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A doubly critical semilinear heat equation in the L1 space
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Abstract. We study the existence and nonexistence for a Cauchy problem of the semilinear heat equation:{
∂t u = �u + |u|p−1u in R

N × (0, T ),

u(x, 0) = φ(x) in R
N

in L1(RN ). Here, N ≥ 1, p = 1 + 2/N and φ ∈ L1(RN ) is a possibly sign-changing initial function.
Since N (p − 1)/2 = 1, the L1 space is scale critical and this problem is known as a doubly critical
case. It is known that a solution does not necessarily exist for every φ ∈ L1(RN ). Let Xq := {φ ∈
L1loc(R

N ) | ∫
RN |φ| [log(e + |φ|)]q dx < ∞}(⊂ L1(RN )). In this paper, we construct a local-in-time

mild solution in L1(RN ) for φ ∈ Xq if q ≥ N/2. We show that, for each 0 ≤ q < N/2, there is a
nonnegative initial function φ0 ∈ Xq such that the problem has no nonnegative solution, using a necessary
condition given by Baras–Pierre (Ann Inst Henri Poincaré Anal Non Linéaire 2:185–212, 1985). Since
Xq ⊂ XN/2 for q ≥ N/2, XN/2 becomes a sharp integrability condition. We also prove a uniqueness in a
certain set of functions which guarantees the uniqueness of the solution constructed by our method.

1. Introduction and main results

We consider the existence and nonexistence for a Cauchy problem of the semilinear
heat equation {

∂t u = �u + |u|p−1u in RN × (0, T ),

u(x, 0) = φ(x) in RN ,
(1.1)

where N ≥ 1, p = 1+ 2/N and φ is a possibly sign-changing initial function. When
φ ∈ L∞(RN ), one can easily construct a solution by using a fixed point argument.
When φ �∈ L∞(RN ), the solvability depends on the balance between the strength of
the singularity of φ and the growth rate of the nonlinearity. Weissler [13] studied the
solvability of (1.1), and obtained the following:

Proposition 1.1. Let qc := N (p − 1)/2. Then, the following (i) and (ii) hold:

(i) (Existence, subcritical and critical cases) Assume either both q > qc and q ≥ 1
or q = qc > 1. The problem (1.1) has a local-in-time solution for φ ∈ Lq(RN ).
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(ii) (Nonexistence, supercritical case) For each 1 ≤ q < qc, there is φ ∈ Lq(RN )

such that (1.1) has no local-in-time nonnegative solution.

Let u(x, t) be a function such that u satisfies the equation in (1.1). We consider
the scaled function uλ(x, t) := λ2/(p−1)u(λx, λ2t). Then, uλ also satisfies the same
equation. We can easily see that ‖uλ(x, 0)‖q = ‖u(x, 0)‖q if and only if q = qc.
It is well known that qc is a threshold as Proposition 1.1 shows. However, the case
q = qc = 1, i.e., p = 1+ 2/N , is not covered by Proposition 1.1, and it is known that
there is a nonnegative initial function φ ∈ L1(RN ) such that (1.1) with p = 1+ 2/N
has no local-in-time nonnegative solution. See Brezis–Cazenave [2, Theorem 11],
Celik–Zhou [3, Theorem 4.1] or Laister et al. [7, Corollary 4.5] for nonexistence
results. See [1,6,11] and references therein for existence and nonexistence results
with measures as initial data. In [2, Section 7.5], the case p = 1 + 2/N is referred to
as “doubly critical case.” Several open problems were given in [2]. It was mentioned
in [14, p.32] that (1.1) has a local-in-time solution if φ ∈ L1(RN ) ∩ Lq(RN ) for
some q > 1. However, a solvability condition was not well studied. See Table 1. For
a detailed history about the existence, nonexistence and uniqueness of (1.1), see [3,
Section 1].
In this paper, we obtain a sharp integrability condition on φ ∈ L1(RN ) which

determines the existence and nonexistence of a local-in-time solution in the case
p = 1 + 2/N . We also show that a solution constructed in Theorem 1.3 is unique in
a certain set of functions. Throughout the present paper, we define f (u) := |u|p−1u.
Let Lq(RN ), 1 ≤ q ≤ ∞, denote the usual Lebesgue space on RN equipped with the
norm ‖ · ‖q . For φ ∈ L1(RN ), we define

S(t)[φ](x) :=
∫
RN

Gt (x − y)φ(y)dy,

where Gt (x − y) := (4π t)−N/2 exp
(
−|x−y|2

4t

)
. The function S(t)[φ] is a solution of

the linear heat equation with initial function φ. We give a definition of a solution of
(1.1).

Definition 1.2. Let u and ū be measurable functions on R
N × (0, T ).

(i) (Integral solution) We call u an integral solution of (1.1) if there is T > 0 such
that u satisfies the integral equation

u(t) = F[u](t) a.e. x ∈ R
N , 0 < t < T, and

‖u(t)‖∞ < ∞ for 0 < t < T, (1.2)

where

F[u](t) := S(t)φ +
∫ t

0
S(t − s) f (u(s))ds.

(ii) (Mild solution) We call u a mild solution if u is an integral solution and u(t) ∈
C([0, T ), L1(RN )).
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(iii) We call ū a supersolution of (1.1) if ū satisfies the integral inequality F[ū](t) ≤
ū(t) < ∞ for a.e. x ∈ R

N , 0 < t < T .

For 0 ≤ q < ∞, we define a set of functions by

Xq :=
{
φ(x) ∈ L1

loc(R
N )

∣∣∣∣
∫
RN

|φ| [log(e + |φ|)]q dx < ∞
}

.

It is clear that Xq ⊂ L1(RN ) and that Xq1 ⊂ Xq2 if q1 ≥ q2. The main theorem of
the paper is the following:

Theorem 1.3. Let N ≥ 1 and p = 1 + 2/N. Then, the following (i) and (ii) hold:

(i) (Existence) If φ ∈ Xq for some q ≥ N/2, then (1.1) has a local-in-time mild
solution u(t), and this mild solution satisfies the following:

there is C > 0 such that ‖u(t)‖∞ ≤ Ct−
N
2 (− log t)−q for small t > 0. (1.3)

In particular, (1.1) has a local-in-time mild solution for every φ ∈ XN/2.
(ii) (Nonexistence) For each 0 ≤ q < N/2, there is a nonnegative initial function

φ0 ∈ Xq, which is explicitly given by (4.1), such that (1.1) has no local-in-time
nonnegative integral solution, and hence (1.1) has no local-in-time nonnegative
mild solution.

Remark 1.4. (i) The function φ in Theorem 1.3(i) is not necessarily nonnegative.
(ii) Theorem1.3 indicates that XN/2(⊂ L1(RN )) is an optimal set of initial functions

for the case p = 1 + 2/N and XN/2 is slightly smaller than L1(RN ). This
situation is different from the case p > 1 + 2/N , since (1.1) is always solvable
in the scale critical space LN (p−1)/2 for p > 1 + 2/N (Proposition 1.1 (i)).

(iii) L1(RN ) is larger than the optimal set for p = 1 + 2/N . On the other hand,
it follows from Proposition 1.1(i) that if 1 < p < 1 + 2/N , then (1.1) has a
solution for all φ ∈ L1(RN ). Therefore, L1(RN ) is small enough for the case
1 < p < 1 + 2/N .

(iv) The function φ0 given in Theorem 1.3(ii) is modified from ψ(x) given by (1.9).
This function comes from Baras–Pierre [1], and Theorem 1.3(ii) is a rather easy
consequence of [1, Proposition 3.2]. However, we include Theorem 1.3(ii) for a
complete description of the borderline property of XN/2.

(v) Laister et al. [7] obtained a necessary and sufficient condition for the existence
of a local-in-time nonnegative solution of{

∂t u = �u + h(u) in RN × (0, T ),

u(x, 0) = φ(x) ≥ 0 in RN .
(1.4)

They showed that when h(u) = u1+2/N [log(e+ u)]−r , (1.4) has a local-in-time
nonnegative solution for every nonnegativeφ ∈ L1(RN ) if 1 < r < λp, and (1.4)
does not always have if 0 ≤ r ≤ 1. Here, λ > 0 is a certain constant. Therefore,
the optimal growth of h(u) for L1(RN ) is slightly smaller than u1+2/N .
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(vi) The exponent p = 1 + 2/N , which is called Fujita exponent, also plays a key
role in the study of global-in-time solutions. If 1 < p ≤ 1 + 2/N , then every
nontrivial nonnegative solution of (1.1) blows up in a finite time. If p > 1+2/N ,
then (1.1) has a global-in-time nonnegative solution. See Fujita [4]. In particular,
in the case p = 1 + 2/N we cannot expect a global existence of a classical
solution for small initial data.

The next theorem is about the uniqueness of the integral solution in a certain class.

Theorem 1.5. Let N ≥ 1, p = 1 + 2/N and q > N/2. Then, an integral solution
u(t) of (1.1) is unique in the set{

u(t) ∈ L1(RN )

∣∣∣∣∣ sup
0≤t≤T

t N/2(− log t)q ‖u(t)‖∞ < ∞
}

. (1.5)

Therefore, a solution given by Theorem 1.3 is unique.

Remark 1.6. (i) If there were a solution that does not satisfy (1.5), then the unique-
ness fails. However, it seems to be an open problem.

(ii) In the case q = N/2, the uniqueness under (1.5) is left open.
(iii) For general p and q, the uniqueness of a solution of (1.1) is known in the set{

u(t) ∈ Lq(RN )

∣∣∣∣∣ sup
0≤t≤T

t
N
2

(
1
q − 1

pq

)
‖u(t)‖pq < ∞

}
.

SeeHaraux–Weissler [5] and [13]. For anunconditional uniquenesswith a certain
range of p and q, see [2, Theorem 4].

(iv) The nonuniqueness in Lq(RN ) is also known for (1.1). For p > 1 + 2/N and
1 ≤ q < N (p − 1)/2 < p + 1, see [5]. For p = q = N/(N − 2), see
Ni–Sacks [8] and Terraneo [12].

Let us mention technical details. We assume that φ ∈ Xq for some q ≥ N/2. Using
a monotone method, we construct a nonnegative mild solution w(t) of{

∂tw = �w + f (w) in RN × (0, T ),

w(x, 0) = |φ(x)| in RN .
(1.6)

We define g(u) by

g(u) := u
[
log(ρ + |u|)]q , (1.7)

where ρ > 1 is chosen appropriately. We will see that if ρ ≥ e, then g(u) is convex
for u ≥ 0 and g plays a crucial role in the construction of the solution of (1.6). In
order to construct a nonnegative solution we use a method developed by Robinson–
Sierżȩga [10] with the convex function g, which was also used in Hisa–Ishige [6]. We
define a sequence of functions (un)∞n=0 by{

un(t) = F[un−1](t) for 0 ≤ t < T if n ≥ 1,

u0(t) = 0.
(1.8)
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Then, we show that −w(t) ≤ un(t) ≤ w(t) for 0 ≤ t < T . Since |un(t)| ≤ w(t),
we can extract a convergent subsequence in Cloc(R

N × (0, T )), using a parabolic
regularization, the dominated convergence theorem and a diagonal argument. The
limit function becomes a mild solution of (1.1).
In the nonexistence part, we use a necessary condition for the existence of a nonneg-

ative solution of (1.1) obtained by Baras–Pierre [1], which is stated in Proposition 2.2
in the present paper. Using their result, one can show that there is c0 > 0 such that if
φ(x) ≥ c0ψ(x) in a neighborhood of the origin, then (1.1) has no nonnegative integral
solution. Here,

ψ(x) := |x |−N (− log |x |)− N
2 −1 for 0 < |x | < 1/e. (1.9)

See also [6]. For each 0 ≤ q < N/2, we will see that a modified function φ0, which is
given by (4.1), belongs to Xq .We show that φ0 does not satisfy the necessary condition
for the existence of an integral solution stated in Proposition 2.2. Hence, (1.1) with φ0

has no nonnegative solution for each 0 ≤ q < N/2.
This paper consists of five sections. In Sect. 2, we recall known results including

a monotone method, a necessary condition on the existence for (1.1) and L p-Lq -
estimates. In Sect. 3, we prove Theorem 1.3(i). In Sect. 4, we prove Theorem 1.3(ii).
In Sect. 5, we prove Theorem 1.5.

2. Preliminaries

First, we recall the monotonicity method.

Lemma 2.1. Let 0 < T ≤ ∞, and let f be a continuous nondecreasing function such
that f (0) ≥ 0. The problem (1.1) has a nonnegative integral solution for 0 < t < T
if and only if (1.1) has a nonnegative supersolution for 0 < t < T . Moreover, if a
nonnegative supersolution ū(t) exists, then the solution u(t) obtained in this lemma
satisfies 0 ≤ u(t) ≤ ū(t).

Proof. This lemma is well known. See [10, Theorem 2.1] for details. However, we
briefly show the proof for readers’ convenience.
If (1.1) has an integral solution, then the solution is also a supersolution. Thus, it is

enough to show that (1.1) has an integral solution if (1.1) has a supersolution. Let ū
be a supersolution for 0 < t < T . Let u1 = S(t)φ. We define un , n = 2, 3, . . ., by

un = F[un−1].
Then, we can show by induction that

0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ ū < ∞ a.e. x ∈ R
N , 0 < t < T .

This indicates that the limit limn→∞ un(x, t) which is denoted by u(x, t) exists for
almost all x ∈ R

N and 0 < t < T . By the monotone convergence theorem, we see
that
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lim
n→∞F[un−1] = F[u],

and hence u = F[u]. Then, u is an integral solution of (1.1). It is clear that 0 ≤ u(t) ≤
ū(t). �

Baras–Pierre [1] studied necessary conditions for the existence of an integral so-
lution in the case p > 1. See also [6] for details of necessary conditions including
Proposition 2.2. The following proposition is a variant of [1, Proposition 3.2].

Proposition 2.2. Let N ≥ 1 and p = 1 + 2/N. If u(t) is a nonnegative integral
solution, i.e., u(t) satisfies (1.2)with a nonnegative initial function φ and some T > 0,
then there exists a constant γ0 > 0 depending only on N and p such that∫

B(τ )

φ(x)dx ≤ γ0| log τ |− N
2 for all 0 < τ < T, (2.1)

where B(τ ) := {x ∈ R
N | |x | < τ }.

Lemma 2.3. Let q ≥ 0 be fixed, and let

Xq,ρ :=
{
φ ∈ L1(RN )

∣∣∣∣
∫
RN

|φ| [log(ρ + |φ|)]q dx < ∞
}

. (2.2)

Then, φ ∈ Xq,ρ for all ρ > 1 if and only if φ ∈ Xq,σ for some σ > 1.

Proof. We consider only the case q > 0. It is enough to show that φ ∈ Xq,ρ for all ρ >

1 if φ ∈ Xq,σ for some σ > 1. Let ρ > 1 be fixed, and let ξ(s) := log(ρ+s)/(log(σ +
s)). By L’Hospital’s rule, we see that lims→∞ ξ(s) = lims→∞(s + σ)/(s + ρ) = 1.
Since ξ(s) is bounded on each compact interval in [0,∞), we see that ξ(s) is bounded
in [0,∞), and hence there is C > 0 such that log(ρ + s) ≤ C log(σ + s) for s ≥ 0.
This inequality indicates that φ ∈ Xq,ρ if φ ∈ Xq,σ . �

Because of Lemma 2.1, we do not care about ρ > 1 in (2.2). In particular, if φ ∈ Xq ,
then ‖g(φ)‖1 < ∞ for every ρ > 1.

Proposition 2.4. (i) Let N ≥ 1 and 1 ≤ α ≤ β ≤ ∞. There is C > 0 such that,
for φ ∈ Lα(RN ),

‖S(t)φ‖β ≤ Ct
− N

2

(
1
α
− 1

β

)
‖φ‖α for t > 0.

(ii) Let N ≥ 1 and 1 ≤ α < β ≤ ∞. Then, for each φ ∈ Lα(RN ) and C0 > 0,
there is t0 = t0(C0, φ) such that

‖S(t)φ‖β ≤ C0t
− N

2

(
1
α
− 1

β

)
for 0 < t < t0.

For Proposition 2.4(i) (resp. (ii)), see [9, Proposition 48.4] (resp. [2, Lemma 8]).
Note that C0 > 0 in (ii) can be chosen arbitrary small.
We collect various properties of g defined by (1.7).
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Lemma 2.5. Let q > 0 and let g1(s) := s[log(ρ + s)]−q . Then, the following holds:

(i) If ρ > 1, then g′(s) > 0 for s > 0.
(ii) If ρ ≥ e, then g′′(s) > 0 for s > 0.
(iii) If ρ ≥ e, then g1(s) ≤ g−1(s) for s ≥ 0.
(iv) If ρ > 1, then there is C1 > 0 such that g−1(s) ≤ g1(C1s) for s ≥ 0.
(v) If ρ > eq/(p−1), then g−1(s)p/s is nondecreasing for s ≥ 0.
(vi) If ρ ≥ e, then, for φ ∈ L1(RN ),

S(t)φ ≤ g−1(S(t)g(φ)) for t ≥ 0.

Proof. By direct calculation, we have

g′(s) = [log(ρ + s)]q−1
{
log(ρ + s) + qs

s + ρ

}
,

g′′(s) = q[log(s + ρ)]q−2

(s + ρ)2

[
s {log(ρ + s) + q − 1} + 2ρ log(ρ + s)

]
.

Thus, (i) and (ii) hold.
(iii) Since ρ ≥ e, we have

g(g1(s)) = s

[log(ρ + s)]q
[
log

(
ρ + s

[log(ρ + s)]q
)]q

≤ s

[log(ρ + s)]q [log(ρ + s)]q = s (2.3)

for s ≥ 0. By (i), we see that g−1(s) exists and it is increasing. By (2.3), we see that
g1(s) ≤ g−1(s) for s ≥ 0.
(iv) Let ξ(s) := (g(g1(s))/s)1/q = log(ρ + s

[log(ρ+s)]q )/(log(ρ + s)). Then, for
each compact interval I ⊂ [0,∞), there is c > 0 such that ξ(s) > c for s ∈ I . By
L’Hospital’s rule, we have

lim
s→∞ ξ(s) = lim

s→∞
1 + ρ

s

1 + ρ
s [log(ρ + s)]q

{
1 − 1

1 + ρ
s

q

log(ρ + s)

}
= 1,

and hence there is c0 > 0 such that ξ(s) ≥ c0 for s ≥ 0. Thus, g−1(cq0 s) ≤ g1(s) for
s ≥ 0. Then, the conclusion holds.
(v) By (i), we see that g(τ ) is increasing. Let s := g(τ ). Then, g−1(s)p/s =

τ p−1
[
log(ρ + τ)

]−q . Since ρ > eq/(p−1), we have

d

dτ

τ p−1

[log(ρ + τ)]q = τ p−2

[log(ρ + τ)]q+1

{
(p − 1) log(ρ + τ) − qτ

ρ + τ

}
> 0.

Thus, g−1(s)p/s is increasing for s ≥ 0.
(vi) Because of (ii), g is convex. By Jensen’s inequality, we see that g(S(t)φ) ≤

S(t)g(φ). Since g−1 exists and g−1 is increasing, the conclusion holds. The proof is
complete. �
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3. Existence

Lemma 3.1. Let N ≥ 1 and p = 1 + 2/N. Assume that φ ≥ 0. If φ ∈ Xq for
some q ≥ N/2, then (1.1) has a local-in-time nonnegative mild solution u(t), and
‖u(t)‖∞ ≤ Ct−N/2(− log t)−q for small t > 0.

Proof. First, we consider the case q = N/2. Let ρ ≥ max{eq/(p−1), e} be fixed. Let
g be defined by (1.7). Here, q = N/2 and g satisfies Lemma 2.5. We define

ū(t) := 2g−1(S(t)g(φ)).

We show that ū is a supersolution. By Lemma 2.5(vi), we have

S(t)φ ≤ g−1 (S(t)g(φ)) = ū(t)

2
. (3.1)

Next, we have∫ t

0
S(t − s) f (ū(s))ds

= 2p
∫ t

0
S(t − s)

[
S(s)g(φ)

g−1 (S(s)g(φ))p

S(s)g(φ)

]
ds

≤ 2pS(t)g(φ)

∫ t

0

∥∥∥∥g−1 (S(s)g(φ))p

S(s)g(φ)

∥∥∥∥∞
ds

≤ 2pg−1 (S(t)g(φ))

∥∥∥∥ S(t)g(φ)

g−1 (S(t)g(φ))

∥∥∥∥∞

∫ t

0

∥∥∥∥g−1 (S(s)g(φ))p

S(s)g(φ)

∥∥∥∥∞
ds. (3.2)

Since g(φ) ∈ L1(RN ), by Proposition 2.4(ii) we have

‖S(t)g(φ)‖∞ ≤ C0t
−N/2. (3.3)

By Lemma 2.5(v), we see that g−1(u)p/u is nondecreasing for u ≥ 0. Using (3.3)
and Lemma 2.5(iv), we have∥∥∥∥g−1 (S(s)g(φ))p

S(s)g(φ)

∥∥∥∥∞
≤ g−1

(‖S(s)g(φ)‖∞
)p

‖S(s)g(φ)‖∞

≤ g−1(C0s−N/2)p

C0s−N/2 ≤ C p
1 C

2/N
0

s
[
log

(
ρ + C0C1s−N/2

)]pq ≤ C2/N
0 C ′

1

s(− log s)pq
(3.4)

for 0 < s < s0(C0), where C ′
1 is a constant independent of C0. Using Lemma 2.5(iii)

and (3.3), we have∥∥∥∥ S(t)g(φ)

g−1 (S(t)g(φ))

∥∥∥∥∞
≤

∥∥∥∥ S(t)g(φ)

g1(S(t)g(φ))

∥∥∥∥∞
= ∥∥[

log(ρ + S(t)g(φ))
]q∥∥∞

≤ [
log(ρ + ‖S(t)g(φ)‖∞)

]q ≤
[
log(ρ + C0t

−N/2)
]q ≤ C ′

2(− log t)q (3.5)
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for 0 < t < t0(C0), where g1 is defined in Lemma 2.5 andC ′
2 is a constant independent

of C0. By (3.4) and (3.5) we have∥∥∥∥ S(t)g(φ)

g−1 (S(t)g(φ))

∥∥∥∥∞

∫ t

0

∥∥∥∥g−1 (S(s)g(φ))p

S(s)g(φ)

∥∥∥∥∞
ds

≤ C2/N
0 C ′

1C
′
2(− log t)q

∫ t

0

ds

s(− log s)pq

= C2/N
0 C ′

1C
′
2(− log t)q

2

N (− log t)q
= C2/N

0 C ′
1C

′
2
2

N
(3.6)

for 0 < t < min{s0(C0), t0(C0)}. By Proposition 2.4(ii), we can take C0 > 0 such
that 2p+1C2/N

0 C ′
1C

′
2/N < 1. By (3.1), (3.2) and (3.6), we have

F[ū](t) = S(t)φ +
∫ t

0
S(t − s) f (ū(s))ds ≤ 1

2
ū(t) + 1

2
ū(t) = ū(t)

for small t > 0. Thus, there is T > 0 such that F[ū] ≤ ū for 0 < t < T , and hence
ū is a supersolution. By Lemma 2.1, we see that there is T > 0 such that (1.1) has a
solution for 0 < t < T , and u(t) is clearly nonnegative. Moreover,

0 ≤ u(t) ≤ ū(t) = 2g−1(S(t)g(φ)) ≤ Ct−
N
2 (− log t)−q , (3.7)

which is the estimate in the assertion. We show that u(t) ∈ C([0, T ), L1(RN )). Since∥∥g−1(u)
∥∥
1 ≤ C ‖u‖1, by (3.6) and Proposition 2.4(i) we have

‖u(t) − S(t)φ‖1 ≤
∥∥∥∥
∫ t

0
S(t − s) f (ū(s))ds

∥∥∥∥
1

≤ C2/N
0 C ′

1C
′
2
2

N

∥∥∥g−1(S(t)g(φ))

∥∥∥
1

≤ C2/N
0 C ′

1C
′
2
2

N
C ‖S(t)g(φ)‖1 ≤ C2/N

0 C ′
1C

′
2
2

N
C ′ ‖g(φ)‖1 (3.8)

for small t > 0, where C ′ is independent of C0. By Proposition 2.4(ii), we can take
C0 > 0 arbitrary small, and hence

‖u(t) − S(t)φ‖1 → 0 as t ↓ 0.

Since S(t) is a strongly continuous semigroup on L1(RN ) (see e.g., [9, Section 48.2]),
we have

‖u(t) − φ‖1 ≤ ‖u(t) − S(t)φ‖1 + ‖S(t)φ − φ‖1 → 0 as t ↓ 0. (3.9)

It follows from (3.2) and (3.6) that
∥∥∥∫ t

0 S(t − s) f (ū(s))ds
∥∥∥
1

< ∞ for 0 < t < T .

We see that if 0 < t < T , then

‖u(t + h) − u(t)‖1 → 0 as h → 0. (3.10)

By (3.9) and (3.10),we see thatu(t) ∈ C([0, T ), L1(RN )). Theproof of (i) is complete.
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Next, we consider the case q > N/2. The argument is the same until (3.6). We
have ∥∥∥∥ S(t)g(φ)

g−1 (S(t)g(φ))

∥∥∥∥∞

∫ t

0

∥∥∥∥g−1 (S(s)g(φ))p

S(s)g(φ)

∥∥∥∥∞
ds

≤ C2/N
0 C ′

1C
′
2(− log t)q

∫ t

0

ds

s(− log s)pq

= C2/N
1 C ′

1C
′
2

pq − 1
(− log t)1−

2q
N (3.11)

instead of (3.6). Since theRHSof (3.11) goes to 0 as t ↓ 0, the rest of the proof is almost
the same with obvious modifications. In particular, (3.7) holds even for q > N/2. We
omit the details. �

We consider (1.6), where φ is given in (1.1). By Lemma 3.1, we see that (1.6) has
a local-in-time solution which is denoted by w(t). We consider the sequence (un)∞n=0
defined by (1.8). Then, the following lemma says that ‖un(t)‖∞ can be controlled by
w(t).

Lemma 3.2. Let un be as defined by (1.8), and let w be a solution of (1.6) on (0, T ).
Then,

− w(t) ≤ un(t) ≤ w(t) fora.e. x ∈ R
N and 0 < t < T . (3.12)

Proof. It is clear from the definitions of u0 and w(t) that

u0(t) ≤ w(t) for 0 < t < T .

We assume that un−1(t) ≤ w(t) on (0, T ). Then, we have

w(t) = S(t)|φ| +
∫ t

0
S(t − s) f (w(s))ds

≥ S(t)φ +
∫ t

0
S(t − s) f (un−1(s))ds

= un(t),

and hence un(t) ≤ w(t) for 0 < t < T . Thus, by induction we see that, for n ≥ 0,

un(t) ≤ w(t) on 0 < t < T . (3.13)

It is clear that u0(t) ≥ −w(t) for 0 < t < T . We assume that un−1(t) ≥ −w(t) on
(0, T ). Then, we have

un(t) = S(t)φ +
∫ t

0
S(t − s) f (un−1(s))ds

≥ −S(t)|φ| +
∫ t

0
S(t − s) f (−w(s))ds = −w(t),
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and hence, un(t) ≥ −w(t) on (0, T ). Thus, by induction we see that for n ≥ 0,

− w(t) ≤ un(t) on 0 < t < T . (3.14)

By (3.13) and (3.14), we see that (3.12) holds. �

Proof of Theorem 1.3. (i) Let (un)∞n=0 be defined by (1.8). Using an induction ar-
gument with a parabolic regularity theorem, we can show that, for each n ≥ 1,
un ∈ C2,1(RN × (0, T )) and un satisfies the equation

∂t un = �un + f (un−1) in R
N × (0, T )

in the classical sense. Let K be an arbitrary compact subset in R
N × (0, T ), and let

K1, K2 be two compact sets such that K ⊂ K1 ⊂ K2 ⊂ R
N × (0, T ). Because of

Lemma 3.2, f (un−1) is bounded in C(K2). By a parabolic regularity theorem, we see
that un is bounded in Cγ,γ /2(K1). Using a parabolic regularity theorem again, we see
that un+1 is bounded in C2+γ,1+γ /2(K ).

In the following, we use a diagonal argument to obtain a convergent subsequence

in R
N × (0, T ). Let Q j := {x ∈ RN | |x | ≤ j} ×

[
T
j+2 ,

( j+1)T
j+2

]
. Since (un)∞n=3 is

bounded inC2,1(Q1), by Ascoli–Arzerà theorem there is a subsequence (u1,k) ⊂ (un)
and u∗

1 ∈ C(Q1) such that u1,k → u∗
1 in C(Q1) as k → ∞. Since (u1,k)∞k=1 is

bounded in C2,1(Q2), there is a subsequence (u2,k) ⊂ (u1,n) and u∗
2 ∈ C(Q2) such

that u2,k → u∗
2 in C(Q2) as k → ∞. Repeating this argument, we have a double

sequence (u j,k) and a sequence (u∗
j ) such that, for each j ≥ 1, u j,k → u∗

j in C(Q j )

as k → ∞. We still denote un,n by un , i.e., un := un,n . It is clear that u∗
j1

≡ u∗
j2
in Q j1

if j1 ≤ j2. Since RN × (0, T ) = ⋃∞
j=1 Q j , there is u∗ ∈ C(RN × (0, T )) such that

un → u∗ in C(K ) as n → ∞ for every compact set K ⊂ R
N × (0, T ). In particular,

un → u∗ a.e. in R
N × (0, T ). (3.15)

Let w be a solution of (1.6). It follows from Lemma 3.2 that |un(x, t)| ≤ w(x, t).
Since

|Gt (x − y)un(y, t)| ≤ |Gt (x − y)w(y, t)| for y ∈ R
N ,

and

Gt (x − y)w(y, t) ∈ L1
y(R

N ),

by the dominated convergence theorem we see that

lim
n→∞ S(t)un = lim

n→∞

∫
RN

Gt (s − y)un(y, t)dy

=
∫
RN

Gt (s − y)u∗(y, t)dy = S(t)u∗. (3.16)
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By (3.2) and (3.6), we see that if T > 0 is small, then∫ t

0

∫
RN

Gt−s(x − y) f (w(y, s))dyds ≤ Cg−1(S(t)g(φ)) < ∞

for each (x, t) ∈ R
N × (0, T ), and hence Gt−s(x − y) f (w(y, s)) ∈ L1

(y,s)(R
N ×

(0, T )). Since

|Gt−s(x − y) f (un−1(y, s))|
≤ |Gt−s(x − y) f (w(y, s))| for a.e. (y, s) ∈ R

N × (0, T )

and

Gt−s(x − y) f (w(y, s)) ∈ L1
(y,s)(R

N × (0, T )),

by the dominated convergence theorem we see that

lim
n→∞

∫ t

0
S(t − s) f (un−1(s))ds = lim

n→∞

∫ t

0

∫
RN

Gt−s(x − y) f (un−1(y, s))dyds

=
∫ t

0

∫
RN

Gt−s(x − y) f (u∗(y, s))dyds =
∫ t

0
S(t − s) f (u∗(s))ds. (3.17)

Thus, we take a limit of un = F[un−1]. By (3.15), (3.16) and (3.17), we see that
u∗(t) = F[u∗](t) for 0 < t < T .
Since |un| ≤ w, we see that |u∗| ≤ w. Since |u∗| ≤ w in RN × (0, T ), by (3.8) and

the arbitrariness of C0 > 0 we have

∥∥u∗(t) − S(t)φ
∥∥
1 =

∥∥∥∥
∫ t

0
S(t − s) f (u∗(s))ds

∥∥∥∥
1

≤
∥∥∥∥
∫ t

0
S(t − s) f (w(s))ds

∥∥∥∥
1

→ 0 as t ↓ 0.

Then, ‖u∗(t) − φ‖1 ≤ ‖u∗(t) − S(t)φ‖1 + ‖S(t)φ − φ‖1 → 0 as t ↓ 0. Since∥∥∥∫ t
0 S(t − s) f (w(s))

∥∥∥
1

< ∞ for 0 < t < T ,we can showbya similarway to theproof

of Lemma 3.1 that u∗(t) ∈ C((0, T ), L1(RN )). Thus, u∗(t) ∈ C([0, T ), L1(RN )),
and hence u∗(t) is a mild solution. Since |u∗(t)| ≤ w(t), by Lemma 3.1 we have (1.3).
The proof of (i) is complete. �

4. Nonexistence

Let 0 ≤ q < N/2 be fixed. Then, there is 0 < ε < N/2 − q. We define φ0 by

φ0(x) :=
{

|x |−N (− log |x |)− N
2 −1+ε if |x | < 1/e,

0 if |x | ≥ 1/e.
(4.1)
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Lemma 4.1. Let 0 ≤ q < N/2, and let φ0 be defined by (4.1). Then, the following
holds:

(i) φ0 ∈ Xq(⊂ L1(RN )).
(ii) The function φ0 does not satisfy (2.1) for any T > 0.

Proof. (i) We write φ0(r) = r−N (− log r)−N/2−1+ε for 0 < r < 1/e. Since log(e +
s) ≤ 1 + log s for s ≥ 0, we have

log(e + |φ0|) ≤ 1 − N log r −
(
N

2
+ 1 − ε

)
log(− log r) ≤ −2N log r (4.2)

for 0 < r < 1/e. Let B(τ ) := {x ∈ R
N | |x | < τ }. Using (4.2), we have

∫
B(1/e)

|φ0|
[
log(e + |φ0|)

]q
dx ≤ ωN−1

∫ 1/e

0

(2N )q(− log r)qr N−1dr

r N (− log r)N/2+1−ε

≤ (2N )qωN−1

∫ 1/e

0

dr

r (− log r)N/2+1−q−ε
= (2N )qωN−1

N
2 − q − ε

< ∞, (4.3)

where ωN−1 denotes the area of the unit sphere S
N−1 in R

N . By (4.3), we see that
φ0 ∈ Xq .
(ii) Suppose the contrary, i.e., there exists γ0 > 0 such that (2.1) holds. When

0 < τ < 1/e, we have∫
B(τ )

φ0(x)dx = ωN−1

∫ τ

0

dr

r(− log r)N/2+1−ε

= C

(− log τ)N/2−ε
,

where C > 0 is independent of τ . Then,

γ0 ≥
∫
B(τ )

φ0(x)dx

(− log τ)−N/2 ≥ C(− log τ)ε → ∞ as τ ↓ 0.

which is a contradiction. Thus, the conclusion holds. �

Proof of Theorem 1.3 (ii). Let 0 ≤ q < N/2. It follows from Lemma 4.1(i) that
φ0 ∈ Xq . By Lemma 4.1(ii), we see that there does not exist γ0 > 0 such that (2.1)
holds. By Proposition 2.2, the problem (1.1) with φ0 has no nonnegative integral
solution. �

5. Uniqueness

Proof of Theorem 1.5. Letq > N/2. Suppose that (1.1) has two integral solutionsu(t)
and v(t). Using Young’s inequality and the inequality ‖u(t)‖∞ ≤ Ct−N/2(− log t)−q ,
we have
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‖u(t) − v(t)‖1 ≤
∫ t

0

∥∥∥Gt−s ∗
{(

p|u|p−1 + p|v|p−1
)

(u − v)
}∥∥∥

1
ds

≤ p
∫ t

0
‖Gt−s‖1

(
‖u‖p−1∞ + ‖v‖p−1∞

)
ds sup

0≤s≤t
‖u(s) − v(s)‖1

≤ C
∫ t

0

ds{
sN/2(− log s)q

}p−1 sup
0≤s≤t

‖u(s) − v(s)‖1 .

Since ∫ t

0
s−N (p−1)/2(− log s)−(p−1)qds = N (− log t)1−2q/N

2q − N

and1−2q/N < 0,we can chooseT > 0 such thatC
∫ t
0 s

−N (p−1)/2(− log s)−(p−1)qds
< 1/2 for every 0 ≤ t ≤ T . Then, we have

sup
0≤t≤T

‖u(t) − v(t)‖1 ≤ 1

2
sup

0≤s≤T
‖u(s) − v(s)‖1 ,

which implies the uniqueness. �
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