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Abstract. We consider the Cauchy problem:

{
∂t u = �u − u + λ f (u) in (0, T ) × R

2,

u(0, x) = u0(x) in R2,

where λ > 0,

f (u):=2α0ue
α0u

2
, for some α0 > 0,

with initial data u0 ∈ H1(R2). The nonlinear term f has a critical growth at infinity in the energy
space H1(R2) in view of the Trudinger-Moser embedding. Our goal is to investigate from the initial data
u0 ∈ H1(R2)whether the solution blows up in finite time or the solution is global in time. For 0 < λ < 1

2α0
,

we prove that for initial data with energies below or equal to the ground state level, the dichotomy between
finite time blow-up and global existence can be determined by means of a potential well argument.

1. Introduction and main results

Model parabolic problem. We consider the Cauchy problem for a two-space
dimensional parabolic equation with exponential-type nonlinearity; more precisely,
we focus the attention on the following model problem:

{
∂t u = �u − u + λ f (u) in (0, T ) × R

2,

u(0, x) = u0(x) in R
2,

(1.1)

where λ > 0,

f (u) := 2α0ue
α0u2 , for some α0 > 0,

and we consider initial data in the energy space H1(R2), i.e.,

u0 ∈ H1(R2).
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In this framework, energy refers to the functional associated with the stationary prob-
lem:

I (v) := 1

2
‖v‖2H1 − λ

∫
R
2
F(v) dx,

where

‖v‖H1 := ( ‖∇v‖2L2 + ‖v‖2L2

) 1
2 , and F(v) :=

∫ v

0
f (η) dη = eα0v

2 − 1.

The above functional is well defined in H1(R2), and the nonlinear term f that we are
considering has critical growth in the energy space in view of the Trudinger–Moser
embedding [1,32].
Concerning local existence and uniqueness for (1.1), Ibrahim, Jrad, Majdoub and

Saanouni [14] proved that, for any u0 ∈ H1(R2), the Cauchy problem (1.1) has a local
in time solution

u ∈ C( [0, T ]; H1(R2)
)

for some finite time T > 0 (see Definition 2.1 and Remark 2.2), and the solution
is unique. Then, the smoothing effect of the heat kernel implies that u is a classical
solution; in fact, it belongs to the class

u ∈ L∞
loc

(
(0, T ]; L∞(R2)

) ∩ C1( (0, T ); L2(R2)
) ∩ C1,2( (0, T ) × R

2 ),
see [20, Remark 4.1].
We define the maximal existence time T∗ of the solution u as

T∗ := sup
{
T > 0 : the problem (1.1) admits a solution u ∈ C( [0, T ]; H1(R2)

) } ∈ (0,+∞].

If T∗ < +∞, then the L∞-norm of the solution blows up, i.e.,

if T∗ < +∞ then lim sup
t→T∗

‖u(t)‖L∞ = +∞,

see, e.g., [5, Section 5.3]. In view of the definition of T∗, it is natural to try to understand
whether T∗ < +∞ yields also the blow-up of the H1-norm of the solution. This
problem is related to the dependence of the local existence time of the solution to (1.1)
from the size of the initial data u0 ∈ H1(R2); this aspect is emphasized in Sect. 2 in
comparison with the energy subcritical problem. For the energy subcritical problem,
the local existence time is uniform with respect to the H1-norm, while for the energy
critical Cauchy problem (1.1), we can find a uniform local existence time for small
initial data only, and we quantify the smallness condition in Theorem 2.6.

As a consequence of Theorem2.6,we deduce that if the H1-normof the solution u to
(1.1) is sufficiently small then u is a global solution, see Corollary 2.8. Indeed, our aim
is to find sufficient conditions in order to determine from the initial data u0 ∈ H1(R2)
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whether the solution blows up in finite time (i.e., T∗ < +∞) or the solution is global
in time (i.e., T∗ = +∞). The same problem for nonlinear hyperbolic and parabolic
equations with polynomial nonlinearities has been widely studied via the potential
well argument starting from the seminal papers by Sattinger [35], Tsutsumi [39], Ishii
[21], and Payne and Sattinger [30]. Let us recall the central idea of this method in the
parabolic case following the presentation given in [31].

Polynomial case. Let � ⊂ R
N , N ≥ 3, be a smooth bounded domain, and let us

consider ⎧⎪⎪⎨
⎪⎪⎩

∂t u = �u + |u|p−1u in (0, T ) × �,

u(t, x) = 0 in (0, T ) × ∂�,

u(0, x) = u0(x) in �,

(1.2)

with 1 < p ≤ 2∗ − 1, and 2∗ = 2N
N−2 . For any initial data in the energy space

H1
0 (�), there exists some finite time T > 0 and a local in time solution u belonging to

C( [0, T ]; H1
0 (�)
)
(this is a consequence of the L p+1-existence result in [4] for any

1 < p ≤ 2∗ − 1 and of the smoothing effect of the heat kernel). In this framework,
the energy functional is given by

Ip(v) := 1

2
‖∇v‖2L2 − 1

p + 1
‖v‖p+1

L p+1 .

Let v ∈ H1
0 (�)\{0}, and let us analyze the energy of the function σv for any σ ≥ 0.

By an easy computation, one can show that

Ip(σv) = σ 2

2
‖∇v‖2L2 − σ p+1

p + 1
‖v‖p+1

L p+1

attains its unique maximum at a point σ̄ = σ̄ (v) > 0, and v̄ := σ̄ v satisfies

‖∇v̄‖2L2 − ‖v̄‖p+1
L p+1 = 0.

Therefore, the energy I (σv) has the structure of a potential well, and every ray σv,
for any σ > 0 and for v ∈ H1

0 (�)\{0}, has a unique intersection with the Nehari
manifold

N = {v ∈ H1
0 (�)\{0} : ‖∇v‖2L2 − ‖v‖p+1

L p+1 = 0}.
The depth of the well is given by the lowest pass over the ridge defined by all possible
maps σ �→ Ip(σv) as v ranges over H1

0 (�)\{0}, namely

dp := inf
v∈H1

0 (�)\{0}
max
σ≥0

Ip(σv).

It is well known that dp can be characterized as

dp = inf
v∈N Ip(v), and also dp = p − 1

2(p + 1)
	2(p+1)/(p−1),
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where 	 = 	p+1(�) is the best constant in the Sobolev embedding H1
0 (�) ⊂

L p+1(�), i.e.,

	 = inf
v∈H1

0 (�)\{0}
‖∇v‖L2

‖v‖L p+1
.

If 1 < p < 2∗ − 1, then dp is the energy level of ground state solutions.
The potential well associated with the Cauchy problem (1.2) is the set (stable set)

Wp :=
{
v ∈ H1

0 (�) : Ip(v) < dp, ‖∇v‖2L2 − ‖v‖p+1
L p+1 > 0

}
∪ {0},

and the exterior of the potential well (unstable set) is

Vp :=
{
v ∈ H1

0 (�) : Ip(v) < dp, ‖∇v‖2L2 − ‖v‖p+1
L p+1 < 0

}
.

The sets Vp andWp are both invariant under the flow associatedwith (1.2). Concerning
the stable set, if 1 < p < 2∗ − 1, any solution which enters the stable set Wp exists
globally in time. This result is a direct consequence of the fact that, in the subcritical
case, the time T of local existence of the solution to (1.2) depends only on the size of
the norm of the initial data in H1

0 (�), and for any v ∈ Wp the Dirichlet norm ‖∇v‖L2

is uniformly bounded (see [39]). Similar results have also been proved for p = 2∗ −1,
where the situation is different because the local existence time of the solution to (1.2)
depends on the specific initial data rather than its size (see [19,21,22], and [23,38]).
On the other side, if 1 < p ≤ 2∗ − 1, then any solution which intersects the unstable
set Vp blows up in finite time (see [30] and [21]). Related studies can be found in
[6,18,28,29]. For the case p = 2∗ − 1 and � = R

N , N ≥ 3, we refer to [17] and to
the recent result [8] in which the authors completely describe the dynamics near the
ground state.
Related results on the asymptotic behavior of solutions for the Cauchy problem{

∂t u = �u − u + |u|p−1u in (0, T ) × R
N ,

u(0, x) = u0(x) in RN ,

when N ≥ 3 and for the subcritical 1 < p < 2∗ − 1 case can be found in [7,9,11,12]
and references therein.Our forthcomingwork [24] also contains results for the problem
above with subcritical and critical nonlinearity.
When N = 2, any power nonlinearity is allowed, and the critical nonlinearity

seems to be of exponential type as in (1.1). In the same spirit of the previous results,
we show that for the Cauchy problem (1.1) if the energy is below the ground state
level the dichotomy between blow-up and global existence is determined by means of
a potential well argument.

The stationary problem. It is not difficult to show that the stationary problem asso-
ciated with (1.1), i.e.,

− �v + v = λ f (v) in R
2, (1.3)
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has no non-trivial H1-solution if λ ≥ 1
2α0

. Therefore, from now on, we will assume

0 < λ <
1

2α0
. (1.4)

The existence of ground state solutions for (1.3) with λ in the range (1.4) is proved in
[33]. From [33], we also know that the mountain pass level

c := inf
γ∈�

sup
s∈[0,1]

I
(
γ (s)
)
, � :=

{
γ ∈ C([0, 1]; H1(R2)

) : γ (0) = 0, I
(
γ (1)
)

< 0
}
.

(1.5)

coincides with the ground state energy level, and ground state solutions can be char-
acterized as minimizers of I on a suitable constraint, i.e.,

c = inf

{
I (v) : v ∈ H1(R2)\{0}, 1

2
‖v‖2L2 − λ

∫
R
2
F(v) dx = 0

}
. (1.6)

Moreover,

0 < c <
2π

α0
. (1.7)

Another useful characterization of the mountain pass level c can be obtained by
means of the Nehari functional

J (v) := 〈d I (v), v〉 = ‖v‖2H1 − λ

∫
R
2
v f (v) dx . (1.8)

Let

d := inf
{
I (v) : v ∈ H1(R2)\{0}, J (v) = 0

}
,

then the existence of a mountain pass solution v ∈ H1(R2)\{0} to (1.3) implies
I (v) = c and d I (v) ≡ 0; therefore, d ≤ I (v) = c. The opposite inequality also
holds; hence,

c = d, (1.9)

and this can be deduced from the geometry of J and I in the energy space. In particular,
(1.9) is a consequence of the following property which gives also the potential well
structure of the energy functional I .

Proposition 1.1. Assume that λ is as in (1.4). For any v ∈ H1(R2)\{0}, there exists
a unique σ = σ(v) > 0 such that

J (σv)

⎧⎪⎪⎨
⎪⎪⎩

> 0 if 0 < σ < σ,

= 0 if σ = σ ,

< 0 if σ > σ.

(1.10)
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Moreover,

lim
σ→+∞ I (σv) = −∞, (1.11)

and σ is the unique maximum point of the map σ �→ I (σv) on [0,+∞).

The proof of Proposition 1.1 follows by simple computations (see also Lemma 7.4
and Lemma 7.5 with a = 1 and b = 0). From Proposition 1.1, it is easy to deduce that
c ≤ d by comparison with the auxiliary level

c̃ = inf
v∈H1(R2)\{0}

sup
σ>0

I (σv),

see Proposition 7.1 with a = 1 and b = 0.

Stable and unstable sets. In view of Proposition 1.1, for any fixed v ∈ H1(R2)\{0},
the function σ �→ I (σv) has the shape of a potential well. The idea of the potential
well method is to trap the solution to (1.1) in the well to the left of σ(v) in order to
guarantee global existence. To ensure that the solution to (1.1) is trapped, we have
to find the lowest pass over the ridge defined by all possible I (σv) as v ranges over
H1(R2)\{0}. The height of the lower pass over the ridge is the mountain pass level c̃
and c̃ = d.

Therefore, the potential well argument suggests to consider the splitting of the d-
sublevel set of the energy I determined by the Nehari functional J . More precisely,
we consider the unstable set V and the stable set W defined, respectively, by

V :=
{
v ∈ H1(R2) : I (v) < d, J (v) < 0

}
,

and

W :=
{
v ∈ H1(R2) : I (v) < d, J (v) ≥ 0

}
=
{
v ∈ H1(R2) : I (v) < d, J (v) > 0

}
∪ {0}.

Theorem 1.2. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with λ

as in (1.4), and u0 ∈ H1(R2).

(i) If u(t0) ∈ V for some t0 ∈ [0, T∗), then T∗ < +∞.
(ii) There exists t0 ∈ [0, T∗) such that u(t0) ∈ W if and only if

T∗ = +∞, and lim
t→+∞ ‖u(t)‖H1 = 0. (1.12)

The first part of Theorem 1.2 complements the blow-up result obtained in [14] for
non-positive energies.

Theorem 1.3. ([14, Theorem 2.1.3]). Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal

solution to (1.1) with

0 < λ ≤ 1

2α0
, (1.13)

and u0 ∈ H1(R2). If I
(
u(t0)
) ≤ 0 and u(t0) �= 0 for some t0 ∈ [0, T∗) then T∗ < +∞.
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Theorem 1.3 is proved in [14] in the particular case α0 = 1 and λ = 1
2 , but the

arguments of the proof in [14] can be adapted to cover the general case with α0 > 0
and λ in the range (1.13), see Remark 4.4.
Up to our knowledge, Theorem 1.2 is a new application of the potential well argu-

ment to heat equations with critical exponential nonlinearities in the two-space dimen-
sional case. The same problem with subcritical exponential nonlinearities is studied
in [10] and [34].
It is important to mention that similar results for dispersive equations are already

available in the literature, for example, see [2] and [25] for the subcritical exponential
case and see [16] for the critical exponential case.
Differently from the dispersive framework, the energy associated with heat equa-

tions decreases along solutions, and this monotonicity property enables us to easily
determine the dichotomy between blow-up and global existence also at the ground
state energy level d.

Theorem 1.4. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with λ

as in (1.4), and u0 ∈ H1(R2). Assume that I
(
u(t0)
) = d for some t0 ∈ [0, T∗).

(i) If J
(
u(t0)
)

< 0 then u(t) ∈ V for any t ∈ (t0, T∗).
(ii) If J

(
u(t0)
)

> 0 then u(t) ∈ W for any t ∈ (t0, T∗).
(iii) If J

(
u(t0)
) = 0 then u(t0) is a stationary ground state solution, and u(t) = u(t0)

for any t ∈ [t0,+∞).

Outline of the paper. In Sect. 2, we discuss the dependence of the local existence
time of the solution to (1.1) from the H1-norm of the initial data, and we obtain a
sufficient condition for global existence (see Corollary 2.8).
In Sect. 3, we collect some basic properties of the solution to (1.1) which will be

crucial to prove the instability of the set V and the stability of the set W .
Section 4 is devoted to the study of the unstable set V and more precisely to the

proof of Theorem 1.2(i). The proof is based on the classical concavity method due to
Levine [26] (see Lemma 4.2) which applies to (1.1) due to the fact that the Nehari
functional J along solutions entering V is—not only negative but—bounded away
from zero by a negative constant (see Proposition 4.3).

Section 5 is devoted to the study of the stable setW , and more precisely to the proof
of Theorem 1.2(ii). This second part of the statement of Theorem 1.2 is more accurate
with respect to the first part concerning the instability in V ; in fact Theorem 1.2(ii)
gives a characterization ofW in terms of the necessary and sufficient condition (1.12).
The proof of the stability of the set W is mainly based on Corollary 2.8. In order

to show that solutions entering W satisfy the assumptions of Corollary 2.8, it was
important to realize that the following inclusion holds:

W ⊆
{
v ∈ H1(R2) : I (v) < d, P(v) ≥ 0

}
, (1.14)

where

P(v) := 1

2
‖v‖2L2 − λ

∫
R
2
F(v) dx (1.15)
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is the so-called Pohozaev functional, i.e., the functional appearing in the characteri-
zation of the ground state energy level (1.6), as developed in [33]. The validity of the
inclusion (1.14) is the idea underlying the argument of the proof of Proposition 5.2.
The positivity of the Nehari functional J near the origin of H1(R2) (see Theo-

rem 5.4) is crucial to show that (1.12) is a sufficient condition for the solution to (1.1)
to enter W .

To show that the H1-norm of solutions entering W must decay to zero as time
tends to infinity, we need a compactness result, see Proposition 5.6. In the proof of
Proposition 5.6, we will consider the following auxiliary growth functions

f̃ (u) := 2α0u(eα0u2 − 1), and F̃(u) := eα0u2 − 1 − α0u
2, (1.16)

satisfying

f (u) = f̃ (u) + 2α0u, and F(u) = F̃(u) + α0u
2.

Both u f̃ (u) and F̃(u) are critical in the energy space with respect to the Trudinger–
Moser inequality [1,32], but these auxiliary growth functions are not affected by the
lack of compactness at spatial infinity (i.e., the lack of compactness of the embedding
H1(R2) ↪→ L2(R2)), in fact

lim
u→0

u f̃ (u)

u2
= lim

u→0

F̃(u)

u2
= 0.

The description of the asymptotics at the ground state energy level given by Theo-
rem 1.4 is developed in Sect. 6.
The validity of (1.14) may raise questions about the role of the splitting of the d-

sublevel set of the energy I determined by the sign of the Pohozaev functional P with
respect to the flow associated with the Cauchy problem (1.1). Indeed, the Pohozaev
functional P and the Nehari functional J determine the same splitting below the
ground state energy level d, as already observed in [16], see also [25]. In [16], a
slightly different critical exponential nonlinearity is considered, and in Sect. 7, we
show that the argument in [16] can be adapted to the energy functional associated with
(1.1).

2. Uniform local existence time and blow-up alternative

Let � ⊆ R
2 be any smooth domain, and let us consider the more general Cauchy

problem ⎧⎪⎪⎨
⎪⎪⎩

∂t u = �u + g(u) in (0, T ) × �,

u(t, x) = 0 on (0, T ) × ∂�,

u(0, x) = u0(x) in �,

(2.1)

where u0 ∈ H1
0 (�), and g ∈ C1(R,R) satisfies
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(g1) g(0) = 0, and
(g2) there exists α0 > 0 such that for any ε > 0 we have

|g(s1) − g(s2)| ≤ Cε|s1 − s2|
(
eα0(1+ε)s21 + eα0(1+ε)s22

)
, s1, s2 ∈ R,

for some positive constant Cε.

Under the above assumptions on the nonlinear term g, the Cauchy problem (2.1)
includes the model problem (1.1) as a particular case. Note that, by assuming con-
dition (g2), we take into account nonlinear terms with square exponential growth at
infinity, which are critical in the energy space. For any initial data in H1

0 (�), the
argument introduced in [14] gives the local existence and uniqueness of the solution
u to (2.1) in the class of functions C( [0, T ]; H1

0 (�)
)
, for some T > 0.

Definition 2.1. Let u0 ∈ H1
0 (�). We say that u is a (mild) solution to (2.1) if u ∈

C( [0, T ]; H1
0 (�)
)
, and u verifies the integral equation

u(t) = et�u0 +
∫ t

0
e(t−s)�g(u(s))ds.

Remark 2.2. As proved in [20, Proposition 4.1] and [13], u is a (mild) solution to (2.1)
if and only if u satisfies

∂t u = �u + g(u)

in the sense of distributions.

Combining the arguments of [14] with [20, Remark 4.1], we have the following
result.

Theorem 2.3. ([14,20]). Let g ∈ C(R,R) satisfy (g1) and (g2), and assume u0 ∈
H1
0 (�). There exist T = T (u0) > 0 and a unique solution u ∈ C( [0, T ]; H1

0 (�)
)
to

(2.1). Moreover,

u ∈ L∞
loc

(
(0, T ]; L∞(R2)

)
.

Let us introduce the maximal existence time of the solution u to (2.1) as

T∗ := sup
{
T > 0 : the problem (2.1) admits a solution u ∈ C( [0, T ]; H1

0 (�)
) } ∈ (0,+∞].

(2.2)

Under the assumptions of Theorem 2.3, if the maximal existence time defined by (2.2)
satisfies T∗ < +∞, then

lim sup
t→T∗

‖u(t)‖L∞ = +∞,

see, e.g., [5, Section 5.3].
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In view of the definition of T∗, the following question arises:

Does T∗ < +∞ imply lim sup
t→T∗

‖u(t)‖H1 = +∞? (2.3)

The above question remains open: the critical exponential nonlinearity that we con-
sider could have an effect on the blow-up alternative (2.3), and in analogy with the
critical polynomial case (see [36]), our guess is that there could exist initial data in
H1
0 (�) for which T∗ < +∞ even if u ∈ L∞( [0, T∗), H1

0 (�)
)
.

As mentioned in Sect. 1, the above question about the blow-up alternative (2.3) is
related to the dependence of the local existence time of the solution to (1.1) from the
size of the initial data in H1

0 (�): if one could find a local existence time T > 0 which
is uniform with respect to the H1-norm of the initial data, i.e., T = T (‖u0‖H1), then
the blow-up alternative (2.3) would hold.
To explain this point of view, let us compare the energy critical problem with

the subcritical and supercritical cases. To take into account nonlinear terms with
subcritical or supercritical growth in the energy space, it is enough to replace (g2),
respectively, with:

(g2)sub for any α0 > 0 there exists Cα0 > 0 such that

|g(s1) − g(s2)| ≤ Cα0 |s1 − s2|
(
eα0s21 + eα0s22

)
, s1, s2 ∈ R;

(g2)sup there exists γ > 2 and α0 > 0 such that

lim inf
s→+∞

|g(s)|
eα0sγ

> 0.

The subcritical, critical or supercritical behavior of g affects the local existence time
of the solution to the Cauchy problem (2.1). In the supercritical case, we have a
non-existence result for (2.1).

Theorem 2.4. Let g ∈ C1(R,R) satisfy (g1) and (g2)sup, and assume that g ≥ 0 on
R. There exists u0 ∈ H1(R2), u0 ≥ 0, such that for any T > 0 the Cauchy problem
(2.1) has no nonnegative solution in C([0, T ), H1(R2)

) ∩ L∞
loc

(
(0, T ), L∞(R2)

)
.

Proof. Let γ > 2 be as in (g2)sup, and define

u0(x) :=
⎧⎨
⎩
(
log 1

|x |
) 1

γ
log
(
log 1

|x |
)

|x | ≤ 1
e ,

0 |x | > 1
e .

Then, u0 ∈ H1
0 (B1/e(0)), and arguing as in [20, Section 3] it is not difficult to deduce

non-existence. �

In the subcritical case, the solution to (2.1) exists up to some finite time which
depends only on the size of the initial data in H1

0 (�).
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Theorem 2.5. Let g ∈ C1(R,R) satisfy (g1) and (g2)sub, and let M > 0. There exists
T = T (M) > 0 such that, for any u0 ∈ H1(R2) with ‖u‖H1 ≤ M, the Cauchy
problem (2.1) has a unique solution u ∈ C( [0, T ]; H1

0 (�)
)
.

Weomit the proof of Theorem2.5, since it can be obtained bymeans of a standard fixed
point argument by exploiting the integral representation formula and the smoothing
effect of the heat kernel (see also the proof of Theorem 2.6). In the subcritical case, it
is clear that the blow-up alternative holds:

if T∗ < +∞ then lim sup
t→T∗

‖u(t)‖H1 = +∞. (2.4)

Indeed, if not we could extend the solution to (2.1) beyond the time T∗ < +∞, using
Theorem 2.5, and reach a contradiction.
In the critical case, from [14], we cannot deduce that the local existence time T > 0

is bounded away from zero by a positive constant depending only on the H1-norm of
the initial data, and we expect that the smallness of the local existence time T depends
on the specific initial data and not only on its size. Nevertheless, if we consider small
initial data, we can find a uniform local existence time for the solution to (2.1).

Theorem 2.6. Let g ∈ C1(R,R) satisfy (g1) and (g2). Let 0 < m < 4π
α0
, and M > 0.

There exists T = T (m, M) > 0 such that, for any u0 ∈ H1(R2) with

‖∇u0‖2L2 ≤ m and ‖u0‖2L2 ≤ M, (2.5)

the Cauchy problem (1.1) has a unique solution u ∈ C( [0, T ]; H1
0 (�)
)
.

The smallness condition (2.5) with 0 < m < 4π
α0

comes from the following scale

invariant form of the Trudinger–Moser inequality in H1(R2).

Theorem 2.7. ([1]). If α ∈ (0, 4π), then there exists a constant Cα > 0 such that∫
R
2
(eαv2 − 1) dx ≤ Cα‖v‖2L2 , for any v ∈ H1(R2) with ‖∇v‖L2 ≤ 1, (2.6)

and the above inequality fails if α ≥ 4π .

Proof of Theorem 2.6. In order to prove the existence of a unique solution u ∈
C( [0, T ]; H1

0 (�)
)
, let us first write the equation in (1.1) in the equivalent integral

formulation (see [20, Proposition 4.1] and [13] for a justification of this equivalence)

u(t) = et�u0 +
∫ t

0
e(t−s)�g(u(s))ds. (2.7)

Since 0 < m < 4π
α0

there exists ε ∈ (0, 1) such that m = 4π
α0

(1 − ε). Let us consider
the set
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X = X (m, M)

=
{
u ∈ L∞((0, T ), H1(R2)

) : sup
t∈[0,T ]

‖∇u(t)‖2L2 ≤ 4π

α0

(
1 − ε

2

)
; sup

t∈[0,T ]
‖u(t)‖2L2 ≤ 2M

}
.

This set endowed with the distance

d(u, w) = sup
t∈[0,T ]

‖∇u(t) − ∇w(t)‖L2 + sup
t∈[0,T ]

‖u(t) − w(t)‖L2

is a complete metric space. We show that if T > 0 is small enough the map

(�u)(t) = et�u0 +
∫ t

0
e(t−s)�g(u(s))ds

is a contraction from X into itself. We remark that u0 satisfies

‖∇u0‖L2 ≤ √
m =
√
4π

α0
(1 − ε) <

√
4π

α0
(1 − ε

2
), ‖u0‖L2 ≤ √

M .

Let us first prove that � maps X into itself. Indeed, thanks to property (g2) for any
u ∈ X (m, M) and for any t ∈ [0, T ] we obtain

‖(�u)(t)‖L2 ≤ ‖et�u0‖L2 +
∫ t

0
‖e(t−s)�g(u(s))‖L2ds

≤ ‖u0]‖L2 + Cε

∫ t

0

∥∥∥e(t−s)�
[
|u(s)|

(
eα0(1+ε)u2(s) + 1

)]∥∥∥
L2

ds

≤ √
M + 2Cε

∫ t

0
‖e(t−s)�|u(s)|‖L2ds

+ Cε

∫ t

0

∥∥∥e(t−s)�
[
|u(s)|

(
eα0(1+ε)u2(s) − 1

)]∥∥∥
L2

ds

≤ √
M + 2Cεt

√
2M + Cε,r

∫ t

0

1

(t − s)
1
r − 1

2

∥∥∥|u(s)|
(
eα0(1+ε)u2(s) − 1

)∥∥∥
Lr

ds,

where 1 < r < 2 will be chosen later. If we could prove that there exists a constant
C = C(m, M) such that for any s ∈ [0, T ] we have∥∥∥u(s)

(
eα0(1+ε)u2(s) − 1

)∥∥∥r
Lr

≤ C (2.8)

then we would obtain

‖(�u)(t)‖L2 ≤ √
M + 2Cεt

√
2M + C̃ε,r

∫ t

0

1

(t − s)
1
r − 1

2

ds

= √
M + 2Cεt

√
2M + C̃ε,r t

3/2−1/r .

Therefore, if T is sufficiently small depending only on m, M then

‖(�u)(t)‖L2 ≤ √
2M .
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The estimate (2.8) can be obtained via the scale invariant Trudinger–Moser inequality
(2.6). Indeed, for p, q > 1, 1

p + 1
q = 1 and provided that rp ≥ 2 we have

‖u(s)
(
eα0(1+ε)u2(s) − 1

)
‖rLr ≤

∫
R2

|u(s)|r
(
eα0r(1+ε)u2(s) − 1

)
dx

≤
(∫

R2
|u(s)|rpdx

)1/p (∫
R2

(
eα0rq(1+ε)u2(s) − 1

)
dx

)1/q

≤ C‖u(s)‖rH1

(∫
R2

(
eα0rq(1+ε)u2(s) − 1

)
dx

)1/q
.

Now choosing q = 1 + ε2, r = 1 + ε4, and since α0 = 4π(1−ε)
m , we can estimate

(∫
R2

(
eα0rq(1+ε)u2(s) − 1

)
dx

)1/q
=
(∫

R2

(
e
4π(1−ε8)

(
u(s)√
m

)2
− 1

)
dx

)1/q

≤ C

(‖u(s)‖2
L2

m

)1/q
≤ C

(
2M

m

)1/q
.

We remark that with this choice of q we obtain p = 1+ε2

ε2
and rp ≥ 2. Therefore, we

obtain ∥∥∥u(s)
(
eα0(1+ε)u2(s) − 1

)∥∥∥r
Lr

≤ C.

Next for any u ∈ X and for any t ∈ [0, T ], thanks to (2.8), we obtain
‖∇(�u)(t)‖L2 ≤ ‖et�∇u0‖L2 +

∫ t

0
‖∇e(t−s)�g(u(s))‖L2 ds

≤ ‖∇u0]‖L2 + Cε

∫ t

0

1√
t − s

∥∥∥√t − s∇e(t−s)�
[
|u(s)|

(
eα0(1+ε)u2(s) + 1

)]∥∥∥
L2

ds

≤ √
m + 2Cε

∫ t

0

1√
t − s

‖√t − s∇e(t−s)�|u(s)|‖L2 ds

+ Cε

∫ t

0

1√
t − s

∥∥∥√t − s∇e(t−s)�
[
|u(s)|

(
eα0(1+ε)u2(s) − 1

)]∥∥∥
L2

ds

≤ √
m + 2Cε

√
t
√
2M + Cε,r

∫ t

0

1

(t − s)
1
r

∥∥∥|u(s)|
(
eα0(1+ε)u2(s) − 1

)∥∥∥
Lr

ds

≤ √
m + 2Cε

√
t
√
2M + C̃ε,r

∫ t

0

1

(t − s)
1
r

ds

≤ √
m + 2Cε

√
t
√
2M + C̃ε,r t

1− 1
r ,

with the same 1 < r < 2 chosen above. Therefore, if T is sufficiently small depending
only on m, M then

sup
t∈[0,T ]

‖∇(�u)(t)‖L2 ≤
√
4π

α0

(
1 − ε

2

)
.

In a similar way it is possible to prove that for T = T (m, M) small enough the
map � is a contraction on X . Finally, by using the standard regularizing properties
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of the heat kernel it is possible to prove that the fixed point u ∈ X of � satisfies
u ∈ C([0, T ], H1(R2)

)
. �

From Theorem 2.6, we deduce a sufficient condition for global existence.

Corollary 2.8. Let g ∈ C1(R,R) satisfy (g1) and (g2), and let u0 ∈ H1
0 (�). If the

maximal solution u ∈ C( [0, T∗); H1(R2)
)
to (2.1) satisfies

sup
t∈[t0,T∗)

‖∇u(t)‖2L2 <
4π

α0
, and sup

t∈[t0,T∗)
‖u(t)‖2L2 < +∞, for some t0 ∈ [0, T∗),

then u is global in time, i.e., T∗ = +∞.

Proof. As in the subcritical case, if we assume T∗ < +∞ then we can apply Theo-
rem 2.6 to extend the solution u beyond the maximal existence time T∗, and reach a
contradiction. �

3. Basic properties of the solution to the model problem (1.1)

Let u0 ∈ H1(R2). Let u ∈ C( [0, T ]; H1(R2)
)
be the local in time solution to (1.1)

found in [14], where T = T (u0) > 0 is the local time of existence.We already pointed
out that u ∈ L∞

loc

(
(0, T ]; L∞(R2)

)
, see [20, Remark 4.1]. Moreover, by using the

integral formulation of the equation and the growth property of the nonlinearity it is
possible to prove (see also [5, Chapter 5]) that

�u ∈ C( (0, T ], L2(R2)
)
, and u ∈ C1( (0, T ], L2(R2)

)
.

Then, by standard arguments, u is a classical solution for (1.1), i.e.,

u ∈ C1,2( (0, T ) × R
2 ).

Proposition 3.1. For any t ∈ (0, T ), we have

‖∂t u(t)‖2L2 = − d

dt
I
(
u(t)
)
, (3.1)

1

2

d

dt
‖u(t)‖2L2 = −‖u(t)‖2H1 + λ

∫
R
2
u(t) f
(
u(t)
)
dx, (3.2)

and

|〈d I (u(t)
)
, ϕ〉| ≤ ‖∂t u(t)‖L2‖ϕ‖L2 , for any ϕ ∈ H1(R2). (3.3)

Proof. The monotonicity of the energy (3.1) follows by multiplying the equation in
(1.1) by ∂t u, integrating over R2, and applying density arguments as in [5, Lemma
5.4.5].
Since u ∈ C([0, T ]; H1(R2)

)∩C1((0, T ]; L2(R2)
)
, and�u ∈ C((0, T ], L2(R2)

)
,

(3.2) follows bymultiplying the equation in (1.1) by u and integrating overR2. Finally,
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to deduce (3.3) we multiply the equation in (1.1) by ϕ ∈ H1(R2), and we integrate
over R2, obtaining∫

R
2
∂t u(t)ϕ dx = −

∫
R
2

(∇u(t) · ∇ϕ + u(t)ϕ
)
dx

+λ

∫
R
2
f
(
u(t)
)
ϕ dx = −〈d I (u(t)

)
, ϕ〉.

�

We complete this section with the following continuity result that can be proved
arguing as in [14, Proposition 3.6].

Lemma 3.2. If T > 0 and u ∈ C( [0, T ], H1(R2)
)
, then

F(u) ∈ C( [0, T ], L1(R2)
)
, and u f (u) ∈ C( [0, T ], L1(R2)

)
.

Hence, J (u) ∈ C( [0, T ],R ).
4. Blow-up in V

If v ∈ V , and σ = σ(v) > 0 is given by Proposition 1.1, then σ ∈ (0, 1), and
hence,

2d ≤ 2I (σv) ≤ ‖σv‖2H1 < ‖v‖2H1 . (4.1)

To prove the invariance of the set V under the flow associated with (1.1), it is crucial
to recall that, from (1.7) and (1.9), we know that

d > 0. (4.2)

Lemma 4.1. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with λ as

in (1.4), and u0 ∈ H1(R2). If u(t0) ∈ V for some t0 ∈ [0, T∗), then u(t) ∈ V for any
t ∈ [t0, T∗).

Proof. In viewof themonotonicity of the energy (3.1), and since J (u) ∈ C([0, T∗);R
)
,

it is enough to prove that J
(
u(t)
) �= 0 for any t ∈ (t0, T∗). If J

(
u(t)
) = 0 for some

t ∈ (t0, T∗), then there exists t1 ∈ (t0, T∗) such that

J
(
u(t)
)

< 0 for any t ∈ [t0, t1), and J
(
u(t1)
) = 0.

Therefore, u(t) ∈ V for any t ∈ [t0, t1), and
• either u(t1) �= 0. Hence d ≤ I

(
u(t1)
)
, which is not possible due to the mono-

tonicity of the energy (3.1);
• or u(t1) = 0 which yields

lim
t→t−1

‖u(t)‖H1 = ‖u(t1)‖H1 = 0,
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and this contradicts (4.1) and (4.2).

�

In order to prove that solutions entering V blow up in finite time, we will apply the
following blow-up Lemma containing the classical idea of the concavity method due
to Levine [26].

Lemma 4.2. ([26]). There exists no non-negative and increasing function y ∈
C2(t,+∞), with t ∈ R, such that, for some β > 0,

y(t)y′′(t) ≥ (β + 1)[y′(t)]2 on (t,+∞),

and

lim
t→+∞ y(t) = +∞. (4.3)

Proof. For the sake of completeness, we briefly sketch the proof. By contradiction, we
assume that such a function y exists. In view of (4.3), h(t) := y−β(t) is well defined
on the half-line (t ′,+∞), for some t ′ ≥ t sufficiently large. Moreover,

lim
t→+∞ h(t) = 0. (4.4)

For any t > t ′, we can compute

h′(t) = −β[y(t)]−β−1y′(t) < 0,

and

h′′(t) = β[y(t)]−β−2
(
(β + 1)[y′(t)]2 − y(t)y′′(t)

)
≤ 0.

Therefore, h is concave and decreasing on (t ′,+∞), and this contradicts (4.4). �

The concavity method works in our setting due to the fact the Nehari functional
along solutions entering V is bounded away from zero by a strictly negative constant.

Proposition 4.3. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with

λ as in (1.4), and u0 ∈ H1(R2). If u(t0) ∈ V for some t0 ∈ [0, T∗) then there exists
ε > 0 such that J

(
u(t)
)

< −ε for any t ∈ [t0, T∗).

Proof. Let

d ′ := inf
{
H(v) : v ∈ H1(R2)\{0}, J (v) ≤ 0

}
,

where

H(v) := I (v) − 1

2
J (v) = λ

∫
R
2

(
1

2
v f (v) − F(v)

)
dx . (4.5)
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Then, d = d ′. In fact, clearly d ′ ≤ d, and in order to deduce that d ≤ d ′, it is enough
to show that

d ≤ H(v) for any v ∈ H1(R2)\{0} with J (v) < 0.

Let v ∈ H1(R2)\{0}, and let σ = σ(v) > 0 be as in Proposition 1.1. If J (v) < 0,
then σv ∈ (0, 1), and we can estimate

d ≤ I (σv) = λ

∫
R
2

(
1

2
σv f (σv) − F(σv)

)
dx = λ

+∞∑
k=2

αk
0

k! (k − 1)‖σv‖2kL2k

= λ

+∞∑
k=2

αk
0

k! (k − 1)σ 2k‖v‖2kL2k ≤ λ

+∞∑
k=2

αk
0

k! (k − 1)‖v‖2kL2k

= λ

∫
R
2

(
1

2
v f (v) − F(v)

)
dx = H(v).

With the above characterization of d, it is easy to show that for any ε > 0

dε := inf
{
I (v) : v ∈ H1(R2)\{0}, J (v) = −ε

}
≥ d − ε

2
. (4.6)

In fact, by direct computations

dε = inf
{
I (v) + ε

2
− ε

2
: v ∈ H1(R2)\{0}, J (v) = −ε

}
= inf
{
I (v) − 1

2
J (v) − ε

2
: u ∈ H1(R2)\{0}, J (v) = −ε

}
= inf
{
I (v) − 1

2
J (v) : v ∈ H1(R2)\{0}, J (v) = −ε

}
− ε

2

= inf
{
H(v) : v ∈ H1(R2)\{0}, J (v) = −ε

}
− ε

2
≥ d − ε

2
.

Next, we assume that the maximal solution u to (1.1) satisfies u(t0) ∈ V for some
t0 ∈ [0, T∗). Then, there exists ε > 0 such that

min
{
d − I
(
u(t0)
)
, −J
(
u(t0)
)}

> ε.

In view of (4.6) and the monotonicity of the energy (3.1), we get

dε ≥ d − ε

2
> I
(
u(t0)
) ≥ I
(
u(t)
)
, for any t ∈ [t0, T∗). (4.7)

Assume that J
(
u(t1)
) = −ε for some t1 ∈ (t0, T∗). Then, dε ≤ I

(
u(t1)
)
, which

contradicts (4.7).
Summarizing, we have J

(
u(t0)
)

< −ε, and J
(
u(t)
) �= −ε for any t ∈ [t0, T∗).

Therefore, the proof is complete in view of the continuity of J along the solution, see
Lemma 3.2. �
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Proof of Theorem 1.2.(i). We argue by contradiction assuming that the solution u is
global, i.e., T∗ = +∞, and we apply the blow-up Lemma 4.2 to the non-negative and
increasing C2-function defined by

y(t) := 1

2

∫ t

t0
‖u(s)‖2L2 ds, t ∈ [t0,+∞). (4.8)

In view of (3.2), we have

y′′(t) = 1

2

d

dt
‖u(t)‖2L2 = −J

(
u(t)
)

> ε, t ∈ (t0,+∞), (4.9)

where ε > 0 is given by Proposition 4.3. From (4.9), we deduce that

lim
t→+∞ y′(t) = lim

t→+∞ y(t) = +∞. (4.10)

Let f̃ and F̃ be as in (1.16). Since there exists θ > 2 such that

θ F̃(s) ≤ s f̃ (s), for any s ∈ R,

we can estimate

y′′(t) = −J
(
u(t)
) = −

(
‖∇u(t)‖2L2 + (1 − 2α0λ)‖u(t)‖2L2

)
+ λ

∫
R
2
u(t) f̃
(
u(t)
)
dx

≥ −
(
‖∇u(t)‖2L2 + (1 − 2α0λ)‖u(t)‖2L2

)
+ λθ

∫
R
2
F̃
(
u(t)
)
dx

≥ −θ I
(
u(t)
)+ (θ

2
− 1

)(
‖∇u(t)‖2L2 + (1 − 2α0λ)‖u(t)‖2L2

)
(4.11)

≥ −θ I
(
u(t)
)+ Cy′(t),

where C = C(θ, α0, λ) := (θ − 2)(1 − 2λα0) > 0.
Using (3.2), we get

− I
(
u(t)
) = ∫ t

t0
‖∂su(s)‖2L2 ds − I

(
u(t0)
)
, (4.12)

and hence,

y(t)y′′(t) ≥ θ

2

(∫ t

t0
‖u(s)‖2L2 ds

)(∫ t

t0
‖∂su(s)‖2L2 ds

)
+ y(t)

(
Cy′(t) − θ I

(
u(t0)
))

≥ θ

2

(∫ t

t0

(∫
R
2
u(s)∂su(s) dx

)
ds

)2
+ y(t)

(
Cy′(t) − θ I

(
u(t0)
))

≥ θ

2

(∫ t

t0

1

2

d

ds
‖u(s)‖2L2 ds

)2
+ y(t)

(
Cy′(t) − θ I

(
u(t0)
))

= θ

2

(
y′(t) − y′(t0)

)2 + y(t)
(
Cy′(t) − θ I

(
u(t0)
))

.

(4.13)
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In view of (4.10), for any β ∈ (0, 1) there exists tβ > 1 such that

y(t)y′′(t) ≥ θ

2
β[y′(t)]2, for any t ≥ tβ. (4.14)

If we choose β > 0 such that 2
θ

< β < 1, then we are in the framework of the blow-up
Lemma 4.2, and we reach a contradiction. �
Remark 4.4. The proof of Theorem 1.3 in [14] is given in the particular case α0 = 1
and λ = 1

2 , but it can be adapted to cover the general case

0 < λ ≤ 1

2α0
, for some α0 > 0. (4.15)

In fact, as showed in [14], it is easier to apply the concavity method of Levine if the
energy of the solution becomes negative. For completeness, we briefly show how to
modify the previous arguments to prove Theorem 1.3 in the general case (4.15).
First, assume that u0 ∈ H1(R2), I

(
u(t0)
) = 0 and u(t0) �= 0 for some t0 ∈ [0, T∗),

then there exists t1 ∈ (t0, T∗) such that I
(
u(t1)
)

< 0. If not, then the monotonicity of
the energy (3.1) yields I

(
u(t)
) = 0 for any t ∈ [t0, T∗), and u(t) = u(t0) a.e. in R

2,
for any t ∈ [t0, T∗). Therefore, u(t0) solves the stationary problem (1.3), in particular
J
(
u(t0)
) = 0. Since

I (v) = 1

2
J (v) + λ

∫
R
2

(1
2
v f (v) − F(v)

)
dx

≥ 1

2

(
J (v) + α2

0λ‖v‖4L4

)
, for any v ∈ H1(R2), (4.16)

we deduce that u(t0) = 0, which is not possible.
Next, assume that u0 ∈ H1(R2), and I

(
u(t0)
)

< 0 for some t0 ∈ [0, T∗). Following
the proof of Theorem 1.2.(i), we argue by contradiction assuming that T∗ = +∞, and
we consider the function y defined in (4.8). Combining (4.9) with (4.16) and the
monotonicity of the energy (3.1), we get

y′′(t) = −J
(
u(t)
) ≥ −2I

(
u(t)
) ≥ −2I

(
u(t0)
)

> 0, t ∈ (t0,+∞);
therefore, it is enough to obtain (4.14) to reach a contradiction. From (4.11), and
recalling that θ > 2 and 1 − 2α0λ ≥ 0, we get

y′′(t) ≥ −θ I
(
u(t)
)
.

Moreover, since I
(
u(t0)
)

< 0, (4.12) yields

−I
(
u(t)
)

>

∫ t

t0
‖∂su(s)‖2L2 ds,

and hence, arguing as in (4.13), we conclude that

y(t)y′′(t) ≥ θ

2

(
y′(t) − y′(t0)

)2
,

which gives (4.14).
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5. Global existence and destiny of the orbits in W

The uniqueness of the solution to (1.1) plays a role in the proof of the invariance of
the set W under the flow associated with (1.1).

Lemma 5.1. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with λ as

in (1.4), and u0 ∈ H1(R2). If u(t0) ∈ W for some t0 ∈ [0, T∗), then u(t) ∈ W for any
t ∈ [t0, T∗).

Proof. We argue by contradiction assuming that u(t1) ∈ V for some t1 ∈ (t0, T∗).
Since J (u) ∈ C( [0, T∗); R

)
, we have J

(
u(t2)
) = 0 for some t2 ∈ [t0, t1). Therefore,

either d ≤ I
(
u(t2)
)
or u(t2) = 0.

The monotonicity of the energy (3.1) yields I
(
u(t2)
) ≤ I
(
u(t0)
)

< d , and hence
u(t2) = 0. Therefore, by uniqueness, u(t) = 0 for any t ∈ [t2, T∗), which contradicts
u(t1) ∈ V . �

In order to prove that solutions entering W are global in time, the idea is to apply
Theorem 2.6 in view of the following property of W in the energy space.

Proposition 5.2. If λ is as in (1.4) then, for any v ∈ W, we have ‖∇v‖2
L2 < 2d.

Proof. If v ∈ W then in particular

1

2
‖∇v‖2L2 + 1

2
‖v‖2L2 − λ

∫
R
2
F(v) dx < d,

and to complete the proof it is enough to show that

P(v) := 1

2
‖v‖2L2 − λ

∫
R
2
F(v) dx ≥ 0.

Note that the auxiliary functional P is strictly related to the definition of the set W ; in
fact, we already pointed out in (1.6) and (1.9) that

d = inf
{
I (v) : v ∈ H1(R2)\{0}, P(v) = 0

}
. (5.1)

It is not difficult to obtain the analogue of (1.10) for the functional P and show that
for any v ∈ H1(R2)\{0} there exists a unique σ̃ = σ̃ (v) > 0 such that

P(σv)

⎧⎪⎪⎨
⎪⎪⎩

> 0 if 0 < σ < σ̃ ,

= 0 if σ = σ̃ ,

< 0 if σ > σ̃ .

(5.2)

In fact, P(σv) = 0 if and only if

‖v‖2L2 = 2λ

σ 2

∫
R
2
F(σv) dx,
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and the function

h(σ ) := 2λ

σ 2

∫
R
2
F(σv) dx = 2λ

+∞∑
k=1

αk
0

k! σ 2(k−1)‖v‖2kL2k

satisfies

lim
σ→0+ h(σ ) = 2α0λ‖v‖2L2 , lim

σ→+∞ h(σ ) = +∞, and h′ > 0 on (0,+∞).

Using (5.2), we prove that if v ∈ W\{0} then P(v) ≥ 0. If this was not true, then
P(v) < 0, and σ̃ = σ̃ (v) ∈ (0, 1). Hence, the characterization of the level d given by
(5.1) yields

d ≤ I (σ̃ v). (5.3)

The point is that (5.3) cannot happen. In fact, since v ∈ W\{0}, Proposition 1.1
implies

d

dσ
I (σv) = 1

σ
J (σv) > 0, for any σ ∈ (0, 1],

and in particular

I (σ̃ v) < I (v) < d.

�
The set W is stable, and more precisely

Theorem 5.3. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with λ

as in (1.4), and u0 ∈ H1(R2). If u(t0) ∈ W for some t0 ∈ [0, T∗) then T∗ = +∞.

Proof. Without loss of generality, we may assume that u(t) �= 0 for any t ∈ [t0, T∗).
From Lemma 5.1, we see that u(t) ∈ W for any t ∈ [t0, T∗). On the one hand, (3.2)
yields for any t ∈ (t0, T∗)

1

2

d

dt
‖u(t)‖2L2 = −J

(
u(t)
)

< 0, (5.4)

and

sup
t∈[t0,T∗)

‖u(t)‖L2 < +∞.

On the other hand, from Proposition 5.2, we get

sup
t∈[t0,T∗)

‖∇u(t)‖2L2 ≤ 2d, (5.5)

and it is crucial to recall that from (1.7) and (1.9), we know that

2d <
4π

α0
. (5.6)

Therefore, we are under the assumptions of Corollary 2.8 which guarantees that T∗ =
+∞. �
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Theorem 5.4. Assume that λ is as in (1.4). There exists m = m(α0, λ) > 0 such that

J (v) > 0 for any v ∈ H1(R2)\{0} with ‖∇v‖L2 ≤ m, (5.7)

and W contains a neighborhood of the origin in H1(R2). Therefore, if the maximal
solution u ∈ C([0, T∗); H1(R2)

)
to (1.1)with u0 ∈ H1(R2) is global (i.e., T∗ = +∞)

and

lim
t→+∞ ‖u(t)‖H1 = 0,

then there exists t0 ∈ [0,+∞) such that u(t) ∈ W for any t ∈ [t0,+∞).

Proof. The relevant part of the proof is to show that (5.7) holds. In fact, it is clear that
(5.7) implies that W contains a neighborhood of the origin in H1(R2): if we set

Sδ := { v ∈ H1(R2) : ‖v‖H1 < δ
}
, with 0 < δ < min

{√
2d,m(α0, λ)

}
,

then we have for any v ∈ Sδ

I (v) ≤ 1

2
‖v‖2H1 <

1

2
δ2 < d,

and (5.7) yields J (v) > 0 provided v �= 0. Therefore, Sδ ⊆ W .
In the second part of the statement of Theorem 5.4, since the maximal solution u is

global and

lim
t→+∞ ‖u(t)‖H1 = 0,

we have u(t) ∈ Sδ for any t > 0 sufficiently large, and we get the desired conclusion.
In order to prove (5.7), we will follow the argument developed in [16, Lemma 2.1],

and we begin by recalling the Gagliardo–Nirenberg inequality:

‖v‖qLq ≤ Cq‖∇v‖q−2
L2 ‖v‖2L2 , for any v ∈ H1(R2), with q ≥ 2. (5.8)

For any v ∈ H1(R2), we can estimate

λ

∫
R
2
v f (v) dx = 2α0λ

[
‖v‖2L2 +

∫
R
2
v2(eα0v

2 − 1) dx

]

≤ 2α0λ

[
‖v‖2L2 +

(∫
R
2
|v|2q
) 1

q
(∫

R
2
(eα0q ′v2 − 1) dx

) 1
q′ ]

≤ 2α0λ‖v‖2L2 + C‖∇v‖2−
2
q

L2 ‖v‖
2
q

L2

(∫
R
2
(eα0q ′v2 − 1) dx

) 1
q′

,

where we used Hölder’s inequality with q, q ′ > 1 satisfying 1
q + 1

q ′ = 1, and the
Gagliardo–Nirenberg inequality (5.8).
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If 0 < m <
√

2π
α0q ′ , then we can apply the scale invariant Trudinger–Moser inequal-

ity (2.6) to any v ∈ H1(R2) with ‖∇v‖L2 ≤ m and get∫
R
2
(eα0q ′v2 − 1) dx =

∫
R
2
(e2π
(√

α0q
′

2π v
)2

− 1) dx ≤ C‖v‖2L2 ,

where the constant C = C(α0, q) > 0 is independent of m.
Summarizing, for any q > 1, there exists a constant C = C(α0, λ, q) > 0 such

that if v ∈ H1(R2) satisfies ‖∇v‖L2 ≤ m, for some 0 < m <
√

2π
α0q ′ , then we have

λ

∫
R
2
v f (v) dx ≤ 2α0λ‖v‖2L2 + C‖∇v‖

2
q′
L2‖v‖2L2

≤ 2α0λ‖v‖2L2 + Cm
2
q′ ‖v‖2L2 ,

and hence,

J (v) ≥ ‖∇v‖2L2 + (1 − 2α0λ)‖v‖2L2 − Cm
2
q′ ‖v‖2L2

≥
[
(1 − 2α0λ) − Cm

2
q′
]
‖v‖2L2 .

Since 1 − 2α0λ > 0, and the constant C > 0 is independent of m, if we choose m
sufficiently small, then we reach the desired conclusion. �

Actually, all the solutions entering W (which are global, i.e., T∗ = +∞, in view of
Theorem 5.3) have the same destiny in the following sense.

Theorem 5.5. Let u ∈ C( [0, T∗); H1(R2)
)
be the maximal solution to (1.1) with

u0 ∈ H1(R2). If u(t0) ∈ W for some t0 ∈ [0, T∗), then

lim
t→+∞ ‖u(t)‖H1 = 0.

In order to prove Theorem 5.5, we will use the following convergence result.

Proposition 5.6. Let {vn}n ⊂ W be such that

M := sup
n

‖vn‖L2 < +∞. (5.9)

If

lim
n→+∞ J (vn) = 0, (5.10)

and

lim
n→+∞ I (vn)=:I∞ ∈ (−∞, d), (5.11)

then

lim
n→+∞ ‖vn‖H1 = 0, and I∞ = 0. (5.12)
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Proof. Let H be the functional defined by (4.5), i.e.,

H(v) := I (v) − 1

2
J (v) = λ

∫
R
2

(
1

2
v f (v) − F(v)

)
dx, for any v ∈ H1(R2),

and recall that in the proof of Proposition 4.3, we emphasized that the level d can be
characterized as

d = inf
{
H(v) : v ∈ H1(R2)\{0}, J (v) ≤ 0

}
. (5.13)

Let f̃ be as in (1.16). If we show that

lim
n→+∞

∫
R
2
vn f̃ (vn) dx = 0, and lim

n→+∞ H(vn) = 0, (5.14)

then the proof is complete. Indeed, we can rewrite

J (vn) = ‖∇vn‖2L2 + (1 − 2λα0)‖vn‖2L2 − λ

∫
R
2
vn f̃ (vn) dx,

or equivalently

‖∇vn‖2L2 + (1 − 2λα0)‖vn‖2L2 = J (vn) + λ

∫
R
2
vn f̃ (vn) dx,

and hence combining (5.10) with (5.14), we deduce that

lim
n→+∞ ‖∇vn‖2L2 + (1 − 2λα0)‖vn‖2L2 = 0.

Since 1 − 2α0λ > 0, this is enough to obtain the first part of (5.12). The second part
of (5.12) (i.e., I∞ = 0) is a direct consequence of (5.10), (5.14), and the following
identity

I (vn) = H(vn) + 1

2
J (vn).

The rest of the proof is dedicated to showing (5.14), and we begin by summarizing
some properties of the sequence {vn}n which will be useful to obtain (5.14). Since
{vn}n ⊂ W , we have

J (vn) > 0, for any n ≥ 1, (5.15)

and as a consequence of Proposition 5.2, we also have

m := sup
n

‖∇vn‖22 ≤ 2d. (5.16)

In particular, recalling (5.6), we know that

m <
4π

α0
, (5.17)
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and this strict inequality will be crucial in the proof of the convergence result expressed
by (5.14).
In order to prove (5.14), we consider the Schwarz symmetrized sequence {v∗

n}n ⊂
H1
rad(R

2), i.e., the sequence of the non-negative spherically symmetric and decreasing
rearrangements of {vn}n (see e.g. [27, Chapter 3]). In view of the properties of Schwarz
symmetrization, we have∫

R
2
vn f̃ (vn) dx =

∫
R
2
v∗
n f̃ (v

∗
n) dx, and H(vn) = H(v∗

n),

and to obtain (5.14), it is enough to show that

lim
n→+∞

∫
R
2
v∗
n f̃ (v

∗
n) dx = 0, and lim

n→+∞ H(v∗
n) = 0. (5.18)

Using again the properties of Schwarz symmetrization, together with (5.16) and
(5.9), we get

sup
n

‖∇v∗
n‖2L2 ≤ m, and sup

n
‖v∗

n‖L2 = M < +∞.

In particular, up to subsequences, v∗
n ⇀ w in H1(R2), and v∗

n → w a.e. in R
2. We

divide the proof of (5.18) into two steps: first,

1. we show that

lim
n→+∞

∫
R
2
v∗
n f̃ (v

∗
n) dx =

∫
R
2
w f̃ (w) dx, and lim

n→+∞ H(v∗
n) = H(w),

(5.19)

and finally,
2. we deduce that w = 0.

Step 1. The proof of (5.19) is a direct consequence of the compactness result [15,
Theorem 1.5(C)] related to the new scale invariant Trudinger–Moser inequality with
the exact growth condition. For the sake of completeness, we show that (5.19) can
be deduced as well by the classical compactness lemma of Strauss [37, Compactness
Lemma 2] (see also [3, TheoremA.I]). From (5.17), we have the existence of ε ∈ (0, 1)
such that

m = 4π

α0
(1 − ε), (5.20)

and according to the notations used in [3, Theorem A.I], we introduce the auxiliary
growth function

Q(s) := eα0(1+ε)s2 − 1.

If P : R → R is a continuous function satisfying



1702 M. Ishiwata et al. J. Evol. Equ.

(i) lim|s|→+∞
P(s)

Q(s)
= 0, and lim

s→0

P(s)

Q(s)
= 0,

(ii) sup
n

∫
R
2
Q(v∗

n) dx < +∞,

(iii) P(v∗
n) → P(w) a.e. in R2, and

(iv) v∗
n(x) → 0 as |x | → +∞ uniformly with respect to n,

then the compactness lemma of Strauss guarantees that

P(v∗
n) → P(w) in L1(R2). (5.21)

To see that (ii) holds, we renormalize each v∗
n by setting

wn := v∗
n√
m

,

so that (5.16) yields ‖∇wn‖L2 ≤ 1. In view of the scale invariant Trudinger–Moser
inequality (2.6), we can estimate∫

R
2
Q(v∗

n) dx =
∫
R
2

(
eα0(1+ε)[v∗

n ]2 − 1
)
dx =
∫
R
2

(
eα0(1+ε)mw2

n − 1
)
dx

=
∫
R
2

(
e4π(1−ε2)w2

n − 1
)
dx

≤ Cε‖wn‖2L2 = Cε

‖v∗
n‖2L2

m
≤ Cε

M2

m
,

where we also used (5.20) and (5.9).
The a.e.-convergence of the sequence {v∗

n}n and the continuity of P yield (iii).
Moreover, the radial symmetry and the boundedness of {v∗

n}n in H1(R2) give the
uniform decay at infinity expressed by (iv).
Finally, if we set

either P(s) := s f̃ (s) or P(s) := 1

2
s f (s) − F(s)

then also the assumption (i) of the compactness lemma of Strauss is satisfied, and
hence, (5.21) holds. This completes the proof of (5.19).
Step 2. First, we show that J (w) ≤ 0. Since 1−2α0λ > 0, using theweak convergence
v∗
n ⇀ w in H1(R2), (5.19), and (5.10), we can estimate

J (w) = ‖∇w‖2L2 + (1 − 2α0λ)‖w‖2L2 − λ

∫
R
2
w f̃ (w) dx

≤ lim inf
n→+∞

(
‖∇v∗

n‖2L2 + (1 − 2α0λ)‖v∗
n‖2L2 − λ

∫
R
2
v∗
n f̃ (v

∗
n) dx

)
= lim inf

n→+∞ J (v∗
n) ≤ lim inf

n→+∞ J (vn) = 0.

Next, we argue by contradiction assuming that w �= 0. On the one hand, since
w �= 0 and J (w) ≤ 0, (5.13) yields

d ≤ H(w).
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On the other hand, from (5.19) and (5.15), we deduce that

H(w) = lim
n→+∞ H(v∗

n) = lim
n→+∞ H(vn)

= lim
n→+∞

(
I (vn) − 1

2
J (vn)
)

≤ lim
n→+∞ I (vn) = I∞.

Since by assumption (5.11), we have I∞ < d then

H(w) < d,

and we reach a contradiction. �

Proof of Theorem 5.5. As in the proof of Theorem 5.3, we have the monotonicity of
the L2-norm of the solution (5.4) which ensures both

sup
t∈[t0,+∞)

‖u(t)‖L2 < +∞ (5.22)

and

lim
t→+∞ ‖u(t)‖L2 exists, (5.23)

and we also have (5.5) and (5.6), i.e.,

sup
t∈[t0,+∞)

‖∇u(t)‖2L2 ≤ 2d <
4π

α0
. (5.24)

Moreover, the monotonicity of the energy (3.1) and [14, Theorem 2.1.3] (see also
Theorem 1.3) guarantee that

lim
t→+∞ I

(
u(t)
) = I∞ ∈ [0, d). (5.25)

Next, we find a sequence tn ∈ [t0,+∞) satisfying

lim
n→+∞ tn = +∞, and lim

n→+∞ J
(
u(tn)
) = 0. (5.26)

We point out that (5.25), and in particular the fact that I∞ ≥ 0, implies

lim sup
t→+∞

d

dt
I
(
u(t)
) = 0. (5.27)

Combining (5.27) with the identity (3.1), we deduce the existence of a sequence
tn ∈ [t0,+∞) such that

lim
n→+∞ tn = +∞, and lim

n→+∞ ‖∂t u(tn)‖L2 = 0.

The sequence {u(tn)}n is a Palais–Smale sequence for the energy functional at the
level I∞. More precisely, there exists {εn}n ⊂ R

+ satisfying

|〈d I (u(tn)
)
, ϕ〉| ≤ εn‖ϕ‖L2 for any ϕ ∈ H1(R2), and lim

n→+∞ εn = 0. (5.28)
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In fact, recalling (3.3), it is enough to choose εn := ‖∂t u(tn)‖L2 . Since u(tn) ∈ W for
any n ≥ 1, we have J (un) > 0, and as a particular case of (5.28), we deduce that

0 < J
(
u(tn)
) = 〈d I (u(tn)

)
, u(tn
)〉 ≤ εn‖u(tn)‖L2 .

Therefore, with the help of (5.22), we get

lim
n→+∞ J

(
u(tn)
) = 0.

We are now in position to prove that ‖u(t)‖H1 → 0 as t → ∞. Recalling (5.22)
and (5.25), since u(tn) ∈ W satisfies (5.26), then we can apply Proposition 5.6 to
conclude that

lim
n→+∞ ‖u(tn)‖H1 = 0, and I∞ = 0. (5.29)

In particular,

lim
n→+∞ ‖u(tn)‖L2 = 0,

and hence, in view of (5.23), we have

lim
t→+∞ ‖u(t)‖L2 = 0.

If we set

w(t) := u(t)√
2d

, for any t ∈ [t0,+∞),

then (5.24) yields ‖∇w(t)‖L2 ≤ 1. Applying the scale invariant Trudinger–Moser
inequality (2.6), we can estimate∫

R
2
F
(
u(t)
)
dx =
∫
R
2

(
e2dα0[w(t)]2 − 1

)
dx ≤ Cd‖w(t)‖2L2

= Cd
‖u(t)‖2

L2

2d
, for any t ∈ [t0,+∞).

Note that it is possible to apply (2.6) in view of the fact that 2dα0 < 4π , see (5.24).
Therefore,

lim
t→+∞

∫
R
2
F
(
u(t)
)
dx = 0,

and

lim
t→+∞ ‖u(t)‖2H1 = lim

t→+∞

(
2I
(
u(t)
)+ 2λ

∫
R
2
F
(
u(t)
)
dx

)
= 2I∞.

But from (5.29), we know that I∞ = 0, and hence the proof of the theorem is complete.
�

Remark 5.7. The validity of the Palais–Smale compactness condition for the energy
functional I in the region (−∞, 2π

α0
) is still an open question. This problem will be

addressed in a forthcoming paper.
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6. Asymptotics at the ground state level

In this section, we prove Theorem 1.4 concerning the asymptotic behavior of the
solution for initial data with the same energy as the ground state solution. The key
property is expressed by the following Lemma.

Lemma 6.1. Assume that there exists t0 ∈ [0, T∗) such that

I (u(t0)) = d and J (u(t0)) �= 0.

Then, I (u(t)) < d for any t ∈ (t0, T∗).

Proof. By contradiction, let us assume that there exists t1 ∈ (t0, T∗) such that
I (u(t1)) = d. Then, by themonotonicity of the energy I (u(t)) = d, for any t ∈ [t0, t1].
Moreover,

‖∂t u(t)‖2L2 = − d

dt
I (u(t)) = 0,

for any t ∈ (t0, t1), and hence u(t) = u(t0) a.e. in R
2 for any t ∈ [t0, t1]. There-

fore, u(t0) is a stationary solution and d I (u(t0)) ≡ 0. In particular, J (u(t0)) =
〈d I (u(t0)), u(t0)〉 = 0 and we reach a contradiction. �

Proof of Theorem 1.4. The results in (i) and (ii) follow directly from Lemma 6.1 and
the arguments in Lemma 4.1 and in Lemma 5.1. Let us nowprove (iii). First, we remark
that if v ∈ H1(R2)\{0} is such that I (v) = d and J (v) = 0, then v is a critical point
for the energy functional. Indeed thanks to the property J (v) = 0, we deduce that the
map σ → I (σv), for σ > 0, attains its unique maximum at σ = 1. In particular,

I (σv) < I (v) = d, ∀ σ ∈ (0, 1) ∪ (1,+∞). (6.1)

From (5.2), we deduce the existence of a unique σ̃ = σ̃ (v) > 0 such that P(σ̃ v) =
0, where P is the Pohozaev functional defined in Sect. 5. Therefore, if we use the
characterization (1.6) of the ground state energy level d in terms of the Pohozaev
functional, we get

d ≤ I (σ̃ v).

In view of (6.1), the above inequality holds if and only if σ̃ = 1.
By using again the characterization (1.6) of the level d, we deduce that v is a

minimizer; therefore, there exists a Lagrange multiplier θ ∈ R such that∫
R2

∇v · ∇ϕ dx = θ

(∫
R2

vϕ dx − λ

∫
R2

f (v)ϕ dx

)
, for any ϕ ∈ H1(R2).

In particular,

θ = ‖∇v‖2
L2∫

R2 v2 dx − λ
∫
R2 f (v)v dx

= ‖∇v‖2
L2

J (v) − ‖∇v‖2
L2

= −1.
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Hence, for any ϕ ∈ H1(R2) we have

〈d I (v), ϕ〉 =
∫
R2

∇v · ∇ϕ dx +
∫
R2

vϕ dx − λ

∫
R2

f (v)ϕ dx = 0.

Therefore, if there exists t0 ∈ [0, T∗) such that

I (u(t0)) = d, and J (u(t0)) = 0,

then u(t0) is a stationary solution (more precisely a ground state), and by uniqueness,
u is global and it coincides with the ground state u(t0) a.e. in R2 after the time t0. �

7. Indistinguishable splittings

In this section, we adapt the arguments of [16] to show that the Nehari functional
J defined by (1.8) and the Pohozaev functional P defined by (1.15) determine the
same splitting below the ground state energy level d. In particular, we will follow the
arguments of the variational part of the paper [16], and we point out that the energy
critical nonlinearity that we are considering does not fulfill the hypothesis required in
[16].
Given two parameters (a, b) ∈ R

2 satisfying

a ≥ 0, and b ≥ 0, with (a, b) �= (0, 0), (7.1)

we define the functional

Ja,b(v) := a‖∇v‖2L2 + (a + b)‖v‖2L2 − a
∫
R
2
λv f (v) dx − 2b

∫
R
2
λF(v) dx .

The above functional is relevant for the two-parameter rescaling function

vσ
a,b(x) := σ av

(
σ−bx
)
, σ > 0, x ∈ R

2, (7.2)

in fact

d

dσ
I
(
vσ
a,b

) = 1

σ
Ja,b
(
vσ
a,b

)
, σ > 0. (7.3)

Note that if a = 1 and b = 0, then

J1,0(v) := ‖v‖2H1 − λ

∫
R
2
v f (v) dx

is the Nehari functional J defined by (1.8). If a = 0 and b = 1, then

J0,1(v) := ‖v‖2L2 − 2λ
∫
R
2
F(v) dx
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is related to the Pohozaev functional P defined by (1.15), and more precisely J0,1 =
2P . Therefore, Ja,b interpolates between the Pohozaev and Nehari functionals in the
following sense

Ja,b(v) = aJ (v) + 2bP(v). (7.4)

If we consider the constrained minimization problem

da,b := inf
{
I (v) : v ∈ H1(R2)\{0}, Ja,b(v) = 0

}
,

then [16, Lemma 2.6] suggests that da,b is positive and independent of a and b.

Proposition 7.1. Assume that λ is as in (1.4), and (a, b) as in (7.1). Then, the level
da,b is independent of a and b, and more precisely da,b = c, where c is the mountain
pass level (1.5). Hence,

0 < da,b <
2π

α0
. (7.5)

In view of (1.7), it is clear that (7.5) is a direct consequence of the first part of the
statement of Proposition 7.1.

Next, we consider the sets

Wa,b :=
{

v ∈ H1(R2) : I (v) < da,b, Ja,b(v) ≥ 0
}
,

and

Va,b :=
{

v ∈ H1(R2) : I (v) < da,b, Ja,b(v) < 0
}
.

Adapting the arguments of the proof of [16, Lemma 2.9] to our framework, we show
that the functionals Ja,b define the same splitting below the ground state energy level
da,b = d independently of a and b in the range (7.1).

Proposition 7.2. Assume that λ is as in (1.4), and (a, b) as in (7.1). The sets Wa,b

and Va,b are independent of a and b.

The proof of Proposition 7.1 and Proposition 7.2 can be found in Sects. 7.2 and 7.3,
respectively. More precisely, the remaining part of this section is organized as follows.
In Sect. 7.1, we study the geometry of the functionals Ja,b and I along the rescaling
(7.2). The results of Sect. 7.1 will enable us to prove Proposition 7.1 (in Sect. 7.2) and
Proposition 7.2 (in Sect. 7.3).

Remark 7.3. We mention that in view of the results in [16] and [25], we expect that
Proposition 7.1 and Proposition 7.2 hold also when the parameters (a, b) are in the
range

a ≥ 0, and a + b ≥ 0, with (a, b) �= (0, 0).

However, for simplicity, we restrict the attention to the range (7.1).
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7.1. Geometry of the functionals along the rescaling

The energy functional has a unique global maximum point on the rescaling σ ∈
(0,+∞) �→ vσ

a,b.

Lemma 7.4. Assume that λ is as in (1.4), and (a, b) as in (7.1) with a > 0. For any
v ∈ H1(R2)\{0}, there exists σ = σ(v) > 0 such that

Ja,b(v
σ
a,b)

⎧⎪⎪⎨
⎪⎪⎩

> 0 if 0 < σ < σ,

= 0 if σ = σ ,

< 0 if σ > σ.

x

Moreover, the map σ ∈ (0,+∞) �→ I
(
vσ
a,b

)
is monotone strictly increasing on (0, σ ),

stricly decreasing on (σ ,+∞), and attains its unique maximum at σ .

Proof. Note that it is enough to prove the first part of the statement; then, the second
part is a direct consequence of (7.3).

We have

Ja,b
(
vσ
a,b

) = aσ 2a‖∇v‖2L2 + (a + b)σ 2(a+b)‖v‖2L2

−λσ 2b
∫
R
2

[
aσ av f

(
σ av
)+ 2bF

(
σ av
) ]

dx .

First, we can rewrite

as f (s) + 2bF(s) = 2
+∞∑
k=1

αk
0

k! (ka + b)s2k, s ∈ R,

and∫
R
2

[
aσ av f

(
σ av
)+ 2bF

(
σ av
) ]

dx = 2
+∞∑
k=1

αk
0

k! (ka + b)
∥∥σ av
∥∥2k
L2k

= 2σ 2a
+∞∑
k=1

αk
0

k! (ka + b)σ 2(k−1)a‖v‖2kL2k .

Therefore,

Ja,b
(
vσ
a,b

) = aσ 2a‖∇v‖2L2 + (a + b)σ 2(a+b)‖v‖2L2

−2λσ 2(a+b)
+∞∑
k=1

αk
0

k! (ka + b)σ 2(k−1)a‖v‖2kL2k

= aσ 2a‖∇v‖2L2 + (a + b)σ 2(a+b)(1 − 2λα0)‖v‖2L2

−2λσ 2(a+b)
+∞∑
k=2

αk
0

k! (ka + b)σ 2(k−1)a‖v‖2kL2k .
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Next, we distinguish two cases according to b > 0 or b = 0. First, we assume
b > 0, and we rewrite

Ja,b
(
vσ
a,b

) = σ 2(a+b)h(σ ),

where

h(σ ) := aσ−2b‖∇v‖2L2 + (a + b)(1 − 2α0λ)‖v‖2L2

−2λ
+∞∑
k=2

αk
0

k! (ka + b)σ 2(k−1)a‖v‖2kL2k .

In particular, the map σ ∈ (0,+∞) �→ Ja,b
(
vσ
a,b

)
has the same sign as h. Since b > 0,

and by assumption we also have a > 0, it is clear that

lim
σ→0+ h(σ ) = +∞, and lim

σ→+∞ h(σ ) = −∞,

and

h′(σ ) = −2abσ−2b−1‖∇v‖2L2 − 2λ
+∞∑
k=2

αk
0

k! (ka + b)2(k − 1)aσ 2(k−1)a−1‖v‖2kL2k < 0.

Therefore, there exists σ = σ(v) > 0 such that

h(σ )

⎧⎪⎪⎨
⎪⎪⎩

> 0 if 0 < σ < σ,

= 0 if σ = σ ,

< 0 if σ > σ.

To complete the proof, it remains to consider the case b = 0. In this case, we rewrite

Ja,b
(
vσ
a,b

) = σ 2ah̃(σ ),

where

h̃(σ ) := a
[
‖∇v‖2L2 + (1 − 2α0λ)‖v‖2L2

]
− 2λ

+∞∑
k=2

αk
0

k! (ka + b)σ 2(k−1)a‖v‖2kL2k .

Since a > 0, we deduce that

h̃(0) > 0, lim
σ→+∞ h̃(σ ) = −∞, and h̃′(σ ) < 0,

and the proof is complete. �

Lemma 7.5. Assume that λ is as in (1.4), and (a, b) as in (7.1) with a > 0. For any
v ∈ H1(R2)\{0}, we have

lim
σ→+∞ I

(
vσ
a,b

) = −∞.
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Proof. We can rewrite

I
(
vσ
a,b

) = 1

2

(
σ 2a‖∇v‖2L2 + σ 2(a+b)‖v‖2L2

)
− λσ 2b

∫
R
2
F
(
σ av
)
dx

= 1

2

(
σ 2a‖∇v‖2L2 + σ 2(a+b)‖v‖2L2

)
− λσ 2(a+b)

+∞∑
k=1

αk
0

k! σ 2(k−1)a‖v‖2kL2k

≤ 1

2

(
σ 2a‖∇v‖2L2 + σ 2(a+b)‖v‖2L2

)
− λσ 2(a+b) α

2
0

2
σ 2a‖v‖4L4 ,

and the right-hand side goes to −∞ as σ → +∞, provided a > 0. �

7.2. The level da,b is independent of (a, b) in the range (7.1)

This section is devoted to the proof of Proposition 7.1. As already mentioned in
Sect. 1, from the existence result in [33], we know that the level d0,1 coincides with
the mountain pass level c associated with the energy functional I , i.e.,

d0,1 = c, (7.6)

see (1.6). Moreover, [33, Theorem 4, Propositions 1 and 2] gives the existence of
v ∈ H1(R2)\{0} satisfying

I (v) = c, P(v) = 0, and J (v) = 0. (7.7)

If a = 0 and b > 0, then J0,b(v) = 2bP(v) for any v ∈ H1(R2), and hence,

d0,b = c, for any b > 0.

To complete the proof of Proposition 7.1, we will show that

da,b = c for any a > 0 and b ≥ 0, (7.8)

and from now on, we assume that a > 0 and b ≥ 0.
Combining (7.4) with (7.7), we get

da,b ≤ I (v) = c (7.9)

Next, we introduce the auxiliary level

ca,b := inf
v∈H1(R2)\{0}

max
σ>0

I
(
vσ
a,b

)
.

The proof of (7.8) is complete if we show that

c ≤ ca,b, and ca,b = da,b.

Step 1: c ≤ ca,b. Let v ∈ H1(R2)\{0}. From Lemma 7.5, we deduce the existence of
σ̃ = σ̃ (v) > 0 such that

I
(
vσ̃
a,b

)
< 0.
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We define γ ∈ C([0, 1], H1(R2)
)
as

γ (s) :=
{

vsσ̃a,b if 0 < s ≤ 1,

0 if s = 0,

so that

γ ∈ � :=
{

γ ∈ C([0, 1]; H1(R2)
) : γ (0) = 0, I

(
γ (1)
)

< 0
}
.

Note that the continuity of γ at s = 0 is a consequence of the conditions on (a, b). In
fact, since a > 0 and b ≥ 0, then we have

lim
σ→0+

∥∥vσ
a,b

∥∥2
H1 = lim

σ→0+
(
σ 2a‖∇v‖2L2 + σ 2(a+b)‖v‖2L2

) = 0. (7.10)

By construction,

c ≤ max
s∈[0,1] I

(
γ (s)
) ≤ max

σ>0
I
(
vσ
a,b

)
,

and hence,

c ≤ ca,b.

Step 2: da,b ≤ ca,b. For any v ∈ H1(R2)\{0}, applying Lemma 7.4, we have the
existence of σ = σ(v) > 0 such that Ja,b

(
vσ
a,b

) = 0, and

da,b ≤ I
(
vσ
a,b

) = max
σ>0

I
(
vσ
a,b

)
.

Therefore,

da,b ≤ ca,b.

Step 3: da,b ≥ ca,b. Let v ∈ H1(R2)\{0} be such that Ja,b(v) = 0. From Lemma 7.4,
we deduce that σ = σ(v) = 1 and

ca,b ≤ max
σ>0

I
(
vσ
a,b

) = I
(
v1a,b

) = I (v),

and hence,

ca,b ≤ da,b.

7.3. The sets Wa,b and Va,b are independent of (a, b) in the range (7.1)

This section is devoted to the proof of Proposition 7.2. First, following [16, Lemma
2.1], we show that the functional Ja,b is positive near the origin of H1(R2).
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Lemma 7.6. Assume that λ is as in (1.4), and (a, b) as in (7.1). There exists m =
m(α0, λ, a + b) > 0 such that

Ja,b(v) > 0 for any v ∈ H1(R2)\{0} with ‖∇v‖L2 ≤ m, (7.11)

and Wa,b contains a neighborhood of the origin in H1(R2).

Proof. As in Theorem 5.4, the relevant part of the proof is to show (7.11). Since
2F(s) ≤ s f (s) for any s ∈ R, and (a, b) is in the range (7.1), we can estimate the
nonlinear part of the functional Ja,b as

a
∫
R
2
λv f (v) dx + 2b

∫
R
2
λF(v) dx ≤ λ(a + b)

∫
R
2
v f (v) dx, for any v ∈ H1(R2).

Therefore, arguing as in the proof ofTheorem5.4, for anyq > 1,weget the existence of
a constant C = C(α0, λ, q, a, b) > 0 such that if v ∈ H1(R2) satisfies ‖∇v‖L2 ≤ m,

for some 0 < m <
√

2π
α0q ′ , then

a
∫
R
2
λv f (v) dx + 2b

∫
R
2
λF(v) dx ≤ 2α0λ(a + b)‖v‖2L2 + C‖∇v‖

2
q′
L2‖v‖2L2

≤ 2α0λ(a + b)‖v‖2L2 + Cm
2
q′ ‖v‖2L2 ,

and hence,

Ja,b(v) ≥
[
(a + b)(1 − 2α0λ) − Cm

2
q′
]
‖v‖2L2 .

Since (a + b)(1 − 2α0λ) > 0, and the constant C > 0 is independent of m, if we
choose m sufficiently small, then we reach the desired conclusion. �

We point out that

Wa,b =
{

v ∈ H1(R2) : I (v) < da,b, Ja,b(v) > 0
}

∪ {0}. (7.12)

In fact, on the one hand, clearly

{
v ∈ H1(R2) : I (v) < da,b, Ja,b(v) > 0

}
∪ {0} ⊆ Wa,b.

On the other hand, if v ∈ Wa,b\{0}, then Ja,b(v) > 0. If not, then Ja,b(v) = 0; hence,
da,b ≤ I (v), and we easily reach a contradiction.
Next, following [16, Lemma 2.9], we show that the set Wa,b is path connected.

Lemma 7.7. Assume that λ is as in (1.4), and (a, b) as in (7.1) with a > 0. The set
Wa,b\{0} is contracted to {0} by the rescaling σ ∈ (0, 1] �→ vσ

a,b.
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Proof. Let v ∈ Wa,b\{0}. Arguing as in (7.10), we have that ‖vσ
a,b‖H1 → 0 as

σ → 0+, and hence, it is enough to show that

vσ
a,b ∈ Wa,b, for any σ ∈ (0, 1).

Since v ∈ Wa,b\{0}, we have v ∈ H1(R2)\{0}, I (v) < da,b, and Ja,b(v) > 0.
Applying Lemma 7.4, we deduce that σ = σ(v) > 1, and

Ja,b
(
vσ
a,b

)
> 0, for any σ ∈ (0, 1).

Moreover, the map σ ∈ (0, 1] �→ I
(
vσ
a,b

)
is monotone strictly increasing, and in

particular

I
(
vσ
a,b

)
< I
(
v1a,b

) = I (v) < da,b.

�

To complete the proof of Proposition 7.2, we follow closely [16, Lemma 2.9].

Proof of Proposition 7.2. In view of Proposition 7.1, the union of the disjoint sets
Wa,b and Va,b is independent of a and b. Therefore, it is enough to show that Wa,b is
independent of a and b.
By definition, the set Va,b is open in H1(R2). Also, Wa,b is open in H1(R2): in

fact, we have (7.12), and Lemma 7.6 guarantees that Wa,b contains a neighborhood
of the origin in H1(R2).
Let a′ > 0 and b′ ≥ 0, then the set Wa′,b′ is connected, see Lemma 7.7. For any

(a, b) in the range (7.1), we have Wa′,b′ = (Wa′,b′ ∩ Wa,b) ∪ (Wa′,b′ ∩ Va,b), and
hence,

Wa′,b′ = Wa′,b′ ∩ Wa,b ⊆ Wa,b.

In particular, the set Wa,b is independent of (a, b) if a > 0 and b ≥ 0. Therefore, we
set

W :=Wa,b for any (a, b) in the range (7.1) with a > 0.

If (a, b) is in the range (7.1) with a = 0, i.e., a = 0 and b > 0, then there
exists a sequence {an}n of positive real numbers converging to a = 0. More precisely,
{an}n ⊂ R

+ and

lim
n→+∞ an = 0.

We know that d0,b = dan ,b, and since an > 0, Wan ,b = W . Clearly, for any fixed
v ∈ H1(R2), we have

lim
n→+∞ Jan ,b(v) = J0,b(v),
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and hence,

W0,b =
⋃
n

Wan ,b = W.

�
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