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transition functions and time-homogeneous Itô-SDEs

Haesung Lee and Gerald Trutnau

Abstract. We show existence of an infinitesimally invariant measure m for a large class of divergence
and non-divergence form elliptic second order partial differential operators with locally Sobolev regular
diffusion coefficient and drift of some local integrability order. Subsequently, we derive regularity properties
of the corresponding semigroup which is defined in Ls (Rd ,m), s ∈ [1,∞], including the classical strong
Feller property and classical irreducibility. This leads to a transition function of a Hunt process that is
explicitly identified as a solution to an SDE. Further properties of this Hunt process, like non-explosion,
moment inequalities, recurrence and transience, as well as ergodicity, including invariance and uniqueness
ofm, and uniqueness in law, can then be studied using the derived analytical tools and tools from generalized
Dirichlet form theory.

1. Introduction

Throughout, we let the dimension d ≥ 2. We investigate a quite general class of
divergence form operators with respect to a possibly non-symmetric diffusion matrix
(ai j + ci j )1≤i, j≤d and perturbation H = (h1, . . . , hd), which can be written as

L f = 1

2

d∑

i, j=1

∂i ((ai j + ci j )∂ j ) f +
d∑

i=1

hi∂i f, f ∈ C∞
0 (Rd). (1)

Here, we consider the assumption

(a) A = (ai j )1≤i, j≤d is ad×dmatrix of functions, such thata ji = ai j ∈ H1,2
loc (Rd)∩

C(Rd) for all 1 ≤ i, j ≤ d and such that for every open ball B ⊂ R
d , there exist

positive real numbers λB , �B with

λB‖ξ‖2 ≤ 〈A(x)ξ, ξ 〉 ≤ �B‖ξ‖2 for all ξ ∈ R
d , x ∈ B. (2)

H = (h1, . . . , hd) ∈ L p
loc(R

d ,Rd), i.e. hi ∈ L p
loc(R

d), 1 ≤ i ≤ d, for some
p > d, and C = (ci j )1≤i, j≤d is a d × d matrix of functions, with −c ji = ci j ∈
H1,2
loc (Rd) ∩ C(Rd) for all 1 ≤ i, j ≤ d,
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and the assumption

(b) 1
2∇

(
A + CT

) + H ∈ Lq
loc(R

d ,Rd), where throughout q := pd
p+d ,

on the coefficients of L .
Our first observation is that just under assumption (a), there exists a density ρ, which
determines an infinitesimally invariant measure m = ρ dx for (L ,C∞

0 (Rd)), and
which has a nice regularity (see Theorem 3.6). This extends [2, Theorem 1(i)] (cf.
Remark 3.5, where it is also shown that such operators cover a fairly general class of
non-divergence form operators) and leads by a construction method of [17] to a C0-
semigroup of sub-Markovian contractions (Tt )t≥0 on L1(Rd ,m), whose generator is
an extension of (L ,C∞

0 (Rd)), i.e., we have found a suitable functional analytic frame
for (L ,C∞

0 (Rd)). This functional analytic frame is also described by a generalized
Dirichlet form. Subsequently, in Sect. 3.3, we investigate the regularity properties of
the semigroup (Tt )t≥0 and its corresponding resolvent (Gα)α>0, which can in fact be
considered in every Ls(Rd ,m), s ∈ [1,∞]. The regularity properties comprise strong
Feller properties, i.e., the existence of continuous versions Pt f , f ∈ L∞(Rd ,m) +
L1(Rd ,m) and Rαg, g ∈ L∞(Rd ,m) + Lq(Rd ,m), of Tt f and Gαg, as well as the
irreducibility of (Pt )t>0 [Lemma 3.12(i)].
In Sect. 4, we investigate the stochastic counterpart of (Pt )t>0. Adding just assump-

tion (b) to assumption (a) suffices to obtain that (Pt )t>0 is the transition function of
a Hunt process M and to carry over most of the probabilistic results from [12] to
the more general situation considered here (see Remark 4.2 and Theorem 4.3 which
states thatM solves weakly the stochastic differential equation with coefficients given
by L). In Theorem 4.4, we present a new non-explosion condition, which leads to a
moment inequality. It also allows for Lq(Rd ,m)-singularities outside an arbitrarily
large compact set and linear growth of the drift at the same time. An application of
Theorem 4.4 is illustrated in the Example 4.5. In Sect. 4.2, we discuss the relation of
L1(Rd ,m)-uniqueness from [17], the strong Feller property derived here and unique-
ness in law. More precisely, we obtain a result on uniqueness in law among all right
processes that have m as sub-invariant measure (see Propositions 4.8 and 4.9).
Finally, we would like to discuss a special aspect of our work, which we think is

remarkable and to relate our work to some other references. The Hunt process M

which is constructed in this article satisfies the following Krylov type estimate: let
g ∈ Lr (Rd ,m) for some r ∈ [q,∞]. Then, for any Euclidean ball B, there exists
a constant cB,r,t , depending in particular on B, t , and r , but not on g ∈ Lr (Rd ,m),
g ≥ 0, such that for all t ≥ 0

sup
x∈B

Ex

[∫ t

0
g(Xs) ds

]
< cB,r,t ‖g‖Lr (Rd ,m). (3)

Using Theorem 3.8 below, (3) can be shown exactly as in [12, Lemma 3.14(ii)]. Such
type of estimate is an important tool for the analysis of diffusions (see for instance [10]
and in particular [10, p.54, 4. Theorem] for the original estimate involving conditional
expectation, or also [8] and [23]). A priori (3) only holds for the Hunt process M
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constructed here. However, if pathwise uniqueness holds (for instance if the coeffi-
cients here are locally Lipschitz or under the conditions in [23]), or more generally
uniqueness in law holds for the SDE solved byMwith certain given coefficients, then
(3) holds generally for any diffusion with the given coefficients. If further g ∈ Lr (Rd)

has compact support, then ‖g‖Lr (Rd ,m) in (3) can be replaced by ‖g‖Lr (Rd ), when
cB,r,t is replaced by a constant cB,r,t,ρ that also depends on the values of ρ on the
support of g. If A, C , ρ, B̃ are explicitly given, as described in Remark 3.14(i), i.e.,
the case where the generalized Dirichlet form is explicitly given as in [17], then (3)
holds with explicit ρ and (3) can be seen as a Krylov type estimate for a large class
of time-homogeneous generalized Dirichlet forms. As a particular example consider
the non-symmetric divergence form case, i.e., the case where H ≡ 0 in (1). Then the
explicitly given ρ ≡ 1 defines an infinitesimally invariant measure. Hence m in (3)
can be replaced by Lebesgue measure in this case. The latter together with some fur-
ther results of this article complement analytically as well as probabilistically aspects
of the works [15,18], and [19] where also divergence form operators are treated, but
where more emphasis is put on the mere measurability of the diffusion matrix and not
on the generality of the drift.

2. Terminologies and notations

For a matrix A, let AT denote the transposed matrix of A. If A = (ai j )1≤i, j≤d

consists of weakly differentiable functions ai j , we define

∇A = ((∇A)1, . . . , (∇A)d), (∇A)i :=
d∑

j=1

∂ j ai j , 1 ≤ i ≤ d.

If f is two times weakly differentiable, let ∇2 f denote the Hessian matrix of second
order weak partial derivatives of f . In particular

trace(A∇2 f ) =
d∑

i, j=1

ai j∂i∂ j f.

If ρ is weakly differentiable and a.e. positive, then

βρ,A = (β
ρ,A
1 , . . . , β

ρ,A
d ) := 1

2

(
∇A + A∇ρ

ρ

)
,

is called the logarithmic derivative of ρ associated with A. Hence

β
ρ,AT

i = 1

2

d∑

j=1

(
∂ j a ji + a ji

∂ jρ

ρ

)
, 1 ≤ i ≤ d.

For a boundedopen subsetU ofRd and apossibly non-symmetricmatrix ofmeasurable
functions A = (ai j )1≤i, j≤d on U , we say that A is uniformly strictly elliptic and
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boundedonU , if there existλ > 0 andM > 0 such that for any ξ = (ξ1, . . . , ξd) ∈ R
d ,

x ∈ U ,

d∑

i, j=1

ai j (x)ξiξ j ≥ λ‖ξ‖2, max
1≤i, j≤d

|ai j (x)| ≤ M.

In that case, λ is called the ellipticity constant andM is called the upper bound constant
of A. For other definitions or notations that might be unclear, we refer to [12].

3. Analytic results

3.1. Elliptic H1,p-regularity and H1,p-estimates

The V MO(Rd) space is defined as the space of all locally integrable functions f on
R
d for which there exists a positive continuous function γ on [0,∞) with γ (0) = 0,

such that

sup
z∈Rd ,r<R

r−2d
∫

Br (z)×Br (z)
| f (x) − f (y)|dxdy ≤ γ (R), ∀R > 0. (4)

If f is uniformly continuous on Rd , we can define

γ (r) :=
( ∫

B1
1 dx

)−2 · sup
|x−y|<2r,x,y∈Rd

| f (x) − f (y)|, γ (0) := 0.

Then γ is continuous on [0,∞) and (4) holds, hence f ∈ V MO(Rd). For a bounded
open subset U of Rd and a function g on U , we call g ∈ V MO(U ) if g extends to a
function on R

d , again called g, such that g ∈ V MO(Rd).
For measurable functions ai j , bi , βi , c on R

d , 1 ≤ i, j ≤ d, let A := (ai j )1≤i, j≤d ,
b := (b1, . . . , bd), β := (β1, . . . , βd). Consider the divergence form operator L,
defined in distribution sense

−Lu := −
⎛

⎝
d∑

i, j=1

∂i (ai j∂ j u) +
d∑

i=1

∂i (biu)

⎞

⎠ +
d∑

i=1

βi∂i u + cu, u ∈ C∞
0 (Rd).

The following theorem is a simple generalization of (1.2.3) in [1, Theorem 1.2.1],
where only symmetric matrices of functions are considered.

Theorem 3.1 (Krylov 2007). Consider a possibly non-symmetric matrix of functions
A = (ai j )1≤i, j≤d and suppose that ai j ∈ V MO(Rd), 1 ≤ i, j ≤ d, and that there
exist ε, K > 0 such that

d∑

i, j=1

ai j (x)ξiξ j ≥ ε‖ξ‖2
Rd for all ξ ∈ R

d , a.e. x ∈ R
d ,
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d∑

i, j=1

‖ai j‖L∞(Rd ) +
d∑

i=1

‖bi‖L∞(Rd ) +
d∑

i=1

‖βi‖L∞(Rd ) + ‖c‖L∞(Rd ) ≤ K .

Then, for every p ∈ (1,∞), there are numbers λ0 and M depending only p, d, K , ε

and a common γ that ensures the V MO(Rd) condition (4) simultaneously for all ai j ,
1 ≤ i, j ≤ d, such that for all λ ≥ λ0, v ∈ H1,p(Rd), we have

‖v‖H1,p(Rd ) ≤ M‖Lv − λv‖H−1,p(Rd ).

Proof. Take constants λ0, N as in [11, Theorem2.8], which depend only on p, d, K , ε.
Let λ ≥ λ0 be given. By [3, Proposition 9.20], there exist f ∈ L p(Rd) and g =
(g1, . . . , gd) ∈ L p(Rd ,Rd) such that

Lv − λv = f + divg in H−1,p(Rd), (5)

where

‖Lv − λv‖H−1,p(Rd ) = max(‖ f ‖L p(Rd ), ‖g1‖L p(Rd ), . . . , ‖gd‖L p(Rd )).

Thus

‖ f ‖L p(Rd ) +
d∑

i=1

‖gi‖L p(Rd ) ≤ (d + 1)‖Lv − λv‖H−1,p(Rd ).

By [11, Theorem 2.8] v is the unique solution to (5) and

‖v‖H1,p(Rd ) ≤ N

(
‖ f ‖L p(Rd ) +

d∑

i=1

‖gi‖L p(Rd )

)

≤ N (d + 1)︸ ︷︷ ︸
=:M

‖Lv − λv‖H−1,p(Rd ).

�

We shall make a general remark concerning the monograph [1].

Remark 3.2. In what follows, we shall use in particular the statements 1.7.4, 1.7.6,
1.8.3, 2.1.4, 2.1.6, 2.1.8 of [1] which are formulated for a symmetric matrix of func-
tions A = (ai j )1≤i, j≤d on a bounded smooth domain �, such that each function
ai j is V MO(�) and A is uniformly strictly elliptic and bounded on �. However, a
closer look at the corresponding proofs shows that the symmetry is not a necessary
assumption. More precisely, (1.7.10) in the proof of [1, Theorem 1.7.4] follows from
(1.2.3) of [1, Theorem 1.2.1]. But by a result of Krylov the symmetry of (ai j )1≤i, j≤d

is not essential in Theorem 3.1. Consequently, [1, Corollary 1.7.6], whose proof is
based on [1, Theorem 1.7.4], also holds for a non-symmetric matrix of functions
(ai j )1≤i, j≤d which is uniformly strictly elliptic and bounded on �. The proof of [1,
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Proposition 2.1.4] is based on the Lax–Milgram Theorem which only uses a coer-
civity assumption that is well-known to extend to a non-symmetric matrix of func-
tions. [1, Theorem 2.1.8] is taken from [21], where not only non-symmetric matrices
of functions are permitted but also even more general conditions on the functions
ai j , 1 ≤ i, j ≤ d. [1, Corollary 2.1.6] is a consequence of [1, Corollary 1.7.6 , Propo-
sition 2.1.4 and Theorem 2.1.8]. Finally, the proof of [1, Theorem 1.8.3] follows from
[1, Corollary 1.7.6 and Proposition 2.1.4]. Therefore all the above mentioned state-
ments from [1] extend to a non-symmetric matrix of functions A = (ai j )1≤i, j≤d , such
that each function ai j is V MO(�) and A is uniformly strictly elliptic and bounded on
�. However, wewill assumemore than V MO(�), more precisely H1,2

loc (Rd)∩C(Rd),
in what follows since we need an integration by parts formula.

The following Lemma 3.3 will be used in the proof of Lemma 3.4 for a compactness
argument.

Lemma 3.3. Let A = (ai j )1≤i, j≤d , An = (ani j )1≤i, j≤d be uniformly strictly elliptic

and bounded on an open ball B, satisfying ani j → ai j in L2(B) as n → ∞, 1 ≤ i, j ≤
d. Moreover, let An, n ∈ N, and A have the same ellipticity constant λn ≡ λ and upper
bound constant Mn ≡ M. Let for some p > d, b ∈ L p(B,Rd), bn ∈ L p(B,Rd)

such that bn → b in L p(B,Rd) as n → ∞. Given F ∈ L2(B,Rd), suppose that
un,F ∈ H1,2

0 (B) satisfies

∫

B
〈An∇un,F + bnun,F ,∇ϕ〉 dx =

∫

B
〈F,∇ϕ〉 dx, for every ϕ ∈ C∞

0 (B).

Then

‖un,F‖L2(B) ≤ C‖F‖L2(B,Rd ),

where C > 0 is a constant which is independent of n and F.

Proof. Assume that the assertion does not hold, i.e., given k ∈ N there exist F̃k ∈
L2(B,Rd) and nk ∈ N such that

‖unk ,F̃k‖L2(B) > k‖F̃k‖L2(B,Rd ).

Define Fk := F̃k
‖unk ,F̃k‖L2(B)

. By [1, Proposition 2.1.4, Theorem 2.1.8] and

Remark 3.2, we get unk ,Fk = unk ,F̃k
‖unk ,F̃k‖L2(B)

. Thus we have

‖unk ,Fk‖L2(B) = 1 and ‖Fk‖L2(B,Rd ) <
1

k
.

By [16, Théorème 3.2],

‖unk ,Fk‖H1,2
0 (B)

≤ C1(‖unk ,Fk‖L2(B) + ‖Fk‖L2(B,Rd )) ≤ 2C1,
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where C1 is independent of k. By the weak compactness of balls in H1,2
0 (B) and the

Rellich–Kondrachov Theorem, there exists a subsequence (unk j ,Fk j ) j ⊂ (unk ,Fk )k and

u ∈ H1,2
0 (B) such that

unk j ,Fk j → u weakly in H1,2
0 (B), unk j ,Fk j → u in L2(B).

In particular, ‖u‖L2(B) = 1 and using the assumption, we can see that u satisfies
∫

B
〈A∇u + bu, ∇ϕ〉dx = 0, for every ϕ ∈ C∞

0 (B).

By [1, Theorem 2.1.8] and Remark 3.2, we have u = 0 a.e. on B, which is a contra-
diction. Therefore, the assertion must hold. �

The following is well known in the case where b ≡ 0 (see for instance [9,
Lemma 4.6]).

Lemma 3.4. Let U be a bounded open set with Lipschitz boundary. Let A =
(ai j )1≤i, j≤d be uniformly strictly elliptic and bounded on U, with ellipticity constant
λ and upper bound constant M. Let for some p > d, b ∈ L p(U,Rd) and assume that
u ∈ H1,2(U ) satisfies

∫

U
〈A∇u + bu,∇ϕ〉dx ≤ 0, for every ϕ ∈ C∞

0 (U ), ϕ ≥ 0.

Then we have
∫

U
〈A∇u+ + bu+,∇ϕ〉dx ≤ 0, for every ϕ ∈ C∞

0 (U ), ϕ ≥ 0.

Proof. Let B be an open ball such that U ⊂ B. By [4, Theorem 4.7], u ∈ H1,2(U )

can be extended to a function u ∈ H1,2
0 (B). And by [4, Theorem 4.4], u+ ∈ H1,2

0 (B)

with

∇u+ =
{ ∇u a.e. on {u > 0} ,

0 a.e. on {u ≤ 0} .

Given ε > 0 define

fε(z) :=
{

(z2 + ε2)1/2 − ε if z ≥ 0,
0 if z < 0.

Then fε ∈ C1(R), f ′
ε ∈ H1,∞(R), and

f ′
ε(z) =

⎧
⎨

⎩

z√
z2 + ε2

if z ≥ 0,

0 if z < 0,
and f ′′

ε (z) =
⎧
⎨

⎩

ε2

(z2 + ε2)3/2
if z > 0,

0 if z < 0.

Note that fε(z) −→ z+, f ′
ε(z) −→ 1(0,∞)(z) as ε → 0 for every z ∈ R. Extend the

matrix of functions A to whole Rd with same ellipticity constant λ and upper bound



608 H. Lee and G. Trutnau J. Evol. Equ.

constant M . (This is possible, for instance set A = λ · I d on R
d \ U and note that

λ ≤ M .) Extend b ∈ L p(U,Rd) to L p(Rd ,Rd) by setting b zero outside U . Define
F := A∇u + bu ∈ L2(Rd ,Rd). For n ∈ N let η 1

n
∈ C∞

0 (B 1
n
) be defined as usually

through the standardmollifier and let ani j := ai j ∗η 1
n
, An := (ani j )1≤i, j≤d , bn := b∗η 1

n
,

Fn := F ∗ η 1
n
on R

d . Then ani j ∈ C∞(B), bn, Fn ∈ C∞(B,Rd) satisfy

ani j −→ ai j , in L2(B), bn −→ b in L p(B,Rd), Fn −→ F in L2(B,Rd).

(6)
Moreover, each An , n ∈ N, is uniformly strictly elliptic and bounded on B with same
elliptic constant λ and upper bound constant M as A. Let V be a fixed open set with
V ⊂ U . Choose δ > 0 with Bδ(z) ⊂ U for all z ∈ V and take N ∈ N with 1

N < δ.
Then by the assumption, for any n ≥ N and ϕ ∈ C∞

0 (V ) with ϕ ≥ 0

∫

U
〈Fn,∇ϕ〉dx =

∫

U
〈A∇u + bu,∇(ϕ ∗ η 1

n
)〉 dx ≤ 0. (7)

By [1, Proposition 2.1.4, Theorem 2.1.8] and Remark 3.2, there exists un ∈ H1.2
0 (B)

such that
∫

B
〈An∇un + bnun,∇ϕ̃〉dx =

∫

B
〈Fn,∇ϕ̃〉dx, for all ϕ̃ ∈ C∞

0 (B). (8)

By [16, Théorème 3.2] and Lemma 3.3,

‖un‖H1,2
0 (B)

≤ C1‖Fn‖L2(B,Rd ) ≤ C1‖F‖L2(B,Rd ).

where C1 is independent of n. By weak compactness of balls in H1,2
0 (B), [1, Theo-

rem 2.1.8] and Remark 3.2, there exists a subsequence (unk )k ⊂ (un)n , such that

unk → u and u+
nk → u+ weakly in H1,2

0 (B). (9)

Indeed, (9) first holds with u replaced by some ũ ∈ H1,2
0 (B). Then letting n → ∞ in

(8) and using the maximum principle [21, Theorem 4], we get ũ = u. For simplicity,
write (un) for (unk ). By [5, Theorem 8.13], we have un ∈ C∞(B). Now define

Lnun :=
d∑

i, j=1

ani j∂i∂ j un + 〈bn + ∇AT
n ,∇un〉 + (div bn) · un

Then for any n ≥ N and ϕ ∈ C∞
0 (V ) with ϕ ≥ 0, we obtain using (7), (8)

−
∫

U
Lnun ϕ dx ≤ 0.

Hence Lnun(x) ≥ 0 for all x ∈ V , n ≥ N . Define f kε := fε ∗ φ 1
k
, k ∈ N, where

φ 1
k

∈ C∞
0

(
(− 1

k ,
1
k )

)
is the standardmollifier. Then ( f kε )′ ≥ 0, ( f kε )′′ ≥ 0 since f ′

ε ≥ 0,
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f ′′
ε ≥ 0. Moreover, ( f kε )′(un) → f ′

ε(un) uniformly on U as k → ∞. Then, for any
n ≥ N and ϕ ∈ C∞

0 (V ) with ϕ ≥ 0, we obtain
∫

U
〈An∇ fε(un) + bn fε(un),∇ϕ〉dx = lim

k→∞

∫

U
〈An∇ f kε (un) + bn f

k
ε (un),∇ϕ〉dx

= lim
k→∞

(
−

∫

U

(
( f kε )′(un)Lnun + ( f kε )′′(un)〈An∇un,∇un〉

) · ϕ dx
)

− lim
k→∞

∫

U
div bn( f

k
ε (un) − un( f

k
ε )′(un)) · ϕ dx

≤ −
∫

U
div bn

(
fε(un) − un f

′
ε(un)

)
ϕdx .

Since the latter term converges to zero as ε → 0, for any n ≥ N , we obtain
∫

U
〈An∇u+

n + bnu
+
n ,∇ϕ〉dx ≤ 0, ∀ϕ ∈ C∞

0 (V ), ϕ ≥ 0.

Consequently, using (6), (9), we get
∫

U
〈A∇u+ + bu+,∇ϕ〉dx ≤ 0, ∀ϕ ∈ C∞

0 (V ), ϕ ≥ 0.

Since V is an arbitrary open set with V ⊂ U , the assertion follows. �
3.2. Existence of an infinitesimally invariantmeasure and constructionof a generalized

Dirichlet form

We first start with a remark, that clarifies the relation of the divergence type operator
(1) and a fairly general class of non-divergence form operators. Moreover, we give
some examples of operators satisfying assumption (a).

Remark 3.5. Note that under assumption (a), L as in (1) writes for f ∈ C∞
0 (Rd) as

L f = 1

2
div

(
(A + C)∇ f

) + 〈H,∇ f 〉

= 1

2
trace

(
A∇2 f

) + 〈1
2
∇(A + CT ) + H,∇ f

〉
. (10)

Thus L as in (1) can also be interpreted as non-divergence form operator and therefore,
assumption (a) allows to consider two general classes of operators:

(i) Divergence type operators as in (1) with symmetric or nonsymmetric matrix and
with or without L p

loc-drift, according to assumption (a): for instance

L f = 1

2

d∑

i, j=1

∂i ((ai j + ci j )∂ j ) f +
d∑

i=1

hi∂i f, f ∈ C∞
0 (Rd),

or

L f = 1

2

d∑

i, j=1

∂i ((ai j + ci j )∂ j ) f, f ∈ C∞
0 (Rd),

where ai j , ci j and hi satisfy assumption (a) and (ci j )1≤i, j≤d ≡ 0 or not.
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(ii) Non-divergence type operators with symmetric diffusion matrix and L p
loc-drift:

for this, suppose that ai j ∈ H1,p
loc (Rd) ∩ C(Rd), 1 ≤ i, j ≤ d, for some p > d,

and that C ≡ 0. Set

H := H̃ − 1

2
∇A

for arbitrarily chosen H̃ = (̃h1, . . . , h̃d) ∈ L p
loc(R

d ,Rd). Then assumption (a)
(and even assumption (b)) holds (since p > q) and (1) can be rewritten as

L f = 1

2

d∑

i, j=1

ai j∂i j f +
d∑

i=1

h̃i∂i f, f ∈ C∞
0 (Rd). (11)

This special case covers the assumptions of [2, Theorem 1] (see also [1, Theo-
rem 2.4.1]). In general, we can consider any non-divergence type operator as in
(10), where A,C , andH satisfy the assumption (a). The latter, together with the
class of divergence form opertors considered in (i), is the extend to which we
can generalize the assumptions of [2, Theorem 1].

From now on, we set

G = (g1, . . . , gd) = 1

2
∇(

A + CT ) + H,

where A,C , andH are as in assumption (a). Then L as in (1) writes as (cf. Remark 3.5)

L f = 1

2

d∑

i, j=1

ai j∂i∂ j f +
d∑

i=1

gi∂i f, f ∈ C∞
0 (Rd), (12)

where

gi = 1

2

d∑

j=1

∂ j (ai j + c ji ) + hi , 1 ≤ i ≤ d.

Theorem 3.6. (Existence of an infinitesimally invariant measure) Suppose assump-
tion (a) holds. Then there exists ρ ∈ H1,p

loc (Rd)∩C(Rd) with ρ(x) > 0 for all x ∈ R
d

such that ∫

Rd
Lϕ ρdx = 0, for all ϕ ∈ C∞

0 (Rd). (13)

Proof. Using integration by parts, (13) is equivalent to
∫

Rd
〈1
2
(A + CT )∇ρ − ρ H,∇ϕ〉dx = 0 for all ϕ ∈ C∞

0 (Rd). (14)

By [1, Proposition 2.1.4, Corollary 2.1.6, Theorem 2.1.8] and Remark 3.2, for every
n ∈ N, there exists a unique vn ∈ H1,p

0 (Bn) ∩ C0,1−d/p(Bn) such that
∫

Bn
〈1
2
(A + CT )∇vn − vn H,∇ϕ〉dx =

∫

Bn
〈H,∇ϕ〉dx for all ϕ ∈ C∞

0 (Bn).
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Let un := vn + 1. Then un(x) = 1 for all x ∈ ∂Bn and
∫

Bn
〈1
2
(A + CT )∇un − un H,∇ϕ〉dx = 0, for all ϕ ∈ C∞

0 (Bn).

Since u−
n ≤ v−

n , we see u
−
n ∈ H1,p

0 (Bn) ∩ C0,1−d/p(Bn). Thus by Lemma 3.4, we
get

∫

Bn
〈1
2
(A + CT )∇u−

n − u−
n H,∇ϕ〉dx ≤ 0, for all ϕ ∈ C∞

0 (Bn), ϕ ≥ 0.

By [1, Theorem 2.1.8] and Remark 3.2, u−
n ≤ 0, so that un ≥ 0. Suppose

there exists x0 ∈ Bn with un(x0) = 0. Then, applying [20, Corollary 5.2 (Har-
nack inequality)] to un on Bn , we get un(x) = 0 for all x ∈ Bn , which contradicts
un ∈ C0,1−d/p(Bn), since un = 1 on ∂Bn . Hence un(x) > 0 for all x ∈ Bn . Now let
ρn(x) := un(0)−1un(x), x ∈ Bn, n ∈ N. Then ρn(0) = 1 and

∫

Bn
〈1
2
(A + CT )∇ρn − ρnH, ∇ϕ〉dx = 0 for all ϕ ∈ C∞

0 (Bn).

Fix r > 0. Then, by [20, Corollary 5.2]

sup
x∈B2r

ρn(x) ≤ C1 inf
x∈B2r

ρn(x) for all n > 2r,

where C1 is independent of ρn , n > 2r . Thus

sup
x∈B2r

ρn(x) ≤ C1 for all n > 2r.

By [1, Theorem 1.7.4] and Remark 3.2

‖ρn‖H1,p(Br ) ≤ C2‖ρn‖L1(B2r ) ≤ C1C2 dx(B2r ), for all n > 2r,

where C2 is independent of (ρn)n>2r . By weak compactness of balls in H1,p
0 (Br ) and

the Arzela–Ascoli Theorem, there exist (ρn,r )n≥1 ⊂ (ρn)n>2r and ρ(r) ∈ H1,p(Br ) ∩
C0,1−d/p(Br ) such that

ρn,r → ρ(r) weakly in H1,p(Br ), ρn,r → ρ(r) uniformly on Br .

Considering (ρn,k)n≥1 ⊃ (ρn,k+1)n≥1, k ∈ N, we get ρ(k) = ρ(k+1) on Bk , hence we
can well-define ρ as

ρ := ρ(k) on Bk, k ∈ N.

Then ρ ∈ H1,p
loc (Rd) ∩ C(Rd) with ρ(x) ≥ 0, x ∈ R

d , ρ(0) = 1 and for any n ∈ N

∫

Bn
〈1
2
(A + CT )∇ρ − ρ H,∇ϕ〉dx = 0 for all ϕ ∈ C∞

0 (Bn).
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By applying the Harnack inequality to ρ on Br with n > r

1 = ρ(0) ≤ sup
x∈Br

ρ(x) ≤ C3 inf
x∈Br

ρ(x),

hence ρ(x) > 0 for all x ∈ Br . Therefore ρ(x) > 0 for all x ∈ R
d and (13) holds. �

From now on unless otherwise stated, we fix ρ as in Theorem 3.6. Set

m := ρ dx .

Using integration by parts, the following can be easily shown.

Lemma 3.7. If Q := (qi j )1≤i, j≤d is a d × d matrix of functions with −q ji = qi j ∈
H1.2
loc (Rd) ∩ L∞

loc(R
d), 1 ≤ i, j ≤ d. Then βρ,Q ∈ L2

loc(R
d ,Rd ,m) and βρ,Q is

weakly divergence free with respect to m, i.e.,
∫

Rd
〈βρ,Q,∇ f 〉dm = 0, for all f ∈ C∞

0 (Rd).

Define

B := G − βρ,A+CT
.

Note thatB = (
G− 1

2∇(A+CT )
)− (A+CT )∇ρ

2ρ ∈ L p
loc(R

d ,Rd). Moreover, using (13)

and Lemma 3.7, we can see that βρ,CT + B ∈ L2
loc(R

d ,Rd ,m) is weakly divergence
free with respect to m, i.e.,

∫

Rd
〈βρ,CT + B,∇ f 〉dm = 0 for all f ∈ C∞

0 (Rd). (15)

For f, g ∈ C∞
0 (Rd), define

E0( f, g) := 1

2

∫

Rd
〈A∇ f,∇g〉 dm.

Then (E0,C∞
0 (Rd)) is closable in L2(Rd ,m). We denote its closure by (E0, D(E0))

and its associated generator by (L0, D(L0)). Since C∞
0 (Rd) ⊂ D(L0)0,b, we have

that D(L0)0,b is a dense subset of L1(Rd ,m), and furthermore

L0 f = 1

2
trace(A∇2 f ) + 〈βρ,A,∇ f 〉 ∈ L2(Rd ,m) for all f ∈ C∞

0 (Rd).

Define

L f = L0 f + 〈βρ,CT + B,∇ f 〉, f ∈ D(L0)0,b.

Then (L , D(L0)0,b) is an extension of (L ,C∞
0 (Rd)) as defined in (12). By [17,

Theorem 1.5], there exists a closed extension (L, D(L)) of (L , D(L0)0,b) in
L1(Rd ,m) which generates a sub-Markovian C0-semigroup of contractions (Tt )t>0
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on L1(Rd ,m). Restricting (Tt )t>0 to L1(Rd ,m)b, it is well-known that (Tt )t>0 can
be extended to a sub-Markovian C0-semigroup of contractions on each Lr (Rd ,m),
r ∈ [1,∞). Denote by (Lr , D(Lr )) the corresponding closed generator with graph
norm

‖ f ‖D(Lr ) := ‖ f ‖Lr (Rd ,m) + ‖Lr f ‖Lr (Rd ,m),

and by (Gα)α>0 the corresponding resolvent. For (Tt )t>0 and (Gα)α>0 we do not
explicitly denote in the notation on which Lr (Rd ,m)-space they act. We assume that
this is clear from the context. Moreover, (Tt )t>0 and (Gα)α>0 can be uniquely defined
on L∞(Rd ,m), but are no longer strongly continuous there.
For f ∈ C∞

0 (Rd)

L̂ f := L0 f − 〈βρ,CT + B,∇ f 〉 = 1

2
trace(A∇2 f ) + 〈Ĝ,∇ f 〉,

with

Ĝ := (ĝ1, . . . , ĝd) = 2βρ,A − G = βρ,A+C − B ∈ L2
loc(R

d ,Rd ,m).

Wesee that L and L̂ have the same structural properties, i.e., they are given as the sumof
a symmetric second order elliptic differential operator and a divergence free first order
perturbationwith same integrability conditionwith respect to themeasurem. Therefore
all what will be derived below for L will hold analogously for L̂ . Denote the operators
corresponding to L̂ (again defined through [17, Theorem 1.5]) by (L̂r , D(L̂r )) for the
co-generator on Lr (Rd ,m), r ∈ [1,∞), (T̂t )t>0 for the co-semigroup, (Ĝα)α>0 for
the co-resolvent. By [17, Section 3], we obtain a corresponding bilinear form with
domain D(L2) × L2(Rd ,m) ∪ L2(Rd ,m) × D(L̂2) by

E( f, g) :=
{− ∫

Rd L2 f · g dm for f ∈ D(L2), g ∈ L2(Rd ,m),

− ∫
Rd f · L̂2g dm for f ∈ L2(Rd ,m), g ∈ D(L̂2).

E is called the generalized Dirichlet form associated with (L2, D(L2)). Using inte-
gration by parts, it is easy to see that for f, g ∈ C∞

0 (Rd)

E( f, g) = 1

2

∫

Rd
〈A∇ f,∇g〉 dm −

∫

Rd
〈βρ,CT + B,∇ f 〉g dm

= 1

2

∫

Rd
〈(A + C)∇ f,∇g〉 dm −

∫

Rd
〈B,∇ f 〉g dm, (16)

and

L2 f = 1

2

d∑

i, j=1

ai j ∂i ∂ j f +
d∑

i=1

gi ∂i f = 1

2
trace(A∇2 f ) + 〈βρ,A+CT

,∇ f 〉 + 〈B, ∇ f 〉,

L̂2 f = 1

2

d∑

i, j=1

ai j ∂i ∂ j f +
d∑

i=1

ĝi ∂i f = 1

2
trace(A∇2 f ) + 〈βρ,A+C , ∇ f 〉 − 〈B, ∇ f 〉.
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3.3. Regularity results for resolvent and semigroup

Theorem 3.8. Assume (a). Then

ρGαg ∈ H1,p
loc (Rd), ∀g ∈ ∪r∈[q,∞]Lr (Rd ,m),

and for any open balls B, B ′ with B ⊂ B ′,

‖ρ Gαg‖H1,p(B) ≤ c0
(‖g‖Lq (B′,m) + ‖Gαg‖L1(B′,m)

)
,

where c0 is independent of g.

Proof. Let g ∈ C∞
0 (Rd) and α > 0. Then for all ϕ ∈ C∞

0 (Rd),
∫

Rd
(α − L̂2)ϕ · (

Gαg
)
dm =

∫

Rd
Ĝα(α − L̂2)ϕ · g dm =

∫

Rd
ϕg dm. (17)

Note that Gαg ∈ D(L)b ⊂ D(E0) by [17, Theorem 1.5]. Since ρ is locally
bounded below and A satisfies (2), we have D(E0) ⊂ H1,2

loc (Rd) and it follows

ρGαg ∈ H1,2
loc (Rd). Define

F̂ := 1

2
∇(A + C) − Ĝ = − (A + C)∇ρ

2ρ
+ B ∈ L p

loc(R
d ,Rd). (18)

Given any open ball B ′′ and ϕ ∈ C∞
0 (B ′′), we have using integration by parts in the

left hand side of (17)
∫

B′′

[
〈1
2
(A + C)∇(ρGαg) + (ρGαg)̂F,∇ϕ〉 + α(ρGαg)ϕ

]
dx =

∫

B′′
(ρg)ϕdx .

(19)

By [1, Theorem 1.8.3] and Remark 3.2, for any open ball B ′ with B ′ ⊂ B ′′, we have
ρGαg ∈ H1,p(B ′). Thus by [1, Theorem 1.7.4] and Remark 3.2, we obtain for any
open ball B with B ⊂ B ′, r ∈ [q,∞)

‖ρGαg‖H1,p(B) ≤ c1
(‖ρg‖Lq (B′,dx) + ‖ρGαg‖L1(B′,dx)

)

≤ c1(sup
B′

ρ
q−1
q ∨ 1)

︸ ︷︷ ︸
=:c0

(‖g‖Lq (B′,m) + ‖Gαg‖L1(B′,m)

)
(20)

By denseness of C∞
0 (Rd) in Lr (Rd ,m), (20) extends to g ∈ Lr (Rd ,m), r ∈

[q,∞). For g ∈ L∞(Rd ,m), let gn := g1Bn ∈ Lq(Rd ,m), n ≥ 1. Then
‖g − gn‖Lq (B′,m) + ‖Gα(g − gn)‖L1(B′,m) → 0 as n → ∞. Hence (20) also extends
to g ∈ L∞(Rd ,m). �

Remark 3.9. [12, Proposition 3.6] holds in our more general situation with exactly the
same proof.
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Theorem 3.10. Assume (a). For each s ∈ [1,∞], consider the Ls(Rd ,m)-semigroup
(Tt )t>0. Then for any f ∈ Ls(Rd ,m) and t > 0, Tt f has a locally Hölder continuous
m-version Pt f on Rd . More precisely, P· f (·) is locally parabolic Hölder continuous
on R

d × (0,∞) and for any bounded open sets U, V in R
d with U ⊂ V and 0 <

τ3 < τ1 < τ2 < τ4, i.e. [τ1, τ2] ⊂ (τ3, τ4), we have for some γ ∈ (0, 1) the following
estimate for all f ∈ ∪s∈[1,∞]Ls(Rd ,m) with f ≥ 0,

‖P· f (·)‖
Cγ ; γ

2 (U×[τ1,τ2])
≤ C6‖P· f (·)‖L1(V×(τ3,τ4),m⊗dt), (21)

whereC6, γ are constants that dependonU×[τ1, τ2], V×(τ3, τ4), but are independent
of f .

Proof. The proof is similar to the corresponding proof in [12, Theorem 3.8], but
there are some subtle differences. First assume f ∈ D(L2) ∩ D(Lq) ∩ Bb(R

d) with
f ≥ 0. Set u(x, t) := ρ(x)Pt f (x). Then Pt f ∈ D(Lq) and ρ ∈ C(Rd) implies
u ∈ C

(
R
d × [0,∞)

)
by Proposition 3.9(iii). Let T > 0 be arbitrary. Then for any

ϕ ∈ C∞
0 (Rd × (0, T ))

0 = −
∫ T

0

∫

Rd

(
∂tϕ + L̂2ϕ

)
u dxdt. (22)

Since u ∈ H1,2(O × (0, T )) for any bounded and open set O ⊂ R
d , using integration

by parts in the right hand term of (22), we get

0 =
∫ T

0

∫

Rd

(
1

2
〈(A + C)∇u,∇ϕ〉 + u〈̂F,∇ϕ〉 − u∂tϕ

)
dxdt, (23)

where F̂ is as in (18). Then as in [12, Theorem 3.8]

‖P· f (·)‖
Cγ ; γ

2 (U×[τ1,τ2])
≤ ‖ρ−1‖C0,γ (U )‖ρ(·)P· f (·)‖

Cγ ; γ
2 (U×[τ1,τ2])

≤ ‖ρ−1‖C0,γ (U )C2C5︸ ︷︷ ︸
=:C6

‖P· f (·)‖L1(V×(τ3,τ4),m⊗dt)

≤ C6(τ4 − τ3)‖ρ‖
s−1
s

L1(V )
‖ f ‖Ls (Rd ,m), s ∈ [1,∞], (24)

where γ , C2, C5, are as in [12, Theorem 3.8].
For f ∈ L1(Rd ,m)∩L∞(Rd ,m)with f ≥ 0 let fn := nGn f . Then fn ∈ D(L2)∩

D(Lq) ∩ Bb(R
d) with fn ≥ 0 and fn → f in Ls(Rd ,m) for any s ∈ [1,∞). Thus

(24) including all intermediate inequalities extend to f ∈ L1(Rd ,m) ∩ L∞(Rd ,m)

with f ≥ 0. If f ∈ Ls(Rd ,m), f ≥ 0 and s ∈ [1,∞), let fn := 1Bn · ( f ∧ n).
Then fn ∈ L1(Rd ,m) ∩ L∞(Rd ,m) with fn ≥ 0 and fn → f in Ls(Rd ,m). Thus
(24) including all intermediate inequalities extend to f ∈ Ls(Rd ,m) with f ≥ 0. For
f ∈ L∞(Rd ,m), the result follows exactly as in [12, Theorem 3.8]. �

Remark 3.11. Besides the possible non-symmetry of A + C (that also occurs in
F̂), the difference between the proof of [12, Theorem 3.8] and Theorem 3.10
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is the approximation method. The proof of [12, Theorem 3.8] uses the dense-
ness of C∞

0 (Rd) in L1(Rd ,m). The proof of Theorem 3.10 uses the denseness of
∪α>0Gα

(
L1(Rd ,m) ∩ L∞(Rd ,m)

)
in L1(Rd ,m). Using the latter, we can get the

corresponding result to [12, Lemma 4.6] in the following Lemma 3.12.

Lemma 3.12. Assume (a). Then:

(i) Let A ∈ B(Rd) be such that Pt01A(x0) = 0 for some t0 > 0 and x0 ∈ R
d . Then

m(A) = 0.
(ii) Let A ∈ B(Rd) be such that Pt01A(x0) = 1 for some t0 > 0 and x0 ∈ R

d . Then
Pt1A(x) = 1 for all (x, t) ∈ R

d × (0,∞).

Proof. (i) Suppose m(A) > 0. Choose an open ball Br (x0) ⊂ R
d such that

0 < m (A ∩ Br (x0)) < ∞.

Let u := ρP·1A∩Br (x0). Then 0 = u(x0, t0) ≤ ρ(x0)Pt01A(x0) = 0. Set fn :=
nGn1A∩Br . Then fn ∈ D(L2) ∩ D(Lq) ∩ Bb(R

d) with fn ≥ 0 such that fn →
1A∩Br (x0) in L1(Rd ,m). Let un := ρP· fn . Fix T > t0 and U ⊃ Br+1(x0). Since
un ∈ H1,2(U × (0, T )) satisfies (22) (see proof of Theorem 3.10), (23) holds with u
replaced by un for all ϕ ∈ C∞

0 (U × (0, T )). The rest of the proof is then exactly as in
[12, Lemma 4.6 (i)].
(ii) Let y ∈ R

d and 0 < s < t0 be arbitrary but fixed and let r := 2‖x0 − y‖ and let B
be any open ball. Take gn := nGn1B∩A. Then gn ∈ D(L2) ∩ D(Lq) ∩ Bb(R

d) with
0 ≤ gn ≤ 1 satisfying gn → 1A∩B in L1(Rd ,m). The rest of the proof is now exactly
as in [12, Lemma 4.6 (ii)]. �

Remark 3.13. Using the Lemma 3.12, [12, Corollary 4,8] holds in our more general
situation with exactly the same proof.

Remark 3.14. (i) (cf. Remark 4.5 in [12]) Consider A, C , ρ, B̃ which are explicitly
given by following assumptions. Let A = (ai j )1≤i, j≤d be a matrix of functions as in
assumption (a) and C = (ci j )1≤i, j≤d be a matrix of functions satisfying ci j = −ci j ∈
H1,2
loc (Rd)∩C(Rd). Suppose that for some p > d,we are givenρ ∈ H1,p

loc (Rd)∩C(Rd),
ρ(x) > 0 for all x ∈ R

d , such that for some B̃ ∈ L p
loc(R

d ,Rd) it holds

∫

Rd
〈B̃,∇ f 〉ρdx = 0 for all f ∈ C∞

0 (Rd). (25)

Let

L̃ f = L0 f + 〈βρ,CT + B̃,∇ f 〉, f ∈ D(L0)0,b.

Then(13) holds for L replaced with L̃ . Moreover, everything that was developed for
(L , D(L0)0,b) right after Theorem 3.6 until and including Corollary 3.13 (and even

beyond until the end of this article if additionally βρ,CT + B̃ ∈ Lq
loc(R

d ,Rd), i.e.,
assumption (b) holds, cf. Remark 4.2) holds analogously for (L̃, D(L0)0,b). Now
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suppose again that assumption (a) holds. Then by Theorem 3.6, there exists ρ as right
above such that B̃ := B = 1

2∇(A+CT )+H−βρ,A+CT ∈ L p
loc(R

d ,Rd) and such that
B̃ satisfies (25). Thus all that has been done up to now is in fact a special realization
of the just explained explicit case.
(ii) (cf. Remark 3.3 in [12]) It is possible to realize the results of this article with
R
d replaced by an arbitrary open set U ⊂ R

d . Moreover, as it is well known, the
L p
loc-condition can be relaxed by an L pn

loc-condition on an exhaustion (Vn)n∈N of Rd

(or U ), where pn > d for all n ∈ N and limn→∞ pn = d.

4. Probabilistic results

4.1. The underlying SDE

Additionally to assumption (a) we assume throughout this section that assumption
(b) holds. ThenC2

0 (R
d) ⊂ D(L1)∩D(Lq) and assumption (H2)′ of [12] holds. Here,

assumption (b) was needed to get the continuity property of the resolvent in (H2)′(ii)
of [12]. Thus, exactly as in [12, Theorem 3.12], we arrive at the following theorem:

Theorem 4.1. There exists a Hunt process

M = (�,F , (Ft )t≥0, (Xt )t≥0, (Px )x∈Rd∪{�})

with state space Rd and life time

ζ = inf{t ≥ 0 : Xt = �} = inf{t ≥ 0 : Xt /∈ R
d},

having the transition function (Pt )t≥0 as transition semigroup, such that M has con-
tinuous sample paths in the one point compactification R

d
� of Rd with the cemetery

� as point at infinity.

Remark 4.2. Actually, under assumptions (a) and (b) most of the results from [12]
generalize to the more general coefficients considered here, i.e., the analogues of
Lemmas 3.14, 3.15, 3.18, Propositions 3.16, 3.17, Theorem 3.19, Remark 3.20 and the
analogues of the results in Chapter 4 of [12] hold. These results include, various non-
explosion criteria, moment inequalities, a general Krylov type estimate, recurrence
criteria and moreover (by combining our results with results of [13] and [1], see [12,
Theorem 4.15, Proposition 4.17]) criteria for ergodicity including uniqueness of the
invariant probability measure ρdx .

According to Remark 4.2, we obtain:

Theorem 4.3. Consider theHunt processM from Theorem 4.1 with coordinates Xt =
(X1

t , . . . , X
d
t ). Let (σi j )1≤i≤d,1≤ j≤l , l ∈ N arbitrary but fixed, be anymatrix consisting

of continuous functions σi j ∈ C(Rd) for all i, j , such that A = σσ T , i.e.,

ai j (x) =
l∑

k=1

σik(x)σ jk(x), ∀x ∈ R
d , 1 ≤ i, j ≤ d.
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Then on a standard extension of (�,F , (Ft )t≥0,Px ), x ∈ R
d , that we denote for

notational convenience again by (�,F , (Ft )t≥0,Px ), x ∈ R
d , there exists a standard

l-dimensional Brownian motion W = (W 1, . . . ,Wl) starting from zero such that
Px -a.s. for any x = (x1, . . . , xd) ∈ R

d , i = 1, . . . , d

Xi
t = xi +

l∑

j=1

∫ t

0
σi j (Xs) dW

j
s +

∫ t

0
gi (Xs) ds, 0 ≤ t < ζ. (26)

The non-explosion result andmoment inequality of order 1 in the following theorem
is new and allows for linear growth together with Lq(Rd ,m)-growth and singularities
of the drift. However, the growth condition on the dispersion coefficient is unusually of
square root order, but can allow L p(Rd ,m)-growth. The theoremcomplements various
other non-explosion results from [12] and existing literature. And it complements in
particular [12, Theorem 4.4], where a usual linear growth condition (that however does
not allow for Lq(Rd ,m)-singularities of the drift) on dispersion and drift coefficients
is used to show moment inequalities of orders s > 0 and s = 2.

Theorem 4.4. Let σ = (σi j )1≤i, j≤d be as in Theorem 4.3, i.e., l = d (such σ

always exists, cf. [12, Lemma 3.18]) and assume that for some h1 ∈ L p(Rd ,m),
h2 ∈ Lq(Rd ,m) and C > 0 it holds for a.e. x ∈ R

d

max
1≤i, j≤d

|σi j (x)| ≤ |h1(x)| + C(
√‖x‖ + 1), max

1≤i≤d
|gi (x)| ≤ |h2(x)| + C(‖x‖ + 1).

ThenM is non-explosive and for any T > 0, and any open ball B, there exist constants
C5,T , depending in particular on B, and C6 such that

sup
x∈B

Ex

[
sup
s≤t

‖Xs‖
]

≤ C5,T · eC6·t , ∀t ≤ T .

Proof. Let x ∈ B and n ∈ N such that x ∈ Bn (Bn is the open ball about zero with
radius n in R

d ). Let 0 ≤ t ≤ T . Then with σn := inf{t > 0 : Xt ∈ R
d \ Bn}, n ≥ 1,

we obtain Px -a.s. for any 1 ≤ i ≤ d

sup
0≤s≤t∧σn

|Xi
s | ≤ |xi | +

d∑

j=1

sup
0≤s≤t∧σn

∣∣∣∣
∫ s

0
σi j (Xu) dW

j
u

∣∣∣∣ + sup
0≤s≤t∧σn

∫ s

0
|gi (Xu)| du.

By the Burkholder–Davis–Gundy inequality [14, Chapter IV. (4.2) Corollary] and (3),
there exists a constant C3,T , depending on ‖h1‖L2q (Rd ,m) and B, and constants c, C ,
such that

d∑

j=1

Ex

[
sup

0≤s≤t∧σn

∣∣∣∣
∫ s

0
σi j (Xu) dW

j
u

∣∣∣∣

]
≤

d∑

j=1

cEx

[∫ t∧σn

0
σ 2
i j (Xu)du

]1/2

≤ C3,T + C
√
3cd

∫ t

0
Ex

[
sup

0≤s≤u∧σn

‖Xs‖
]
du,



Vol. 21 (2021) Existence and regularity of infinitesimally invariant measures 619

and

Ex

[
sup

0≤s≤t∧σn

∫ s

0
|gi (Xu)|du

]

≤ eT cB,q,T ‖h2‖Lq (Rd ,m) + CT
︸ ︷︷ ︸

=:C4,T

+C
∫ t

0
Ex

[
sup

0≤s≤u∧σn

‖Xs‖
]
du.

Hence, for some constants C5,T and C6

Ex

[
sup

0≤s≤t∧σn

‖Xs‖
]

≤ C5,T + C6

∫ t

0
Ex

[
sup

0≤s≤u∧σn

‖Xs‖
]
du.

Now let pn(t) := Ex
[
sup0≤s≤t∧σn

‖Xs‖
]
. Then, by (27), we obtain

pn(t) ≤ C5,T + C6

∫ t

0
pn(u)du, 0 ≤ t ≤ T .

By Gronwall’s inequality, pn(t) ≤ C5,T · eC6·t for any t ∈ [0, T ]. Using, in particular,
the Markov inequality,

Px (σn ≤ T ) ≤ 1

n
C5,T · eC6·T .

Therefore, letting n → ∞ and using the analogue of Lemma 3.15(i) in [12] (cf.
Remark 4.2), we obtain Px (ζ = ∞) = 1. Finally, applying Fatou’s lemma to pn(t),
we obtain

Ex

[
sup
s≤t

‖Xs‖
]

≤ C5,T · eC6·t , ∀t ≤ T .

Since the right-hand side does not depend on x ∈ B, the assertion follows. �

Example 4.5. Let η ∈ C∞
0 (B1/4) be given. Define w : Rd → R by

w(x1, . . . , xd) := η(x1, . . . , xd) ·
∫ x1

−2

1

|y1|1/d 1[−1,1](y1)dy1.

Then w ∈ H1,q(Rd) ∩ C0(B1/4) but ∂1w /∈ Ld
loc(R

d). Define v : Rd → R by

v(x1, . . . , xd) := w(x1, . . . , xd) +
∞∑

i=1

1

2i
w(x1 − i, . . . , xd)

Then v ∈ H1,q(Rd) ∩ C(Rd) but ∂1v /∈ Ld
loc(R

d). Now define P = (pi j )1≤i, j≤d as

p1d := v, pd1 := −v, pi j := 0 if (i, j) /∈ {(1, d), (d, 1)}.
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Let Q = (qi j )1≤i, j≤d be a matrix of functions such that qi j = −qi j ∈ H1,q
loc (Rd) ∩

C(Rd) for all 1 ≤ i, j ≤ d and assume there exists a constant C > 0 satisfying

‖∇Q‖ ≤ C(‖x‖ + 1), for a.e. on Rd .

Let A := id, C := P + Q and H ≡ 0. Then A and C satisfy assumption (a) with
G := 1

2∇(A+CT ) and assumption (b) is satisfied.Defineρ ≡ 1onRd . Thenρ satisfies
(13) and B ≡ 0. Obviously σ = id andG satisfy the conditions of Theorem 4.4. Thus
M from Theorem 4.1 is non-explosive. Note that the non-explosion criterion of this
example can not be derived from [17, Proposition 1.10], nor from [12, (3)] or for
instance [8, Assumption 2.1] (one of the pioneering works on local and global well-
posedness of SDEs with unbounded merely measurable drifts), sinceG has a part with
infinitely many singular points outside an arbitrarily large compact set and may have
a part with linear growth.

4.2. Uniqueness in law under low regularity

Let M̃ = (�̃, F̃ , (X̃t )t≥0, (̃Px )x∈Rd∪{�}) be a right process (see for instance [22]).
For a σ -finite or finite Borel measure ν on R

d we define

P̃ν(·) :=
∫

Rd
P̃x (·) ν(dx).

Consider (L ,C∞
0 (Rd)) as defined in (12). According to [17,Definition 2.5], we define:

Definition 4.6. A right process M̃ = (�̃, F̃ , (X̃t )t≥0, (̃Px )x∈Rd∪{�}) with state
space R

d and natural filtration (F̃t )t≥0 is said to solve the martingale problem for
(L ,C∞

0 (Rd)), if for all u ∈ C∞
0 (Rd):

(i)
∫ t
0 Lu(X̃s) ds, t ≥ 0, is P̃m-a.e. independent of themeasurablem-version chosen
for Lu.

(ii) u(X̃t )−u(X̃0)−
∫ t
0 Lu(X̃s) ds, t ≥ 0, is a continuous (F̃t )t≥0-martingale under

P̃vm for any v ∈ B+
b (Rd) such that

∫
Rd v dm = 1.

Definition 4.7. A σ -finite Borel measure ν on Rd is called sub-invariant measure for
a right process M̃ = (�̃, F̃ , (X̃t )t≥0, (̃Px )x∈Rd∪{�}) with state space Rd , if

∫

Rd
Ẽx [ f (X̃t )]ν(dx) ≤

∫

Rd
f (x)ν(dx) (27)

for any f ∈ L1(Rd , ν) ∩ Bb(R
d), f ≥ 0, t ≥ 0. ν is called invariant measure for M̃,

if “≤” can be replaced by “=” in (27)

Part (i) of the following proposition is proven in [17, Proposition 2.6]. And part (ii)
is a simple consequence of part (i), the strong Feller property of (pMt )t≥0, M as in
Theorem 4.1, and the fact that the law of a right process is uniquely determined by its
transition function (and the initial condition).
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Proposition 4.8. (i) Let M̃ = (�̃, F̃ , (X̃t )t≥0, (̃Px )x∈Rd∪{�}) solve the martingale
problem for (L ,C∞

0 (Rd)) such that m is a sub-invariant measure for M̃ and let

(L ,C∞
0 (Rd)) be L1-unique. Then pM̃t f (x) := Ẽx [ f (X̃t )] is an m-version of

Tt f for all f ∈ L1(Rd ,m) ∩ Bb(R
d), t ≥ 0 and m is an invariant measure for

M̃.
(ii) If additionally to the assumptions in (i), (pM̃t )t≥0 is strong Feller, then P̃x = Px

for any x ∈ R
d .

Proposition 4.9. Suppose that assumptions (a) and (b) hold, and that for any compact
set K in Rd , there exist LK ≥ 0, αK ∈ (0, 1) with

|ai j (x) − ai j (y)| ≤ LK ‖x − y‖αK , ∀x, y ∈ K , 1 ≤ i, j ≤ d.

Suppose further that m is an invariant measure for M. Let M̃ be a right process
with strong Feller transition function (pM̃t )t≥0 that solves the martingale problem for
(L ,C∞

0 (Rd)) and such that m is a sub-invariant measure for M̃. Then P̃x = Px for
any x ∈ R

d .

Proof. By [17, Corollary 2.2] (L ,C∞
0 (Rd)) is L1-unique, if and only if m is an

invariant measure for M. Then apply Proposition 4.8. �
Remark 4.10. Note that m is an invariant measure for M as in Theorem 4.1, if and
only if the co-semigroup (T̂t )t>0 of (Tt )t>0 is conservative. One advantage of our
approach is that we can use all previously derived conservativeness results for gen-
eralized Dirichlet forms (see for instance [17, Proposition 1.10], [6], [12], but also
Example 4.11).

Example 4.11. (i) Assume that assumptions (a) and (b) hold and that the ai j are
locally Hölder continuous on Rd as in Proposition 4.9. If there exists a constant
C > 0 and some N0 ∈ N, such that

− 〈A(x)x, x〉
‖x‖2 + 1

+ 1

2
traceA(x) + 〈

G(x), x
〉 ≤ −C

(
‖x‖2 + 1

)
(28)

for a.e. x ∈ R
d \ BN0 , thenM as in Theorem 4.1 solves the martingale problem

for (L ,C∞
0 (Rd)) and m is an invariant measure for M by the analogue of [12,

Proposition 4.17] (see Remark 4.2). In this situation Proposition 4.9 applies.
(ii) Let A,C andG be as in Example 4.5. By Theorem 4.4, not onlyM but also its co-

process M̂ is non-explosive. Hence dx is an invariant measure forM. Now if ai j
are locally Hölder continuous on R

d as in Proposition 4.9 then Proposition 4.9
also applies.

(iii) Suppose that in the situation of Remark 3.14 (i) the conditions of [12, Theo-
rem 4.11] (which are the adapted conditions from [7, Theorem 21]) hold with
B = B̃ and that the ai j are locally Hölder continuous onRd as in Proposition 4.9.
Then ρ dx is an invariant measure forM and Proposition 4.9 again applies.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.



622 H. Lee and G. Trutnau J. Evol. Equ.

REFERENCES

[1] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker-Planck-Kolmogorov
equations, Mathematical Surveys and Monographs, 207. American Mathematical Society, Provi-
dence, RI, 2015.

[2] V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, On positive and probability solutions of the
stationary Fokker–Planck–Kolmogorov equation, (Russian) Dokl. Akad. Nauk 444 (2012), no. 3,
245–249; translation in Dokl. Math. 85 (2012), no. 3, 350–354.

[3] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext.
Springer, New York, 2011.

[4] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Revised edition.
Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.

[5] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the
1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[6] M. Gim, G. Trutnau, Conservativeness criteria for generalized Dirichlet forms, Journal of Mathe-
matical Analysis and Applications, Volume 448, Issue 2, (2017), pp. 1419–1449.

[7] M. Gim, G. Trutnau, Recurrence criteria for generalized Dirichlet forms, J. Theoret. Probab. 31
(2018), no. 4, 2129–2166.

[8] I. Gyöngy, T. Martinez, On stochastic differential equations with locally unbounded drift,
Czechoslovak Math. J. (4) 51 (126) (2001) 763–783.

[9] Q. Han, F. Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics,
American Mathematical Society, Providence, RI, 1997.

[10] N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, 14. Springer-Verlag,
New York-Berlin, 1980.

[11] N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential
Equations 32 (2007), no. 1-3, 453–475.

[12] H. Lee, G. Trutnau, Existence, uniqueness and ergodic properties for time-homogeneous Itô-SDEs
with locally integrable drifts and Sobolev diffusion coefficients, to appear in The Tohoku Mathe-
matical Journal, arXiv:1708.01152v4.

[13] G. Da Prato, J. Zabczyk, Ergodicity for infinite-dimensional systems, LondonMathematical Society
Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.

[14] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Third edition. Grundlehren der
Mathematischen Wissenschaften 293. Springer-Verlag, Berlin, 1999.

[15] A. Rozkosz, Stochastic representation of diffusions corresponding to divergence form operators,
Stochastic Process. Appl. 63 (1996), no. 1, 11–33.

[16] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coeffi-
cients discontinus (French), Ann. Inst. Fourier (Grenoble), 15 1965 fasc. 1, 189–258.

[17] W. Stannat, (Nonsymmetric) Dirichlet operators on L1: Existence, uniqueness and associated
Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28. 1999. No. 1. 99-140.

[18] D.W. Stroock,Diffusion semigroups corresponding to uniformly elliptic divergence form operators,
Séminaire de Probabilités, XXII, 316–347, Lecture Notes in Math., 1321, Springer, Berlin, 1988.

[19] M. Takeda, G. Trutnau, Conservativeness of non-symmetric diffusion processes generated by per-
turbed divergence forms, Forum Math. 24 (2012), no. 2, 419–444.

[20] N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup.
Pisa (3) 27 (1973), 265–308.

[21] N. S. Trudinger, Maximum principles for linear, non-uniformly elliptic operators with measurable
coefficients, Math. Z. 156 (1977), no. 3, 291–301.

[22] G. Trutnau, On Hunt processes and strict capacities associated with generalized Dirichlet forms,
Infin. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005), no. 3, 357-382.

[23] X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion
coefficients, Electron. J. Probab. 16 (2011), no. 38, 1096–1116.

http://arxiv.org/abs/1708.01152v4


Vol. 21 (2021) Existence and regularity of infinitesimally invariant measures 623

Haesung Lee and Gerald Trutnau
Department of Mathematical Sciences
and Research Institute of Mathematics
of Seoul National University
1 Gwanak-Ro, Gwanak-Gu
Seoul 08826
South Korea
E-mail: fthslt14@gmail.com

Gerald Trutnau
E-mail: trutnau@snu.ac.kr


	Existence and regularity of infinitesimally invariant measures, transition functions and time-homogeneous Itô-SDEs
	Abstract
	1. Introduction
	2. Terminologies and notations
	3. Analytic results
	3.1. Elliptic H1,p-regularity and H1,p-estimates
	3.2. Existence of an infinitesimally invariant measure and construction of a generalized Dirichlet form
	3.3. Regularity results for resolvent and semigroup 

	4. Probabilistic results
	4.1. The underlying SDE
	4.2. Uniqueness in law under low regularity

	REFERENCES




