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Global existence of solutions of the time fractional Cahn-Hilliard
equation in R?

HATLONG YE, QIANG LIU@® AND ZHI- MIN CHEN

Abstract. Cauchy problem for the Caputo-type time fractional Cahn—Hilliard equation in RR3 is examined.
The local existence and uniqueness of mild solutions and strong solutions are obtained for the initial data
uq satisfying ug — it € LOO(RS) Nl (]R3), where u is an equilibrium constant. The local solutions are
extended globally if g — u is small in LY (R3). These results are consistent with those of the traditional
Cahn-Hilliard equation such as the property of mass conservation. However, extra difficulties arise in
dealing with the singularity of Mittag-Leffler operators and non-Markovian property in the Caputo-type
time fractional problem.

1. Introduction

In recent years, partial differential equations involving time fractional derivatives
have attracted much attention since the time fractional derivatives can provide a nice
instrument for the description of memory and hereditary properties of various materials
and processes. These advantages of fractional models in comparison with classical
integer-order models have offered strong motivation on many applications, such as
dispersive anomalous diffusion problems [25,26], control engineering investigations
[6,28], biological and medical systems [11,13,16,17], financial study [31] and image
processing researches [14,20].

In present paper, we are interested in the following Cauchy problem for the time
fractional Cahn—Hilliard equation in R3,

D%+ A%u+ Apu) =0, inR3 x (0, 00),

1.1
u(0) = ug, in R3, (-

where 0 < @ < 1, (DY denotes the Caputo fractional derivative operator of order

a, A? is the biharmonic operator and ¢ is a smooth nonlinear function satisfying

o(u) = O(1)|u — ul® as u — u with equilibrium constant # > 0 and 0 = %
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Recall the classical Cahn—Hilliard equation
du+ A%u+ Apw) =0,  inR> x (0, 00) (1.2)

arising in the study of phase separation on cooling binary solutions such as glasses,
alloys and polymer mixtures [5]. Here, u is the relative concentration between two
phases. The nonlinearity of the problem is defined by the function

P u) = —/u @(s)ds,
0

a double-well potential with two equal minima at u~ < u™ corresponding to the two

pure phases. A typical example of such potential is ® (1) = (1 — u?)?
ut =

,andu™ = —1,

For the Cauchy problem of the classical Cahn—Hilliard equation (1.2), Caffarelli
and Muler [4] assumed that the function B(u) = ¢(u) — u is Lipschitz continuous
and equals to a constant outside a bounded interval with respect to u#. They obtained
the L bound of solutions with initial data ug € W!*°(RV). Bricmont et al. [3]
considered nonlinear stability and long-time asymptotic behaviors of solutions in R!
with the initial data close to the stationary solution &# = tanh( %). Liuetal. [23] obtained
global solution existence and its asymptotic behaviors under the assumption that the
nonlinear function ¢(u) satisfies a certain local growth condition at a fixed point u ™~
and |lup — u™ || ;1 is small.

On the other hand, the theory of time fractional partial differential equations has been
developed by many authors. Eidelman and Kochubei [9] constructed a fundamental
solution of an equation with time fractional derivative and a uniformly elliptic operator
with variable coefficients acting in the spatial variables. Wang et al. [37] obtained
the existence of mild solutions and classical solutions to an equation with almost
sectorial operators by constructing a pair of families of operators in terms of the
generalized Mittag-Leffler-type functions and the properties of resolvent operators.
Andrade et al. [1] studied several questions concerning to abstract fractional Cauchy
problems, including the existence of local mild solutions for the problem, and its
possible continuation to a maximal interval of existence. Carvalho-Neto and Planas
[7] shown the existence and uniqueness of mild solutions to time fractional Navier—
Stokes equations. Lietal. [21] investigated nonlinear fractional time-space generalized
Keller—Segel equation. They obtain the existence and uniqueness of mild solutions
and some other properties, such as the nonnegativity preservation, mass conservation
and blowup behaviors. A general review on mild solutions of time fractional partial
differential equations is presented in [8].

In the understanding of nonlinear phenomena for the anomalously subdiffusive
transport behaviors in heterogeneous porous materials or memory effects of certain
materials, numerical simulations for the time fractional Cahn—Hilliard equation have
been obtained in [12,22,32,35,36,38,39]. For example, the study of numerical solu-
tions was ever given by Tripathi et al. [36] by using the homotopy analysis method
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to a time fractional Cahn—Hilliard equation involving an advection and reaction term.
Tang et al. [35] proved for the first time that the time-fractional phase-field models
indeed admit an energy dissipation law of an integral type. In addition to the numeri-
cal study of time fractional Cahn—Hilliard equation, a theoretical study was given by
Jan et al. [30] on the well-posedness and long-time behaviour for the non-isothermal
Cahn-Hilliard equation with memory in a bounded domain of R3.

To the best of our knowledge, the well-posedness for the solutions of the time
fractional Cahn—Hilliard equation in R? in L? spaces is not clear at present. The main
purpose of this paper is to show some rigorous analytical theory on the problem (1.1),
including the existence and uniqueness of mild solutions and strong solutions. Due to
the observation that the biharmonic operator in the linear part of problem (1.1) can be
regarded as a sectorial operator on some spaces, we follow some ideas in [8], properly
adapted to our problem. It’s worth mentioning that the singularity together with strong
nonlinearity arising from the time fractional derivative . Dfu and the nonlinear term
Ag@(u) make its mathematical analysis more difficult in comparison with the classical
Cahn—Hilliard equation (1.2). For example, the Mittag-Leffler operators E,(—1*.A)
and E, o (—t*A) (see (2.7) below) do not satisfy the semigroup properties. So we
need to overcome these essential difficulties to get some a priori estimates and extend
the local solution to a global one. For more details, one can refer to Sects. 4 and 5.

This paper is organized as follows. In the next section, we introduce some elementary
properties of Mittag-Leffler operators, which are essential throughout the whole paper
and give the main results of this paper. In Sect. 3, L? — L7 estimates are given for
the associated linear homogeneous problem. In Sect. 4, we first establish the existence
and uniqueness of local mild solutions of the Cauchy problem (1.1) by the Banach
contraction mapping principle, and then extend the local solution globally. Section 5 is
dedicated to show that the global mild solution obtained in Sect. 4 is a strong solution.

2. Preliminaries and main results

Let S(R?) be the Schwartz class of rapidly decreasing functions and L?(R3) be the
subspace of LP(R?) so that S(R?) is dense in i”(R3) for 1 < p < oo. It is readily
seen that ZOJ’(R3) = LP(R?) and i,oo(R3) = Co(R3) which denote the space of all
continuous functions decaying to zero at infinity. For convenience, we always assume
1 < p < oo for the symbol L7 (R3). Given f € S(R?), its Fourier transform F f = f
and inverse Fourier transform F~! f = f are defined by

f& =@en f Fe ™ dx and f(€) = @m) 3 / Fx)el¥E dx.
R3 R3

The following lemma about the continuity for the shift functions is followed by
Theorem 4.26 in [2].

Lemma 2.1. For any fixed f € lO,P(R3), I.f (x + W)l Lp w3y is uniformly continuous
with respect to h € R>,
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Then we get the uniform continuity of a convolution product.

Lemma 2.2. Let g € S(R®) and f € LP(R3). Then g * f is uniformly continuous.
Moreover, lim|x| 00 g * f(x) = 0.

Proof. Take f € LP(R3). Applying Holder inequality yields

Ig*f(X+h)—g*f(x)|S/R}g(y)lf(x—y+h)—f(x—y)|dy

< llgllpaqrsy - I1f (x + 1) = FOOlLr w3

where g € [1, oo] such that % + 5 = 1. Then Lemma 2.1 implies the uniform
continuity of g % f. Since g € S(R?), it is easy to check that g % f vanishes at
infinity. 0

It is clear that the solution of the following linear problem

{atu+A2u —0, (x,1) €R3x(0,00), on

u(x,0) = up(x)
can be written as
u(x,t) = Gy * uop,

where G;(x) = f‘l(e_|5|4’) is the fundamental solution of 3,u + A2u = 0. For any
fixed t > 0, we define the operator T (f) on L” (R3) by

T()f =G, f.

By a simple calculation ([23]), we could get || G, || ;1 R3) = C fort > 0, where C > 0
is independent of . Then the Young’s inequality yields

IT@ fllr@sy < NGellpr@3yl fllpe@sy = CUf e @3- (2.2)

So the operator T'(¢) : L?(R?*) — LP(R?) with 1 < p < oo are well defined for any
fixed t > 0. Moreover, we have the following result.

Proposition 2.1. ([10], Proposition 2.13) The operators{T (t); t > 0} withT (0) = I
form a strongly continuous semigroup on LP(R3), and its generator A coincides with
the closure of the biharmonic operator

(=AY f(x) = ES —82 —82 S )
o= gx? 8x]2-
lsJ=1 i

defined for every f € S(R3).

Let T > 0 and X be a Banach space. We introduce the definitions of fractional
integration and derivation as follows.
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Definition 2.1. Let 0 < « < 1 and v € LY(0, T; X), the Riemann-Liouville frac-
tional integral of order o > 0 is given by

1

JEv(t) = (8o % 0) (1) = @

t
/ (t — ) u(s) ds,
0

where I' is the Gamma function and

1 a—1
ERETES PR
= (o) s s
8a(t) { 0. ¢ <0.

Based on the Riemann-Liouville fractional integral operator, we present the Caputo
fractional differential operator.

Definition 2.2. Let 0 < ¢ < 1 and v € C([0, T]; X) such that the convolution
gl_q *V € whlo, T; x ). The Caputo fractional derivative of order « of v is defined
by

d 1 d [?
CD?U(I‘) = E.Itl_a(v - U(O))([) = ma\/o (t — S)_a(v(s) - U(O)) ds.
(2.3)

Let’s recall some properties of Mittag-Leffler operators. For o € (0, 1), we denote
the entire function M, : C — C the Mainardi function by

o0

Ly— (_Z)n
My (2) = r; nC(1 —a(l+n))’

which is a particular case of the Wright type function introduced by Mainardi in [24]
in order to characterize the fundamental solutions for some standard boundary value
problems in physics. The following classical result gives some essential relations used
in this paper to obtain the main estimates.

Proposition 2.2. ([7], Proposition2) Let0 < o < 1and —1 < y < oo. If we restrict
M, to the positive real line, then it holds that

o0 L'y +1)
M, >0 It >0 and tYM,(t)dt = —————.
o) =0 fora = U an fO o(t) T(ay + 1)

For each o € (0, 1), the Mittag-Leffler families is given by

Ey(—t*A) = /OO My (s)T (st%) ds,
0
and

Ego(—t*A) = /Ooosta(s)T(st“) ds.
0
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It is interesting to notice that the Mainardi functions act as a bridge between the
fractional and the classical abstract theories. Indeed we have

1 _
Eg(—1“A) = — | 7 (1% + A an, (2.4)
2 H,
and
tl—a 1
Eqo(—=t"A) = — / MO+ A dx, (2.5)
27i H,

where H, is any Hankel’s path, i.e. a loop which starts and ends at —oo and encircles
the circular disk |A| < |z|'/%. For more details see [8,37].
Similarly to [37], we have the following continuity property.

Proposition 2.3. E,(—t% A) and Eq o (—1® A) are well defined from LP (R3) to L? (R).
Fort > 0, Eo(—t*A) and E o (—1*A) are continuous in the uniform operator topol-
ogy on LP(R3). Moreover, for every r > 0, the continuity is uniform on [r, 00).

Proof. Taking v € L?(R?), we have

o
[ Eq (=15 Av — Eo (=17 Dl Lr sy < / Mo (HIT (st3)v — T (st7) vl Lo w3y ds,
0

where 1 < p < oo.Lete > 0 and r > 0. By the properties of the Mainardi function
given in Proposition 2.2, we may choose 0 < §; < &2 such that
31 & o0 &
2|l Lr w3 My(s)ds < = and 2{vllp g3 / My(s)ds < —.
0 3 8 3
In addition, by the strongly continuity and the uniform boundedness of 7' (), we deduce
that there exists a positive constant y > 0 such that

)

&
Mo (HIT (st7) — T (st) vl Lo g3y ds < 3

3
forany t1, 1 > r and |t —t1| < y. Therefore, combining with Proposition 3.1 below,
we obtain that

IEa(—t5A) — Eo(—17 Al <&,

which implies that E,(—t%.A) is uniformly continuous on [r, 00) in the uniform op-
erator topology on ZP(R3). By the arbitrariness of r > 0, E,(—t“.A) is continuous
in the uniform operator topology for ¢ > 0. A similar argument enables us to give the
characterization of continuity on Ey o (—1*A). O

We end this section with the concept of the solution of (1.1) and our main results.
For a given function f and a smooth function u : R® x R* — X, we formally give a
mild solution for the Cauchy problem

{CD?uz—AM'i‘f(xat)’ >0 (26)

u(x,0) =upx) € X,
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where the rigorous deduction could be found in [8,15,18,37]. Denote L the operator
of Laplace transform. By the convolution property of Laplace transform, we have

L(:D%u) = 2% L(u) — 2% ug,
as in [18, Proposition 3.13]. So taking the Laplace transform to (2.6) gives
L) =2""10% + )7 g + A% + A 7L.

Application of Laplace inversion ([8, Proposition 2.43]) implies

t
u(t) = E, (—t“A) uo +/ (t — s)o’_lED,,a (—(t — s)“.A) f(s)ds.
0

This formal computation then motivates the definition of the mild solution of (1.1) as
follows:

Definition 2.3. Let0 <a <land 7 > 0.
(i) A function u such that u — it € C([0, T]; L'(R?)) defined by

t
u(x,t) = Eq(—t*Aug — / (t — s)“_lAEa,a(—(t - )% ADew)ds  (2.7)
0

is called a local mild solution of the Cauchy problem (1.1).
(i) If T = oo, we say that « is a global mild solution of the Cauchy problem (1.1).

Now we are the position to give the first result in this paper.

Theorem 2.1. (Global existence of mild solution) Assume that ug — it € L'(R3) N
L®(R3) with sufficiently small ||ug — Ul 1 r3y and the nonlinear function ¢(u) €
C%(R) satisfies p(u) = O(D)|u — @|” as u — it with o = % Then the Cauchy
problem (1.1) admits a unique global mild solution u satisfying

lu@) — il poowsy < 2lluo — ullpoomsy, t>0

and the integral preservation property,
/ (u(x,t) —u)dx = / (up(x) — ) dx.
R3 R3

The second result of this paper is concerned with the global existence of the strong
solutions, of which we give the definition as follows.

Definition 2.4. Let0 < o < 1 and T > 0. By a strong solution to problem (1.1), we
mean that a function « such that u — it € C([0, T]; L' (R3)) N C((0, T]; W*1(R3))
and .D¥u € C((0, T1; L' (R?)) satisfies (1.1) almost everywhere. If T = oo, we call
u a global strong solution.
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If the unique mild solution u satisfies u — u € C((0, T]; W4'1(]R3)), it’s easy to
verify thatu —u € C*((0, T']; L (RS)) by [19, Proposition 3.3]. Naturally, we expect
that

d
eDfu(t) = D (u —u)(t) = 5137“(14 —u(0))(1)

exists at least almost everywhere with respectto ¢ € (0, co). However, this expectation
may not be true (see [33]). That is to say, .D¥u may be just a distribution. This
disadvantage is another difficulty arises from the singularity of the time fractional
derivative. In order to prove that the mild solution « is a strong solution, we have to
employ other methods to show that

D% € C((0, T1; L'(R)).

Theorem 2.2. (Global existence of strong solution) Assume that the assumptions
in Theorem 2.1 are satisfied and ¢(u) € C>(R), then the global mild solution u of
the Cauchy problem (1.1) is in fact a global strong solution and satisfies u — u €
C((0, 00); W*P(R3) N Co(R3)) for each 1 < p < oo.

Remark 2.1. Although the L'-norm of u(x, t) —i is small in our results, the L°°-norm
of u(x, t) — u is not necessarily small.

Remark 2.2. The existence and uniqueness of the solution obtained this paper can
be easily extended to the case of RN with N = 1, 2. While for larger N, due to the
limitation of L? — L9 estimates of Mittag-Leffler operators, we can’t get the same
results now.

Remark 2.3. 1f we take the usual Cahn—Hilliard potential ®(u) = (1 — u?)? and set
i = 1, then we have ¢(u) = u — u>. As mentioned in [23], the equation (1.1) could
be rewritten as

eDYu(x, 1) + Au(x, 1) — 2Au + A1 — u)*(u +2) = 0.

By taking A = A2 — 2A, we could obtain the same results as Theorem 2.1 and
Theorem 2.2 since (1 — u)?(u +2) = O(1)|u — 1|% asu — 1.

3. L? — L1 estimates

We first recall the L? — L9 estimates for the operator 7 () in the following result.
For convenience, we will usually use C to denote a generic positive constant which
may vary from line to line.

Proposition 3.1. ([27], Lemma 3.1) Let 1 < g < p < oo and v > 0. For any
u € L1(R3), we have

v _3l_1y_»
I(=A) T @Oull ppgsy < Ct~ 327 |y sy, 1> 0,

where (—A)% = F~Y(&|") denote the differential operator of v-th order.
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Now we show the similar L? — L9 estimates for both families of Mittag-Leffler
operators.

Proposition3.2. Ler 1 < g < p < oo and 5 — L < 22 with v € [0,4). For

ueld (R3), we have

1
p

(= A)E Eq(—* Ayl oy < Ct~ £ G0~ F ull oy, 1> 0.
Moreover, if v =4, foru € L1 (R3), we have
||(—A)2Ea(—t"‘A)u||Lq(R3 < Ct NullLggs)y, t>0.
Proof. By Proposition 2.2 and 3.1, we obtain

1(=A)2 Eq(—* Aull Lp g3

< / M) (=AY T (1% Yl . o i

( _&(L_l)_ﬂ
= ([ Muwrs ( Fa S o))
< Ct 4(”1 »- 4||u||Lq(R?)’ €[0,4).

If v = 4, taking the v-th derivative of E, (—t*A)u, we have
v v o0
(—A)2 Ey(—1% Ayu = (—A)7/ My (s)T (st%)u ds
0
ool
= (—A)2 / (My(s) — My (0)) T (st*)uds
0

1 00
+Ma(0)(—A)%f T(st“)uds+(—A)%f My (s)T (st*)u ds
0 1

— L+ b+l 3.1)
By Proposition 2.2 and 3.1, it’s easy to see that
1 v
IM1llee < / |Mo(s) — Ma(0)] - [(=A) 2T (st*)ul g g3 ds
0
! 1
=C (/ |Me(s) — Mo (0)]s™ dS) (™ Null Lo 3y )
0

< C17%|ull Lo m3): (3.2)

where we use the fact that

sup |My(s) — Mg (0)]s™' < C.

O<s<l
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Similarly, we have
o0 v
[PEY PR / Mo () I[(=D)2T (st%)ull Lo (r3y ds
1
o
<C (/ My (s)s~! ds> N ull Lo 3
1

< Ctull Lo g3)-
To estimate I, we see that for any u € L4 (R3),

d

—T)u=—-AT(s)u, s>0.

ds
Then

d
d—T(st”‘)u =—t*AT (st%)u, s,t>0.
s
Integrating the above equality with respect to s over [0, 1], we arrive at
1
T u —u= —t“/ AT (st*)uds.
0

Then, we obtain

1
1L o) < | Mo (0)] H /O AT (s1%)u ds

< Ct % ull Lo g3)-
L4(R3)

Inserting estimates (3.2)—(3.4) into (3.1), we complete the
Proposition 3.2.

Proposition 3.3. Let 1 < g < p < ocoand é —
u € L1(R3), we have

1
P

v 3ol _1y_av
(=) Eqa(—1“Aull oy < C1~ 1 77T juf| gy, 1> 0.

Moreover, if v =8, foru € L4 (R3), we have

(=AY Eq.o (—t* D]l Loy < Ct7 2 ull paggsy. ¢ > 0.

(3.3)

(34)

proof of

O

< S_T“ with v € [0, 8). Then for

Proof. The proof is similar with that of Proposition 3.2. By Proposition 2.2 and 3.1,

we obtain

(=A)2 Ea,a(_taA)” ”LP(R3)

IA

o0
f s Mo ()| (=AY T (1%l . s, dis
0

o =31y v el _ly av
C( [ MG ) (F G
0

,—Lﬂt(l,l),ﬂ
< Ct *a v Hullggsy, veIo,8).

IA

)
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If v = 8, taking the v-th derivative of Ey o (—1*A)u, we have
v v o0
(—A)2Ey o (—t* Au = (—A)2 / asMy ()T (st*)u ds
0
.ol
=(—=A)2 / as (My(s) — My (0)) T (st*)uds
0
. ]
+ My (0)(—A)2 / asT (st*)uds
0

o
+ (—A)7/ asMy ()T (st*)u ds
1
=h+5L+15 (3.5

The estimates for /1 and /3 can be derived similarly as (3.2) and (3.3). To estimate I,
we see that for any u € L4 (R,

d
sta.Ad—T(sta)u = —st® A T(st)u, s,t>0.
s

By the theory of analytic semigroups (see [10,29]), it is not difficult to verify that
{s AT (s); s > 0} is strongly continuous on L4 (R?) with respect to s € [0, 00).
Integrating the above equality with respect to s over [0, 1] and integrating by parts,
we arrive at

1 1
d
—1% / sA? T (st®)uds = / st* A—T (st*)u ds

0 0 dS

1

=t AT (t")u —u — / t* AT (st*)u ds
0
Then, by the estimate (3.4) and Proposition 3.1, we obtain

1
1121l Lo 3y = aMa(O)/ sA* T (st%)uds
0

L4 (R3)
< Cliza“taAT(fa)M”Lq(]R% + Cfiza”M”Lq(R%

+Ct 2

1
/ t* AT (st*)u ds
0

L4(R3)
< Ct72|ull Lo w3y (3.6)

Inserting the estimates for 11, I, I3 into (3.5), we complete the proof of Proposition
3.3. O

Remark 3.1. Itis aknown fact that for unbounded generators of resolvent families, the
solution becomes smoother at most by one unit of regularity in terms of the generator,
see the monograph by Jan Pruss [29], which prevents us from getting more smooth
solutions of the problem (1.1). In addition, the non-integrability of Mainardi function
M, with y < —1 implies that we can’t obtain the estimate for (—A)%Ea(—t"‘A)u
with v > 4, which also implies this disadvantage.
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4. Mild solution

In this section, we shall construct a local mild solution u for the Cauchy problem
(1.1) by employing Banach contracting mapping principle, and then extend u globally
by virtue of the auxiliary estimate (4.6) below.

Proposition 4.1. ([10,29]) For any fixed v > 0, {(—A)%T(t); t > 0} is strongly
continuous on L? (IR3) with respect to t € (0, c0).

Based on Proposition 4.1, we can obtain the strong continuity of both families of
Mittag-Leffler operators.

Proposition 4.2. (—A)UTl Ey(—t*A) and (—A) 7 Ey .o (—t*A) are strongly continu-
ous on LP (R3) with respecttot € (0, 00), where vi € (0, 4] and v> € (0, 8].

Proof. Taking v € ZP(R3) and 1y € (0, 00), we have
I(=8) 2 Eq(—1" Ao — (—=8)F Eq(—1§ A0l 1oz,
< /0 T MO8 Tty — (- 8)F T (610l s,
where 1 < p < oo and vy € (0, 4]. For any ¢ > 0 and A € (0, #g), by Proposition 3.1

and the properties of the Mainardi function given in Proposition 2.2, we may choose
0 < §; < 67 such that

av v Fo
20T ol | Mals)s™ 7 ds < 3
0
and
avy o V] E
ZCA_TI|U||L,;(R3)f My(s)s™ 4 ds < 3
)

where the positive constant C comes from Proposition 3.1 which is independent of
A and ¢. Then by the strong continuity of (—A)T1 T (t), we deduce that there exists a
positive constant y > 0 such that

b v o v o €
My ($)I(=D) 2T (st%)v — (—=A) 2 T (stg)vl Lo (r3yds < 3

81

for |t — fy| < y and 1, t9 > A. Therefore, we obtain that
lim (=) % Eq(=1" A = (=8)F Eq (~1 Al sy = 0,
—1o
whichimplies that (—A) 7 Ey(—t* A) is strongly continuous in (0, 00). A similar argu-

ment enables us to give the strong continuity of (—A)%Ea,a(—t"‘A)
in (0, 00). O
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Now we are ready to show the local existence of mild solutions for the time fractional
Cahn-Hilliard equation.

Theorem 4.1. Assume that ug — it € L'(R®) N L®(R3) with |lug — it|| poo(r3y < r
for some r > 0 and ¢(u) € C*(R). Then there exists t; > 0 such that the Cauchy
problem (1.1) admits a unique mild solution u satisfying u — i € C([0, ;]; L' (R3))
and

sup u(t) —ullpiwsy < 2lluo —ullpigsy, Nu() —ullpcgsy =2r, 0=t =<t.
0<t<t

4.1)

Furthermore, the integral is preserved, that is,
/ (u(x,t) —u)dx = / (uo(x) — u) dx. 4.2)
R3 R3
Proof. Noting that
Tl =G, 1 :/ G;(x)dx = (e‘5‘4’)|§:0 =1, t>0,
R3
by Proposition 2.2, we obtain
o
Ey(—t*Ai = / My ()T (st¥)uds = u.
0
Hence, the integro-differential equation (2.7) could be rewritten as
t
u(x,t) — it = Eq(—t* A)(uo — it) —/ (t — ) T AEy o(—(1 — 5)* A (u) ds.
0

To employ the Banach contraction mapping principle, for some #; > 0, we define the
set

& = {v e C(10, 1]; L' (R¥) N LR x (0, 1)):;

sup ||U(t)||Ll(R3) < 2||M() - l/_l”Ll(RS) and ”v(t)”LOO(R3><(0,t1)) < 27'}
0<t<t

and a map on this set

t

Sqv(x, 1) = Eq(—t* A)(uo — it) — / (t — ) AEqg (1t — $)* Ap(v + i) ds.
0

4.3)

Indeed, we shall prove there exists only one fixed point v(x, ) of the map S;,. Then
v(x,t) 4+ u is the mild solution. For this purpose, we need to show that §;, is a
contraction mapping from &, to itself for some small #; > 0. The following proof is
divided into two steps.



2390 H. YE ET AL. J. Evol. Equ.

(i). In the first step, we show that S;, : &, — &;,. By Propositions 3.2 and 3.3, we
have

150, 0O oo g3y < | Ea(—1€A) (g — @) oo )
t
+ /0 (¢ =) A Eaa(—(t = )% A) (@Q(s) + &) — 9(@) || oo 3, ds
t o
< llug — il Lo + Cb/o (t = )27 o)l oo (g ds

4r %
<r4+—Cbt}, 0<rt=t,
o

where b = max, ¢ 3 2, Z%:l |D¥(u)|. Obviously, if 7 < (Sgb)%, then

1S vl Loo®3 % (0,11)) = 21

Similarly, for 0 < t < #1, we have
IS vl L1 w3y < N1Ee (=1 A)(uo — i)l 1 (m3)
'
+ / (t —s5)%"! [AEqq(—(t —$)* Ao + )|l L1(g3) ds

0

t

< llug — @ll 1 o) +Cb/ (0 =) )l o) ds
0

_ 4« _
< lluo — il 1 r3y + aCbl‘l2 llo — il 1 (w3
< 2llup — ull 1 r3)-
Now we show the continuity of S;, v for ¢ € [0, #{]. Fixing o € (0, #1), we have

150 v(®) = St () | L1 m3y < 1(Ea(—1%A) = Eq (=15 A) (o — D) 1 3
t
+ f (t =" AEaa(—(t = 9)“ Dp(s) + D) 11 g3 ds
1o

1
# [ =9 A=~ 9" A0 +

(0 =" ABaa (=10 = )" Dp (&) +D| | . ds
=L+ 1+, 4.4

wherefy < t < t1. Using the strong continuity of E, (—*A) on L' (R3) fort € [0, 00),
we deduce easily that the first term /1 goes to zero as t — t(T . By Proposition 3.3, the
estimate of the second term yields

t
b= cf (= )5 lpu(s) + i) — (@) 1 a3, ds
0

t
< [ =95 Ol ds
0]

< 2Cb(t — 10)% luo — itll 11 g3)-
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Obviously, this term vanishes as t — tJ . For the estimate of the third term, we first
denote

Fit5) =] = 9% AEg o~ = 9 A (us) + D)
(0 =) Ao (—lt0 ) D) + D,
where 0 < s < fy < t. Itis easy to see that
o) = |97 = o= 9| [ AEa(— = 9 Dp((s) + D) 1 o,
+ (10 — 9%V A Eqa(—(t — )" D (v(s) + i)
- AE(x,a(_(tO - S)aA)QO(U(S) + ﬁ) ”LI(IR3)
< Chl =9 =t = "] (¢ = )" F o — @l ey
+ (o — )" | AEqa(—(t — )* Dp(v(s) + it)
— AEqq(—(t0 = )* () + @) | 1 g3

Then combining with the strong continuity of AEg q(—t%A) on L'(R3) for t €
(0, 00), we have

lim f(¢,s) =0

+
=1,

for any fixed s € (0, fp). In addition, for 0 < s < f9 < ¢, we have

0]
I3=f f(t,s)ds
0
1) o
< Cb/ (to — )2 M v(s)ll 1 g3y ds
0
) o
< Cb [t =98 dsluo — oy,
0

o
< Cb[oz ||u() - u||Ll(R3).

Applying dominated convergence theorem yields the third term /3 also tends to zero
ast — t&L . Similarly, we can obtain the same limit as t — #,” with #p € (0, #]. Thus,

tli_{ltlo 1S v(®) — Syv@o)lipiwsy =0, fo € (0,1].
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Continuity up to = 0 of S;, v follows from the following estimate and the strong
continuity of Ey(—t%A), we have

1S5 v(@) = Sy vl 11 r3)
< I(Ea (=14 A) = D(uo — )|l 1 m3)

t
+ /0 (t = 9% AEqa(~(t = 9)* g(0(s) + )| 11 g, ds

t

< (Eq(=t*A) — I)(uo — )|l L1 g3y + 2Cb/0 (t = )2 ()l L1 g3y ds
o _ 4  a _
< (Eq (=1 A) — I)(uo — ) || 1 r3) + aCbtz luo — ull 1 r3)- 4.5)

Then S, v € C([0, 1;]; L' (R3)).
(i) In the second step, we need to show that S;, is a contraction mapping on &,.
Letting vy € &, and v, € &, we have

1Sy v1(2) = Syv2(®)ll L1 (w3)

t
< /0 (t = )" N AEga(—(t — )" A) (@1 +it) — ¢(v2 + D)l 11 g3) ds

t
stf (t =) ds sup o) — va() 1 o)
0

0<t<t

2 a
< —=Cbt; sup |lvi(t) — va()ll 1 (g3
o 0<r<n
1
<7 sup lvi(?) — v2 (@)l L1 (R3)-
0<t<t
That is,
1
sup Sy vi1(®) = Syva sy < 7 sup [[vi(®) — v2(@) 1 (w3)-
0<t<t 4 0<t<t

Therefore, S;, has a fixed point in &,.
In addition, subtracting u from both sides of (2.7), integrating the result equation
with respect to x € R3 and noting that E,(—t*A)1 = 1, we obtain

A; (u(x,t) —u)dx = /1;3(1/!0()6) — i) dx,
which completes the proof of Theorem 4.1. 0
Remark 4.1. Tt is readily seen that the proof of Theorem 4.1 also implies
u—ieCq0,nl; LP(RY), 1<p=oo.

The following key lemma plays an essential role to extend the local solutions glob-
ally.
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Lemma 4.1. Suppose that the mild solution u obtained in Theorem 4.1 has been
extended up to some time T (T > t; > 0) and (4.1) are kept unchanged. In addition,
assume that ||uo — |l 1 g3y is sufficiently small and ¢ (u) = O(1)|u —u|” asu — u,

whereo = % Then there exists a positive constant C depending only on |[uo—u|| 00 r3)
such that

() = @l 1 sy + 15 u(e) = il oy < Clluo — iill 1oy, 0=t <T.

(4.6)

Proof. Let
Xy = {u(t,x); u—iieC(0, T LR, 13 (u — it) € C([0, T1: L"(R3))}
equipped with the norm
Iollxy = sup (1@l + 137 0 ()| 2o gy -

Upon the observation

!
u(x,t) — i = Eq(—t*A)(uo — ut) — / (t — ) T AEg o(—(t — )" Dp(u) ds,
0
it then follows that

lu —llx; < |Eq(=1%A)(uo — i)l x;

t
+ ”/ (t = )" AEqo(—(t —$)* A)p(u) ds
0

Xr
< Eq (=t A)(uo — )|l x,

t
+ sup fo (t = )" [AEq o (=t = $)* Do) 1 g3, ds

0<t<T

t
+ sup m/o (r —s)*7! HAEa,a(—(z—s)“A)gp(u)UU,(N) ds

0<t<T

=L+ DL+

For the estimate of the first term, we have
o= sup fIEa(=1* Ao = Dl oy + 15 | Ea(—1" A)ato = )l o e}
0<t<T

_ o a1 _
< sup {lluo — itll 1 sy + Cr2ot ™% T lug — it 1 gy )
0<t<T

< (14 O)lluo — iill 1 -
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In addition, by employing a similar argument, we can deduce from ¢(u) = O(1)|u —
u|° that

1t
< sup / (t = ) A Eg o (—(t = )* A 1 g, s
0<t<T JO

t
<C sup A(t—S)7_1||§0(M(S))||L1(R3)d5

0<t<T
t s
<C sup f(t—s)f— lus) = @l g3, ds
0<t<T JO

24 -
< C sup 12 |u(t) —ul,
0<t<T

< Cllu—al, .

®R3)

and

t
L< sup 1% / (t = ) A Ego (=t — )% )| o 3, ds
0<t<T 0

t
<C sup ﬁ/ (0 — )5 o)1 s ds
0

0<t<T
t
<C V77 — 55! —a|° d
<C sup 1% | (¢ =5)5 Mu(s) = allf, s, ds
0<t<T 0

<C sup 12|u(r) —
0<t<T

S C”M - ﬁ”g{]"

L_t ”(20 (]R3)

Summing up, we immediately conclude
lu —illx; <1+ O)lluo — il sy + Cllu —ull%,

where C is independent of 7'. Thus, if [lu — it]| 1 g3 is sufficiently small, by Strauss’s
inequality (cf. [23,34]), we can obtain (4.6) immediately. The proof of Lemma 4.1 is
completed. O

It is worth mentioning that (4.6) holds in [0, 7] even if T = 4-00, since the constant
C in the estimate (4.1) is independent of 7.

Now we are going to extend the local mild solution u globally. In comparison
with that of classical integer-order Cahn—Hilliard equation in [23, Theorem 1.1], the
proof given here is more concise since it doesn’t rely on the estimates of high order
derivatives of u.

Proof of Theorem 2.1. Let u defined on [0, 1] be the local mild solution obtained in
the previous sections. We first extend u from [0, #1] to [0, #] 4 12] for some 7, € (0, #7).
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Define the complete metric space

Enin = {v € Clln, 1+ 01 L' @) VL@ x [, 11 + 2D
U(.X, tl) = u(xv tl) - Iza

sup  [[v@) 13y < 2lluo — ull1 w3y and V@] Lo ®3xty.1,+02])
n=<t<ti+n
< 2l — il |

and the operator

1
Suyaiy0 (6. 1) = Ea(—1%A) (g — i) — / (1 = 9% AEqa(=(t — $)* A)p(u) ds
0

t
- / (t — s)“_lAEa,a(—(t —)* A +a)ds for t > 1.
1

By Proposition 3.2, 3.3, Lemma 4.1 and recalling that ¢ (u) = O(1)|u —u|° asu — u,
we obtain

||St1+t2 U(I)HLOO(R3)

1 _2

- 2 _
< llug — ”||L°°(R3) +/0 (t— S)a l||AEa,a(—(f - S)“-/‘U‘P(”)”LOO(R% ds

131
+ / L =) A Eaa (= = )" A )]l oo gs) ds
t

2

'
+ / (t — )% 1 |AEq a(—(t —5)* A)o(v + )|l 00 (r3) ds
141

tl—l

_ 2 _a_
snuo—uan(Rs)w/o (t =) o)l 1 g3 ds

n t
2 _1 a_ _
+C/t1—’22(l_s)2 ||<p(u)||Loo(R3)dsJrcftl (t =527 Nl + @)l oo 3 ds

o 2

L a_| _e /¢ .
/0 (t—s)2""s 2(s2||u—u||La(]R3)>ds

3
1
1 e ) ; .
+C/r1—’l(l_S)2 ||u—M||Lw(R3)dS+Cf (t = )27 vl oo g3y ds

) gl

_ t -
< flug = il gy + € (1 = (11 = 2))

R
_ h\\— 71 _ a _
< o — il ersy + €t = (1 = 2)) o = 51 g, + €& =13 g — &l o )

for v € &, 44, and t € [t1, 1] + 12], where C is independent of ¢ and ;. Choose small
t> such that

a 4 1
Clt—n)? =Ciy <5, telnn+nl
Then for sufficiently small |lug — il| 1 r3), we can obtain that

1S+, Loomsy < 2lluo — tllpoogsy, t € [t1, 11 + 12].
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Similarly, for ¢ € [#1, 11 + t2], we have
1St +vOl L1 w3y < luo — @l 1 (g3
n
[0 A B (= = 9" A ) sy s
t
—|—/ (1 —s)a_1||AEa’a(—(t —)*A)p(v + i) L1 w3y ds
n
11 a_q
< lluo — il 1 zs) +c/0 (1 = )3 @)1 gy ds
t o
+c/ (t —)2 o+ D)l L1 @3 ds
< lluo — dll 1 g +C/ (1 =937 57% (53 uls) = @], s, ) ds
-1 T
+ch1 (t =92 0Ny g3, ds

< lup — ’/_l”Ll(R.?) + Cllug — IZHZ'(R?) +C(t — tl)% lup — ﬁ”LI(R.%),
< 2lupg — b_l||Ll(R3)
withsufficiently small [ uo—u|| 11 (g3) and small 7. The continuity of || S, 4+, v(?) [l 11 (r3)
for t € [t1, 11 + t2] follows the proof Theorem 4.1. Therefore, we obtain S;, 11, v €

5t1+t2~
On the other hand, for vy, v2 € &, 44, and t1 <t < 11 + 2, we have

1St +6,v1(F) = St+6v2@) 11 (r3)

/(l—s)“ NAEqo(—(t = )* A)@@1 + i) — ¢z + i)l 11 gs) ds

<c f (=985 sup o0 — w0l
L =t=ti+1
<Cu—mi swp v -0l

n<t<ti+n

IA

1
Py sup ”Ul(t) - UZ(t)||Ll(R3).
2 n<t<ti+n

That is,

1
sup ISy 4+501(1) — Sy+nv2@llpirsy < 5 sup  [lvi(@) — v2() [l 1(w3)-
n<i<ti+n 2 h<i<ii+n

According to Banach contracting mapping principle, there exists a unique solution in
&t +1,» which is also denoted by u (x, t). Therefore, the solution u (x, ¢) can be extended
up to time 7 + £, and

lu(@) —ullpoomsy < 2lluo — tllpoorsy, 0=t <t +1.
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Repeating above procedure, we can extend the solution u (x, ¢) to time #; + mt, for
any m € Z such that

lu@) =l poorsy < 2lluo — ullpoorsy, 0 =1 =<1 +mt.

We thus establish the existence of the solution « in all # > 0. The integral preserva-
tion property of u follows directly from Theorem 4.1. The proof of Theorem 2.1 is
completed. U

5. Strong solution

By Remark 3.1, the mild solution u obtained in Theorem 2.1 may not be a smooth
solution. However, we will prove that « is in fact a strong solution of the problem (1.1)
in this section. For this purpose, we first give some a priori estimates to show u — u €
C((0, 00); W*1(R?)). For simplicity, we assume # = 0 and take r = [lug|| oo g3y in
the rest of this paper.

It is worth mentioning that the equation in (1.1) is non-Markovian and E, (—%A)
and E, o (—t*A) with 0 < o < 1 are not semigroup operators, which means that for
t>1>0,

t
u(x,t) = Eq(—t*Aug — / (t — s)o‘*lAEa,a(—(t — )% A)o(u)ds
0
t
£ Eq(—(t — D* Au(P) — f (1 — )" AEqq(—(t — $)* A)p(u) ds.
t

Thus the way to obtaining the regularity of solution as given in [23] for the tradi-
tional Cahn—Hilliard equation is no longer valid. However, by dividing the integro-
differential equation (2.7) into the following three terms,

t
u(x,t) = Eq(—t* Aug —ﬁ (t — ) ' AEqo(—(t — $)* A)o(u) ds
t

t
—/ (t — ) ' AEqo(—(t — )* Do) ds, t>7>0. 5.1)
0

we see that the first two terms on the right hand side of (5.1) can also be estimated
similarly. So it suffices to find how to deal with the third term on the right hand side
of (5.1).

Lemma 5.1. Let the assumptions of Lemma 4.1 be satisfied. Then for any 0 < s1 <
sy < t, we have

IDU() | oo g3y < (t — s "3 Ci(ry 52 — 51,1 — 51), (5.2)

where C1 is a continuous increasing function of t — s1.
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Proof. Applying the derivative operator D to (5.1) and taking 7 = 57, we get

IDu@)llz < [IDEq(—t* Auoll g r3)

t
+ / (t = ) DA Eq(—(t — $)* A)p(ut) | ooy ds

1

s1
+f0 (t —$)* I DAEqo(—(t = )* )]l oo r3) ds
=1+4+11.

By Propositions 3.2, 3.3 and Theorem 4.1, we have
t
I = |DEq(—1* Aull oo ) + f (t = ) DAEqa(—(t — )* A)@@)]| s ds
51
o t o
= N =307 +C [ 0= 9B gl
s1

a ! a 1
<COYE—s)7F + cm/ (=)0 a7, s ds
51

1

t 1
<Cr(t—s)"%+ cm/ (t —s)0 s (sﬂnullmms))z ds
81
<Cr)(t —s1) T +Cr)(t —s51)75. (5.3)
Similarly, we could deduce that

1
11:/ (t =) NIDAEga(—(t — $)* Do) Lo 3 ds

- c/ (t =) 5 o) 1 g, ds

< c/ (1 =758 (5Tl g, ) s

<C(t— s1)_a/0 (51— )2 573 ds

<C-s) s -s) ¥ (5.4)
Combining (5.3) with (5.4), we obtain

IDu(t) oo g3y < (t — s~ FC1(r 52 — 51,1 — 51),
which completes the proof of Lemma 5.1. 0

Next, we give the estimates of ||Dku(t)||L1(R3) withk =1, 2, 3.

Lemma 5.2. Let the assumptions of Lemma 4.1 be satisfied. Then
[Du)ll 13y < Mi(r)t* lluoll 1wy, >0, (5.5)

where M1 (r) is a positive constant depending on r.
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Proof. According to (2.7) and (4.6), we have
HHDU) 1 g3y < 151D Eg (=1 A) o) 11 )

t
+1f / (t = )" IDAEqa(—(t — $)* Ag) 11z, ds
0

t
< Buollrgoy + €% [0 =8 s i 0
0
t
< lluollprwsy + Ct4 /0 (¢ —S)K_IHM(S)llia(Rs) ds
'
< lluollprmsy + Ct4 / (t—s)¢ ls72(s20 (sl Lo ®3))° ds
0
=< “uO“Ll(R3) + CCT(”)”“OHCLTl(Rz)
The proof is completed. 0

Lemma 5.3. Let the assumptions of Lemma 4.1 be satisfied. Then for any 0 < s1 <
§) < §p < §3 < t, we have

ID*u() |l 1 g3y < (t = 52)7 2 Ma(r, t — 52) luoll 1 (5.6)
and
DUl 1) < (= 53075 Ma(r, 52 — 51,53 — 52,1 — 59 luoll 1 asys (5.7)
where My, denote continuous increasing functions of t — s, k = 2, 3.

Proof. We first prove (5.6). For t > 55, we have
ID*u(@)ll 1 &3y < 1D Eo(—1% Autoll 11 g3
t
+ / (t —s5)*7 ! IDAEy qo(—(t — s)“.A)Dcp(u)HLl(Ra) ds
52
& 12
+ / (t = $)* N D?AEqo(—(t — 9)* A)p)ll 1 g3 ds
0
=I14+11.

By Propositions 3.2, 3.3 and Lemma 5.2, we obtain
o t o
I <C@t—5) 2luoll sy + C(r)/_ (t — )3 | Dull 1 s ds
5

t
< C(t =5 S luoll 1 sy + C(r)ﬁ (t =358 (sTIDull ey ) ds
5

< C(t = 52) 7 7 lluoll 1 rey + CO) uoll 1 o) (5.8)
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By virtue of p(u) = O(1)|u|°, we have
52
Il = / (t —$)* D> AEqq(—(t — )* Do)l 11 g3) ds
0
52 |
< c/ (t — ) o)l 1 gy ds
0
52 o 1 o
< [T =085 e g

o 52 o o o
SC(I—Ez)_7/ G2—s5)7 71572 (sfllullia(R3)>ds
0
<t = 5)72CE lluoll L1 gs)- (5.9)

Combining (5.8) with (5.9), we immediately conclude the estimate (5.6).
Next, we prove (5.7). Similarly, for ¢ > 53, we have

ID*u(®)ll 1 < 11D Eoq(—t* Augll 11 g3y

t
+/ (t =) IDAEqo(—(t — ) AD*p(w)| 1 @) ds
$3

53
+ fo (t = )% D3 AEq o (—(t — $)* D)l L1 z3, ds
=I'+11I'
By Propositions 3.2 and 3.3, we have

I' = | D Eq(—t* Duoll 11 w3

t
+[ (t = )% I DAEga(—(t — ) A)D>0)| 1 z3) ds
$3
_ 3 ! @ 2
=C@—5) *luollpiwsy +C | ¢ =) 1D @) L1 (g3 ds
53

3 ! o_
< C(t—53) 4||uo||L1(Rs)+Cf<r—s)4 L(1Dul2; + 1Dl 1 ) ) ds
53
- =3
< C(@—53)" # lluoll L1 w3y
t
+Cﬁ (t—s)s! <||Du||Loo(R3)||Du||L1(R3)+||D2u||L1(R3)) ds. (5.10)
53

It should be notice that by virtue of (5.3) and (5.4) in the proof of Lemma 5.1, the
function in the right hand side of (5.2) is the continuous decreasing function with
respectto t € (s, 00). So, for 0 < 51 < sy < 52 < §3 < s < t, we have

IDu(s)| o < (s — 1) TC1(r, 52 — 51,5 — 51)

< (52— 1) 1C1(r, 52 — 51,52 — 51)
=C(r, 50 — 51). (5.11)
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Then combining with Lemma 5.2, we have

t
f (t — )3 Dull oo gy | Dutll L1 3 ds
53

IA

t
C(r, sz—sl)||uo||L|(R3)f (t —s)+ 's™4ds
53

C(r, s _Sl)||“0||L'(R3)- (5.12)

IA

Similarly, by virtue of (5.6), for 0 < 5, < 53 < s < f, we have
||D2u(s)||L1(R3) < (53 —5) T Ma(r, 53 — s2)lluoll 1 w3y

and then
¢ o
/: (t — S)Z_l ||D2M||L1(R3)ds
53

t
(53 = $2)" 2 Ma(r, 53 — 52)||M0||L'<R3)f (t —s) 'ds
53

=
o t o 1
< (53 —52) 2 Ma(r, 53 _52)||MO”L1(R3)-/: (t—s)3"ds
53
_ _ _
< (t—53)7 F M3(r, 53 — 52, — 53)[luoll 1 (w3 (5.13)

Inserting (5.12) and (5.13) into (5.10), we obtain
_ 3 - _
I' < (1 —53)" % M3(r, 2 — 51,53 — 52,1 — 53)|luoll 1
By the similar method, we have
53
1= / (t = $)* D AEqo(—(t — 9)* Do)l 1) ds
0
53 o«
< c/ (t — )5 o)l 1 oy ds
0
5 —3 $—1 o
SC ) =0T a =9l ) ds

<c-5) ¥ f:@ =937 (sE ], ) ) ds
< (1t =53 % C) luoll 1 gy
Summing up, we immediately conclude the estimate (5.7). O
Lemma 5.4. Let the assumptions of Lemma 4.1 be satisfied. Then we have
1D Ul oo gy < (1 — 0T Crlrss = st seet — skt — 51 (5.14)

forany O < s1 <s§2 < --- < Sk < Sg+1 < t, where Cy are the continuous increasing
functions of t — s, k =2, 3.
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Proof. We first prove (5.14) for k = 2. Letting ¢ > 53, we have

ID*u(®)ll oy < 1D Eq(—1* Aol oo m3)

IA

J. Evol. Equ.

t
+ / (t =) N DAEgo(—(t — )* A Do) oo g3, ds
2

$2
+ fo (1 = ) D2 A g (— (1 — )* A)p (@) | oo ) d

=I1+1I

By Proposition 3.2 and 3.3, we obtain
o ! o
I <(t—sy) 2Cr+ Cf (t —s)d0~! | De ()| 20 3y ds.
)

Combining (5.5) with (5.11), we have

1 1—L
I D) 20 3y < 1 DU ] o) 1 DU, 255,

< C(r, 52 —sl)s_?l%, sp <§ <t
Inserting this inequality into (5.15), we get
o ! o 3a
I <(@—s)2Cr+ C/ (tr — s)m_ls_mC(r, sy — s51)ds
52
S (=) ICr 4 (1 — 5) 0C(r, 52— 51).
In addition, we have
2 Ly 2
11 = [ = 9 DA B (=t = 5 Ap @)l d
0
52 N
=[-8
0
52 _Ba g _a a o
< C [ = F s dssup (1l )
o 3a 52 o a
< (I_SZ)TT/ (52 — 9157 ds CO) ol 1 s
0

a _3a
= (t—s52)"2(s3 —s52) * C()lluoll 1 (w3

< (t —$)72 Ca(r, 53 — 52).

(5.15)

(5.16)

(5.17)

Here we used the fact that s, < s3 < ¢. Combining (5.16) with (5.17), we immediately
conclude the estimate (5.14) for k = 2. It is also worth mentioning that the term on
the right hand side of (5.14) for k = 2 is a continuous decreasing function of r — s»,
even though C»(r, s — 51,83 — 52, ¢ — s2) is continuous increasing with respect to

t— 8.
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Next, we prove (5.14) for k = 3. Similarly, for ¢ > 54, we have

D) o) < 11D Ea (=1 Aol g

t

2403

+ | ¢ =) NDAEGo(—(t — 5)*A)D*p(u) || Lo (g3 ds

53

53
) - ) ND}AEqa(—(t — )" AWl oo m3) ds

=I'+1II.

By Proposition 3.2 and 3.3, we get

t
I'<(@t—sy) " %Cr+ c/ (t — )3 D*p(u)|| oo w3 ds
53

3a ‘t a_
S (t — S3)_ 4 Cr + C/ ([ — S)4 1 (”Du”%OO(R:;) + ||D2u||Loo(R3)) dS.
53

For0 < s1 < s2 < s3 <s <t,wehave

_a
| Du(s)l|pee < (s —s1)” #C1(r, 52 — 51,5 — 51)
_x
< (52 —51) #C1(r, 52 — 51, 52 — 51)

= C(r, §2 — Sl)
and

2 _a
D u(s)|pee < (s —s52)" 2Co(r, 52 — 51,53 — 52,5 — 852)
_x
< (53 —82) 2Co(r, 52 — 51,83 — 52,53 — 52)

=C(r, 52 — 51,53 — 52).

Inserting these two estimates into (5.18), we obtain
3a ! o
I'<(@t—s3)"2Cr+C(r,s0 — 51,53 — sz)/ (r—s)+ lds
$3

3a o

<@ —s53) 4Cr+(—s3)4C(r, 52 — 51,53 — 52)
3a

< (t—s53)" #C3(r,50 — 51,53 — 82,1 — 53).

In addition, we have
53
= / (6 — )% D3 A Ep (—(t — ) A)p ()| e o, ds
0
53 .
<c / (t =) E D)1 o, ds
0

S3 o o o
< C/ (t—s)7%(t — S)Z_IS_ZdS sup (ﬂ ||Du||L|(R3))
0 t

(5.18)

(5.19)
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S3 o o
< C<r—s3)—“/ (53— 5)§ 15~ % ds
0
< C(t—s3) ¥ (s4—s53)7 5. (5.20)

Here we used the fact that s3 < s4 < t. Combining (5.19) and (5.20), we immediately
obtain the estimate (5.14) for k = 3. O

Lemma 5.5. Let the assumptions of Lemma 4.1 be satisfied and ¢(u) € C3(R). Then
we have
1

ID*u @)l Lpgs) < (¢ =54 Calryss = 51,54 = s1,1 = 5ol [y gy (5:21)

forany p € [1,00) and 0 < s1 <51 < $p <52 <83 <53 <S4 <354 <t.Here, Cyq
is a continuous increasing function of t — sa.

Proof. Fort > 54, we have

ID*u() | Lp@s) < I1D*Eo(—1* Aol Lp w3

IA

t
+ﬁ (t — )" IDAEqo(—(t — S)“A)D3<P(M)IIL;>(R3) ds
54

54
+ / (t =) D' AEq o (—(t —)* Do)l Lp @3 ds
0
=I+II+111.

Since p € [1, 00), by Proposition 3.2, we have

1

1< (t =5~ Cllugll oy <t — 5~ CO ol ] g, (5.22)

Combining Proposition 3.3 with Lemma 5.1-5.4, we obtain
t
1= f (t = )" DA Eq o (—(1 — $)* A DY) | gz ds
54
! 21 3
< c[ (t = 9 F D) o g, ds

< c/ (r—s)“1 ||Du||i3p(R3)+||Du.D2u||Lp(R3)+||D3u||Lp(R3)) ds

1 1
< c/ (t —s)rl(nDuuLM(Rs 1Dul,
54

1

Dl Ly, ||Du||L](R;)||D oo ) + 11D u||LOO(Rg |1D? unL.(W )ds

N VI 3-1
< | ¢-9¥ -5 ol g (€7 sz = 51,5 = 51)

1_, 1
+C, "(r,s2 — 51,5 —s1)Ca(r, 52 — 51,53 — 52,5 — )M (r)
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-1 1
+Cs " (r,s2 — 51,53 — 52,54 — 53,5 —53)M3 (r, 520 — 51,53 — 52,5 — 53))ds
1
= ([ - 54)7O(C4(r7 S4 — 81, 54 — 81,0 —= 54)””0”2](1@3)’ (523)

where we also used the monotonicity of C1, Cp, C3 and M3 with respect to ¢. By the
similar method, we have

54
111 :/ (t — )" ID*AEqo(—(t — ) Aol L pg3) ds
0
54 o
< cf (t =)~ 5 @)l o o, ds
0
54 _Q(H_l) o B
=Co) [ =905 ul ], g 0
0

o 1 54 o o o 1
< C(r)(t —m*f‘”;)/ G4 — ) 's 7 ds sup (ﬂnun‘za(RsQP
0 t

1

< (t=5)7"C(rt —5)uol 7). (5.24)
Summing up, we immediately conclude the estimate (5.21). O

Theorem 5.1. Let the assumptions of Theorem 4.1 be satisfied and ¢(u) € C>(R).
If lluoll L1 w3y is sufficiently small and ¢(u) = O(1)[ul® as u — 0, where 0 = %
then the mild solution of the problem (1.1) u € C((0, 00); W*P(R3) N Co(R3)) for
1<p<oo

Proof. Let 1 < p < oo. By Lemma 5.5, we see that u(t) : (0, 00) — W4P(R3).
Remark 4.1 shows that u € C([0, 00); LP(R3) N CO(R3)). So it suffices to show the
continuity of [lu(7) |l w4 r3) Withrespect to z € (0, 00). For simplicity, we only prove
the continuity of || D*u(t) || Lr(R3)» Since the proofs of the other cases (k = 1,2, 3) are
similar.

Fixing 79 € (0, 0o), we have the following estimate

ID*u(t) = D*uto)ll Loy < (D*Eq(—t*A) — D* Eq(—1§ Aol o g3

t
# [ = DAE (= 9" DD D] i, 4
1o

1
+ / ’ [t = $)* ' D*AEq o (—(t — $)* A)g(u(s))
0
—(tg = $)* ' D*AEq,o (—(tg = $)* Do) | . g3, ds

< hLh+hL+1hL t>rn.

Using the strong continuity of D*Eq(—1%A) on LP(R3) forr € (0, 00), we deduce
that the first term /; goes to zero as t — t(;r . Take

_ - _ - fo
0<S1<S1<S2<S2<S3<S3<S4<S4=5<t0.
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Similarly with the estimate (5.23), we can obtain that

t
I =/ [ =9 ' DAEqo (=t = )* DD p(u(s)] ) s, ds
fo
t
< C/ (t =) Do) Ly gs, ds
fo

! «_ 3-1 1
scf (-9t 1(||Du||Loo‘;R3)||Du||gl(R3)
1

1
DUl 1Dl g | Dl + 1Dl s 1D H||L1(Rz )ds

LOC(R3) L1(R3)

12 1 1
< _ i — 5 F » cr — —
= (t S) (S S3) ”uOHLl(RS) 1 (rs 52 S1, S Sl)
fo
1—1
+C, "(r,s0— 51,5 —51)Ca(r, 52 — 51,83 — 52,8 — 52)
-1 1
+Cy ”(r,S2—S1,S3—S2,S4—S3,s—S3)M3"(r,S2—31,S3—Sz,s—53))ds
1 t
» — S e
=< lluoll ;1 C(r, s2 — 51,53 — 52,54 — 53,53 — 52,1 — 51)(fp — 53) 4/0—5)4 ds
1

1 o _ o
< luoll/ C(r,s2 = 51,53 — 52,54 — 53,53 — 52,0 —s51)(to —53)" % (t —10) %,

where we used the monotonicity of Cq, C2, C3 and M3 with respect to ¢. Obviously,
this term vanishes as t — tg’ .

For the third term /3, we denote

ft,s) = [t —)* " D*AEq o (—(t — $)* Ag(uls))
— (10 = )" ' D*AEq,o (=10 = )* Do) | 1 p )

and it is easy to see that

e e e G S Bl AN S CH R VA ICTEN]
+(to— ) | D*AEga(—(t — 9)* Ap(u(s))
— D*AEqo(=(to = )* Do) | 1 )
= Clu=9"" = o= 97| - =97 F Juo — il e,
+ (o — )| DY AEq o (—(t — $)* Dp(uls))
— D*AEqo(—(t0 = $)* D) pgs)-

Combining with the strong continuity of D4AE0W (=12 A) on LP(R3), we have

11m f@,s)=0

t—)to



Vol. 21 (2021) Global existence of solutions of the time fractional 2407

for any fixed s € (0, tp). In addition, we can control I3 by the following two inequal-
ities,

fo
/_
2

—(t0 — $)* ' DAEy o (—(to — $)* A D3p(u(s))

(t =) ' DAE, o(—(t — 5)* A D3p(u(s))

LP(R3)

ds
)

to
213
<c / (-9t [Dpwon], ..

fo @ 31 1
S R (L M
2

-1 1 -1 L
2 3 3
1Dl 1Dl 1Dl 4+ 1Dl D%l )ds
10 R R |
< [, =96 =5 F ol (€] Gosa = svs =)
2

1—1
+C, "(r,so— 51,8 —51)Ca(r, 50 — 51,53 — 52,5 — 52)

-1 L _ _ _
+C, ”(r,sz—swz—sz,S4—S3,s—S3)M3”(r,sz—S1,S3—sz,s—S3))ds
% _ _ _ 3 Ip «

= lluoll [y €y 52 = 1,53 — 52, 54 = 83,53 — S2. 0 — s1)(t0 — §3) 7 * () ¥,

and
%O
I:,:/ = /0 H (l — S)a71D4AEa,a(_(t - S)aA)<P(”(S))

(10 = )" D*A B o (— (10 — )" A u(s))|

ds
LP(R3)
’70
<c / (1 — )5V ()l Loz, ds
0
I, _«
< COr, ol ) (D78,
which implies
10
=41 < / g(s)ds = C(r. t0, luoll 1),
0

for some integrable function g and constant C independent of 7. Then the application
of dominated convergence theorem to /3 shows that I3 — O as ¢t — t(;r .

Analogously, we can also obtain the same limit of ||D4u(t) — D*u(ry) w3y as
t — t, with 1y € (0, 00). Therefore,

Jim | D*u(t) = D*u(to)llLoes) =0, 10 € (0,00),

which completes the proof. 0
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Next, we are going to prove Theorem 2.2. Several additional properties of both

families of Mittag-Leffler operators are necessary in our proof which can be found in
[8,37].

Proposition 5.1. Let0 <a < landv € ip(R3). Then we have

(i) DYEy (—t*A)v=—AE, (—t*A)v, t > 0;
(ii) $Eq (1A v=—1"TAEyq (—1*A)v, t > 0;
(iii) Eq(—t* A = J (% Egy (—19A)v), t > 0.

Proof of Theorem 2.2. Letu € C([0, 00); L'(R?)) be the global mild solution of the
problem (1.1). By Theorem 5.1, we have u € C((0, 00); W4'1(IR{3)). Denote

u=uy—uy,

where
Uy = Eq(—t* Aug and uy = /(;[(t — )V Ey o (—(t — 5)* A) Ap(u) ds.
By Proposition 5.1 (i) and Theorem 5.1, it’s to see that
Dfuy = —AEq (—1* A)ug = —Auy € C((0, 00); L'(RY)).

Next we show .D%us € C((0, 00); L' (R3)). Noting #5(0) = 0 and combining with
Proposition 5.1 (iii), we derive that

d _
eDfur(t) = —J " ua(®)

d
= EJ,‘*“ (Qu * Ap(u))

= (47 Qu) * ot

d
= aEa(—t"A) * Ag(u),
where 9, (1) := tl_o‘Ea,a(—(t — 5)*A). So it suffices to prove that
w(t) := (Eq(—1*A) x Apu))(t) € C'((0, 00); L' (RY)).

Fix 7o > 0 and take 0 < & < 1. Then we can easily to obtain that

w(to +h) —w(o) 1
h T h

1
| (Battto 4 b = 90%) = Eul=(t0 = 9% 4)) gt ds
0

to+h
+ E / Eq(—(g+h —s)* A Ap(u) ds
0]

—I 4D (5.25)
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Similarly with (5.23) and (5.24), we obtain there exists so € (0, f9) such that

to
/ (to — )* Ml A Egar (—1§ A) Ap()| 13y ds < Clluol 11 w3
0

where C is dependent of 7y — sg. Therefore, applying dominated convergence theorem
and Proposition 5.1 (ii) to the first term /1, we get that

I
lim 7; = lim %/O (Ea(—(to +h—5)%A) — Eu(—(tg — s)“A))Ago(u) ds
thnJo

h—0t h—0
1
= f O(to — ) T AE, o (—(to — 5)* A) Ap(u) ds
0
= —Auy(1tp). (5.26)

Furthermore, note that

to+h
by [ Eatoth - 9" A0t ds
0]

to+h
- / (Ea(—(to +h—s)*A) — I)A(p(u(s)) ds
0]

1 to+h
+ —[ Ag(u(s)) ds.
h 10

By the strongly continuity property of Ey(—t*A) over [0, 00) and the fact that
Apu) € C((0, 00); L' (R3)), we can see that

Jim D = Ag (). (5.27)

Combining (5.26) with (5.27), we deduce that w is differential from the right at #y and
w’, (1) = —Aua(to) + Ap(u(ty)). Analogously, we can also obtain the same limit of
w_(t) ash — 0.

Hence, we see that . DYu € C((0, 00); L' (R3)) and

Dfu=—-Au+ Ap(u), t>0,

which completes the proof of Theorem 2.2. g

Acknowledgements

The correspondence author thanks Prof. Keith Promislow for careful reading of the
manuscript and insightful suggestions. All authors would like to express sincere thanks
to the referee for patient and careful reading and give valuable suggestions and com-
ments to improve the quality of this manuscript greatly.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.



2410 H. YE ET AL. J. Evol. Equ.

REFERENCES

[1]  B. Andrade, A.N. Carvalho, P.M. Carvalho-Neto, and P. Marin-Rubio, Semilinear fractional differ-
ential equations: global solutions, critical nonlinearities and comparison results, Topol. Methods
Nonlinear Anal., 45(2) (2015) 439-467.

[2]  H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, Berlin
2011.

[3]  J.Bricmont, A. Kupiainen, and J. Taskinen, Stability of Cahn—Hilliard fronts, Commun. Pure Appl.
Math., 52 (1999), 839-871.

[4] L. A. Caffarelli, and N. E. Muler, An L bound for solutions of the Cahn—Hilliard equation, Arch.
Ration. Mech. Anal., 133 (1995), 129-144.

[S] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J.
Chem. Phys., 28 (1958), 258-267.

[6] R.Caponetto, G. Dongola, L. Fortuna and I. Petrd, Fractional order systems: modeling and control
applications, World Scientific, Singapore, 2010.

[71  P. M. Carvalho-Neto, and G. Planas, Mild solutions to the time fractional Navier—Stokes equations
in RV, J. Differ. Equ., 259 (2015), 2948-2980.

[8] P. M. Carvalho-Neto, Fractional differential equations: a novel study of local and global solutions
in Banach spaces, PhD thesis, Universidade de Sao Paulo, Sao Carlos, 2013.

[9] S.D. Eidelman, and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differ.
Equ., 199 (2004), 211-255.

[10]  K.J. Engel, R. Nagel, One-Parameter semigroups for linear evolution equations. Springer, Berlin,
2000.

[11]  W. G. Glockle, and T. F. Nonnenmacher, A fractional calculus approach to self-similar protein
dynamics, Biophysical Journal, 68 (1995), 46-53.

[12]  S. Guo, L. Mei, Z. Zhang, J. Chen, Y. He, and Y. Li, Finite difference/Hermite-Galerkin spectral
method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded
domains, Appl. Math. Model., 70 (2019), 246-263.

[13]  O.S.lyiola, and F. D. Zaman, A fractional diffusion equation model for cancer tumor, AIP Advances,
4, 107121 (2014), 1-16.

[14] M. Janeyv, S. Pilipovic, T. Atanackovic, R. Obradovic, and N. Ralevic, Fully fractional anisotropic
diffusion for image denoising, Math. Comput. Modell., 54 (2011), 729-741.

[15]  J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for
fully nonlocal diffusion equations, J. Differ. Equ., 263 (2017), 149-201.

[16]  T.A.M. Langlands, B. I. Henry, and S. L. Wearne, Fractional cable equation models for anomalous
electrodiffusion in nerve cells: finite domain solutions, STAM J. Appl. Math., 71 (2011), 1168-1203.

[17]  T. A.M. Langlands, B. I. Henry, and S. L. Wearne, Fractional cable equation models for anomalous
electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59 (2009), 761-808.

[18]  L.Li, andJ. G. Liu, A generalized definition of caputo derivatives and its application to fractional
ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900.

[19]  L.Li, and J. G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM
J. Math. Anal., 50 (2018), 3963-3995.

[20] Y. Li, F Liu, I. W. Turner, and T. Li, Time-fractional diffusion equation for signal smoothing, Appl.
Math. Comput., 326 (2018), 108-116.

[21] L. Li, J. G. Liu, and L. Z. Wang, Cauchy problems for Keller—Segel type time-space fractional
diffusion equation, J. Differ. Equ., 265 (2018), 1044—1096.

[22]  H.Liu, A. Cheng, H. Wang, and J. Zhao, Time-fractional Allen—Cahn and Cahn—Hilliard phase-field
models and their numerical investigation, Comput. Math. Appl., 76 (2018), 1876-1892.

[23]  S. Q. Liu, F. Wang, and H. J. Zhao, Global existence and asymptotics of solutions of the Cahn—
Hilliard equation, J. Differ. Equ., 238 (2007), 426-469.

[24]  F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math.
Appl. Sci., 23 (1994) 246-251.

[25]  R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilib-
rium: A fractional Fokker-Planck equation approach, Physical Review Letters, 82 (1999), 3563—
3567.



Vol. 21 (2021) Global existence of solutions of the time fractional 2411

[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]
[35]

[36]

[37]
[38]

[39]

R. Metzler, and J. Klafter, The restaurant at the end of the random walk: recent developments in
the description of anomalous transport by fractional dynamics, J. Phys. A Math. Gen., 37 (2004),
R161-R208.

C. X. Miao, B. Q. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power
dissipative equations, Nonlinear Analysis, 68 (2008), 461-484.

1. Podlubny, Fractional-order systems and P [ A pr -controllers, IEEE Trans. Automat. Control, 44
(1999), 208-214.

J. Priiss, Evolutionary Integral Equations and Applications, Monographs in Mathematics 87,
Birkhéuser, Basel, 1993.

J. Priiss, V. Vergara and R. Zacher, Well-posedness and long-time behaviour for the non-isothermal
Cahn-Hilliard equation with memory, Discrete Contin. Dyn. Syst., 26 (2010), 625-647.

M. Raberto, E. Scalas, and F. Mainardi, Waiting-times and returns in high-frequency financial data:
an empirical study, Phys. A, 314 (2002), 749-755.

M. G. Sakar, O. Saldir, and F. Erdogan, An iterative approximation for time-fractional Cahn-Allen
equation with reproducing kernel method, Comput. Appl. Math., 37 (2018), 5951-5964.

S. G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and
Applications, Gordon and Breach, Yverdon, 1993.

W. A. Strauss, Decay and asymptotic for u;; — Au = F(u), J. Funct. Anal., 2 (1968), 409-457.
T. Tang, H.J. Yu, and T. Zhou, On Energy Dissipation Theory and Numerical Stability for Time-
Fractional Phase-Field Equations, STAM J. Sci. Comput., 41(6) (2019), A3757-A3778.

N. K. Tripathi, S. Das, S. H. Ong, H. Jafari, and M. M. Al Qurashi, Solution of time-fractional Cahn-
Hilliard equation with reaction term using homotopy analysis method, Advances in Mechanical
Engineering, 9 (2017).

R. N. Wang, D. H. Chen, T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial
operators, J. Differ. Equ., 252 (2012), 202-235.

H. C. Yaslan, New analytic solutions of the space-time fractional Cahn-Hilliard equations, Optik,
130 (2017), 990-995.

J. Zhao, L. Chen, and H. Wang, On power law scaling dynamics for time-fractional phase field
models during coarsening, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 257-270.

Hailong Ye, Qiang Liu and Zhi-Min Chen
College of Mathematics and Statistics
Shenzhen University

Shenzhen 518060

China

E-mail: matliu@szu.edu.cn

Hailong Ye

Shenzhen Key Laboratory of Advanced Machine Learing and Applications
Shenzhen University

Shenzhen 518060

China



	Global existence of solutions of the time fractional Cahn–Hilliard equation in mathbbR3
	Abstract
	1. Introduction
	2. Preliminaries and main results
	3. Lp-Lq estimates
	4. Mild solution
	5. Strong solution
	Acknowledgements
	REFERENCES




