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Abstract. This paper is devoted to the large time decay of solutions of a three-dimensional Stokes-Magneto
equations. It is shown that, when initial data belong to L2, weak solutions of the equations decay to zero in
L3/2,∞ × L2 without a uniform rate, and this decay estimate is optimal. Furthermore, the optimal temporal
decay estimates for weak solutions are established when initial data belongs to L1 ∩ L2.

1. Introduction

In this paper, we study the following equations

−ν�u + ∇ p∗ = b · ∇b in R+ × R
3, (1.1)

∂t b + u · ∇b − η�b = b · ∇u in R+ × R
3, (1.2)

∇ · u = 0, ∇ · b = 0, (1.3)

b|t=0 = b0. (1.4)

Here u is the velocity field, b is the magnetic field, p∗ = p+ 1
2 |b|2 is the total pressure,

p is the pressure, ν > 0 is the viscosity coefficient and η > 0 is themagnetic resistivity
coefficient.
Equations (1.1)–(1.3) is obtained by removing the advective terms (∂t +u ·∇)u from

the u equation of the magnetohydrodynamics (MHD) equations. It is well-known
that MHD equations, which was first derived by Alfvén, govern the motion of the
electrically conducting fluids arising from plasmas, liquid metals, and electrolytes,
etc (see [12]). It is also known that MHD equations are one of the most important
equations in the study of phenomena arising fromgeophysics, astrophysics, cosmology
and engineering (see, e.g., [2,5]).

Equation (1.1)–(1.3) is closely connected with the method of magnetic relaxation
(see [14]). When η = 0, Moffatt [16] argued that (1.1)–(1.3) on a smooth bounded
domain � should produce a magnetostatic equilibrium bE (x) that satisfies
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j E × bE = ∇ pE , j E = ∇ × bE , ∇ · bE = 0 in �, bE · n = 0 on ∂�,

(1.5)

if the topology of the magnetic field is non-trivial. Note that (1.5) almost shares the
same form with the steady Euler equation:

uE × ωE = ∇hE , ωE = ∇ × uE , ∇ · uE = 0 in �, uE · n = 0 on ∂�,

(1.6)

if one “identifies” bE with velocity field uE , here ∇hE = ∇(pe + 1
2 |uE |2) and pe

denotes the pressure of the Euler equation. This indicates that the study of (1.1)–(1.3)
might be helpful to understand the unstable Euler flows. Moffatt also argued that the
steady state of some non-resistive MHD equations should also obey (1.5) (see [15]).
However, there is no rigorous proof that the magnetic relaxation will yield a steady
Euler flow. One of the reasons is that the global well-posedness of 3DMHD equations
remains open (see [14] and references therein).
From a limiting state point of view, the dynamical model used to obtain the above

steady state is not particularly important (see [8,14,16]). In fact, it was argued by
Moffatt that dropping the acceleration terms from the u equation and working with
a “Stokes” model might prove more mathematically amenable (see [8,14,16]). In
recent years, the well-posedness of (1.1)–(1.4) and related models have attracted great
attention. McCormick et al. proved the existence of weak solutions of the equations in
[14], where the uniqueness of weak solutions for two-dimensional case is also shown.
Furthermore, they proved that weak solutions of the 2D equations become regular
if b0 is smooth (see [14]). We refer readers to [4,8] for the local-in-time existence
of regular solutions of 3D non-resistive MHD equations. Recently, we established an
optimal regularity criterion for (1.1)–(1.4), and studied the global-in-time existence of
strong solutions when initial data is small in critical Sobolev spaces or critical Besov
spaces (see [22]). We also established global-in-time existence of strong solutions of
the equations with arbitrary initial data when −� in (1.2) is replaced by (−�)α with
α ≥ 3/2 (see [10]).

The purpose of this paper is to investigate the decay ofweak solutions of (1.1)–(1.4).
The analysis of decay of solutions of fluid flow motions originally goes back to Leray
[13], in which he asked whether or not weak solutions of 3D Navier–Stokes equations
decay to zero in L2 as time tends to infinity. Since then, this kind of problem has
been extensively studied, see [3,17–20] for Navier–Stokes equations and [1,6,7,21]
for MHD equations. In this paper, motivated by the work of [1,20], we show that the
L3/2,∞ norm of velocity u and L2 norm of magnetic field b are decay to zero without
a uniform rate when initial data belong to L2. It stated as follows:

Theorem 1.1. Let b0 ∈ L2 with ∇ · b0 = 0. Assume that (u, b) a weak solution of the
initial value problem (1.1)–(1.4). Then (u, b) satisfies

lim
t→∞(‖u(t)‖L3/2,∞ + ‖b(t)‖L2) = 0. (1.7)
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For the proof, it should be pointed out that in contrast with Navier–Stokes equations
or MHD, there is no a priori bound for u in L∞(R+, L2(R3)) because of the absence
of ∂t u in (1.1). Note that this estimate for u is crucial to study the corresponding
part for Navier–Stokes or MHD (see [1,17,20]). However, by the energy estimate of
solutions, wewould overcome this difficulty by some proper interpolation inequalities,
see Sect. 3 below.

Furthermore, we show that the decay result obtained in Theorem 1.1 is optimal in
the sense that for any sphere with radius α in L2(R3), there exists a b0 on the sphere
such that the corresponding solutions should decay arbitrarily slow. The result is stated
as follows:

Theorem 1.2. For any T > 0, α > 0 and 0 < ε < 1, there exists b0 ∈ L2 with
∇ · b0 = 0 and ‖b0‖L2 = α, such that if (u, b) is a weak solution of (1.1)–(1.4)

corresponding to the initial data b0, then
‖b(T )‖L2‖b0‖L2 ≥ 1 − ε.

Motivated by [1,20], we prove this result by choosing a suitable scaling transform
δλ on L2 that preserves L2-norm. Since this scaling does not preserve the semi-norm in
Ḣ1, we assume without loss of generality that b0 belongs to a more regular space, say
H1. Taking δλb0 as the initial data, we establish a global-in-time bound of solutions
of (1.1)–(1.4) when λ is small, then we show Theorem 1.2, see Sect. 4.

The non-uniform decay of weak solutions derived in Theorem 1.1 can be improved
if initial data satisfies some additional assumptions. More precisely, it is shown that
when b0 belongs to L1 ∩ L2, the L2 norm of b(t) will decay like O(t−3/4) as t → ∞.
This indicates that, on the one hand, the temporal decay of ‖b(t)‖L2 can be uniformly
dominated by t−3/4 (in the sense of ‘�’). On the other hand, this decay rate is optimal
in the sense that the lower bound for rate of decay is proportional to t−3/4. The two
results are stated as follows:

Theorem 1.3. Let b0 ∈ L1 ∩ L2 with ∇ · b0 = 0. Then there exists a Leray-Hopf
weak solution of the initial value problem (1.1)–(1.4), which satisfies

‖u(t)‖L3/2,∞ ≤ c(ν, η, ‖b0‖L1∩L2 )(1 + t)− 3
2 , ‖b(t)‖L2 ≤ c(ν, η, ‖b0‖L1∩L2 )(1 + t)− 3

4 .

(1.8)

Theorem 1.4. Let Rβ = { f ∈ L1 : inf |ξ |≤β | f̂ (ξ)| ≥ β} for β > 0 and let b0 ∈
L1 ∩ L2 ∩ Rβ with ∇ · b0 = 0. Then there exists a Leray-Hopf weak solution of
(1.1)–(1.4) such that

‖b(t)‖L2 ≥ c(ν, η, ‖b0‖L1∩L2 , β)(1 + t)−
3
4 . (1.9)

Remark 1.5. The space Rβ plays a crucial role in the proof of the optimal decay rate
of solutions. When b0 ∈ L2 ∩ Rβ , the weak solution of the heat equation{

∂t b′ − η�b′ = 0 in R
+ × R

3,

b′(0) = b0,
(1.10)
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decays at most as ‖b′(t)‖L2 ≥ c(η, β)(1+ t)−3/4 (see Lemma 2.5 below). Compared
with the linear equation (1.10), the system (1.1)–(1.4) contains complicated nonlin-
earities, but they do not make the decay of solutions worse (see Sect. 6). Thus, if
b0 ∈ L2 ∩ Rβ , the component b of the weak solutions (u, b) of the system in general
cannot decay faster than (1 + t)−3/4.

Remark 1.6. The space Rβ is strictly contained in L1. This means that there are func-
tions that contained in L1 but they do not belong to Rβ . In fact, let χ : R

3 → [0, 1]
be a smooth function that satisfies χ(x) = 1 for |x | ≤ 1 and χ(x) = 0 for |x | ≥ 2.
Let φ(x) = χ(x) − χ(2x). Then both χ and φ are Schwartz functions on R

3. It is
clear that F−1χ ∈ Rβ , and F−1φ ∈ L1 whereas F−1φ /∈ Rβ , here F−1 denotes the
Fourier inverse transform.

The proof of Theorems 1.3 and 1.4 are based on the Fourier splitting method [19].
The main task is to estimate b̂ for its lower frequency part. We point out that there is a
difficulty similar as that has been stated above. That is, the absence of ∂t u in (1.1) leads
to the absence of a priori bound of u in L∞(R+, L2(R3)), and this is much unlike the
Navier–Stokes equations [17,19,20] or MHD equations [1,21]. However, we over-
come the difficulty by energy estimate of solutions and applications of interpolation
inequalities.

2. Preliminaries

Throughout the paper, c represents a positive constant (depending only on ν, η)
whose value may change at each occurrence. A � B denotes the inequality A ≤ cB.
c(α1, α2, . . .) stands for a positive constant that depends on α1, α2, …etc. We denote
by f̂ the Fourier transform of f , while the inverse Fourier transform of f is denoted
by F−1 f . We consider function spaces on R

3, for instance, C∞
c := C∞

c (R3), L p :=
L p(R3), Hs := Hs(R3). L p,∞ denotes the weak L p space. We will use

∫ := ∫
R3 ,

‖·‖p := ‖·‖L p and ‖·‖ := ‖·‖2 for convenient.We defineDσ = {f ∈ C∞
c : ∇ ·f = 0}.

Let L2
σ and H1

σ be the closure of Dσ in the L2 and H1 norm, respectively.

Definition 2.1. [14] Let T > 0 and let b0 ∈ L2
σ . A function (u, b) is called a weak

solution of the equation (1.1)–(1.4) on (0, T ), if

(i) u ∈ L∞(0, T ; L3/2,∞) ∩ L2(0, T ; H1
σ ) and b ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1

σ ),
(ii) (u, b) verifies:∫

ν∇u : ∇φ1 + (b · ∇)φ1 · bdx = 0,∫
b0 · φ2(0)dx−

∫ T

0

∫
b · ∂tφ2−η∇b : ∇φ2+(u · ∇)φ2 · b−(b · ∇)φ2 · udxdt=0,

for all test functions φ1, φ2 ∈ C∞
c ([0, T );Dσ ).
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Motivated by Ogawa, Rajopadhye and Schonbek [17] about the decay of weak
solutions of forced Navier–Stokes equations or Agapito and Schonbek [1] about the
analysis of decay of MHD equations, we formulate the following technical lemma:

Lemma 2.2. Let b0 ∈ L2
σ . Assume that (u, b) is a weak solution of (1.1)–(1.4). Then

for E(t) ∈ C1(R; R+) with E(t) ≥ 0 and ψ ∈ C1(R;C1 ∩ L2) such that ψ(t) is
radial on R

3, the solution (u, b) satisfies the following equations:

0 = −2ν
∫ t

s
E(τ )‖∇ψ ∗u(τ )‖2dτ +2

∫ t

s
E(τ )〈b ·∇b(τ ), ψ ∗ψ ∗u(τ )〉dτ, (2.1)

and

E(t)‖ψ ∗ b(t)‖2 = E(s)‖ψ ∗ b(s)‖2 +
∫ t

s
E ′(τ )‖ψ ∗ b(τ )‖2dτ

+ 2
∫ t

s
E(τ )(〈ψ ′ ∗ b(τ ), ψ ∗ b(τ )〉 − η‖∇ψ ∗ b(τ )‖2)dτ

− 2
∫ t

s
E(τ )(〈u · ∇b(τ ), ψ ∗ ψ ∗ b(τ )〉

− 〈b · ∇u(τ ), ψ ∗ ψ ∗ b(τ )〉)dτ, (2.2)

for all 0 ≤ s ≤ t ≤ ∞.

Proof. Wefirst give the proof of (2.2). Taking the inner product of (1.2) with 2E(t)ψ∗
ψ ∗ b(t), then integrating in [s, t] × R

3, we obtain that

2
∫ t

s

∫
∂τb(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dxdτ

−2η
∫ t

s

∫
�b(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dxdτ

= −2
∫ t

s
E(τ )

∫
(u · ∇b(τ ) − b · ∇u(τ )) · ψ ∗ ψ ∗ b(τ )dxdτ. (2.3)

The main task is to deal with the terms on the left-hand side of (2.3). For the first
term, by integration by parts, we have∫

∂τb(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dx

=
∫

d

dτ

(
b(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )

)
− b(τ ) · d

dτ

(
E(τ )ψ ∗ ψ ∗ b(τ )

)
dx

= d

dτ

∫
b(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dx

−
∫

b(τ ) ·
(
E ′(τ )ψ ∗ ψ ∗ b(τ ) + 2E(τ )ψ ′ ∗ ψ ∗ b(τ )

+ E(τ )ψ ∗ ψ ∗ ∂τb(τ )
)
dx,
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= d

dτ

∫
b(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dx

−
∫

b(τ ) ·
(
E ′(τ )ψ ∗ ψ ∗ b(τ ) + 2E(τ )ψ ′ ∗ ψ ∗ b(τ )

)
dx

−
∫

∂τb(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dx, (2.4)

here ψ is radial has been used to derive the third equation. Thus, we apply Parseval’s
relation to obtain that

2
∫ t

s

∫
∂τb(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dxdτ

= E(t)
∫

b(t) · ψ ∗ ψ ∗ b(t)dx − E(s)
∫

b(s) · ψ ∗ ψ ∗ b(s)dx

−
∫ t

s

∫
b(τ ) · (E ′(τ )ψ ∗ ψ ∗ b(τ ) + 2E(τ )ψ ′ ∗ ψ ∗ b(τ ))dxdτ

= E(t)
∫

b̂(t) · (
¯̂
ψ)2

¯̂b(t)dξ − E(s)
∫

b̂(s) · (
¯̂
ψ)2

¯̂b(s)dξ

−
∫ t

s

(
E ′(τ )

∫
b̂(τ ) · (

¯̂
ψ)2

¯̂b(τ )dξ + 2E(τ )

∫
b̂(τ ) · ¯̂

ψ ′ ¯̂
ψ

¯̂b(τ )dξ
)
dτ.

(2.5)

Sinceψ is radial, it follows that ¯̂
ψ = ψ̂ and (

¯̂
ψ)2 = |ψ̂ |2. Hence the previous equation

turns to the following:

2
∫ t

s

∫
∂τb(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dxdτ

= E(t)
∫

|ψ̂ |2|b̂(t)|2dξ − E(s)
∫

|ψ̂ |2|b̂(s)|2dξ

−
∫ t

s

(
E ′(τ )

∫
|ψ̂ |2|b̂(τ )|2dξ + 2E(τ )

∫
ψ̂ b̂(τ ) · ¯̂

ψ ′ ¯̂b(τ )dξ
)
dτ

= E(t)‖ψ ∗ b(t)‖2 − E(s)‖ψ ∗ b(s)‖2 −
∫ t

s
E ′(τ )‖ψ ∗ b(τ )‖2

+ 2E(τ )〈ψ ′ ∗ b(τ ), ψ ∗ b(τ )〉dτ, (2.6)

here Plancherel’s theorem has been used to deduce the second equation.
For the second term, a similar computation gives that

−
∫ t

s

∫
�b(τ ) · E(τ )ψ ∗ ψ ∗ b(τ )dxdτ =

∫ t

s
E(τ )

∫
|ξ |2b̂(τ ) · (

¯̂
ψ)2

¯̂b(τ )dξdτ

=
∫ t

s
E(τ )

∫
|ξ |2|ψ̂ |2|b̂(τ )|2dξdτ

=
∫ t

s
E(τ )‖∇ψ ∗ b(τ )‖2dτ. (2.7)
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Substituting (2.6) and (2.7) into (2.3), we conclude that (2.2) holds.
The proof of (2.1) is slightly simpler and can be shown in a way similar to that of

(2.2). Taking the inner product of (1.1) with 2E(t)ψ ∗ ψ ∗ u(t), then integrating in
[s, t] × R

3, we obtain that

−2ν
∫ t

s

∫
�u(τ )·E(τ )ψ∗ψ∗u(τ )dxdτ = 2

∫ t

s
E(τ )

∫
b·∇b(τ )·ψ∗ψ∗u(τ )dxdτ.

(2.8)
By repeating the manipulation of the derivation of (2.7), we know that

−
∫ t

s

∫
�u(τ ) · E(τ )ψ ∗ ψ ∗ u(τ )dxdτ =

∫ t

s
E(τ )‖∇ψ ∗ u(τ )‖2dτ. (2.9)

Substituting (2.9) into (2.8), it follows that (2.1) holds. The proof of Lemma 2.2 is
completed. �

The following result is a straightforward of Lemma 2.2.

Corollary 2.3. Let b0 ∈ L2
σ . Assume that (u, b) is a weak solution of (1.1)–(1.4).

Then for a radial function ϕ ∈ L2, (u, b) satisfies

‖F−1ϕ ∗ b(t)‖2 ≤ ‖eη(t−s)�F−1ϕ ∗ b(s)‖2

+2
∫ t

s
|〈u · ∇b(τ ), e2η(t−τ)�F−1ϕ2 ∗ b(τ )〉|

+|〈b · ∇u(τ ), e2η(t−τ)�F−1ϕ2 ∗ b(τ )〉|dτ, (2.10)

for all 0 ≤ s ≤ t ≤ ∞.

Proof. For any ε > 0, set ψ(τ) = F−1(e−η|ξ |2(t+ε−τ)ϕ(ξ)) and E(t) = 1 in (2.2),
we deduce that

‖eεη�F−1ϕ ∗ b(t)‖2 = ‖eη(t+ε−s)�F−1ϕ ∗ b(s)‖2

+2
∫ t

s
(〈η(−�)eη(t+ε−τ)�F−1ϕ ∗ b(τ ), eη(t+ε−τ)�F−1ϕ ∗ b(τ )〉

−η‖∇eη(t+ε−τ)�F−1ϕ ∗ b(τ )‖2)dτ
−2

∫ t

s
(〈u · ∇b(τ ), e2η(t+ε−τ)�F−1ϕ2 ∗ b(τ )〉

−〈b · ∇u(τ ), e2η(t+ε−τ)�F−1ϕ2 ∗ b(τ )〉)dτ. (2.11)

By integration by parts, it is seen that

〈(−�)eη(t+ε−τ)�F−1ϕ ∗ b(τ ), eη(t+ε−τ)�F−1ϕ ∗ b(τ )〉
= ‖∇eη(t+ε−τ)�F−1ϕ ∗ b(τ )‖2. (2.12)

Substituting (2.12) into (2.11), we have
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‖eεη�F−1ϕ ∗ b(t)‖2 ≤ ‖eη(t+ε−s)�F−1ϕ ∗ b(s)‖2

+2
∫ t

s
|〈u · ∇b(τ ), e2η(t+ε−τ)�F−1ϕ2 ∗ b(τ )〉|

+|〈b · ∇u(τ ), e2η(t+ε−τ)�F−1ϕ2 ∗ b(τ )〉|dτ. (2.13)

By passing to the limit as ε → 0 in (2.13), we finally conclude that (2.10) holds true.
This completes the proof of Corollary 2.3. �

The following L p-Lq estimate for heat operator will be frequently used in the rest
of the paper.

Lemma 2.4 [11]. Let μ > 0, 1 ≤ p ≤ q ≤ ∞, f ∈ L p and let m ≥ 0. Then the
following L p-Lq estimate holds

‖∇meμt� f ‖q ≤ c(μ)t−
m
2 − 3

2 ( 1
p − 1

q )‖ f ‖p, for any t > 0. (2.14)

Lemma 2.5 [20]. Let μ > 0, f ∈ L2 ∩ Rβ for some β > 0. Let eμt� f = ∫
Kt (x −

y) f (y)dy with Kt (x) = 1
(4πμt)3/2

e− |x |2
4μt . Then there exists c(μ, β) > 0 such that

‖eμt� f ‖ ≥ c(μ, β)(1 + t)− 3
4 .

3. Proof of Theorem 1.1

We begin with the L3/2,∞ × L2 estimate of (u, b). Taking the inner product of (1.1)
and (1.2) with u and b, respectively, then integrating in R

3 and summing the resultant
equations, we use integration by parts and (1.3) to obtain that

d

dt
‖b‖2 + 2ν‖∇u‖2 + 2η‖∇b‖2 = 0. (3.1)

Integrating with respect to t , we deduce that for any t ≥ 0,

‖b(t)‖2 + 2
∫ t

0

(
ν‖∇u(τ )‖2 + η‖∇b(τ )‖2)dτ ≤ ‖b0‖2. (3.2)

Based on this L2 estimate of b, we can deduce that u(t) is bounded in L3/2,∞ (see
[10,14,22]). In fact, consider the following nonhomogeneous Stokes equation{

−ν�u + ∇ p∗ = b · ∇b,

∇ · u = 0,
(3.3)

we know that (u, p∗) is solved by

u(t, x) =
∫

U(x−y)·(b ·∇b)(t, y)dy and p∗(t, x) =
∫

q(x−y)·(b ·∇b)(t, y)dy,

here (U(·),q(·)) is the fundamental solution of Stokes equations andU(x) = O(|x |−1)

as either |x | → 0 or |x | → ∞, see Section IV.2 in [9] for details. Thus,∇U ∈ L3/2,∞.
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Moreover, by ∇ · b = 0 and Young inequality in weak L p spaces, we deduce that for
any t ≥ 0,

‖u(t)‖L3/2,∞ =
∥∥∥ ∫

∇U(x − y)(b ⊗ b)(t, y)dy
∥∥∥
L3/2,∞

� ‖∇U‖L3/2,∞‖(b ⊗ b)(t)‖1
� ‖b(t)‖2. (3.4)

Let ϕ : R
3 → [0, 1] be a smooth, radial cutoff function such that ϕ(ξ) = 1 for |ξ | ≤

1, ϕ(ξ) = 0 for |ξ | ≥ 2. By Plancherel’s theorem, ‖b(t)‖ = ‖b̂(t)‖ ≤ ‖ϕb̂(t)‖+‖(1−
ϕ)b̂(t)‖. It suffices to show that limt→∞ ‖ϕb̂(t)‖ = 0 and limt→∞ ‖(1−ϕ)b̂(t)‖ = 0,
respectively.
We apply (2.10) and Plancherel’s theorem to obtain

‖ϕb̂(t)‖2 ≤ ‖e−η(t−s)|ξ |2ϕb̂(s)‖2

+ 2
∫ t

s
|〈u · ∇b(τ ), e2η(t−τ)�F−1ϕ2 ∗ b(τ )〉|

+ |〈b · ∇u(τ ), e2η(t−τ)�F−1ϕ2 ∗ b(τ )〉|dτ. (3.5)

By Young inequality, the second term on the right-hand side of (3.5) is bounded by
(in the sense of ‘�’)∫ t

s
(‖u · ∇b(τ ) · e2η(t−τ)�F−1ϕ2 ∗ b(τ )‖1
+‖b · ∇u(τ ) · e2η(t−τ)�F−1ϕ2 ∗ b(τ )‖1)dτ

�
∫ t

s
(‖u · ∇b(τ )‖ 3

2
+ ‖b · ∇u(τ )‖ 3

2
)‖e2η(t−τ)�F−1ϕ2 ∗ b(τ )‖3dτ

�
∫ t

s
(‖u(τ )‖6‖∇b(τ )‖ + ‖b(τ )‖6‖∇u(τ )‖)‖e2η(t−τ)�F−1ϕ2‖ 6

5
‖b(τ )‖dτ

� ‖b0‖
∫ t

s
(‖∇u(τ )‖2 + ‖∇b(τ )‖2)dτ. (3.6)

Combining (3.5) and (3.6), and passing to the limit as t → ∞, we use Lebesgue’s
dominated convergence theorem and (3.2) to deduce that

lim
t→∞ ‖ϕb̂(t)‖ � lim

t→∞ ‖e−η(t−s)|ξ |2ϕb̂(s)‖2 + ‖b0‖
∫ ∞

s
(‖∇u(τ )‖2 + ‖∇b(τ )‖2)dτ

� ‖b0‖
∫ ∞

s
(‖∇u(τ )‖2 + ‖∇b(τ )‖2)dτ → 0 as s → ∞. (3.7)

This implies that limt→∞ ‖ϕb̂(t)‖ = 0.
Next, we prove that limt→∞ ‖(1−ϕ)b̂(t)‖ = 0. Let γ > 0. Setting E(t) = (1+ t)γ

and ψ = F−1(1 − ϕ) in (2.1) and (2.2), then summing the resultant equations, we
apply Plancherel’s theorem to deduce that
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E(t)‖(1 − ϕ)b̂(t)‖2 ≤ E(s)‖(1 − ϕ)b̂(s)‖2 +
∫ t

s
E ′(τ )‖(1 − ϕ)b̂(τ )‖2dτ

− 2η
∫ t

s
E(τ )‖ξ · (1 − ϕ)b̂(τ )‖2dτ

+ 2
∫ t

s
E(τ )〈b̂ · ∇b(τ ), (1 − ϕ)2û(τ )〉dτ

− 2
∫ t

s
E(τ )(〈û · ∇b(τ ), (1 − ϕ)2b̂(τ )〉dτ

+ 2
∫ t

s
E(τ )〈b̂ · ∇u(τ ), (1 − ϕ)2b̂(τ )〉)dτ

:=
6∑
j=1

I j . (3.8)

The bound of I2 + I3 is obtained by Fourier splitting method (see [19,20]). In fact,

for each t > 0, we define r(t) =
√

γ
2η(1+t) , here γ > 0 is given in the previous

paragraph. Thus, there holds

I2 + I3 =
∫ t

s
E ′(τ )

( ∫
|ξ |<r(τ )

+
∫

|ξ |≥r(τ )

)
|(1 − ϕ)b̂(τ )|2dξdτ

− 2η
∫ t

s
E(τ )

∫
|ξ |≥r(τ )

|ξ · (1 − ϕ)b̂(τ )|2dξdτ

≤
∫ t

s
E ′(τ )

∫
|ξ |<r(τ )

|(1 − ϕ)b̂(τ )|2dξdτ +
∫ t

s
(E ′(τ )

− 2ηE(τ )r2(τ ))

∫
|ξ |≥r(τ )

|(1 − ϕ)b̂(τ )|2dξdτ.

Since E ′(τ ) − 2ηE(τ )r2(τ ) = 0 for all τ ∈ [s, t], we deduce that

I2 + I3 ≤
∫ t

s
E ′(τ )

∫
|ξ |<r(τ )

|(1 − ϕ)b̂(τ )|2dξdτ

≤ sup
τ∈[s,t]

( ∫
|ξ |<r(τ )

|(1 − ϕ)b̂(τ )|2dξ
) ∫ t

s
E ′(τ )dτ

≤ E(t)
∫

|ξ |<r(s)
|(1 − ϕ)b̂(τ )|2dξ. (3.9)

Nowwe estimate I4+ I5+ I6. Let ζ = −2ϕ+ϕ2. Then ζ ∈ C∞
c andF−1ζ belongs

to Schwartz space. By the divergence free condition (1.3), there hold 〈û · ∇b, b̂〉 = 0,
〈b̂ · ∇b, û〉 + 〈b̂ · ∇u, b̂〉 = 0. Thus, we use Plancherel’s theorem to deduce that

|I4 + I5 + I6| �
∫ t

s
E(τ )(|〈b · ∇b(τ ),F−1ζ ∗ u(τ )〉| + |〈u · ∇b(τ ),F−1ζ ∗ b(τ )〉|

+ |〈b · ∇u(τ ),F−1ζ ∗ b(τ )〉|)dτ
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� E(t)
∫ t

s
‖b · ∇b(τ )‖1‖F−1ζ ∗ u(τ )‖∞

+ (‖u · ∇b(τ )‖ 3
2

+ ‖b · ∇u(τ )‖ 3
2
)‖F−1ζ ∗ b(τ )‖3dτ

� E(t)
∫ t

s
‖b‖‖∇b(τ )‖‖F−1ζ‖ 6

5
‖u(τ )‖6 + (‖u(τ )‖6‖∇b(τ )‖

+ ‖b(τ )‖6‖∇u(τ )‖)‖F−1ζ‖ 6
5
‖b(τ )‖dτ

� E(t)‖b0‖
∫ t

s
(‖∇u(τ )‖2 + ‖∇b(τ )‖2)dτ. (3.10)

Substituting (3.9) and (3.10) into (3.8), then multiplying the resultant equation by
E(t)−1, we obtain

‖(1 − ϕ)b̂(t)‖2 � E(s)

E(t)
‖(1 − ϕ)b̂(s)‖2

+
∫

|ξ |<r(s)
|(1 − ϕ)b̂(τ )|2dξ + ‖b0‖

∫ t

s
(‖∇u(τ )‖2 + ‖∇b(τ )‖2)dτ. (3.11)

Passing to the limit as t , s → ∞, we have

lim
t→∞ ‖(1 − ϕ)b̂(t)‖2 = lim

s→∞ lim
t→∞ ‖(1 − ϕ)b̂(t)‖2

� lim
s→∞

∫
|ξ |<r(s)

|(1 − ϕ)b̂(τ )|2dξ + lim
s→∞ ‖b0‖

∫ ∞

s
(‖∇u(τ )‖2

+ ‖∇b(τ )‖2)dτ = 0. (3.12)

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We assume that b0 belongs to some Sobolev spaces, that is, b0 ∈ H1 with ‖b0‖ = α.
For λ > 0, consider the scaling transformation δλ : L2 → L2 via f (·) �→ λ3/2(λ·).
It’s clear that it preserves the L2 norm, that is, ‖δλ f ‖ = ‖ f ‖. Let (uλ, bλ) be a solution
of (1.1)–(1.4) with the initial data δλb0, then (uλ, bλ) satisfies following equations:

−ν�uλ + ∇ pλ∗ = bλ · ∇bλ, (4.1)

∂t b
λ + uλ · ∇bλ − η�bλ = bλ · ∇uλ, (4.2)

∇ · uλ = 0, ∇ · bλ = 0, (4.3)

bλ|t=0 = δλb0, (4.4)

here pλ∗ = pλ + 1
2 |bλ|2.

Lemma 4.1. (i) For any λ > 0, there exists a Tλ > 0, such that (4.1)–(4.4) ad-
mits a unique strong solution (uλ, bλ) ∈ C([0, Tλ); H1) ∩ L2(0, Tλ; H2). (i i) There
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exist λ0 = λ0(ν, η, ‖b0‖H1) > 0 and c(ν, η, ‖b0‖) > 0, such that for any 0 <

λ < λ0, (4.1)–(4.4) admits a unique global solution (uλ, bλ) ∈ C([0,∞); H1) ∩
L2(0,∞; H2), and there holds

‖∇uλ(t)‖ ≤ c(ν, η, ‖b0‖)‖∇δλb0‖ 3
2 , ‖∇bλ(t)‖ ≤ c(ν, η, ‖b0‖)‖∇δλb0‖, (4.5)

for all t ≥ 0.

Proof of Lemma 4.1.. (i) The local-in-time existence of strong solutions are en-
sured by the global existence of weak solutions (uλ, bλ) (see [14, page 521])
together with a priori H1 estimate near the initial time (see (4.7)–(4.9) below).
This a priori estimate also leads to the uniqueness of strong solutions, as well
as the continuity with respect to t or initial data. The proof is similar to that of
Navier–Stokes equations and thus it is omitted here.

(ii) By repeating the manipulation of (3.1)–(3.4), we have the following bounds:

‖uλ(t)‖L3/2,∞ � ‖bλ(t)‖2, ‖bλ(t)‖2+2
∫ t

0

(
ν‖∇uλ(τ )‖2+η‖∇bλ(τ )‖2)dτ ≤ ‖b0‖2,

(4.6)
for all t ≥ 0.

Taking the inner product of (4.1) with uλ and integrating in R
3, we use interpo-

lation inequality and (4.6) to obtain ‖∇uλ(t)‖ ≤ c(ν, η, ‖b0‖)‖∇bλ(t)‖3/2. Thus, it
sufficient to show ‖∇bλ(t)‖ ≤ c(ν, η, ‖b0‖)‖∇δλb0‖.
Taking the inner product of (4.1) and (4.2) with −�uλ and −�bλ respectively,

integrating in R
3 and then summing the resultant equations, we use ∇ · u = 0 to

obtain that

1

2

d

dt
‖∇bλ‖2 + ν‖�uλ‖2 + η‖�bλ‖2

=
∫

∇(bλ · ∇bλ) : ∇uλdx−
∫

∇(uλ · ∇bλ) : ∇bλdx+
∫

∇(bλ · ∇uλ) : ∇bλdx .

(4.7)

By (4.3) and integration by parts, the absolute value of the right-hand side of (4.7) is
bounded (in the sense of ‘�’) by∫

|∇uλ||∇bλ|2dx ≤ c‖∇uλ‖6‖∇bλ‖212
5

≤ ν

2
‖�uλ‖2 + c‖∇bλ‖3‖�bλ‖

≤ ν

2
‖�uλ‖2 + η

2
‖�bλ‖2 + c‖∇bλ‖6

≤ ν

2
‖�uλ‖2 + η

2
‖�bλ‖2 + c‖∇bλ‖2‖bλ‖2‖�bλ‖2, (4.8)

where we have used interpolation inequality to derive the second and the fourth in-
equalities. Substituting (4.8) into (4.7), we apply (4.6) to deduce that

d

dt
‖∇bλ‖2 + ν‖�uλ‖2 + η‖�bλ‖2 ≤ c(ν, η, ‖b0‖)‖∇bλ‖2‖�bλ‖2. (4.9)
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Since ‖∇δλb0‖ = λ‖∇b0‖, we choose λ0 small enough such that c(ν, η, ‖b0‖)‖∇
δλ0b0‖2 < η. For any λ ∈ (0, λ0), by the fact that bλ ∈ C([0, Tλ); H1), we deduce that
there exists a T̃λ ∈ (0, Tλ) such that c(ν, η, ‖b0‖)‖∇δλb0(t)‖2 < η for t ∈ [0, T̃λ].
Thus, it follows from (4.9) that ‖∇bλ(t)‖2 ≤ ‖∇δλb0‖2 for t ∈ [0, T̃λ]. By induction,
we deduce that (4.5) holds for all t ≥ 0. �

Assume that λ < λ0. By Lemma 4.1 (ii), (4.1)–(4.4) admits a unique global strong
solution, which is denoted by (uλ, bλ). By Fourier transformation, bλ is solved as
follows:

bλ(t, x) = eηt�δλb0(x) +
∫ t

0
eη(t−s)�(−uλ · ∇bλ(s) + bλ · ∇uλ(s))ds. (4.10)

Hence

‖bλ(t)‖ ≥ ‖eηt�δλb0‖ −
∥∥∥ ∫ t

0
eη(t−s)�(−uλ · ∇bλ(s) + bλ · ∇uλ(s))ds

∥∥∥. (4.11)

The main task is to calculate the limit (as λ → 0+) of terms on the right-hand
side of (4.11). For the first term, by Plancherel’s theorem and Lebesgue’s dominated
convergence theorem, we know that

lim
λ→0+ ‖eηt�δλb0‖2 = lim

λ→0+

∫
e−2ηt |ξ |2 |δ̂λb0(ξ)|2dx

= lim
λ→0+ λ3

∫
e−2ηt |ξ |2 |b̂0(λ·)(ξ)|2dx

= lim
λ→0+ λ−3

∫
e−2ηt |ξ |2 |b̂0(λ−1ξ)|2dx

= lim
λ→0+

∫
e−2ηtλ2|ξ |2 |b̂0(ξ)|2dx

= ‖b0‖2. (4.12)

While for the second term, we claim that

lim
λ→0+

∥∥∥ ∫ t

0
eη(t−s)�(−uλ · ∇bλ(s) + bλ · ∇uλ(s))ds

∥∥∥ = 0. (4.13)

In fact, for small enough λ > 0, one applies Lemma 2.4 and (4.5) to deduce that

∥∥∥ ∫ t

0
eη(t−s)�(−uλ · ∇bλ(s) + bλ · ∇uλ(s))ds

∥∥∥
≤

∫ t

0
‖eη(t−s)�(−uλ · ∇bλ(s) + bλ · ∇uλ(s))‖ds

≤ c(η)

∫ t

0
(t − s)−

1
4 (‖uλ · ∇bλ(s)‖ 3

2
+ ‖bλ · ∇uλ(s)‖ 3

2
)ds

≤ c(η)

∫ t

0
(t − s)−

1
4 ‖∇uλ(s)‖‖∇bλ(s)‖ds
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≤ c(ν, η, ‖b0‖)‖∇δλb0‖ 5
2 t

3
4

≤ c(ν, η, ‖b0‖H1)λ
5
2 t

3
4 . (4.14)

Passing to the limit as λ → 0+, it follows that (4.13) holds true.
Multiplying (4.11) by ‖bλ(0)‖−1 and passing to the limit as λ → 0+, we use

‖bλ(0)‖ = ‖b0‖, (4.12) and (4.13) to deduce that

lim
λ→0+

‖bλ(t)‖
‖bλ(0)‖ = 1

‖b0‖ lim
λ→0+ ‖bλ(t)‖

= 1

‖b0‖ lim
λ→0+ ‖eηt�δλb0‖

− 1

‖b0‖ lim
λ→0+

∥∥∥ ∫ t

0
eη(t−s)�(−uλ · ∇bλ(s) + bλ · ∇uλ(s))ds

∥∥∥ = 1.

(4.15)

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

Step 1. A formal proof of L3/2,∞×L2 decay.Assume that (u, b) is a smooth solution
of (1.1)–(1.4). Removing 2ν‖∇u‖2 from (3.1) and using Plancherel’s theorem, it
follows that

d

dt
‖b̂‖2 + 2η

∫
|ξ |2|b̂|2dξ ≤ 0. (5.1)

Let r(t) =
√

3
2η(1+t) , we deduce that∫

|ξ |2|b̂|2dξ =
∫

|ξ |<r(t)
|ξ |2|b̂|2dξ +

∫
|ξ |≥r(t)

|ξ |2|b̂|2dξ

≥ 3

2η(1 + t)

∫
|ξ |≥r(t)

|b̂|2dξ

≥ 3

2η(1 + t)

∫
|b̂|2dξ − 3

2η(1 + t)

∫
|ξ |<r(t)

|b̂|2dξ. (5.2)

Substituting (5.2) into (5.1), and multiplying the resultant equation by (1 + t)3, we
obtain

d

dt

(
(1 + t)3‖b̂‖2

)
≤ 3(1 + t)2

∫
|ξ |<r(t)

|b̂|2dξ. (5.3)

Now we prove that for all |ξ | < r(t), there holds

|b̂(ξ)| ≤ c(ν, η, ‖b0‖L1∩L2)(1 + ξ−1). (5.4)

In fact, by taking Fourier transformation to (1.2), b̂ is solved as
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b̂(ξ) = e−ηt |ξ |2 b̂(0) +
∫ t

0
e−η(t−s)|ξ |2(b̂ · ∇u − û · ∇b)(s)ds. (5.5)

Since b0 ∈ L1, we deduce from (5.5) that

|b̂(ξ)| ≤ e−ηt |ξ |2‖b0‖1 +
∫ t

0
e−η(t−s)|ξ |2 |ξ |(‖b ⊗ u‖1 + ‖u ⊗ b‖1)(s)ds. (5.6)

By interpolation inequality and (3.2), the second term on the right-hand side of (5.6)
is bounded by

|ξ |
∫ t

0
e−η(t−s)|ξ |2‖u(s)‖‖b(s)‖ds

� |ξ |‖b0‖
∫ t

0
e−η(t−s)|ξ |2‖u(s)‖

2
3
L3/2,∞‖∇u(s)‖ 1

3 ds

� |ξ |‖b0‖
∫ t

0
e−η(t−s)|ξ |2(‖u(s)‖L3/2,∞ + ‖∇u(s)‖)ds

� |ξ |‖b0‖
[
‖b0‖2

∫ t

0
e−η(t−s)|ξ |2ds

+
( ∫ t

0
e−η(t−s)|ξ |2ds

) 1
2
( ∫ t

0
‖∇u(s)‖2ds

) 1
2
]

� ‖b0‖3|ξ |−1 + ‖b0‖2, (5.7)

Substituting (5.7) into (5.6), this proves (5.4).
Integrating (5.3) with respect to t and using (5.4), we deduce that

‖b̂(t)‖2 ≤ (1 + t)−3‖b0‖2 + c(ν, η, ‖b0‖L1∩L2)[(1 + t)−
3
2 + (1 + t)−

1
2 ]

≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
1
2 , (5.8)

for all t ≥ 0. Hence, we have

‖b(t)‖ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
1
4 and ‖u(t)‖L3/2,∞

≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
1
2 . (5.9)

Now we prove that, by a iteration process, the decay rate for b(t) in (5.9) can be
improved to a much faster decay rate, which is proportional to that of solutions of heat
equation. More precisely, we show that ‖b(t)‖ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−3/4 for
all t ≥ 0.

By a calculation similar to that of (5.7), we apply (5.9) to deduce that

∣∣∣ ∫ t

0
e−η(t−s)|ξ |2(b̂ · ∇u − û · ∇b)(s)ds

∣∣∣
≤ c|ξ |

∫ t

0
e−η(t−s)|ξ |2(‖u(s)‖L3/2,∞ + ‖∇u(s)‖)‖b(s)‖ds
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≤ c(ν, η, ‖b0‖L1∩L2)|ξ |
{ ∫ t

0
e−η(t−s)|ξ |2(1 + s)−

3
4 ds

+
( ∫ t

0
e−2η(t−s)|ξ |2(1 + s)−

1
2 ds

) 1
2
( ∫ t

0
‖∇u(s)‖2ds

) 1
2
}

≤ c(ν, η, ‖b0‖L1∩L2)|ξ |
∫ t

0
e−η(t−s)|ξ |2(1 + s)−

3
4 ds

+ c(ν, η, ‖b0‖L1∩L2)|ξ |
( ∫ t

0
e−2η(t−s)|ξ |2(1 + s)−

1
2 ds

) 1
2

:= I1 + I2. (5.10)

The bound of I1 is obtained by dividing the integration interval [0, t] into [0, t/2] and
[t/2, t].

I1 ≤ c(ν, η, ‖b0‖L1∩L2)|ξ |
( ∫ t

2

0
+

∫ t

t
2

)
e−η(t−s)|ξ |2(1 + s)−

3
4 ds

≤ c(ν, η, ‖b0‖L1∩L2)|ξ |(
e− ηt |ξ |2

2

∫ t
2

0
(1 + s)−

3
4 ds + (1 + t)−

3
4

∫ t

t
2

e−η(t−s)|ξ |2ds
)

≤ c(ν, η, ‖b0‖L1∩L2)(|ξ |e− ηt |ξ |2
2 (1 + t)

1
4 + |ξ |−1(1 + t)−

3
4 ). (5.11)

Similarly, I2 is bounded by

I2 ≤ c(ν, η, ‖b0‖L1∩L2)(|ξ |e− ηt |ξ |2
2 (1 + t)

1
4 + (1 + t)−

1
4 ). (5.12)

Substituting (5.11) and (5.12) into (5.10), we deduce from (5.5) that

|b̂(ξ)| ≤ c(ν, η, ‖b0‖L1∩L2)(1 + |ξ |e− ηt |ξ |2
2 (1 + t)

1
4 + (1 + t)−

1
4 + |ξ |−1(1 + t)−

3
4 ).

(5.13)
This implies that∫

|ξ |<r(t)
|b̂|2dξ ≤ c(ν, η, ‖b0‖L1∩L2)∫

|ξ |<r(t)
(1 + |ξ |2e−ηt |ξ |2(1 + t)

1
2 + (1 + t)−

1
2

+ |ξ |−2(1 + t)−
3
2 )dξ

≤ c(ν, η, ‖b0‖L1∩L2)((1 + t)−
3
2 + (1 + t)−2)

≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
2 (5.14)

Integrating (5.3)with respect to t and using (5.14),we obtain the desired decay estimate
of b(t):

‖b(t)‖2 = ‖b̂(t)‖2 ≤ (1 + t)−3‖b0‖2 + c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
2
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≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
2 . (5.15)

Furthermore, the equation (5.15), together with (3.4), implies that
‖u(t)‖ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−3/2.

Step 2. The decay of weak solutions. Let ε > 0 be arbitrary. For 1 ≤ p ≤ ∞, we
define a mollification Jε : L p → L p via f �→ ρε ∗ f , where ρε(·) = 1

ε3
ρ( ·

ε
) and

ρ ∈ C∞
0 is a nonnegative, radial function that satisfies

∫
ρ(x)dx = 1.

Consider the following equations:

−ν�uε + ∇ pε∗ = bε · ∇bε, (5.16)

∂t b
ε + uε · ∇bε − η�bε + ε(−�)3/2bε = bε · ∇uε, (5.17)

∇ · uε = 0, ∇ · bε = 0, (5.18)

bε |t=0 = Jεb0. (5.19)

This system is obtained by adding an artificial diffusion term ε(−�)3/2 to the
b-equation of (1.1)–(1.4), then replacing the initial datum b0 by a smooth function
Jεb0. The fractional Laplacian (−�)3/2 is defined by the Fourier transform, namely,
(−�)3/2 = F−1(|ξ |3F).

We say that (uε, bε) is a global-in-time strong solution of the equations (5.16)–
(5.19) if it is a weak solution of the system (this means that (uε, bε) belongs to a
proper integrable space and it solves the system in the sense of distribution) and it
satisfies

uε ∈ C([0,∞; H3/2
σ ) ∩ L2

loc(0,∞; H2) and

bε ∈ C([0,∞; H1
σ ) ∩ L2

loc(0,∞; H5/2). (5.20)

It can be proved that (5.16)–(5.19) admits a unique global-in-time strong solution
(uε, bε). In fact, it was recently shown by the authors in [10] that (5.16)–(5.19) admits
a unique global-in-time strong solution when η = 0. This global well-posedness result
is absolutely true for the same equations when η > 0.

Thus, for (5.16)–(5.19), we repeat the manipulation of Step 1 to deduce that for all
ε > 0 and t ≥ 0,

‖uε(t)‖L3/2,∞ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
2 , (5.21)

‖bε(t)‖ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
4 . (5.22)

Note that the presence of ε(−�)3/2bε does not affect the decay of (uε, bε) in L3/2,∞×
L2.
It remains to show that {(uε, bε)}ε>0 (or a subsequence) converges in some sense to

(u, b) as ε tends to zero, and (u, b) is a weak solution of (1.1)–(1.4) as well as (u, b)
satisfies (1.8).

By the energy method, it is clear that

uε is uniformly bounded in L∞(0,∞; L3/2,∞) ∩ L2
loc(0,∞; H1

σ ), (5.23)
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bε is uniformly bounded in L∞(0,∞; L2) ∩ L2
loc(0,∞; H1

σ ), (5.24)

∂t b
ε is uniformly bounded in L24/19

loc (0,∞; H−1), (5.25)

here H−1 denotes the dual space of H1
σ . Thus, it follows fromBanach-Alaoglu theorem

that there exists a subsequence which is still denoted by {(uε, bε, ∂t bε)}ε>0 and an
element (u, b, ∂t b), such that

(uε, bε, ∂t b
ε) → (u, b, ∂t b) weakly star in L∞(0,∞; L3/2,∞) × L∞(0,∞; L2)

× L24/19
loc (0,∞; H−1), (5.26)

(uε, bε) → (u, b) weakly in L2
loc(0,∞; H1

σ )

× L2
loc(0,∞; H1

σ ) as ε → 0. (5.27)

Furthermore, for any bounded Lipschitz domain � ⊂ R
3, since H1(�) ↪→ L2(�) is

compact, it follows from Aubin-Lions theorem, (5.26) and (5.27) that there exists a
subsequence which is still denoted by {bε} such that

bε → b strongly in L2
loc(0,∞; L2(�)) as ε → 0. (5.28)

This convergence, together with the L3/2,∞-estimate of uε (see (3.4)), implies that

uε → u strongly in L2
loc(0,∞; L3/2,∞(�)) as ε → 0. (5.29)

Hence, by (5.28), (5.29) and the uniform boundedness of {(uε, bε)}ε>0, we deduce
that

bε · ∇bε → b · ∇b weakly star in L4/3
loc (0,∞; H−1(�)), (5.30)

uε · ∇bε → u · ∇b weakly star in L24/19
loc (0,∞; H−1(�)), (5.31)

bε · ∇uε → b · ∇u weakly star in L24/19
loc (0,∞; H−1(�)) as ε → 0. (5.32)

By passing to the limit as ε → 0, we conclude that (u, b) is a weak solution of
(1.1)–(1.4).

Moreover, by (5.28) and Fatou’s lemma, we deduce from (5.22) that

‖b(t)‖ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
4 for all t ≥ 0. (5.33)

This equation, together with (3.4), implies that

‖u(t)‖L3/2,∞ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
3
2 for all t ≥ 0. (5.34)

This completes the proof of Theorem 1.3.

6. Proof of Theorem 1.4

Let b1(t) = eηt�b0, and let w = b − b1. A direct computation yields ‖b(t)‖ ≥
‖b1(t)‖−‖w(t)‖. The lower bound of decay ratio for b(t) is obtained by establishing



Vol. 21 (2021) Large time behavior of solutions to a Stokes-Magneto 2467

the lower bound and upper bound for b1(t) and w(t), respectively. By Lemma 2.5, it
is seen that ‖b1(t)‖ ≥ c(η, β)(1 + t)−3/4. Thus, (1.9) holds if one shows that there
exists a ρ > 3/4 such that ‖w(t)‖ ≤ c(1 + t)−ρ .
Consider the equations that satisfied by (u, w):

−ν�u + ∇ p∗ = b · ∇b, (6.1)

∂tw − η�w = −u · ∇b + b · ∇u, (6.2)

∇ · u = 0, ∇ · w = 0, (6.3)

w|t=0 = 0, (6.4)

Taking the inner product of (6.1) and (6.2) with u andw, respectively, then integrating
in R

3 and summing the resultant equations, we use integration by parts and ∇ · u =
∇ · b = 0 to obtain that

d

dt
‖w‖2 + 2ν‖∇u‖2 + 2η‖∇w‖2 =

∫ (
b · ∇b

) · udx

−
∫ (

u · ∇b
) · wdx +

∫ (
b · ∇u

) · wdx

=
∫ (

u · ∇b
) · b1dx −

∫ (
b · ∇u

) · b1dx

=
∫ (

b ⊗ u − u ⊗ b
) · ∇b1dx . (6.5)

Let r(t) =
√

3
2η(1+t) . By repeating the manipulation of the derivation of (5.3), we find

that

d

dt

(
(1+ t)3‖ŵ‖2

)
≤ 3(1+ t)2

∫
|ξ |<r(t)

|ŵ|2dξ +(1+ t)3
∣∣∣ ∫ (

b⊗u−u⊗b
) ·∇b1dx

∣∣∣.
(6.6)

Applying interpolation inequality, Lemma 2.4 and (1.8), we bound the integration of
the second term on the right-hand side of (6.6) as follows:∣∣∣ ∫ (

b ⊗ u − u ⊗ b
)
(t) · ∇b1(t)dx

∣∣∣ ≤ c‖∇b1(t)‖∞‖u(t)‖‖b(t)‖

≤ c(ν, η, ‖b0‖L1∩L2)t−
5
4 (1 + t)−

3
4 ‖u(t)‖

2
3
L3/2,∞‖∇u(t)‖ 1

3

≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−3‖∇u(t)‖ 1
3 . (6.7)

Substituting (6.7) into (6.6), we know that

d

dt

(
(1 + t)3‖ŵ‖2

)
≤ 3(1 + t)2

∫
|ξ |<r(t)

|ŵ|2dξ + c(ν, η, ‖b0‖L1∩L2)‖∇u(t)‖ 1
3 .

(6.8)
Now we estimate |ŵ| on the ball {ξ ∈ R

3 : |ξ | < r(t)}. Taking Fourier transformation
to (6.2), we use (6.4) to deduce that

ŵ(ξ) =
∫ t

0
e−η(t−s)|ξ |2(b̂ · ∇u − û · ∇b)(s)ds. (6.9)
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Thus, by repeating the manipulation of (5.7) or (5.10), we apply (1.8) to obtain

|ŵ(ξ)| ≤ c|ξ |
∫ t

0
e−η(t−s)|ξ |2(‖u(s)‖L3/2,∞ + ‖∇u(s)‖)‖b(s)‖ds

≤ c(ν, η, ‖b0‖L1∩L2)|ξ |
[ ∫ t

0
e−η(t−s)|ξ |2(1 + s)−

9
4 ds

+
( ∫ t

0
e−2η(t−s)|ξ |2(1 + s)−

3
2 ds

) 1
2
( ∫ t

0
‖∇u(s)‖2ds

) 1
2
]

≤ c(ν, η, ‖b0‖L1∩L2)|ξ |
[ ∫ t

0
(1 + s)−

9
4 ds +

( ∫ t

0
(1 + s)−

3
2 ds

) 1
2
]

≤ c(ν, η, ‖b0‖L1∩L2)|ξ |. (6.10)

Substituting (6.10) into (6.8) and integrating the resultant equation in [0, t], we see
that

(1 + t)3‖ŵ(t)‖2 ≤ c(ν, η, ‖b0‖L1∩L2 )
[ ∫ t

0
(1 + s)2

∫
|ξ |<r(s)

|ξ |2dξds +
∫ t

0
‖∇u(s)‖ 1

3 ds
]

≤ c(ν, η, ‖b0‖L1∩L2 )
[ ∫ t

0
(1 + s)−

1
2 ds

+ t
5
6
( ∫ t

0
‖∇u(s)‖2ds

) 1
6
]

≤ c(ν, η, ‖b0‖L1∩L2 )(1 + t)
5
6 . (6.11)

Thus, we finally obtain the desired upper decay rate for w(t):

‖w(t)‖ ≤ c(ν, η, ‖b0‖L1∩L2)(1 + t)−
13
12 . (6.12)

This completes the proof of Theorem 1.4.

Acknowledgements

The authors would like to thank the referee for the carefully reading of the earlier
version of the manuscript and insightful comments which greatly improved the scope
of this paper. The first author was partially supported by NSFC Grant (#11701099),
the second author was partially supported by Guangdong Basic and Applied Basic
Research Foundation (#2020A1515110299).

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there
is no conflict of interest.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.



Vol. 21 (2021) Large time behavior of solutions to a Stokes-Magneto 2469

REFERENCES

[1] R. Agapito, M. Schonbek, Non-uniform decay of MHD equations with and without magnetic diffu-
sion, Commun. Part. Differ. Equ. 32 (2007) 1791-1812.

[2] D. Biskamp, Nonlinear Magnetohydrodynamics. Cambridge University Press, Cambridge, 1993.
[3] L. Brandolese, M. Schonbek, Large time behavior of the Navier-Stokes flow. Handbook of mathe-

matical analysis in mechanics of viscous fluids, 579-645, Springer, 2018.
[4] J. Chemin, D. McCormick, J. Robinson, J. Rodrigo, Local existence for the non-resistive MHD

equations in Besov spaces, Adv. Math. 286 (2016) 1-31.
[5] P. Davidson, An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge,

2001.
[6] B. Dong, Y. Jia, J. Li, J. Wu, Global regularity and time decay for the 2D magnetohydrodynamic

equations with fractional dissipation and partial magnetic diffusion, J. Math. FluidMech. 20 (2018)
1541-1565.

[7] B. Dong, J. Li, J. Wu, Global regularity for the 2D MHD equations with partial hyper-resistivity,
Int. Math. Res. Not. 14 (2019) 4261-4280.

[8] C. Fefferman, D. McCormick, J. Robinson, J. Rodrigo, Higher order commutator estimates and
local existence for the non-resistive MHD equations and related models, J. Funct. Anal. 267 (2014)
1035-1056.

[9] G. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. 2nd ed.
Springer, Berlin, 2011.

[10] Y. Ji, W. Tan, Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic
diffusion, Discrete Contin. Dyn. Syst. Ser. B. 26(6) (2021) 3271-3278.

[11] T. Kato, Strong L p-solutions of the Navier-Stokes equations in Rm , with applications to weak
solutions, Math. Z. 187 (1984) 471-480.

[12] L. Laudau, E. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. Pergamon, New York, 1984.
[13] J. Leray, Sur le mouvement dun liquide visqueux emplissant lespace, ActaMath. 63 (1934) 193-248.
[14] D. McCormick, J. Robinson, J. Rodrigo, Existence and uniqueness for a coupled parabolic-elliptic

model with applications to magnetic relaxation, Arch. Ration. Mech. Anal. 214 (2014) 503-523.
[15] H. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology.

Part 1. Fundamentals, J. Fluid Mech. 159 (1985) 359-378.
[16] H. Moffatt, Relaxation routes to steady Euler flows of complex topology (2009), http://www2.

warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf Slides of talk given during
MIRaW Day, Weak Solutions of the 3D Euler Equations, University of Warwick, 8th June 2009

[17] T. Ogawa, S. Rajopadhye, M. Schonbek, Energy decay for a weak solution of the Navier-Stokes
equation with slowly varying external forces, J. Funct. Anal. 144 (1997) 325-358.

[18] M. Oliver, E. Titi, Remark on the rate of decay of higher order derivatives for solutions to the
Navier-Stokes equations in Rn , J. Funct. Anal. 172 (2000) 1-18.

[19] M. Schonbek, L2 decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech.
Anal. 88 (1985) 209-222.

[20] M. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Commun. Part.
Differ. Equ. 11 (1986) 733-763.

[21] M. Schonbek, T. Schonbek, E. Süli Large-time behaviour of solutions to themagnetohydrodynamics
equations, Math. Ann. 304 (1996) 717-756.

[22] W. Tan, On the global existence for a coupled parabolic-elliptic equations in three dimensions,
submitted.

http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf
http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf


2470 Y. Ji, and W. Tan J. Evol. Equ.

Yingdan Ji and Wen Tan
School of Applied Mathematics
Guangdong University of Technology
Guangzhou 510520
China
E-mail: jiyingdan157@163.com

Wen Tan
E-mail: tanw@gdut.edu.cn

Accepted: 11 March 2021


	Large time behavior of solutions to a Stokes-Magneto equations in three dimensions
	Abstract
	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	4. Proof of Theorem 1.2
	5. Proof of Theorem 1.3
	6. Proof of Theorem 1.4
	Acknowledgements
	REFERENCES




