
∥∥c0− cref0

∥∥
Iα(�)

< ε, there is a unique classical solution

in the Hölder class c ∈ C(1,2)·(1+α)(J × �; (0,∞)N ) of (5’) for J = [0, T ].
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(2) For any two initial values c0, c̃0 ∈ I+α (�) with
∥∥c0 − cref

∥∥
C2+α(�)

,
∥∥c̃0 −

cref
∥∥
C2+α(�)

< ε and corresponding classical solutions c, c̃ ∈ C(1,2)·(1+α)(J ×
�;RN ) one has

∥∥c− c̃
∥∥
C(1,2)·(1+α)(J×�)

≤ C
∥∥c0 − c̃0

∥∥
C2+2α(�)

.

(3) Any (Hölder) classical solution c ∈ C(1,2)·(1+α)(J × �) can be extended in
a unique way to a maximal (Hölder) classical solution c : [0, Tmax) × � →
(0,∞)N (with Tmax ∈ (0,∞]) with c ∈ C(1,2)·(1+α)((0, T ) × �; (0,∞)N ) for
every T ∈ (0, Tmax).

Proof. We may proceed as in the case of strong W(1,2)
p -solutions and consider a ref-

erence function cref ∈ C2+2α(�) and ε > 0 such that 0 < 2ε ≤ cref on �. Choosing
c0 ∈ C2+2α(�) with

∥∥c0 − cref
∥∥
C2+2α ≤ ε thus implies that c0 ≥ ε on �. Now, let

T (·) denote the strongly continuous semigroup on C2α(Rn) generated by the operator
A = D
 with D(A) = C2+2α(Rn), and set

c∗(t, ·) = T (t)Ec0 +
∫ t

0
T (t − s)E r(c0) ds, t ≥ 0,

where E ∈ B(C2+2α(�);C2+2α(Rn)) ∩ B(C(�);C(Rn)) is any bounded, linear ex-
tension operator (which exists as ∂� ∈ C2+2α). Then, Ec0, E r(c0) ∈ C2+2α(Rn) =
D(A), hence, c∗ ∈ C(R+;C2+2α(Rn)) ∩ C1(R+;C2α(Rn)). Moreover, by maximal
Hölder regularity [14, TheoremVII.10.3], it follows from r(Ec0) ∈ C(1,2)·α(R+ ×R

n)

that, actually, c∗ ∈ C(1,2)·(1+α)([0, T ] × R
n) for every T > 0. By the classical max-

imum principle (and suitable choice of E) we may find T0 > 0 such that c∗ ≥ ε
2 on

[0, T0], for every initial value c0 with
∥∥c0 − cref

∥∥
C2+2α ≤ ε.

Let us fix ρ0 ≤ ε/(3
∥∥E∥∥B(C(�);C(Rn))

) and T0 > 0 as above. Then, for every

c0 ∈ I+α (�) with
∥∥c0 − c∗

∥∥
C2+2α ≤ ε, a function c ∈ C(1,2)·(1+α)([0, T ] × �) is

a classical solution to the reaction–diffusion–sorption problem

∂t c− D
c = r(c) in (0, T ) × �,

−〈ek, D∂nc〉 = 0 on (0, T ) × �,

(c)ν
�,a = κ on (0, T ) × �,

c(0, ·) = c0 in �,

if and only if the difference function v := c − c∗ solves the semilinear parabolic
system

∂tv − D
v = r(c∗ + v) − r(c0) in (0, T ) × �,

−〈ek, D∂nv|�〉 = 〈ek, D∂nc∗|�〉 on (0, T ) × �,

C∗
aν

� = κa − (c∗)ν�,a − Qa(v, c∗) on (0, T ) × �,

v(0, ·) = 0 in �
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with Qa defined as in the local-in-time existence proof for strong W(1,2)
p -solutions.

We remark that Q(v, c∗)|t=0 = Qa(0, c0) = 0, r(c∗)|t=0 = r(c0) as well as κa −
(c∗)ν�,a |{0}×� = κa − (c0)ν

�,a |� = 0 and 〈ek, D∂nc∗|{0}×�〉 = 〈ek, D∂nc0|�〉 = 0.
This allows to seek for v as a fixed point of the map

� : Dρ,T :=
{
v ∈ C(1,2)·(1+α)([0, T ] × �) :
v|t=0 = 0,

∥∥v∥∥C(1,2)·(1+α) ≤ ρ
} → C(1,2)·(1+α)([0, T ] × �)

defined by �(v) := w, where w is the classical solution to the quasi-autonomous
problem

∂tw − D
w = r(c∗ + v) − r(c0) in (0, T ) × �,

−〈ek, D∂nw|�〉 = 〈ek, D∂nc∗|�〉 on (0, T ) × �,

〈C∗
aν

�,a,w|�〉 = κa − (c∗)ν�,a − Qa(v, c∗) on (0, T ) × �,

w(0, ·) = 0.

We may now proceed as for the case of strong solutions, one helpful result being the
auxiliary Lemma 4.12.
Details are left to the reader. �

Let us write

C̊(1,2)·(1+α)([0, T ] × �;RN ) =
{
v ∈ C(1,2)·(1+α)([0, T ] × �;RN ) : v(0, ·) = 0

}
,

C̊(1,2)·(1/2+α)((0, T ]×�;Rn�

) =
{
g ∈ C(1,2)·(1/2+α)([0, T ] × �;Rn�

) : g(0, ·)=0
}

.

Lemma 4.12 (Locally uniform maximal regularity constant). Let α > 0 and � ⊆
R
n be a bounded domain of class ∂� ∈ C2+2α . Moreover, let T0 > 0 and c∗ ∈

C(1,2)·(1+α)([0, T ] × �;RN ) with c∗ ≥ ε > 0 be given. Then, there is a con-
stant C = C(T0, ε,

∥∥c∗∥∥C(1,2)·(1+α) ) > 0 such that for every T ∈ (0, T0] and every

f ∈ C(1,2)·α([0, T ] × �;RN ), g ∈ C̊(1,2)·(1/2+α)((0, T ] × �;Rn�

) there is a unique
solution v ∈ C̊(1,2)·(1+α)([0, T ] × �;RN ) of the linear parabolic initial-boundary
value problem

∂tv − D
v = f in (0, T ) × �,

−〈ek, D∂nv|�〉 = gk on (0, T ) × �,

〈C∗
aν

�,a, v|�〉 = ha on (0, T ) × �,

v(0, ·) = 0 in �

and it holds the estimate

∥∥v∥∥C(1,2)·(1+α)([0,T ]×�)
≤ C

(∥∥ f
∥∥
C(1,2)·α([0,T ]×�)

+ ∥∥g∥∥C(1,2)·(1/2+α)([0,T ]×�)

+∥∥h∥∥C(1,2)·(1+α)([0,T ]×�)

)
.
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Proof. As demonstrated (for the half-space case) in Proposition 4.2 in combina-
tion with Lemma 4.3, the Lopatinskii–Shapiro condition is satisfied, so that Hölder-
maximal regularity follows by [14, Theorem VIII.10.4] (where for nonzero initial
values complying with the compatibility condition, the maximal regularity constant
may, in general, depend on T ∈ (0, T0] as well). Let us demonstrate that for zero initial
values, the maximal regularity constant may be chosen uniformly for T ∈ (0, T0].
To see this, let χ ∈ C∞(R) be any function such that χ ≡ 1 on (−∞, 4

3 ] and χ ≡ 0 on
[5/3,∞), say. Given any T ∈ (0, T0], and f , g, h as in the statement of the theorem,
we may now extend these functions by setting

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̃f (t, x) =

⎧
⎪⎪⎨
⎪⎪⎩

f (t, x), t ∈ [0, T ], x ∈ �,

f (2T − t, x), t ∈ (T, 2T ], x ∈ �,

0, t > 2T, x ∈ �,

̃g(t, x) =

⎧
⎪⎪⎨
⎪⎪⎩

g(t, x), t ∈ [0, T ], x ∈ �,

g(2T − t, x), t ∈ (T, 2T ], x ∈ �,

0, t > 2T, x ∈ �,

̃h(t, x) =

⎧
⎪⎪⎨
⎪⎪⎩

h(t, x), t ∈ [0, T ], x ∈ �,

2ξ
( t−T

T

) h(T, x) − h(2T − t, x), t ∈ (T, 2T ], x ∈ �,

0, t > 2T, x ∈ �.

Then, for α ∈ (0, 1/2] one easily deduces that f̃ ∈ C(1,2)·α(R+ ×�;RN ) and g̃ ∈
C(1,2)·(1/2+α)(R+ ×�;Rn�

) with norms

∥∥ f̃
∥∥
C(1,2)·α(R+ ×�)

= ∥∥ f
∥∥
C(1,2)·α([0,T ]×�)

,
∥∥ g̃∥∥C(1,2)·(1/2+α)(R+ ×�)

= ∥∥g∥∥C(1,2)·(1/2+α)([[0,T ]×�)
.

For h̃, we obtain that

∥∥h̃(t, ·)∥∥C2+2α(�)
≤ 3

∥∥χ∥∥∞
∥∥h∥∥C([0,T ];C2+2α(�)

for every t ≥ 0,

∥∥∂t h̃(t, ·)∥∥∞ ≤ 3
∥∥χ∥∥∞

∥∥∂th
∥∥∞ + sup

τ∈[T,2T ]

∥∥∥∥
2

T
χ ′( τ−T

T )h(T, ·)
∥∥∥∥∞

≤ 3
∥∥χ∥∥∞

∥∥∂th
∥∥∞ + 2

T

∥∥χ ′∥∥∞
∫ T

0

∥∥∂th(τ, ·)∥∥∞ dτ

≤ 3
∥∥χ∥∥∞

∥∥∂th
∥∥∞+ 2

T

∥∥χ ′∥∥∞
∫ T

0
τα [∂th]Cα([0,T ];C(�)) dτ

≤ 3
∥∥χ∥∥∞

∥∥∂th
∥∥∞ + 2

1 + α

∥∥χ ′∥∥∞T α [∂th]Cα([0,T ];C(�))

≤ 3
∥∥χ∥∥∞

∥∥∂th
∥∥∞ + 2

1 + α

∥∥χ ′∥∥∞T α
0 [∂th]Cα([0,T ];C(�)) ,

∥∥∂t h̃(t, ·) − ∂t h̃(s, ·)∥∥∞ ≤ ∥∥χ∥∥∞
∥∥∂th(2T − t, ·) − ∂th(2T − s, ·)∥∥∞
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+ 2

T

∣∣χ ′( t−T
T ) − χ ′( s−T

T )
∣∣ ∥∥h(T, ·)∥∥∞

≤ ∥∥χ∥∥∞ [∂h]Cα([0,T ];C(�)) |s − t |α
+ [

χ ′]
Cα |s − t |α ∥∥h∥∥∞, for s, t ∈ [T, 2T ],

∥∥∂t h̃(t, ·) − ∂t h̃(s, ·)∥∥∞ = ∥∥ 2

T
χ ′( t−T

T )h(T, ·) + ∂th(2T − t, ·) − ∂th(s, ·)∥∥∞

≤ 2

T

∣∣χ ′( t−T
T ) − χ ′(0)

∣∣ ∥∥h(T, ·)∥∥∞
+ ∥∥χ∥∥∞

∥∥∂th(2T − t, ·) − ∂th(s, ·)∥∥∞

≤ 2

T

∣∣∣∣
t − T

T

∣∣∣∣
α [

χ ′]
α

∫ T

0

∥∥∂th(τ, ·)∥∥∞ dτ

+ ∥∥χ∥∥∞ |2T − t − s|α [∂ th]Cα([0,T ];C(�))

≤ 2

T

∣∣∣∣
t − T

T

∣∣∣∣
α [

χ ′]
α

∫ T

0
τα [∂th]Cα([0,T ];C(�)) dτ

+ ∥∥χ∥∥∞ |2T − t − s|α [∂ th]Cα([0,T ];C(�))

= 2

1 + α
|t − T |α [χ ′]

α
[∂th]Cα([0,T ];C(�))

+ ∥∥χ∥∥∞ |2T − t − s|α [∂ th]Cα([0,T ];C(�))

≤ 2

1 + α
|t − s|α [χ ′]

α
[∂th]Cα([0,T ];C(�))

+ ∥∥χ∥∥∞ |t − s|α [∂ th]Cα([0,T ];C(�))

for 0 ≤ s ≤ T ≤ t ≤ 2T .

Therefore, there is a constant C = C(α), independent of T ∈ (0, T0] and T0 > 0 such
that

∥∥h̃∥∥C(1,2)·(1+α)(R+ ×�)
≤ C

∥∥h∥∥C(1,2)·(1+α)([0,T ]×�)
.

We may therefore consider v = ṽ|[0,T ]×� as the restriction to time t ∈ [0, T ] of the
solution of the parabolic initial-boundary value problem on (0, T0)

∂t ṽ − D
ṽ = f̃ in (0, T ) × �,

−〈ek, D∂nṽ〉 = g̃k on (0, T ) × �,

〈C∗
aν

�,a, ṽ〉 = h̃a on (0, T ) × �,

ṽ(0, ·) = 0 in �,

and may deduce that
∥∥v∥∥C(1,2)·(1+α)([0,T ]×�)

≤ ∥∥ṽ∥∥C(1,2)·(1+α)([0,T0]×�)

≤ C(T0)
(∥∥ f̃

∥∥
C(1,2)·α([0,T0]×�)

+ ∥∥ g̃∥∥C(1,2)·(1/2+α)([0,T0]×�)
+ ∥∥h̃∥∥C(1,2)·(1+α)([0,T0]×�)

)

≤ C(T0)
(∥∥ f

∥∥
C(1,2)·α([0,T ]×�)

+ ∥∥g∥∥C(1,2)·(1/2+α)([0,T ]×�)
+ ∥∥h∥∥C(1,2)·(1+α)([0,T ]×�)

)
.

�
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4.2.3. A priori bounds on the strong solution of the fast sorption and fast surface
chemistry model

In the previous subsection, it has been noticed that a bound on the phase space norm∥∥ · ∥∥
W2−2/p

p
is enough for establishing global existence of a strong solution. To derive

such a bound, however, is a delicate matter, and it is not clear whether global existence
holds true in all cases. On the other hand, for some weaker norms at least a priori
bounds can be established for free. The derivation of these a priori bounds is based on
the parabolic maximum principle and entropy considerations, highlighting the fruitful
interplay between mathematics and physics, and will be presented in this subsection.

Theorem 4.13 (A priori bounds). Let c0 ∈ I+p (�) ∩ C2(�;RN ) and c ∈ C(1,2)

([0, Tmax) × �;RN+) be a maximal classical solution to the fast sorption and fast
surface chemistry limit problem

∂t c− D
c = r(c), t ≥ 0, z ∈ �,

−〈ek, D∂nc〉 = 0, t ≥ 0, z ∈ �, k = 1, . . . , n�,

k f
a c

α�,a = kba c
β�,a

t ≥ 0, z ∈ �, a = 1, . . . ,m�,

c(0, ·) = c0, z ∈ �.

Further, assume that there is a conserved quantity with strictly positive entries, i.e.
there is

e ∈ (0,∞)N ∩ {
νa : a = 1, . . . ,m

}⊥ ∩ {
ν�,a : a = 1, . . . ,m�

}⊥
.

Then, for every T0 ∈ (0, Tmax] ∩ R there is C = C(T0) > 0, also depending on the
initial value c0, such that the following a priori bounds hold true:

(1) Lt∞Lz
1—a priori estimate:

sup
t∈[0,T0)

∥∥c(t, ·)∥∥L1(�;RN )
≤ C

∥∥c0∥∥L1(�;RN )
,

where the constant can actually be chosen independently of c0 and T0, but only
depends on the ratio between the smallest and largest entry of e ∈ (0,∞)N ;

(2) Lt
1L

z∞—a priori estimate:

sup
z∈�

∥∥c(·, z)∥∥L1([0,T0);RN )
≤ C;

(3) Lt
2L

z
2—a priori estimate:

∥∥c∥∥L2([0,T0)×�;RN )
≤ C;

(4) Moreover, provided the surface chemistry is constructed from thermodynamic
principles, i.e. the affinity Aa = μ�

i ν�
i vanishes for chemical equilibria, and
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μ�
i = μi |� = μ0

i + ln ci |� for equilibria for adsorption and desorption, the
following entropy identity holds true:

∫

�

ci (t, z)(μ0
i + ln ci (t, z) − 1) dz

+
∫ t

0

∫

�

N∑
i=1

di
|∇ci (s, z)|2
ci (s, z)

dz ds +
m∑

a=1

∫ t

0

∫

�

( N∑
i=1

ln(ci )ν
a
i

)

(
exp

( N∑
i=1

ln(ci )ν
a
i

) − 1

)
dz ds

=
∫

�

c0i (z)(μ
0
i ln c

0
i (z) − 1) dz, t ∈ [0, T0).

Proof. Lt∞Lz
1--a priori estimate: Since e ∈ (0,∞)N is a conserved quantity for both

the bulk and surface chemistry, 〈r(c), e〉 = 〈r�(c), e〉 = 0 for all values of c, where
r�(c) = k f

a cα
�,a −kba c

β�,a
. Thus, using regularity properties of parameter-dependent

integrals and the divergence theorem, for every t ∈ [0, T0) it holds that
d

dt

∫

�

〈c(s, z), e〉 dz =
∫

�

〈∂t c(t, z), e〉 dz =
∫

�

〈D
c(t, z), e〉 dz +
∫

�

〈r(c(t, z)), e〉 dz

=
∫

�

〈D
c(t, z), e〉 dz =
∫

∂�

〈D∂nc(t, z), e〉 dσ(z) = 0.

As a result,
∫

�

〈c(t, z), e〉 dz =
∫

�

〈c0(z), e〉 dz, t ∈ [0, T0)

and, since e ∈ (0,∞)N , the map c �→ ∫
�

∑N
i=1 |ci (z)| ei dz defines a norm which is

equivalent to the standardL1-normon theLebesgue spaceL1(�;RN ).More precisely,

∥∥c(t, ·)∥∥L1(�;RN )
≤ 1

mini ei

∫

�

〈c0(z), e〉 dz ≤ maxi ei
mini ei

∥∥c0∥∥L1(�;RN )
,

establishing the first a priori estimate with

C = maxi ei
mini ei

independent of T0 > 0 and the initial value c0.
Lt
1L

z∞--a priori estimate: To derive the L1L∞-a priori bound, let us consider the
function w : [0, T0) × � → [0,∞) defined by

w(t, z) =
∫ t

0
〈Dc(s, z), e〉 ds, t ∈ [0, T0), z ∈ �.

As a parameter integral of a C(1,2)-function,w has the regularityw ∈ C2([0, T0)×�)

and using elementary results on parameter-dependent integrals, the evolution (5) and
the assumption that e is a conserved quantity, we establish the estimate

∂tw(t, z) = 〈Dc(t, z), e〉 ≤ dmax〈c(t, z), e〉
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= dmax

(∫ t

0
〈∂t c(s, z), e〉 ds + 〈c0(z), e〉

)

= dmax

(∫ t

0
〈D
c(s, z), e〉 + 〈r(c(s, z)), e〉 ds + 〈c0(z), e〉

)

= dmax

(∫ t

0
〈D
c(s, z), e〉 ds + 〈c0(z), e〉

)

= dmax

(

w(t, z) + dmax〈c0(z), e〉

)
, t ∈ [0, T0), z ∈ �

∂nw(t, z) =
∫ t

0
〈D∂nc(s, z), e〉 ds = 0, t ∈ [0, T0), z ∈ ∂�

w(0, z) = 0, z ∈ �.

Therefore, w ≥ 0 satisfies the system of differential inequalities

∂tw − dmax
w ≤ dmax〈c0, e〉, t ∈ [0, T0), z ∈ �

∂nw = 0, t ∈ [0, T0), z ∈ ∂�

w(0, z) = 0, z ∈ �.

From the parabolic maximum principle for differential inequalities, it then follows
that there is C > 0 (depending on T0 and c0) such that

0 ≤ w(t, z) ≤ C, t ∈ [0, T0), z ∈ �

and, consequently, one finds that

∥∥c(·, z)∥∥L1([0,T0);RN )
≤ C, z ∈ �.

Lt
2L

z
2--a priori estimate: For the L2-estimate, let us fix T ∈ (0, T0). Employing inte-

gration by parts, Fubini’s theorem, the no-flux boundary conditions on the conserved
part and the fundamental theorem of calculus, we find for the integral

∫ T

0

∫

�

〈Dc, e〉〈c, e〉 dz dt

=
∫ T

0

∫

�

〈Dc(t, z), e〉
(




∫ t

0
〈Dc(s, z), e〉 ds + 〈Dc(t, z), e〉〈c0(z), e〉

)
dz dt

=
∫ T

0

∫

�

〈Dc(t, z), e〉

∫ t

0
〈Dc(s, z), e〉 ds dz dt

+
∫ T

0

∫

�

〈Dc(t, z), e〉〈c0(z), e〉 dz dt

= −
∫

�

∫ T

0
∇〈Dc(t, z), e〉 · ∇

∫ t

0
〈Dc(s, z), e〉 ds dt dz

+
∫ T

0

∫

�

〈Dc(t, z), e〉
∫ t

0
〈D∂nc(s, z), e〉 ds dσ(z) dt
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+
∫ T

0

∫

�

〈Dc(t, z), e〉)〈c0(z), e〉 dz dt

= −1

2

∫

�

∣∣∣∣
∫ T

0
∇〈Dc(t, z), e〉 dt

∣∣∣∣
2

dz +
∫ T

0

∫

�

〈Dc(t, z), e〉)〈c0(z), e〉 dz dt

≤
∫ T

0

∫

�

〈Dc(t, z), e〉)〈c0(z), e〉 dz dt

≤ dmax

dmin
T
∥∥〈c0, e〉∥∥L∞(�)

∥∥〈Dc0, e〉∥∥L1(�)
, T ∈ (0, T0),

where in the last step it has been used that c ≥ 0 and, therefore,
∫

�

〈Dc(t, z), e〉 dz ≤ dmax

∫

�

〈c(t, z), e〉 dz = dmax

∫

�

〈c0(z), e〉 dz

≤ dmax

dmin

∫

�

〈Dc0, e〉 dz.

One may thus take

C = dmax

dmin
T0
∥∥c0 · e∥∥L∞(�)

∥∥Dc0 · e∥∥L1(�)
.

Entropy identity: By the theorem on derivatives of parameter-dependent integrals, and
as the derivative of the function (0,∞) ∈ x �→ x(ln x − 1) is ln x for all x ∈ (0,∞),
one finds that

d

dt

∫

�

∑
i

ci (μ
0
i + ln(ci ) − 1) dz

=
∫

�

∂t ci (μ
0
i + ln(ci )) dz =

∫

�

∑
i

(di
ci + ri (c))(μ0
i + ln(ci ))

= −
∫

�

∑
i

di |∇ci |2
ci

dz +
∫

�

∑
i

(μ0
i + ln(ci ))di∂nci dσ(z)

+
∫

�

∑
i

ri (c)(μ0
i + ln ci ) dz

The assertion will be established if
∑

i (μ
0
i + ln(ci ))di∂nci dσ(z) = 0 can be proved.

From the boundary conditions 〈ek, ∂n(Dc)〉 = 0, there are scalar functions ηa :
[0, T0) × � → R such that ∂n(Dc)|� = ∑m�

a=1 ηaν
�,a . Hence,

∑
i

(μ0
i + ln(ci ))di∂nci = 〈μ0 + ln(c), ∂n(Dc)〉

=
∑
a

ηa〈μ0 + ln(c), ν�,a〉 =
∑
a

ηa

N∑
i=1

(μ0
i + ln(ci ))ν

�,a
i

= 0
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by assumption since for all times t ≥ 0 and at all positions z ∈ � the sorption
processes and the surface chemistry are in equilibrium. Therefore, this contribution
to the sum vanishes, and the entropy identity follows by the fundamental theorem of
calculus. �
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