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Abstract. A bodyB is started from rest by a translational motion in an otherwise quiescent Navier–Stokes
liquid filling thewhole space.We show, for small data, that if after some timeB reaches a spinless oscillatory
motion of period T , the liquid will eventually execute also a time periodic motion with the same period T .
This result is a suitable generalization of the famous Finn’s starting problem for steady states, to the case
of time-periodic motions.

1. Introduction

Consider a rigid body, B, at rest and completely immersed in a quiescent Navier–
Stokes liquid filling the whole three-dimensional space, �, outside B. Next, suppose
that at time t = 0 (say), B is smoothly set in translational motion (no spin) and that
after the time t = 1 (say), its velocity η = η(t) coincides with a periodic function,
ξ = ξ(t), of period T whose average over the time interval [0, T ] vanishes. In the
particular casewhere both η and ξ are parallel to a given direction, the abovemeans that
B is brought from rest to a regimewhere it oscillates between two fixed configurations.
In the general case,B is taken from rest to a (spinless) motion where its center of mass
moves periodically along a given closed curve.
On physical grounds, it is expected that under the given assumptions, the liquid

will eventually reach a time-periodic flow of period T , at least if the magnitude of η

and (possibly) some of its derivatives are not “too large.” This specific circumstance
is often referred to as attainability property of the flow. In this regard, it is worth
mentioning a famous problem of attainability, the so-called Finn’s starting problem
[2] where B accelerates (without spinning) from rest to a given constant translational
velocity. In such a case, the terminal flow of the liquid is expected to be at steady state.
Finn’s problem was eventually and affirmatively solved by Galdi et al. [5] and, with
more general assumptions, very recently by Hishida and Maremonti [10].
In analogy with these results, the main objective of this paper will be to show that

under the givenhypothesis on themotionofB, the liquid indeed attains a corresponding
time-periodic flow of period T .
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We shall next give a rigorousmathematical formulation of the problem. Let us begin
to observe that the translational velocity η(t) can be written as:

η(t) = h(t)ξ(t),

where we assume

ξ(t + T ) = ξ(t) (t ∈ R),

∫ T

0
ξ(t) dt = 0,

ξ ∈ W 3,2(0, T ) = W 3,2(0, T ;R3),

(1.1)

and

h ∈ C1(R; [0, 1]), h(t) = 0 (t ≤ 0), h(t) = 1 (t ≥ 1). (1.2)

The governing equations of the liquid flow, driven by the translational velocity η of
the body, are thus given by

∂t u + u · ∇u = �u + η(t) · ∇u − ∇ pu,
div u = 0

}
in � × (0,∞),

u|∂� = η(t),
u → 0 as |x | → ∞,

u(·, 0) = 0,

(1.3)

where u = u(x, t) and pu = pu(x, t) are, respectively, the velocity vector field and
pressure field of the liquid, and � (the exterior of the body in R3) is assumed to have
a sufficiently smooth boundary ∂�. Likewise, if the translational velocity of B is the
time-periodic function ξ , it is reasonable to expect that the corresponding velocity
field of the liquid v = v(x, t) is time-periodic of period T (T -periodic) as well, and
obeys the following equations:

∂tv + v · ∇v = �v + ξ(t) · ∇v − ∇ pv,

div v = 0

}
in � × R/T Z,

v|∂� = ξ(t),
v → 0 as |x | → ∞,

(1.4)

where pv denotes the pressure associated with v.
In [4], the first author showed existence, uniqueness and regularity of a T -periodic

solution (v(t), pv(t)) to (1.4) for all “small” ξ(t) satisfying (1.1). Furthermore, he
provided a detailed analysis of the asymptotic representation of v(t) at spatial infinity,
by showing that the leading term of v(t) is given by a distinctive steady-state velocity
field U (x) that decays at large spatial distances like |x |−1. Therefore, in general,
v(t) �∈ L2(�), for all t ∈ R.
Let

u = hv + w, (1.5)
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where h is the function given in (1.2). Then, from (1.3), we deduce that the “pertur-
bation” w(t) should obey, together with the corresponding pressure pw = pu − hpv ,
the following system of equations:

∂tw + w · ∇w + h(t)(v · ∇w + w · ∇v)

= �w + η(t) · ∇w − ∇ pw + f,
div w = 0

⎫⎬
⎭ in � × (0,∞),

w|∂� = 0,
w → 0 as |x | → ∞,

w(·, 0) = 0,

(1.6)

with the forcing term (h′ := dh/dt)

f := −h′v + (h − h2)(v − ξ) · ∇v . (1.7)

The desired attainability property consists then in showing that the solution w(t) to
(1.6) (exists, is unique and) tends to 0 as t → ∞ in a suitable norm. In this respect,
some comments are in order. Since u(0) = 0, onewould expect that the solution u(t) to
(1.3) has finite energy, namely u(t) ∈ L2(�) for all t ≥ 0.Moreover, as noticed earlier
on, v(t) is, in general, not in L2. Consequently, in view of (1.5), w(t) need not be in
L2(�), as also suggested by the fact that f is not in L2(�). This implies that “energy-
based methods” might not be an appropriate tool to analyze the asymptotic behavior
of w(t), and one has thus to resort to the more general Lq -theory. This difficulty is
analogous to that encountered in Finn’s starting problem, which was in fact solved in
[5] thanks to the asymptotic properties of the Oseen semigroup in Lq -spaces, proved
for the first time in [13].
However, in comparison with [5], our problem presents the following two further

complications. (i) The velocity field v(t), t ∈ R, possesses weaker summability prop-
erties at large spatial distances than its steady-state counterpart considered in [5]. This
is due to the fact that ξ(t) has zero average, see (1.1), so that, unlike [5], the motion
of B produces no wake structure in the flow. (ii) The non-autonomous character of
the principal linear part is the second complication, where the drift term η(t) · ∇w

cannot be seen as a perturbation to the main (Stokes) operator, for all sufficiently
large times. In order to overcome the difficulty in (i), we adapt to the case at hand the
duality method developed by Yamazaki [18] that allows us to handle the additional
linear terms h(t)(v · ∇w + w · ∇v) in (1.6), in spite of the “poor” summability of v

at large distances. As far as the other difficulty, we shall employ the theory recently
developed in [7,8] by the second author, which provides Lq–Lr decay estimates of
the evolution operator, {T (t, s)}t≥s≥0, generated by the non-autonomous Oseen op-
erator −P[� + η(t) · ∇]—with P Helmholtz projection on the space of Lq -vector
fields—entirely analogous to those available in the autonomous case for Stokes and
Oseen semigroups [11,13,14].
By suitably combining the above arguments and using the results in [4], in the

present paper we are able to show, in particular, the decay to 0 of w(t), as t → ∞, in
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appropriate Lq -spaces; see Theorem 2.1. Moreover, by developing an idea of Koba
[12], we shall also show the decay of w(t) in L∞-norm (see (2.8)). However, our
proof—based on the L∞-estimate of the composite operator T (t, s)Pdiv given in
Proposition 3.3—turns out to be simpler and more direct than that given in [12].

The plan of the paper is as follows. In the next section, we shall state the main
results, collected in Theorem 2.1. In Sect. 3, we present some results from [4,7,8] and
deduce some relevant consequences. Sect. 4 is devoted the proof of Theorem 2.1.

Notation C∞
0,σ (�) is the subclass of vector functions u in C∞

0 (�) with div u = 0. By
Lq(�), 1 ≤ q ≤ ∞, Wm,q(�), m ≥ 0, (W 0,q ≡ Lq ), we denote usual Lebesgue and
Sobolev classes of vector functions, with corresponding norms ‖.‖q and ‖.‖m,q . Also,
Lq

σ (�) denotes the completion ofC∞
0,σ (�) in Lq(�), and P : Lq �→ Lq

σ the associated
Helmholtz projection [3,15,16]. For 1 < p < ∞ and 1 ≤ q ≤ ∞, let L p,q(�)

denote the Lorentz space with norm ‖.‖p,q ; see [1] for details about this space. Since
P defines a bounded operator on L p,q(�), we set L p,q

σ (�) = P [L p,q(�)]. Moreover,
Dm,2(�) stands for the space of (equivalence classes of) functions u ∈ L1

loc(�) such
that

∑
|k|=m ‖Dku‖2 < ∞ . Obviously, the latter defines a seminorm in Dm,2. Let B

be a function space of spatial variable endowed with seminorm ‖ · ‖B . For r∈[1,∞],
T > 0, Lr (B) is the class of functions u : (0, T ) → B such that

‖u‖Lr (B) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫ T

0
‖u(t)‖rB

) 1
r

< ∞, if r ∈ [1,∞) ;
ess sup
t∈[0,T ]

‖u(t)‖B < ∞, if r = ∞.

Likewise, we put

Wm,r (B) =
{
u ∈ Lr (B) : ∂kt u ∈ Lr (B), k = 1, . . . ,m

}
.

2. Statement of main results

By use of the evolution operator T (t, s) mentioned in the introductory section,
problem (1.6) is transformed into the integral equation

w(t) = w0(t) −
∫ t

0
T (t, s)P div (Fw)(s) ds (2.1)

with

w0(t) =
∫ t

0
T (t, s)P f (s) ds, (2.2)

Fw = Fvw = w ⊗ w + h(w ⊗ v + v ⊗ w). (2.3)

Definition 2.1. We say that

w ∈ Cw∗((0,∞); L3,∞
σ (�)) (2.4)
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is a solution to (2.1) if the second term on the right-hand side of (2.1) is Bochner
integrable in L3,∞

σ (�) and (2.1) is satisfied in L3,∞
σ (�) for every t > 0.

Since we see from Lemma 4.1 that w0(t) ∈ L3,∞
σ (�), it is reasonable to look for a

solution within the class (2.4). We emphasize that Proposition 3.3 plays an important
role to verify the well-definedness of the second term on the right-hand side of (2.1)
as the Bochner integral. Note, however, that the class (2.4) merely is not enough to
ensure its well-definedness. The point is to find a solution being in an auxiliary space
Cw∗((0,∞); Lq,∞

σ (�)) with some q > 3 as well as (2.4), which actually implies the
Bochner integrability of the second term on the right-hand side of (2.1) even in L3

σ (�)

rather than L3,∞
σ (�) thanks to (3.10) for the composite operator T (t, s)Pdiv.

The main result reads

Theorem 2.1. Suppose (1.1) and (1.2) hold and let |h′|0 := supt≥0 |h′(t)|. For every
ε ∈ (0, 1

4 ), there is a constant δ = δ(ε) such that if

‖ξ‖W 3,2(0,T ) ≤ δ

1 + |h′|0 , (2.5)

then problem (2.1) admits a solution w(t) of class (2.4) with the following properties:

1. The initial condition:

lim
t→0

‖w(t)‖3,∞ = 0. (2.6)

2. There is a constant C > 0 such that

‖w(t)‖3,∞ ≤ C(1 + |h′|0)‖ξ‖W 3,2(0,T ) (2.7)

for all t ≥ 0.
3. The solution w(t) is unique among solutions with small sup

t>0
‖w(t)‖3,∞.

4. The solution w(t) belongs to Lq(�)3 for every q ∈ (3,∞] and t > 0 together
with the attainability:

‖w(t)‖q =
{
O

(
t−1/2+3/2q

)
, q ∈ (3, q0),

O
(
t−1/2+ε

)
, q ∈ (q0,∞],

‖w(t)‖q0,∞ = O(t−1/2+ε),

(2.8)

as t → ∞, where q0 = 3/2ε.

Remark 2.1. The unique existence of the evolution operator T (t, s) or, in other words,
the well-posedness of the initial boundary value problem for the linearized system,
was successfully proved by Hansel and Rhandi [6] even in the case when the body
B rotates. The key point of their argument is how to overcome difficulties due to the
rotational term; in fact, the Tanabe–Sobolevskii theory [17] of parabolic evolution
operators does not work in this situation.
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Remark 2.2. We apply the theory in [17] to the non-autonomous Oseen operator
without rotation. Thus, in such a case, the regularity properties of T (t, s) basically
coincidewith those of analytic semigroups for the autonomous case.As a consequence,
one could show that the solutionw(t) in Theorem 2.1 becomes “strong” provided only
h′(t), in addition to satisfying (1.2), is Hölder continuous. We will not give details of
such a claim, since our main objective is to show the attainability property.

Remark 2.3. We observe that our approach furnishes, in particular, also the stability
of the time-periodic solution v(t). In fact, this property can be established by studying
an integral equation of the type (2.1) obtained by setting formally h(t) ≡ 1 (which
implies that the term f in (1.7) vanishes identically) and replacing the function w0(t)
with w̃0(t) = T (t, 0)w(0), where w(0) is the initial perturbation. One can slightly
modify the proof of Theorem 2.1 to show that the asymptotic decay property of w(t)
stated in (2.8) continues to hold, provided, in addition to (2.5), that w(0) ∈ L3,∞

σ (�)

with sufficiently small norm.

3. Preparatory results

Let us begin to recall the following result concerning the existence, uniqueness and
asymptotic spatial behavior of solutions to (1.4). Apair ofT -periodic functions (v, pv)

is said to be a solution to (1.4) if every term in (1.4) is continuous in (x, t) ∈ �×R/T Z

and all the equations in (1.4) are pointwisely satisfied.

Proposition 3.1 [4]. Let ξ satisfy (1.1). Then, there exists a constant ε0 > 0 such that
if

D := ‖ξ‖W 3,2(0,T ) < ε0, (3.1)

problem (1.4) has one and only one time-periodic solution (v, pv) of period T in the
class

v ∈ W 2,2(D2,2) ∩ W 1,2(D4,2) ∩ W 2,∞(W 1,2) ∩ L∞(D3,2),

pv ∈ L∞(W 1,2) ∩ W 1,2(D3,2),

with all corresponding norms of (v, pv) bounded from above by D. Moreover, there
exists a constant C > 0 such that this solution obeys, in particular, the following
estimates:

(1 + |x |)|v(x, t)| + (1 + |x |2){|∇v(x, t)| + |pv(x, t)|}
+ (1 + |x |3){|∇2v(x, t)| + |∇ pv(x, t)|} ≤ C D,

(3.2)

for all (x, t) ∈ � × R/T Z.

Remark 3.1. The constant δ in (2.5) of Theorem 2.1 must be taken smaller than ε0 in
(3.1).
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The next result regards the large time behavior of the evolution operator T (t, s) and
its adjoint T (t, s)∗. These properties, among others, have been established in [7,8].

Proposition 3.2 [7,8]. Let m ∈ (0,∞) and assume

sup
t≥0

|η(t)| + sup
t>s≥0

|η(t) − η(s)|
t − s

≤ m. (3.3)

1. Let 1 < q < ∞ and q ≤ r ≤ ∞. Then, there is a constant C = C(m, q, r,�) >

0 such that

‖T (t, s) f ‖r ≤ C(t − s)−(3/q−3/r)/2‖ f ‖q (3.4)

for all t > s ≥ 0, f ∈ Lq
σ (�) and that

‖T (t, s) f ‖r,∞ ≤ C(t − s)−(3/q−3/r)/2‖ f ‖q,∞ (3.5)

for all t > s ≥ 0 and f ∈ Lq,∞
σ (�).

2. Let 1 < q ≤ r ≤ 3. Then, there is a constant C = C(m, q, r,�) > 0 such that

‖∇T (t, s)∗g‖r ≤ C(t − s)−(3/q−3/r)/2−1/2‖g‖q (3.6)

for all t > s ≥ 0, g ∈ Lq
σ (�) and that

‖∇T (t, s)∗g‖r,1 ≤ C(t − s)−(3/q−3/r)/2−1/2‖g‖q,1 (3.7)

for all t > s ≥ 0 and g ∈ Lq,1
σ (�). If in particular 1/q − 1/r = 1/3 as well as

1 < q<r ≤ 3, then there is a constant C = C(m, q,�) > 0 such that

∫ t

0
‖∇T (t, s)∗g‖r,1 ds ≤ C‖g‖q,1 (3.8)

for all t > 0 and g ∈ Lq,1
σ (�)

Remark 3.2. In [7,8], the assumption on η is made in terms of the Hölder seminorm
that is controlled by the left-hand side of (3.3), which is, in turn, controlled by D; see
(3.1). Estimate (3.5) with r < ∞ immediately follows from (3.4) by interpolation.
The proof of Lq,∞-L∞ estimate, that is, (3.5) with r = ∞, is not given in [7,8], but it
can be easily proved by the use of the semigroup property, following the lines of the
proof of (3.9)–(3.10) below with r = ∞. The remaining three bounds (3.6)–(3.8) are
shown in [8]. However, we emphasize that (3.7) with r = 3 does not follow directly
from (3.6) by interpolation. The idea of deducing (3.8) from (3.7) is, in fact, due to
Yamazaki [18].

We next prove an important consequence of the previous proposition.

Proposition 3.3. Let m ∈ (0,∞) and assume (3.3). The following properties hold.
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1. Let3/2 ≤ q < ∞andq ≤ r ≤ ∞. Then, there is a constantC = C(m, q, r,�) >

0 such that the composite operator T (t, s)Pdiv extends to a bounded operator
from Lq(�)3×3 to Lr

σ (�), r < ∞, and to L∞(�)3 subject to estimate

‖T (t, s)P div F‖r ≤ C(t − s)−(3/q−3/r)/2−1/2‖F‖q (3.9)

for all t > s ≥ 0 and F ∈ Lq(�)3×3.
2. Let 3/2 < q < r ≤ ∞. Then, there is a constant C = C(m, q, r,�) > 0 such

that the composite operator T (t, s)Pdiv extends to a bounded operator from
Lq,∞(�)3×3 to Lr

σ (�), r < ∞, and to L∞(�)3 subject to estimate

‖T (t, s)P div F‖r ≤ C(t − s)−(3/q−3/r)/2−1/2‖F‖q,∞ (3.10)

for all t > s ≥ 0 and F ∈ Lq,∞(�)3×3.

Proof. By density, it suffices to show (3.9) for F ∈ C∞
0 (�)3×3. We first consider the

case 3/2 ≤ q ≤ r < ∞, so that 1 < r ′ ≤ q ′ ≤ 3. By (3.6), we have

|〈T (t, s)P div F, ϕ〉| = |〈F,∇T (t, s)∗ϕ〉|
≤ ‖F‖q‖∇T (t, s)∗ϕ‖q ′

≤ C(t − s)−(3/q−3/r)/2−1/2‖F‖q‖ϕ‖r ′

for all t > s ≥ 0 and ϕ ∈ Lr ′
σ (�), which leads to (3.9) with r < ∞. This combined

with (3.4) (r = ∞) implies that

‖T (t, s)PdivF‖∞ ≤ C(t − s)−3/4q‖T ((t + s)/2, s)PdivF‖2q
≤ C(t − s)−3/2q−1/2‖F‖q

yielding (3.9) with r = ∞.
Let 3/2 < q ≤ r < ∞, then (3.9) implies

‖T (t, s)P div F‖r,∞ ≤ C(t − s)−(3/q−3/r)/2−1/2‖F‖q,∞ (3.11)

for all t > s ≥ 0 and F ∈ Lq,∞(�)3×3. Since

‖u‖r ≤ C‖u‖1−θ
r0,∞‖u‖θ

r1,∞ (3.12)

where 1/r = (1 − θ)/r0 + θ/r1 as well as 0 < θ < 1 and 1 < r0 < r < r1 ≤ ∞,
we obtain (3.10) from (3.11) as long as 3/2 < q < r < ∞. This combined with (3.4)
(r = ∞) leads to (3.10) when 3/2 < q < r = ∞. The proof is complete. �

4. Proof of Theorem 2.1

Following Yamazaki [18], we consider the following weak form of (2.1):

〈w(t), ϕ〉 = 〈w0(t), ϕ〉 +
∫ t

0
〈(Fw)(s),∇T (t, s)∗ϕ〉 ds ∀ϕ ∈ C∞

0,σ (�). (4.1)
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For q ∈ [3,∞), let us introduce the space

Xq = {w ∈ Cw∗((0,∞); L3,∞
σ (�) ∩ Lq,∞

σ (�)); [w]3 + [w]q < ∞,

lim
t→0

‖w(t)‖3,∞ = 0},

where

[w]q := sup
t>0

t1/2−3/2q‖w(t)‖q,∞. (4.2)

Clearly, Xq becomes a Banach space when endowed with norm [w]3 + [w]q .
Under the smallness condition (3.1), the solution v obtained in Proposition 3.1 and

the force f defined by (1.7) fulfill

v(t), f (t) ∈ L3,∞(�) ∩ L∞(�)

with

sup
t≥0

(‖v(t)‖3,∞ + ‖v(t)‖∞) ≤ CD,

sup
t≥0

(‖ f (t)‖3,∞ + ‖ f (t)‖∞) ≤ C(|h′|0 + D)D,
(4.3)

which immediately follows from (3.2). This, combined with (3.5), implies the follow-
ing lemma.

Lemma 4.1. Suppose (1.1), (1.2) and (3.1). Then, the function w0 defined by (2.2)
belongs to Xq for every q ∈ [3,∞). Moreover, we have w0(t) ∈ L∞(�) for each
t > 0. Finally, for every r ∈ [3,∞], there is a constant cr > 0 such that

‖w0(t)‖r,∞ ≤ cr (|h′|0 + D)D (1 + t)−1/2+3/2r (4.4)

for all t > 0, with D given in (3.1).

Proof. Let 0 ≤ t < t + τ , then we have

w0(t + τ) − w0(t)

=
∫ t

0
{T (t + τ, s) − T (t, s)}P f (s) ds +

∫ t+τ

t
T (t + τ, s)P f (s) ds =: J1 + J2.

By (3.5) and (4.3), we know that

‖T (t, s)P f (s)‖q,∞ ≤ C(|h′|0 + D)D =: C0

with some constant C = C(q) > 0 independent of (t, s) for every q ∈ [3,∞). From
the Lebesgue convergence theorem, we infer J1 → 0 as τ → 0, whereas it follows at
once J2 ≤ C0τ . For the other case 0 < t/2 < t + τ < t , we have

w0(t + τ) − w0(t) =
∫ t+τ

0
{T (t + τ, s) − T (t, s)}P f (s) ds −

∫ t

t+τ

T (t, s)P f (s) ds
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which goes to zero as τ → 0 by the same reasoning as above. Consequently, w0(t) is
even strongly continuous up to t = 0with values in Lq,∞(�) aswell as ‖w0(t)‖3,∞ →
0 (t → 0). Concerning the estimate in Lr,∞(�)with r ∈ [3,∞], we consider only the
one involving ‖w0(t)‖∞, since the other ones are obtained similarly. Since f (t) = 0
for t ≥ 1, we use (3.5) to find

‖w0(t)‖∞ ≤ C
∫ 1

0
(t − s)−1/2‖P f (s)‖3,∞ ds ≤ Ct−1/2(|h′|0 + D)D

for t ≥ 2, while we have

‖w0(t)‖∞ ≤ Ct1/2(|h′|0 + D)D

for t < 2. We thus obtain the desired estimate. �

Let us begin to prove the uniqueness property. In fact, the solution obtained in
Theorem 2.1 is unique in the sense of the following lemma, provided we choose the
constant δ in (2.5) smaller than the constant δ0 defined below.

Lemma 4.2. There is a constant δ0 > 0 such that if D ≤ δ0, then the solution to (4.1)
is unique in the ball {w ∈ X3; [w]3 ≤ δ0}.
Proof. Let both w, w̃ ∈ X3 satisfy (4.1). By duality L3,1

σ (�)∗ = L3/2,∞
σ (�) together

with the weak-Hölder inequality, we have

|〈w(t) − w̃(t), ϕ〉| ≤ C([w]3 + [w̃]3 + [v]3)[w − w̃]3
∫ t

0
‖∇T (t, s)∗ϕ‖3,1 ds

for all ϕ ∈ C∞
0,σ (�). We employ (3.8) and (4.3) to obtain

[w − w̃]3 ≤ c∗([w]3 + [w̃]3 + D)[w − w̃]3
by duality, which yields the assertion by taking δ0 = 1/4c∗. �

Given ε ∈ (0, 1
4 ), we set q0 = 3/2ε ∈ (6,∞) and intend to find a solutionw ∈ Xq0

to (4.1) provided D is small enough. Given w ∈ Xq0 and t > 0, we define (w)(t) by

〈(w)(t), ϕ〉 =
∫ t

0
〈(Fw)(s),∇T (t, s)∗ϕ〉 ds ∀ϕ ∈ C∞

0,σ (�).

We then find

[w]3 ≤ C([w]3 + [v]3)[w]3,
[w]q0 ≤ C([w]3 + [v]3)[w]q0 .

(4.5)

The former is deduced along the same lines as in Lemma 4.2, while the latter is verified
by splitting the integral as

(∫ t/2

0
+

∫ t

t/2

)
s−1/2+3/2q0‖∇T (t, s)∗ϕ‖r,1 ds =: I + I I (4.6)
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where r ∈ (3/2, 2) is determined by the condition 1/r = 2/3− 1/q0. In fact, in view
of (3.7), we get

I ≤ C
∫ t/2

0
s−1/2+3/2q0(t − s)−1 ds ‖ϕ‖q ′

0,1

that leads to the desired estimate, where 1/q ′
0 + 1/q0 = 1. Also, employing (3.8), we

show

I I ≤ Ct−1/2+3/2q0

∫ t

t/2
‖∇T (t, s)∗ϕ‖r,1 ds.

By the same token, we can show

[w − w̃]r ≤ C([w]3 + [w̃]3 + [v]3)[w − w̃]r r ∈ {3, q0}, (4.7)

for all w, w̃ ∈ Xq0 .
The above computations are exactly the same as in [9, Section 8]. However, because

in our case the equation is non-autonomous, the argument to show the continuity with
respect to time is different from the one adopted by Yamazaki [18, Section 3] in which
the strong continuity is deduced for t > 0. Here, we showmerely the weak* continuity
for t > 0, while we still have strong convergence to 0 at the initial time, namely

‖(w)(t)‖3,∞ ≤ C([w]3 + [v]3) sup
0<s<t

‖w(s)‖3,∞ → 0

as t → 0 (as well as the same property for w0(t); see Lemma 4.1). Actually, for
0 < t < t + τ and ϕ ∈ C∞

0,σ (�), let us consider

〈(w)(t + τ) − (w)(t), ϕ〉 =
∫ t

0
〈(Fw)(s),∇{T (t + τ, s)∗ − T (t, s)∗}ϕ〉 ds

+
∫ t+τ

t
〈(Fw)(s),∇T (t + τ, s)∗ϕ〉 ds

=: I I I + I V .

(4.8)

Let r ∈ (3/2, 2) be the same exponent as in (4.6). By using the backward semigroup
property, we have

I I I ≤ C([w]3 + [v]3)[w]q0
∫ t

0
s−1/2+3/2q0‖∇T (t, s)∗{T (t + τ, t)∗ϕ − ϕ}‖r,1 ds

≤ C([w]3 + [v]3)[w]q0‖T (t + τ, t)∗ϕ − ϕ‖3/2,1
which goes to zero as τ → 0 for all ϕ ∈ C∞

0,σ (�). Concerning the other part, we have

I V ≤ C([w]3 + [v]3)[w]q0
∫ t+τ

t
s−1/2+3/2q0‖∇T (t + τ, s)∗ϕ‖r,1 ds

≤ C([w]3 + [v]3)[w]q0 t−1/2+3/2q0τ 1/2−3/2q0‖ϕ‖3/2,1
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for all ϕ ∈ C∞
0,σ (�), which implies the strong convergence with values in L3,∞

σ (�)

also of this part. Summing up, by density argument, we can state that the left-hand side

of (4.8) goes to zero as τ → 0 for all ϕ ∈ L3/2,1
σ (�) and also for all ϕ ∈ L

q ′
0,1

σ (�) in
view of (4.5). The case 0 < t/2 < t + τ < t is similarly discussed with

〈(w)(t + τ) − (w)(t), ϕ〉

=
∫ t+τ

0
〈(Fw)(s),∇{T (t + τ, s)∗ − T (t, s)∗}ϕ〉 ds

−
∫ t

t+τ

〈(Fw)(s),∇T (t, s)∗ϕ〉 ds

to conclude that w is weak* continuous with values in L3,∞
σ (�) and in Lq0,∞

σ (�).
By these results, we can then conclude that w0 + w ∈ Xq0 , for every w ∈ Xq0 .

Assume now D ≤ 1. By taking into account (4.3), (4.4), (4.5) and (4.7), one can easily
show the existence of a fixed point w ∈ Xq0 of the map

w �→ w0 + w

in a closed ball of Xq0 with radius 2(c3 + cq0)(|h′|0 + 1)D, provided (|h′|0 + 1)D
is small enough, where the smallness depends on ε (recall that q0 = 3/2ε > 6). By
Lemma4.2, it is the only solution to (4.1) in the smallwithin X3. From the interpolation
inequality (3.12), the solution w(t) satisfies (2.8) for q ∈ (3, q0).

For the solution w(t) constructed above, it follows from (3.10) and (4.3) that the
second termon the right-hand side of (2.1) is Bochner integrablewith values in L3

σ (�);
in fact,

∫ t

0
‖T (t, s)P div (Fw)(s)‖3 ds ≤ C([w]3 + [v]3)[w]q0

for all t > 0. The latter, in conjunction with Lemma 4.1, shows that the weak form
(4.1) leads, in fact, to the conclusion that the integral equation (2.1) is meaningful in
L3,∞

σ (�). Moreover, by means of (3.10) with r = ∞, it turns out that the second
term on the right-hand side of (2.1) is also Bochner integrable in L∞(�) because

∫ t

0
‖T (t, s)P div (Fw)(s)‖∞ ds ≤ C

(
[w]q0 t−1/2 + [v]q0 t−3/2q0

)
[w]q0 (4.9)

for all t > 0, where the summability of the integral is ensured since q0 > 6. This
together with Lemma 4.1 implies w(t) ∈ L∞(�).
It remains to show (2.8) for the other case q ∈ (q0,∞], q0 = 3/2ε. To this end,

on account of the interpolation inequality (3.12) as well as (4.4) with r = ∞, it is
enough to prove the decay of the second term on the right-hand side of (2.1) in the
L∞-norm. The argument that follows is inspired by Koba [12], but, unlike [12], we
shall not use a duality procedure; rather, we will directly apply the Lq,∞-L∞ estimate
of the composite operator T (t, s)Pdiv proved in Proposition 3.3. As a consequence,
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the proof is considerably shortened and more direct. For the integral involving the
nonlinear term, we have

∫ t

0
‖T (t, s)P div (w ⊗ w)(s)‖∞ ds ≤ C[w]2q0 t−1/2

for all t > 0 as already observed in (4.9). Let t > 2. We split the other part of the
integral of (2.1) into two parts

(∫ t−1

0
+

∫ t

t−1

)
‖T (t, s)P div [h(w ⊗ v + v ⊗ w)](s)‖∞ ds =: V + V I.

We utilize (3.10) with r = ∞ again to find that

V ≤ C
∫ t−1

0
(t − s)−1−ε‖v(s)‖3,∞‖w(s)‖q0,∞ ds =

∫ t/2

0
+

∫ t−1

t/2
=: V1 + V2

with

V1 ≤ CD[w]q0 t−1−ε

∫ t/2

0
s−1/2+ε ds = CD[w]q0 t−1/2

as well as

V2 ≤ CD[w]q0 t−1/2+ε

∫ t/2

1
s−1−ε ds ≤ CD[w]q0 t−1/2+ε

and that

V I ≤ C
∫ t

t−1
(t − s)−(3/r+3/q0)/2−1/2‖v(s)‖r,∞‖w(s)‖q0,∞ ds

≤ CD[w]q0 t−1/2+ε

∫ 1

0
s−(3/r+3/q0)/2−1/2 ds = CD[w]q0 t−1/2+ε

where r ∈ (3,∞) is chosen in such a way that 1/r +1/q0 < 1/3, see (4.3). The proof
is complete.
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