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Abstract. In this paper, inspired by the study of the energy flux in local energy inequality of the 3D
incompressible Navier–Stokes equations, we improve almost all the blow-up criteria involving temperature
to allow the temperature in its scaling invariant space for the 3D full compressible Navier–Stokes equations.
Enlightening regular criteria via pressure � = divdiv−�

(ui u j ) of the 3D incompressible Navier–Stokes
equations on bounded domain, we generalize Beirao da Veiga’s result in (Chin Ann Math Ser B 16:407–
412, 1995) from the incompressible Navier–Stokes equations to the isentropic compressible Navier–Stokes
system in the case away from vacuum.

1. Introduction

We study the following system of Newton heat-conducting compressible fluid in
three-dimensional space

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + ∇ · (ρu) = 0,

ρut + ρu · ∇u + ∇P(ρ, θ) − μ�u − (μ + λ)∇div u = 0,

cv[ρθt + ρu · ∇θ ] + Pdiv u − κ�θ = μ
2

∣
∣∇u + (∇u)tr

∣
∣2 + λ(div u)2,

(ρ, u, θ)|t=0 = (ρ0, u0, θ0),

(1.1)

where ρ, u, θ stand for the flow density, velocity and the absolute temperature, re-
spectively. The scalar function P represents the pressure, the state equation of which
is determined by

P = Rρθ, R > 0, (1.2)

and κ is a positive constant.μ andλ are the coefficients of viscosity, which are assumed
to be constants, satisfying the following physical restrictions:

μ > 0, 2μ + 3λ ≥ 0. (1.3)

The initial conditions satisfy

(ρ0(x), u0(x), θ0(x)) → (0, 0, 0), as |x | → ∞. (1.4)
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Note that if the triplet (ρ(x, t), u(x, t), θ(x, t)) solves system (1.1), then the triplet
(ρλ, uλ, θλ) is also a solution of (1.1) for any λ ∈ R+, where

ρλ = ρ(λ2t, λx), uλ = λu(λ2t, λx), θλ = λ2θ(λ2t, λx). (1.5)

There have been huge literatures on well-posedness of solutions to compressible
Navier–Stokes equations; we only give a brief survey here. For the isentropic case,
The first major breakthrough was made by Lions [28], where he first gave the global
existence of weak solutions to the compressible Navier–Stokes equations when the
constant γ ≥ 3N

N+2 for N = 2 or 3. Then, Feireisl et al. [12] improved the Lions’

work to γ > 3
2 for N = 3. In [23], Jiang and Zhang considered the spherical sym-

metric initial data and relaxed the restriction on γ to the case γ > 1. Huang et al. [19]
obtained the global existence of classical solutions provided the initial energy is suf-
ficiently small, but the oscillation can be large. When the shear viscosity coefficient
μ = costant > 0 and bulk viscosity satisfies λ(ρ) = ρβ , Vaigant–Kazhikhov [38]
showed the two-dimensional system admits a unique strong solution in the periodic
domain when β > 3; it is emphasized that the initial data contain no vacuum and
can be arbitrarily large. For the case involving heat conductivity, Feireisl [11] got the
existence of variational solutions when the dimension N ≥ 2. It is noted that this is
the very first attempt work in global existence of weak solutions for full compressible
Navier–Stokes equations in high dimensions. Matsumura–Nishida [29] obtained the
global classical solution for initial data close to a non-vacuum equilibrium in some
Sobolev space Hs . Later, Hoff [21] considered the discontinuous case. In [6], the
local strong solutions of equations (1.1) with initial data containing vacuum were es-
tablished by Cho and Kim (for details, see Theorem 2.1 in Sect. 2). On the other hand,
when the initial data contain vacuums, finite time blow-up of smooth solutions to the
compressible Navier–Stokes system was discussed by Xin [40], Xin and Yan [41]
and Jiu et al. [22]. Since then, a number of papers have been devoted to the study of
blow-up mechanism of strong solutions mentioned above in (1.1) and many blow-up
criteria are established (see for example, [5,7–10,15,18,20,27,31,32,35–37,39] and
references therein). In particular, we list some works where vacuum is included as
follows:
Suppose that 0 < T ∗ < ∞ is the maximal time of existence of a strong solution of

system (1.1).
Fan et al. [10]

lim sup
t→T ∗

(‖∇u‖L1(0,t;L∞) + ‖θ‖L∞(0,t;L∞)

) = ∞, (λ < 7μ); (1.6)

Wen and Zhu [31],

lim sup
t→T ∗

(‖ρ‖L∞(0,t;L∞) + ‖θ‖L∞(0,t;L∞)

) = ∞, (λ < 3μ); (1.7)

Huang et al. [17]

lim sup
t→T ∗

(‖div u‖L1(0,t;L∞) + ‖u‖L p(0,t;Lq )

) = ∞,
2

p
+ 3

q
= 1, q > 3; (1.8)
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Huang and Li [16]

lim sup
t→T ∗

(‖ρ‖L∞(0,t;L∞) + ‖u‖L p(0,t;Lq )

) = ∞,
2

p
+ 3

q
= 1, q > 3; (1.9)

Li et al. [27]

lim sup
t→T ∗

(‖ρ‖L∞(0,t;L∞) + ‖P‖L∞(0,t;L∞)

) = ∞, (λ < 3μ, κ = 0); (1.10)

Wen and Zhu [32],

lim sup
t→T ∗

(

‖ρ‖L∞(0,t;L∞) + ‖ρθ‖
L4(0,t;L 12

5 )

)

= ∞, (λ < 3μ); (1.11)

Wang and Li [39]

lim sup
t→T ∗

(‖div u‖L2(0,t;L∞) + ‖θ‖Lα(0,t;Lβ)

)

= ∞,
3

α
+ 2

β
≥ 2,

1

α
+ 2

β
≤ 1, 1 ≤ α ≤ 2, β ≥ 4; (1.12)

Choe and Yang [7]

lim sup
t→T ∗

(‖ρ‖L∞(0,t;Lδ) + ‖div u‖L∞(0,t;L3)

+‖�θ‖L∞(0,t;L2)

) = ∞, for some δ ∈ (1,∞). (1.13)

The interesting of (1.8) and (1.9) is that they are independent of the temperature and
they are in scaling invariant norm in the sense of (1.5). From (1.5), the natural candidate
invariant spaces of temperature θ are Lq(0, T ; Lq) with 2

p + 3
q = 2. Therefore, a

natural question is whether one can show blow-up criteria for the full compressible
Navier–Stokes equations involving temperature in its scaling-invariant space. The first
objective of this paper is to address this issue, and we obtain

Theorem 1.1. Suppose (ρ, u, θ) is the unique strong solution in Theorem 2.1 and
λ < 3μ. If the maximal existence time T ∗ is finite, then there holds

lim sup
t→T ∗

‖ρ‖L∞(0,t;L∞) + ‖θ‖L p(0,t;Lq ) = ∞, (1.14)

where p, q satisfying

2

p
+ 3

q
= 2, q >

3

2
.

Remark 1.1. Note that (1.14) can be replaced by

lim sup
t→T ∗

‖div u‖L1(0,t;L∞) + ‖θ‖L p(0,t;Lq ) = ∞,

or

lim sup
t→T ∗

‖∇u‖L1(0,t;L∞) + ‖θ‖L p(0,t;Lq ) = ∞,

which improves the known blow-up criteria (1.6).



1898 Q. Jiu et al. J. Evol. Equ.

Remark 1.2. Theorem 1.1 is an extension of corresponding results in (1.7), (1.11),
(1.12) and (1.21).

We give some comments on the proof of Theorem 1.1. The proof is motivated by the
investigation of regularity of suitable weak solutions to the 3D incompressible Navier–
Stokes equations. Suitable weak solutions originated in pioneering work by Scheffer
[33] and in the celebrated paper by Caffarelli et al. [3] obey the local energy inequality.
Roughly speaking, the energy flux in local energy inequality is

∫ T
0

∫ |u|3dxdt , which
can be bounded by (see, e.g., [13,14,30])

∫ T

0

∫

|u|3dxdt ≤ C
(
‖u‖2L∞L2 + ‖∇u‖2L2L2

)
‖u‖L pLq ,

2

p
+ 3

q
= 2. (1.15)

We would like to mention that the inequality (1.15) plays an important role in the
proof of results in [13,14,30].
We turn our attentions back to the 3D compressible Navier–Stokes equations (1.1).

Under the hypothesis ‖ρ‖L∞L∞ and λ < 3μ, we observe that there holds the following
energy estimate to system (1.1)

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2

− 2Pdiv u + 2C3Cνρθ2 + 2(C4 + 1)ρ|u|4
]

+ κ

∫

|∇θ |2 +
∫

ρ|u̇|2 +
∫

|u|2∣∣∇u
∣
∣2 ≤ C

∫

ρ|θ |3 + C
∫

ρ|u|2|θ |2,

(1.16)

whereμ|∇u|2+(μ+λ)(div u)2+ 1
2μ+λ

P2−2Pdiv u+2C3Cνρθ2+2(C4 + 1)ρ|u|4 ≥
μ|∇u|2+ρθ2+2(C4 + 1)ρ|u|4 > 0 provided that the positive constantC3 is suitably
large. The key point is that the two terms of right hand side in the preceding inequality
are parallel to (1.15). This helps us to prove Theorem 1.1.

Without the restriction λ < 3μ, we have

Theorem 1.2. Suppose (ρ, u, θ) is the unique strong solution in Theorem 2.1. If the
maximal existence time T ∗ is finite, then one of the following results holds, for p, q
meeting

2

p
+ 3

q
= 2, q >

3

2
,

(1)

lim sup
t→T ∗

(
‖ρ‖L∞(0,t;L∞) + ‖div u‖L2(0,t;L3) + ‖θ‖L p(0,t;Lq )

)
= ∞; (1.17)

(2)

lim sup
t→T ∗

(
‖div u‖L1(0,t;L∞) + ‖div u‖L4(0,t;L2) + ‖θ‖L p(0,t;Lq )

)
= ∞; (1.18)
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(3)

lim sup
t→T ∗

(
‖div u‖L2(0,t;L∞) + ‖θ‖L p(0,t;Lq )

)
= ∞. (1.19)

Remark 1.3. One can replace ‖ρ‖L∞(0,t;L∞) in (1.17) by ‖div u‖L1(0,t;L∞), which
improves the known blow-up criteria (1.12).

Though (1.17) and (1.18) involve all the quantities in equations (1.1), they are in
scaling-invariant spaces in the sense of (1.5). We explain the motivation of (1.17) and
(1.18). It is known that the velocity u (Serrin type), gradient∇u (Beirao daVeiga type),
vorticity curl u or pressure � = divdiv

−�
(uiu j ) in scaling-invariant norms guarantee the

regularity of the Leray–Hopf weak solutions to the 3D incompressible Navier–Stokes
equations (see, e.g., [1,2,4,13,24–26,34,42,43]). Serrin type criteria for the isentropic
compressible fluid were proved by Huang et al. [18]. However, to the knowledge of the
authors, even though for the isentropic compressible fluid in the presence of vacuum,
the following blow-up criteria are unknown

lim sup
t→T ∗

(
‖div u‖L1(0,t;L∞) + ‖∇u‖L p(0,t;Lq )

)
= ∞, wi th

2

p
+ 3

q
= 2, q > 3.

(1.20)
The other case in (1.20) 3

2 < q < 3 can be derived from the result [18] and Sobolev
inequality, and q = 3 can be derived by a slight variant of the proof of [18]. Hence, it
seems that (1.17) and (1.18) without θ are still new results to the isentropic compress-
ible fluid. For the general case (1.20), we can prove it for the strong solutions of the
isentropic compressible Navier–Stokes equations in the case away from the vacuum.
Before we state the result, we recall the known blow-up criteria for the strong solutions
of system (1.1) without vacuum.
Fan and Jiang [9]

lim sup
t↗T 

(

‖(ρ,
1

ρ
, θ)‖L∞(0,t;L∞) + ‖ρ‖L1(0,t;W 1,q )

+‖∇ρ‖L4(0,t;L2)

) = ∞, (λ < 2μ) (1.21)

Huang and Li [15]

lim sup
t↗T 

(‖∇u‖L1(0,t;L∞) + ‖θ‖L2(0,t;L∞)

) = ∞. (1.22)

Sun et al. [35]

lim sup
t↗T 

(

‖(ρ,
1

ρ
, θ)‖L∞(0,t;L∞)

)

= ∞, (λ < 7μ). (1.23)

Then, we consider the case away from vacuum and state the second result as follows:

Theorem 1.3. Suppose (ρ, u, θ) is the unique strong solution in Theorem 2.2 in
Sect. 2. If the maximal existence time T ∗ is finite, then either of the following re-
sults holds:

lim sup
t→T ∗

(
‖ρ, ρ−1‖L∞(0,t;L∞)+‖div u‖L p1 (0,t;Lq1 )+‖θ‖L p2 (0,t;Lq2 )

)
= ∞, (1.24)
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where the pairs (p1, q1) and (p2, q2) meet

2

p1
+ 3

q1
= 2, q1 >

3

2
; 2

p2
+ 3

q2
= 2, q2 >

3

2
. (1.25)

Remark 1.4. This theorem is an improvement in corresponding results in (1.22) and
(1.23).

Remark 1.5. Note that we do not need any additional restriction on the viscosity
coefficients μ and λ.

The proof of Theorem 1.3 is also enlightened by the study of the 3D incompressible
Navier–Stokes equations. Under the natural restriction (1.3), there holds

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

+ C4 + 1

μ
ρ|u|4

]
+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 +
∫

|u|2∣∣∇u
∣
∣2

≤C
∫

ρ2|θ |3 + C
∫

ρ|u|2|θ |2 + C
∫

|div u||u|2|∇u|.
(1.26)

Our observation is that the last term in the right-hand side of (1.26) is similar to the term
∫ |�||u|2|∇u|dx appearing in the derivation of regular criteria via pressure � of the
3D incompressible Navier–Stokes equations on bounded domain (see [2,24,25,42]).
This criterion was obtained by Kang and Lee [25] until 2010. In the spirit of [25], we
can deal with this term to derive the desired estimates.
Theorem 1.3 immediately yields the following result.

Corollary 1.4. Let (ρ, u) be the unique strong solution of the isentropic compressible
fluid without initial vacuum. If the maximal existence time T ∗ is finite, then there holds

lim sup
t→T ∗

(
‖ρ, ρ−1‖L∞(0,t;L∞) + ‖div u‖L p(0,t;Lq )

)
= ∞, (1.27)

where the pair (p, q) meets

2

p
+ 3

q
= 2, q >

3

2
.

Remark 1.6. Although this corollary is valid in the absence of vacuum, it does not
require additional assumptions on λ and μ. A special case of (1.27) is that

lim sup
t→T ∗

‖div u‖L1(0,t;L∞) = ∞. (1.28)

In the presenceof vacuum, similar blow-up criteria in termsof the divergence (gradient)
of the velocity can be found in [20,26,35].
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Remark 1.7. For the isentropic compressible fluid in the absence of vacuum, com-
bining the results proved by Huang et al. citeHLX and Corollary 1.4, we obtain the
following blow-up criteria in terms of the gradient of the velocity

lim sup
t→T ∗

(
‖ρ, ρ−1‖L∞(0,t;L∞) + ‖∇u‖L p(0,t;Lq )

)
= ∞, (1.29)

or
lim sup
t→T ∗

(
‖div u‖L1(0,t;L∞) + ‖∇u‖L p(0,t;Lq )

)
= ∞, (1.30)

where the pair (p, q) meets

2

p
+ 3

q
= 2, q >

3

2
.

This extends Beirao da Veiga’s result in [1] from the incompressible Navier–Stokes
equations to the compressible Navier–Stokes system.

The remainder of this paper is structured as follows. In Sect. 2, we first give some
notations and recall the local strong solutions of system (1.1) due to Cho and Kim [6].
We establish some auxiliary lemmas under the hypothesis that the upper bound of the
density is bounded. Section 3 is devoted to the proof of Theorem 1.1 and Theorem
1.2. Section 4 contains the proof of Theorem 1.3.

2. Notations and some auxiliary lemmas

C is an absolute constant which may be different from line to line unless otherwise
stated. For 1 ≤ p ≤ ∞, L p(R3) represents the usual Lebesgue space. The classical

Sobolev spaceWk,p(R3) is equippedwith the norm ‖ f ‖Wk,p(R3) =
k∑

α=0
‖Dα f ‖L p(R3).

A function f belongs to the homogeneous Sobolev spaces Dk,l if u ∈ L1
loc(R

3) :
‖∇ku‖Ll < ∞.

For simplicity, we write

L p = L p(R3), Hk = Wk,2(R3), Dk = Dk,2(R3).

We denote the G by the effective viscous flux, that is,

G = (2μ + λ)div u − P.

The notation v̇ = vt + u · ∇v stands for material derivative.
It is well known that

‖∇G‖L p ≤ ‖ρu̇‖L p , ∀p ∈ (1,+∞). (2.1)

We recall the local well-posedness of strong solutions to the full compressible Navier–
Stokes equations (1.1) due to Cho and Kim [6]. The first result allows initial density
contains vacuum and some compatibility conditions are required. The second one
is absence of vacuum. Moreover, we refer the reader to [5] the local existence and
uniqueness of strong solutions for the isentropic compressible Navier–Stokes system.



1902 Q. Jiu et al. J. Evol. Equ.

Theorem 2.1. Suppose u0, θ0 ∈ D1(R3) ∩ D2(R3) and

ρ0 ∈ W 1,q(R3) ∩ H1(R3) ∩ L1(R3)

for some q ∈ (3, 6]. If ρ0 is nonnegative and the initial data satisfy the compatibility
condition

Lu0 + ∇ p(ρ0) = √
ρ0g1

�θ0 + μ

2
|∇u0 + (∇u0)

tr|2 + λ(div u0)
2 = √

ρ0g2
(2.2)

for vector fields g1, g2 ∈ L2(R3). Then, there exist a time T ∈ (0,∞) and unique
solution, satisfying

(ρ, u, θ) ∈ C([0, T ); L1 ∩ H1 ∩ W 1,q) × C([0, T ); D1 ∩ D2) × L2([0, T ); D2,q)

(ρt , ut , θt ) ∈ C([0, T ); L2 ∩ Lq) × L2([0, T ); D1) × L2([0, T ); D1)

(ρ1/2ut , ρ
1/2θt ) ∈ L∞([0, T ); L2) × L∞([0, T ); L2).

(2.3)

Theorem 2.2. Suppose u0, θ0 ∈ D1(R3) ∩ D2(R3) and

ρ0 ∈ W 1,q(R3) ∩ H1(R3) ∩ L1(R3)

for some q ∈ (3, 6]. If ρ0 > 0, then there exist a time T ∈ (0,∞) and unique solution,
satisfying

ρ ∈ C([0, T ); L1 ∩ H1 ∩ W 1,q), inf
(x,t)∈R3×[0,T ]

ρ > 0,

u ∈ C([0, T ); D1 ∩ D2) ∩ L2([0, T );W 2,q)

θ ∈ C([0, T ); D1 ∩ D2) ∩ L2([0, T );W 2,q).

(2.4)

Next, under the hypothesis that the upper bound of the density is bounded, namely

‖ρ‖L∞(0,T ;L∞) ≤ M, (2.5)

we derive some useful estimates, which plays an important role in the proof of all our
theorems.

Lemma 2.3. Suppose that (2.5) is valid, then there holds

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

]

+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2

≤ C4

∫

ρ|θ |3 + C4

∫

ρ|u|2|θ |2 + C4

∫

|u|2|∇u|2.

(2.6)
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Proof. Taking the L2 inner product of the temperature equation with θ , by the Cauchy
inequality, we infer that

Cν

2

d

dt

∫

ρθ2 + κ

∫

|∇θ |2 ≤ R
∫

|ρθ2div u| + (2μ + λ)

∫

|∇u|2θ

≤ C
∫

ρ2|θ |3 + C
∫

|∇u|2θ.

(2.7)

Multiplying the both sides of the momentum equation by uθ and using the integration
by parts, we get

μ

∫

|∇u|2θ ≤
∫

|ρu̇uθ | + |
∫

∇Puθ | + C
∫

|u||∇u||∇θ |
= I + I I + I I I.

(2.8)

Thanks to the Cauchy–Schwarz inequality, we find that

I ≤ η

∫

ρ|u̇|2 + C(η)

∫

ρ|u|2|θ |2. (2.9)

According to integration by parts and Young’s inequality, we conclude

I I = |
∫

Pdiv uθdx +
∫

Pu∇θdx |

= |R
∫

ρdiv uθ2 + R
∫

ρθu∇θ |

≤ C
∫

ρ2|θ |3 + μ

8

∫

|∇u|2θ + ε1

∫

|∇θ |2 + C
∫

ρ2θ2|u|2.

(2.10)

The Cauchy–Schwarz inequality yields that

I I I ≤ ε1

∫

|∇θ |2 + C
∫

|u|2|∇u|2. (2.11)

Plugging (2.9)–(2.11) into (2.8), we have

7μ

8

∫

|∇u|2θ ≤η

∫

ρ|u̇|2 + C
∫

ρ|u|2|θ |2 + C
∫

ρ2|θ |3 + C
∫

ρ2θ2|u|2

+ 2ε1

∫

|∇θ |2 + C
∫

|u|2|∇u|2.
(2.12)

It follows from (2.7) and (2.12) that

Cν

2

d

dt

∫

ρθ2 + κ

2

∫

|∇θ |2

≤ C1

∫

ρ2|θ |3 + C1η

∫

|ρu̇|2 + C1

∫

ρ|u|2|θ |2 + C1

∫

|u|2|∇u|2.
(2.13)
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Taking the L2 inner product with ut in the second equation of (1.1), we get

1

2

d

dt

∫ [
μ|∇u|2 + (λ + μ)(div u)2

]
+

∫

ρ|u̇|2

=
∫

ρu̇(u · ∇u) +
∫

Pdiv utdx

=J1 + J2.

(2.14)

The Young inequality ensures that

J1 ≤ 1

4

∫

ρ|u̇|2 + C
∫

|u|2|∇u|2. (2.15)

After a few calculations, by the effective viscous flux G = (2μ + λ)div u − P , we
arrive at

J2 = d

dt

∫

Pdiv u −
∫

Ptdiv u

= d

dt

∫

Pdiv u − 1

2(2μ + λ)

d

dt

∫

P2 − 1

2μ + λ

∫

PtG

= J21 + J22 + J23.

(2.16)

Notice that the equation of ρE = P + ρ|u|2
2 is governed by

(ρE)t +div (ρEu+ Pu)−κ�θ = div
{[

λdiv uId+μ(∇u+ (∇u)tr)
] ·u

}
. (2.17)

By virtue of (2.17), we see that

J23 = − 1

2μ + λ

∫

(ρE)tG + 1

2μ + λ

∫ (
ρ|u|2
2

)

t
G

= − 2R

2μ + λ

∫

ρθu · ∇G − 1

2μ + λ

∫

ρ
|u|2
2

u · ∇G

+ 1

2μ + λ

∫ {[
λdiv uId + μ(∇u + (∇u)′)

] · u
}
∇G

+ κ

2μ + λ

∫

∇θ · ∇G.

+ 1

2μ + λ

∫ (
ρ|u|2
2

)

t
G.

(2.18)

With the help of the Young inequality, (2.1) and (2.5), we get

− 2R

2μ + λ

∫

ρθu · ∇G ≤ η

4
‖∇G‖2L2 + C

∫

ρ2|u|2|θ |2

≤ ε‖ρu̇‖2L2 + C
∫

ρ|u|2|θ |2
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Likewise, there hold

1

2μ + λ

∫ [
λdiv uId + μ(∇u + (∇u)′)

]
u∇G ≤ η

4
‖∇G‖2L2 + C

∫

|u|2|∇u|2

≤ ε‖ρu̇‖2L2 + C
∫

|u|2|∇u|2,
κ

2μ + λ

∫

∇θ · ∇G ≤ η

4
‖∇G‖2L2 + Cκ

∫

|∇θ |2dx

≤ ε‖ρu̇‖2L2 + Cκ

∫

|∇θ |2dx .

Putting together with the above estimates, we have

− 1

2μ + λ

∫

(ρE)tG ≤ − 1

2μ + λ

∫

ρ
|u|2
2

u · ∇G + ε

∫

ρ|u̇|2dx

+ C
∫

ρ|u|2|θ |2dx

+ C
∫

|u|2|∇u|2 + Cκ

∫

|∇θ |2.

(2.19)

We turn our attentions to the last term of (2.18). A straightforward calculation gives

1

2μ + λ

∫ (
ρ|u|2
2

)

t
G = 1

2μ + λ

∫
ρt |u|2
2

G + 1

2μ + λ

∫

ρu · utG. (2.20)

Taking the advantage of ρt = −div (ρu), the integration by parts, theYoung inequality
and (3.1), we get

1

2μ + λ

∫
ρt |u|2
2

G = − 1

2μ + λ

∫
div (ρu)|u|2

2
G

= 1

2μ + λ

∫

ρu · ∇u · uG + 1

2μ + λ

∫
ρu|u|2

2
· ∇G

≤C
∫

ρ|u · ∇u|2 + C
∫

ρ|u|2|G|2

+ 1

2μ + λ

∫
ρu|u|2

2
· ∇G

≤C
∫

ρ|u · ∇u|2 + C
∫

ρ|u|2(|∇u|2 + Rρ2θ2)

+ 1

2μ + λ

∫
ρu|u|2

2
· ∇G

≤C
∫

|u|2|∇u|2 + C
∫

ρ|u|2θ2

+ 1

2μ + λ

∫
ρu|u|2

2
· ∇G,

(2.21)
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where we have used the fact

|G| ≤ C(|∇u| + |ρθ |). (2.22)

From u̇ = ut + u · ∇u, the Young inequality, (2.22) and (3.1), we find

1

2μ + λ

∫

ρu · utG = 1

2μ + λ

∫

ρu · (u̇ − u · ∇u)G

= 1

2μ + λ

∫

ρu · u̇G −
∫

ρuu · ∇uG

≤ ε

∫

ρ|u̇|2dx + C
∫

ρ|u|2|G|2dx +
∫

ρ|u|2|∇u|2

≤ ε

∫

ρ|u̇|2dx + C
∫

|u|2|∇u|2 + C
∫

ρ|u|2θ2.
(2.23)

Inserting (2.21) and (2.23) into (2.20), we obtain

1

2μ + λ

∫ (
ρ|u|2
2

)

t
G ≤ε

∫

ρ|u̇|2 + C
∫

|u|2|∇u|2

+ C
∫

ρ|u|2θ2 + 1

2μ + λ

∫
ρu|u|2

2
· ∇G.

(2.24)

We derive from (2.18), (2.19) and (2.24) that

J23 ≤ε

∫

ρ|u̇|2 + C
∫

ρ|u|2|θ |2 + C
∫

|u|2|∇u|2 + C
∫

|∇θ |2. (2.25)

It follows from (2.14), (2.15), (2.16) and (2.25) that

1

2

d

dt

∫ [
μ|∇u|2 + (λ + μ)(div u)2 + 1

(2μ + λ)
P2 − 2Pdiv u

]
+ 1

2

∫

ρ|u̇|2

≤ C2

∫

ρ|u|2|θ |2 + C2

∫

|u|2|∇u|2 + C2κ

∫

|∇θ |2.
(2.26)

Since P = Rρθ , we can choose C3 ≥ C2 + 1 and C3 sufficiently large to make sure
that

μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2 ≥ μ|∇u|2 + ρθ2.
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Multiplying (2.13) both sides by C3 and adding it with (2.26), we end up with

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

]

+ C3κ

∫

|∇θ |2 +
∫

ρ|u̇|2

≤ C1C3

∫

ρ2|θ |3 + C1C3ε

∫

|ρu̇|2 + C1C3

∫

ρ|u|2|θ |2 + C1C3

∫

|u|2|∇u|2

+ C2

∫

ρ|u|2|θ |2 + C2

∫

|u|2|∇u|2 + C2κ

∫

|∇θ |2

≤ C
∫

ρ2θ3 + C1C3ε

∫

ρu̇2 + C
∫

ρ|u|2|θ |2 + C
∫

|u|2|∇u|2 + C2κ

∫

|∇θ |2.
(2.27)

Choosing ε sufficiently small to obtain (2.6). This completes the proof of this
lemma. �

3. Blow-up criteria with vacuum

3.1. Extra constraint on the coefficients of viscosity

In what follows, we assume that (ρ, u, θ) is a strong solution of (1) in [0, T ) ×R
3

with the regularity stated inTheorem2.1.Wewill proveTheorem1.1 by a contradiction
argument. Therefore, we assume that

‖ρ‖L∞(0,T ;L∞) + ‖θ‖L p(0,T ;Lq ) ≤ C,
2

p
+ 3

q
= 2, where q >

3

2
. (3.1)

First, we follow the arguments of Wen and Zhu [31] and Li et al. [27] to prove the
lemma below.

Lemma 3.1. Suppose that (3.1) is valid and λ < 3μ, then there holds

d

dt

∫

ρ|u|4 +
∫

R3∩{|u|>0}
|u|2∣∣∇u

∣
∣2 ≤ C5

∫

ρ|u|2|θ |2. (3.2)

Proof. The proof of this lemma is similar as that in [27] and [31]; therefore, we just
outline the proof here.
Multiplying the momentum equations by 4|u|2u and integrating on R3, we find

d

dt

∫

ρ|u|4 +
∫

R3∩{|u|>0}
4|u|2

[
μ|∇u|2 + (λ + μ)|div u|2 + 2μ|∇|u||2

]

=4
∫

R3∩{|u|>0}
div (|u|2u)P − 8(μ + λ)

∫

R3∩{|u|>0}
div u|u|u · ∇|u|

=K1 + K2.

(3.3)
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Using the Young inequality twice, for ε0 ∈ (0, 1
4 ), we get

K1 = 4R
∫

R3∩{|u|>0}
(|u|2div u + 2u · ∇u · u)ρθ

≤ 2με0

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2 + 2με0

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2

≤ 4με0

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2.
(3.4)

By the Cauchy inequality, we have

K2 ≤ 4(λ + μ)

∫

R3∩{|u|>0}
|u|2|div u|2 + 4(μ + λ)

∫

R3∩{|u|>0}
|u|2∣∣∇|u|∣∣2.

(3.5)
Substituting (3.4) and (3.5) into (3.3), we conclude that

d

dt

∫

ρ|u|4 + 4μ
∫

R3∩{|u|>0}
|u|2|∇u|2 + 8μ

∫

R3∩{|u|>0}
|u|2∣∣∇|u|∣∣2

≤ 4με0

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2 + 4(μ + λ)

∫

R3∩{|u|>0}
|u|2∣∣∇|u|∣∣2.

(3.6)
We have no new ingredient about the bound of the last term of the right-hand side in
(3.6); hence, we omit the details here. A slight modified the corresponding proof in
[27,31], we derive from (3.6) that

d

dt

∫

ρ|u|4 +
∫

R3∩{|u|>0}
|u|2∣∣∇u

∣
∣2 ≤ C

∫

ρ|u|2|θ |2, (3.7)

This proves Lemma 3.1. �

Lemma 3.2. Suppose that (3.1) is valid and λ < 3μ, then there holds

sup
0≤t≤T

∫ [
μ|∇u|2+ρθ2+ρ|u|4

]
+κ

∫ T

0

∫

|∇θ |2+
∫ T

0

∫

ρ|u̇|2+|u|2∣∣∇u
∣
∣2 ≤ C.

(3.8)

Proof. Multiplying the inequality (3.7) by (C4 + 1) and adding the result to the in-
equality (2.6), we can obtain

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2

− 2Pdiv u + 2C3Cνρθ2 + 2(C4 + 1)ρ|u|4
]

+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 +
∫

R3∩{|u|>0}
|u|2∣∣∇u

∣
∣2

≤ C7

(∫

ρ|θ |3 +
∫

ρ|u|2|θ |2
)

.

(3.9)
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At this stage, it suffices to bound the right-hand side of (3.9). Indeed, by the interpo-
lation inequality, (3.1) and the Young inequality imply that

∫

ρ|u|2|θ |2 =
∫

ρ
1
2 |θ |ρ 1

2 |u|2|θ |

≤ ‖θ‖Lq‖ρ 1
2 θ‖

L
2q
q−1

‖ρ 1
2 |u|2‖

L
2q
q−1

≤ ‖θ‖Lq‖ρ 1
2 θ‖1−

3
2q

L2 ‖ρ 1
2 θ‖

3
2q

L6‖ρ
1
2 |u|2‖1−

3
2q

L2 ‖ρ 1
2 |u|2‖

3
2q

L6

≤ C‖θ‖Lq‖ρ 1
2 θ‖1−

3
2q

L2 ‖ρ 1
2 |u|2‖1−

3
2q

L2 (‖∇θ‖
3
q

L2 + ‖∇|u|2‖
3
q

L2)

≤ C‖θ‖
2q

2q−3
Lq ‖ρ 1

2 θ‖L2‖ρ 1
2 |u|2‖L2 + η1‖∇θ‖2L2 + η2‖∇|u|2‖2L2

≤ C‖θ‖
2q

2q−3
Lq

(‖ρ 1
2 θ‖2L2 + ‖ρ 1

2 |u|2‖2L2

) + η1‖∇θ‖2L2 + η2‖∇|u|2‖2L2

(3.10)
By similar above arguments, we can get

∫

ρ|θ |3 =
∫

ρ
1
2 |θ |ρ 1

2 θ |θ |

≤ ‖θ‖Lq‖ρ 1
2 θ‖2

L
2q
q−1

≤ ‖θ‖Lq‖ρ 1
2 θ‖2−

3
q

L2 ‖ρ 1
2 θ‖

3
q

L6

≤ C‖θ‖Lq‖ρ 1
2 θ‖2−

3
q

L2 ‖θ‖
3
q

L6

≤ C‖θ‖Lq‖ρ 1
2 θ‖2−

3
q

L2 ‖∇θ‖
3
q

L2

≤ C‖θ‖
2q

2q−3
Lq ‖ρ 1

2 θ‖2L2 + η3‖∇θ‖2L2

(3.11)

Substituting (3.10) and (3.11) into (3.9), we have

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2

− 2Pdiv u + 2C3Cνρθ2 + 2(C4 + 1)ρ|u|4
]

+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 +
∫

R3∩{|u|>0}
|u|2∣∣∇u

∣
∣2

≤ C‖θ‖
2q

2q−3
Lq

(‖ρ 1
2 θ‖2L2 + ‖ρ 1

2 |u|2‖2L2

)

≤ C‖θ‖
2q

2q−3
Lq

( ∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u

+ 2C3Cνρθ2 + 2(C4 + 1)ρ|u|4
])

,

(3.12)

where we used the fact that
∫ [

(μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

]
≥

∫

ρθ2, (3.13)
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provided that the constant C3 is suitably large enough.
Then, the Gronwall lemma and (3.12) enable us to obtain that

sup
0≤t≤T

∫

(ρθ2 +|∇u|2 +ρ|u|4)+
∫ T

0

∫

ρ|u̇|2 +|∇θ |2 +|u|2∣∣∇u
∣
∣2 ≤ C. (3.14)

�
Proof of Theorem 1.1. With Lemma 3.2 at our disposal, according to (3.1) and (1.9)
(alternatively, (1.11)), we completes the proof of this theorem. �
3.2. Without extra constraint on the coefficients of viscosity

As mentioned in the last subsection, it suffices to prove Lemma 3.2 without λ < 3μ
to show Theorem 1.2.

Proof of Lemma 3.2. Without λ < 3μ As Lemma 3.1, there holds

d

dt

∫

ρ|u|4 +
∫

4|u|2
[
μ|∇u|2 + (λ + μ)|div u|2 + 2μ|∇|u||2

]

= 4
∫

div (|u|2u)P − 8(μ + λ)

∫

div u|u|u · ∇|u|
= L1 + L2.

(3.15)

Making use of the Young inequality twice, we have

L1 = 4R
∫

(|u|2div u + 2u · ∇u · u)ρθ

≤ η1

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2 + η2

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2

≤ (η1 + η2)

∫

|u|2|∇u|2 + C
∫

ρ|u|2|θ |2.

(3.16)

Similarly,

L2 ≤ C(η)

∫

|u|2|div u|2 + η

∫

|u|2∣∣∇|u|∣∣2. (3.17)

Plugging (3.16) and (3.17) into (3.15), we get

d

dt

∫

ρ|u|4 + 2μ
∫

|u|2|∇u|2 ≤ C
∫

ρ|u|2|θ |2 + C
∫

|u|2|div u|2. (3.18)

Adding (3.18) multiplied by C4+1
2μ to (2.6), we have

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

+ C4 + 1

μ
ρ|u|4

]
+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 +
∫

|u|2|∇u|2

≤ C
∫

ρ|θ |3 + C
∫

ρ|u|2|θ |2 + C
∫

|u|2|div u|2.
(3.19)
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Case 1:

‖ρ‖L∞(0,T ;L∞) + ‖div u‖L2(0,T ;L3) + ‖θ‖L p(0,T ;Lq ) ≤ C. (3.20)

With the help of Hölder inequality and Sobolev inequality, we get

∫

|u|2|div u|2 ≤ C
( ∫

|u|6
) 1

3
( ∫

|div u|3
) 2

3

≤ C
( ∫

|∇u|2
)( ∫

|div u|3
) 2

3
.

(3.21)

Inserting (3.10), (3.11) and (3.21) into (3.19), we conclude that

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

+ C4 + 1

μ
ρ|u|4

]
+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 + μ

∫

|u|2|∇u|2

≤ C‖θ‖
2q

2q−3
Lq

(‖ρ 1
2 θ‖2L2 + ‖ρ 1

2 |u|2‖2L2

) + C8

( ∫

|∇u|2
)( ∫

|div u|3
) 2

3

≤ C‖θ‖
2q

2q−3
Lq

( ∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u

+ 2C3Cνρθ2 + C4 + 1

μ
ρ|u|4

])
+ C8

( ∫

|∇u|2
)( ∫

|div u|3
) 2

3
.

(3.22)
where we have used (3.13).
Now, (3.20) and Gronwall allow us to obtain Lemma 3.2 without λ < 3μ.

Case 2:

‖div u‖L1(0,T ;L∞) + ‖div u‖L4(0,T ;L2) + ‖θ‖L p(0,T ;Lq ) ≤ C. (3.23)

From the above arguments of Case 1, we just need prove the following estimate

∫

|u|2|div u|2 ≤ C
( ∫

|u|6
) 1

3
( ∫

|div u|3
) 2

3

≤ C
( ∫

|∇u|2
)( ∫

|div u|3
) 2

3

≤ C
( ∫

|∇u|2
)( ∫

|div u|2
) 2

3 ‖div u‖
2
3
L∞

≤ C
( ∫

|∇u|2
)(( ∫

|div u|2
)2 + ‖div u‖L∞

)
,

(3.24)

where we have used the Hölder inequality, Sobolev embedding and interpolation in-
equality.
Case 3:

‖div u‖L2(0,T ;L∞) + ‖θ‖L p(0,T ;Lq ) ≤ C. (3.25)
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From (2.17), we have
‖ρθ‖L∞(0,T ;L1) ≤ C. (3.26)

Taking the L2 inner product of the second equations in (1.1) with u, we see that

d

dt

∫

ρ|u|2 + μ

∫

|∇u|2 + (λ + μ)

∫

|div u|2 ≤ C‖ div u‖L∞‖ρθ‖L1 (3.27)

It follows from (3.26) and (3.27) that

∫ T

0

∫

|div u|2dx ≤ C. (3.28)

From the above arguments of Case 1 and Case 2, we just need prove the following
estimate

∫

|u|2|div u|2 ≤ C
( ∫

|u|6
) 1

3
( ∫

|div u|3
) 2

3

≤ C
( ∫

|∇u|2
)( ∫

|div u|3
) 2

3

≤ C
( ∫

|∇u|2
)( ∫

|div u|2
) 2

3 ‖div u‖
2
3
L∞

≤ C
( ∫

|∇u|2
)(( ∫

|div u|2
)

+ ‖div u‖2L∞
)
.

(3.29)

As the same derivation of (3.22), replacing (3.21) by (3.29), we get

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

+ C4 + 1

μ
ρ|u|4

]
+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 + 2
∫

|u|2|∇u|2

≤C‖θ‖
2q

2q−3
Lq

(‖ρ 1
2 θ‖2L2 + ‖ρ 1

2 |u|2‖2L2

) + C
( ∫

|∇u|2
)(( ∫

|div u|2
)

+ ‖div u‖2L∞
)

≤C‖θ‖
2q

2q−3
Lq

( ∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u

+ 2C3Cνρθ2 + C4 + 1

μ
ρ|u|4

])
+ C

( ∫

|∇u|2
)(( ∫

|div u|2
)

+ ‖div u‖2L∞
)
.

(3.30)
Gronwall lemma (3.28), (3.30) and (3.25) yield Lemma 3.2 without λ < 3μ. �

4. Blow-up criteria without vacuum

As said in the last of Sect. 3.1, it is enough to show Lemma 3.2 without λ < 3μ to
complete the proof of Theorem 1.3 under the following hypothesis

‖ρ, ρ−1|L∞(0,T ;L∞) + ‖div u‖L p1 (0,T ;Lq1 ) + ‖θ‖L p2 (0,T ;Lq2 ) ≤ C, (4.1)
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for (p1, q1) and (p2, q2) meeting

2

p1
+ 3

q1
= 2, q1 >

3

2
,

2

p2
+ 3

q2
= 2, q2 >

3

2
. (4.2)

Proof of Lemma 3.2. Without λ < 3μ From (3.15) and (3.16), we see that

d

dt

∫

ρ|u|4 + 2μ
∫

|u|2|∇u|2 ≤ C
∫

ρ|u|2|θ |2 + C
∫

|div u||u|2|∇|u|. (4.3)

The interpolation inequality and Sobolev inequality allow us to derive that, for 2 ≤
2q1
q1−2 ≤ 6,

‖ρ 1
2 |u|2‖

L
2q1
q1−2

≤ ‖ρ 1
2 |u|2‖1−

3
q1

L2 ‖ρ 1
2 |u|2‖

3
q1
L6

≤ C‖ρ 1
2 |u|2‖1−

3
q1

L2 ‖|u|2‖
3
q1
L6

≤ C‖ρ 1
2 |u|2‖1−

3
q1

L2 ‖∇|u|2‖
3
q1
L2 .

(4.4)

In the light of the Hölder inequality, (4.4), and the Young inequality, we find
∫

|div u|u|2|∇|u| ≤ C
∫

|div u|ρ 1
2 |u|2||∇u|

≤ C‖div u‖Lq1 ‖ρ 1
2 |u|2‖

L
2q1
q1−2

‖∇u‖L2

≤ C‖div u‖Lq1 ‖ρ 1
2 |u|2‖1−

3
q1

L2 ‖ρ 1
2 |u|2‖

3
q1
L6‖∇u‖L2

≤ η‖∇|u|2‖2L2 + C(η)‖div u‖
2q1

2q1−3

Lq1 ‖ρ 1
2 |u|2‖

2(q1−3)
2q1−3

L2 ‖∇u‖
2q1

2q1−3

L2

≤ η‖∇|u|2‖2L2 + C(η)‖div u‖
2q1

2q1−3

Lq1

(
‖ρ 1

2 |u|2‖2L2 + ‖∇u‖2L2

)
.

(4.5)
It follows from (4.3) and (4.5) that

d

dt

∫

ρ|u|4 + 2μ
∫

|u|2|∇u|2

≤ C8

∫

ρ|u|2|θ |2 + C8

( ∫

ρ|u|4 +
∫

|∇u|2
)
‖div u‖

2q1
2q1−3

Lq1 .

(4.6)

Adding (4.6) multiplied by C4+1
2μ to (2.6), we arrive at

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

+ C4 + 1

μ
ρ|u|4

]
+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 + 2μ
∫

|u|2|∇u|2

≤ C
∫

ρ2|θ |3 + C
∫

ρ|u|2|θ |2 + C
( ∫

ρ|u|4 +
∫

|∇u|2
)
‖div u‖

2q1
2q1−3

Lq1 .

(4.7)
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Then, we use (3.10) and (3.11) to further obtain

1

2

d

dt

∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u + 2C3Cνρθ2

+ C4 + 1

μ
ρ|u|4

]
+ κ

∫

|∇θ |2 + 1

2

∫

ρ|u̇|2 + 2μ
∫

|u|2|∇u|2

≤ C‖θ‖
2q2

2q2−3

Lq2

(‖ρ 1
2 θ‖2L2 + ‖ρ 1

2 |u|2‖2L2

) + C
( ∫

ρ|u|4 +
∫

|∇u|2
)
‖div u‖

2q1
2q1−3

Lq1

≤ C‖θ‖
2q

2q−3
Lq

( ∫ [
μ|∇u|2 + (μ + λ)(div u)2 + 1

2μ + λ
P2 − 2Pdiv u

+ 2C3Cνρθ2 + C4 + 1

μ
ρ|u|4

])
+ C

( ∫

ρ|u|4 +
∫

|∇u|2
)
‖div u‖

2q1
2q1−3

Lq1 .

(4.8)
This proves the whole lemma. �
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