Journal of Evolution Equations

A doubly critical semilinear heat equation in the L^1 space

ΥΑSUHITO ΜΙΥΑΜΟΤΟ

Abstract. We study the existence and nonexistence for a Cauchy problem of the semilinear heat equation:

$$\begin{cases} \partial_t u = \Delta u + |u|^{p-1} u & \text{in } \mathbb{R}^N \times (0, T), \\ u(x, 0) = \phi(x) & \text{in } \mathbb{R}^N \end{cases}$$

in $L^1(\mathbb{R}^N)$. Here, $N \ge 1$, p = 1 + 2/N and $\phi \in L^1(\mathbb{R}^N)$ is a possibly sign-changing initial function. Since N(p-1)/2 = 1, the L^1 space is scale critical and this problem is known as a doubly critical case. It is known that a solution does not necessarily exist for every $\phi \in L^1(\mathbb{R}^N)$. Let $X_q := \{\phi \in L^1_{loc}(\mathbb{R}^N) \mid \int_{\mathbb{R}^N} |\phi| [\log(e + |\phi|)]^q \, dx < \infty\} (\subset L^1(\mathbb{R}^N))$. In this paper, we construct a local-in-time mild solution in $L^1(\mathbb{R}^N)$ for $\phi \in X_q$ if $q \ge N/2$. We show that, for each $0 \le q < N/2$, there is a nonnegative initial function $\phi_0 \in X_q$ such that the problem has no nonnegative solution, using a necessary condition given by Baras–Pierre (Ann Inst Henri Poincaré Anal Non Linéaire 2:185–212, 1985). Since $X_q \subset X_{N/2}$ for $q \ge N/2$, $X_{N/2}$ becomes a sharp integrability condition. We also prove a uniqueness in a certain set of functions which guarantees the uniqueness of the solution constructed by our method.

1. Introduction and main results

We consider the existence and nonexistence for a Cauchy problem of the semilinear heat equation

$$\begin{cases} \partial_t u = \Delta u + |u|^{p-1} u & \text{in } \mathbb{R}^N \times (0, T), \\ u(x, 0) = \phi(x) & \text{in } \mathbb{R}^N, \end{cases}$$
(1.1)

where $N \ge 1$, p = 1 + 2/N and ϕ is a possibly sign-changing initial function. When $\phi \in L^{\infty}(\mathbb{R}^N)$, one can easily construct a solution by using a fixed point argument. When $\phi \notin L^{\infty}(\mathbb{R}^N)$, the solvability depends on the balance between the strength of the singularity of ϕ and the growth rate of the nonlinearity. Weissler [13] studied the solvability of (1.1), and obtained the following:

Proposition 1.1. Let $q_c := N(p-1)/2$. Then, the following (i) and (ii) hold:

(i) (Existence, subcritical and critical cases) Assume either both $q > q_c$ and $q \ge 1$ or $q = q_c > 1$. The problem (1.1) has a local-in-time solution for $\phi \in L^q(\mathbb{R}^N)$.

Mathematics Subject Classification: Primary 35K55; Secondary 35A01, 46E30 *Keywords*: Local-in-time solution, Fujita exponent, Supersolution, Optimal singularity.

(ii) (Nonexistence, supercritical case) For each $1 \le q < q_c$, there is $\phi \in L^q(\mathbb{R}^N)$ such that (1.1) has no local-in-time nonnegative solution.

Let u(x, t) be a function such that u satisfies the equation in (1.1). We consider the scaled function $u_{\lambda}(x, t) := \lambda^{2/(p-1)}u(\lambda x, \lambda^2 t)$. Then, u_{λ} also satisfies the same equation. We can easily see that $||u_{\lambda}(x, 0)||_q = ||u(x, 0)||_q$ if and only if $q = q_c$. It is well known that q_c is a threshold as Proposition 1.1 shows. However, the case $q = q_c = 1$, i.e., p = 1 + 2/N, is not covered by Proposition 1.1, and it is known that there is a nonnegative initial function $\phi \in L^1(\mathbb{R}^N)$ such that (1.1) with p = 1 + 2/Nhas no local-in-time nonnegative solution. See Brezis–Cazenave [2, Theorem 11], Celik–Zhou [3, Theorem 4.1] or Laister et al. [7, Corollary 4.5] for nonexistence results. See [1,6,11] and references therein for existence and nonexistence results with measures as initial data. In [2, Section 7.5], the case p = 1 + 2/N is referred to as "doubly critical case." Several open problems were given in [2]. It was mentioned in [14, p.32] that (1.1) has a local-in-time solution if $\phi \in L^1(\mathbb{R}^N) \cap L^q(\mathbb{R}^N)$ for some q > 1. However, a solvability condition was not well studied. See Table 1. For a detailed history about the existence, nonexistence and uniqueness of (1.1), see [3, Section 1].

In this paper, we obtain a sharp integrability condition on $\phi \in L^1(\mathbb{R}^N)$ which determines the existence and nonexistence of a local-in-time solution in the case p = 1 + 2/N. We also show that a solution constructed in Theorem 1.3 is unique in a certain set of functions. Throughout the present paper, we define $f(u) := |u|^{p-1}u$. Let $L^q(\mathbb{R}^N)$, $1 \le q \le \infty$, denote the usual Lebesgue space on \mathbb{R}^N equipped with the norm $\|\cdot\|_q$. For $\phi \in L^1(\mathbb{R}^N)$, we define

$$S(t)[\phi](x) := \int_{\mathbb{R}^N} G_t(x-y)\phi(y) \mathrm{d}y,$$

where $G_t(x - y) := (4\pi t)^{-N/2} \exp\left(-\frac{|x-y|^2}{4t}\right)$. The function $S(t)[\phi]$ is a solution of the linear heat equation with initial function ϕ . We give a definition of a solution of (1.1).

Definition 1.2. Let *u* and \overline{u} be measurable functions on $\mathbb{R}^N \times (0, T)$.

(i) (Integral solution) We call u an integral solution of (1.1) if there is T > 0 such that u satisfies the integral equation

$$u(t) = \mathcal{F}[u](t) \text{ a.e. } x \in \mathbb{R}^N, \quad 0 < t < T, \text{ and}$$
$$\|u(t)\|_{\infty} < \infty \text{ for } 0 < t < T, \tag{1.2}$$

where

$$\mathcal{F}[u](t) := S(t)\phi + \int_0^t S(t-s)f(u(s))\mathrm{d}s.$$

(ii) (Mild solution) We call *u* a mild solution if *u* is an integral solution and $u(t) \in C([0, T), L^1(\mathbb{R}^N))$.

Ranges of q	$1 \le q < q_c$ Supercritical	$1 = q = q_c$ Doubly critical	$1 < q = q_c$ Critical	$q > q_c, q \ge 1$ Subcritical
Existence/ nonexistence	Not always	Not always	Exist	Exist
	Exist	Exist		
	Proposition 1.1(ii)	exist: [14, p.32],	Proposition 1.1(i)	Proposition 1.1(i)
		I neorem $1.3(1)$ Not exist: $[2,3,7]$,		
		Theorem 1.3(ii)		

Table 1. Existence and nonexistence of a local-in-time solution of (1.1) in $L^q(\mathbb{R}^N)$

(iii) We call \bar{u} a supersolution of (1.1) if \bar{u} satisfies the integral inequality $\mathcal{F}[\bar{u}](t) \le \bar{u}(t) < \infty$ for a.e. $x \in \mathbb{R}^N$, 0 < t < T.

For $0 \le q < \infty$, we define a set of functions by

$$X_q := \left\{ \phi(x) \in L^1_{\text{loc}}(\mathbb{R}^N) \ \left| \ \int_{\mathbb{R}^N} |\phi| \left[\log(e + |\phi|) \right]^q \, \mathrm{d}x < \infty \right\}.$$

It is clear that $X_q \subset L^1(\mathbb{R}^N)$ and that $X_{q_1} \subset X_{q_2}$ if $q_1 \ge q_2$. The main theorem of the paper is the following:

Theorem 1.3. Let $N \ge 1$ and p = 1 + 2/N. Then, the following (i) and (ii) hold:

(i) (Existence) If $\phi \in X_q$ for some $q \ge N/2$, then (1.1) has a local-in-time mild solution u(t), and this mild solution satisfies the following:

there is
$$C > 0$$
 such that $||u(t)||_{\infty} \le Ct^{-\frac{N}{2}}(-\log t)^{-q}$ for small $t > 0.$ (1.3)

In particular, (1.1) has a local-in-time mild solution for every $\phi \in X_{N/2}$.

- (ii) (Nonexistence) For each $0 \le q < N/2$, there is a nonnegative initial function $\phi_0 \in X_q$, which is explicitly given by (4.1), such that (1.1) has no local-in-time nonnegative integral solution, and hence (1.1) has no local-in-time nonnegative mild solution.
- *Remark 1.4.* (i) The function ϕ in Theorem 1.3(i) is not necessarily nonnegative.
 - (ii) Theorem 1.3 indicates that $X_{N/2}(\subset L^1(\mathbb{R}^N))$ is an optimal set of initial functions for the case p = 1 + 2/N and $X_{N/2}$ is slightly smaller than $L^1(\mathbb{R}^N)$. This situation is different from the case p > 1 + 2/N, since (1.1) is always solvable in the scale critical space $L^{N(p-1)/2}$ for p > 1 + 2/N (Proposition 1.1 (i)).
- (iii) $L^1(\mathbb{R}^N)$ is larger than the optimal set for p = 1 + 2/N. On the other hand, it follows from Proposition 1.1(i) that if $1 , then (1.1) has a solution for all <math>\phi \in L^1(\mathbb{R}^N)$. Therefore, $L^1(\mathbb{R}^N)$ is small enough for the case 1 .
- (iv) The function ϕ_0 given in Theorem 1.3(ii) is modified from $\psi(x)$ given by (1.9). This function comes from Baras–Pierre [1], and Theorem 1.3(ii) is a rather easy consequence of [1, Proposition 3.2]. However, we include Theorem 1.3(ii) for a complete description of the borderline property of $X_{N/2}$.
- (v) Laister et al. [7] obtained a necessary and sufficient condition for the existence of a local-in-time nonnegative solution of

$$\begin{cases} \partial_t u = \Delta u + h(u) & \text{in } \mathbb{R}^N \times (0, T), \\ u(x, 0) = \phi(x) \ge 0 & \text{in } \mathbb{R}^N. \end{cases}$$
(1.4)

They showed that when $h(u) = u^{1+2/N} [\log(e+u)]^{-r}$, (1.4) has a local-in-time nonnegative solution for every nonnegative $\phi \in L^1(\mathbb{R}^N)$ if $1 < r < \lambda p$, and (1.4) does not always have if $0 \le r \le 1$. Here, $\lambda > 0$ is a certain constant. Therefore, the optimal growth of h(u) for $L^1(\mathbb{R}^N)$ is slightly smaller than $u^{1+2/N}$.

(vi) The exponent p = 1 + 2/N, which is called Fujita exponent, also plays a key role in the study of global-in-time solutions. If 1 , then everynontrivial nonnegative solution of (1.1) blows up in a finite time. If <math>p > 1+2/N, then (1.1) has a global-in-time nonnegative solution. See Fujita [4]. In particular, in the case p = 1 + 2/N we cannot expect a global existence of a classical solution for small initial data.

The next theorem is about the uniqueness of the integral solution in a certain class.

Theorem 1.5. Let $N \ge 1$, p = 1 + 2/N and q > N/2. Then, an integral solution u(t) of (1.1) is unique in the set

$$\left\{ u(t) \in L^{1}(\mathbb{R}^{N}) \; \left| \; \sup_{0 \le t \le T} t^{N/2} (-\log t)^{q} \; \|u(t)\|_{\infty} < \infty \right\}.$$
 (1.5)

Therefore, a solution given by Theorem 1.3 *is unique.*

- *Remark 1.6.* (i) If there were a solution that does not satisfy (1.5), then the uniqueness fails. However, it seems to be an open problem.
- (ii) In the case q = N/2, the uniqueness under (1.5) is left open.
- (iii) For general p and q, the uniqueness of a solution of (1.1) is known in the set

$$\left\{u(t)\in L^q(\mathbb{R}^N) \left| \sup_{0\leq t\leq T} t^{\frac{N}{2}\left(\frac{1}{q}-\frac{1}{pq}\right)} \|u(t)\|_{pq} < \infty \right\}.$$

See Haraux–Weissler [5] and [13]. For an unconditional uniqueness with a certain range of p and q, see [2, Theorem 4].

(iv) The nonuniqueness in $L^q(\mathbb{R}^N)$ is also known for (1.1). For p > 1 + 2/N and $1 \le q < N(p-1)/2 < p + 1$, see [5]. For p = q = N/(N-2), see Ni–Sacks [8] and Terraneo [12].

Let us mention technical details. We assume that $\phi \in X_q$ for some $q \ge N/2$. Using a monotone method, we construct a nonnegative mild solution w(t) of

$$\begin{cases} \partial_t w = \Delta w + f(w) & \text{in } \mathbb{R}^N \times (0, T), \\ w(x, 0) = |\phi(x)| & \text{in } \mathbb{R}^N. \end{cases}$$
(1.6)

We define g(u) by

$$g(u) := u \left[\log(\rho + |u|) \right]^q,$$
 (1.7)

where $\rho > 1$ is chosen appropriately. We will see that if $\rho \ge e$, then g(u) is convex for $u \ge 0$ and g plays a crucial role in the construction of the solution of (1.6). In order to construct a nonnegative solution we use a method developed by Robinson– Sierżęga [10] with the convex function g, which was also used in Hisa–Ishige [6]. We define a sequence of functions $(u_n)_{n=0}^{\infty}$ by

$$\begin{cases} u_n(t) = \mathcal{F}[u_{n-1}](t) \text{ for } 0 \le t < T & \text{if } n \ge 1, \\ u_0(t) = 0. \end{cases}$$
(1.8)

Then, we show that $-w(t) \le u_n(t) \le w(t)$ for $0 \le t < T$. Since $|u_n(t)| \le w(t)$, we can extract a convergent subsequence in $C_{\text{loc}}(\mathbb{R}^N \times (0, T))$, using a parabolic regularization, the dominated convergence theorem and a diagonal argument. The limit function becomes a mild solution of (1.1).

In the nonexistence part, we use a necessary condition for the existence of a nonnegative solution of (1.1) obtained by Baras–Pierre [1], which is stated in Proposition 2.2 in the present paper. Using their result, one can show that there is $c_0 > 0$ such that if $\phi(x) \ge c_0 \psi(x)$ in a neighborhood of the origin, then (1.1) has no nonnegative integral solution. Here,

$$\psi(x) := |x|^{-N} \left(-\log|x| \right)^{-\frac{N}{2}-1} \text{ for } 0 < |x| < 1/e.$$
(1.9)

See also [6]. For each $0 \le q < N/2$, we will see that a modified function ϕ_0 , which is given by (4.1), belongs to X_q . We show that ϕ_0 does not satisfy the necessary condition for the existence of an integral solution stated in Proposition 2.2. Hence, (1.1) with ϕ_0 has no nonnegative solution for each $0 \le q < N/2$.

This paper consists of five sections. In Sect. 2, we recall known results including a monotone method, a necessary condition on the existence for (1.1) and L^p-L^q -estimates. In Sect. 3, we prove Theorem 1.3(i). In Sect. 4, we prove Theorem 1.3(ii). In Sect. 5, we prove Theorem 1.5.

2. Preliminaries

First, we recall the monotonicity method.

Lemma 2.1. Let $0 < T \le \infty$, and let f be a continuous nondecreasing function such that $f(0) \ge 0$. The problem (1.1) has a nonnegative integral solution for 0 < t < T if and only if (1.1) has a nonnegative supersolution for 0 < t < T. Moreover, if a nonnegative supersolution $\bar{u}(t)$ exists, then the solution u(t) obtained in this lemma satisfies $0 \le u(t) \le \bar{u}(t)$.

Proof. This lemma is well known. See [10, Theorem 2.1] for details. However, we briefly show the proof for readers' convenience.

If (1.1) has an integral solution, then the solution is also a supersolution. Thus, it is enough to show that (1.1) has an integral solution if (1.1) has a supersolution. Let \bar{u} be a supersolution for 0 < t < T. Let $u_1 = S(t)\phi$. We define u_n , n = 2, 3, ..., by

$$u_n = \mathcal{F}[u_{n-1}].$$

Then, we can show by induction that

$$0 \le u_1 \le u_2 \le \cdots \le u_n \le \cdots \le \overline{u} < \infty$$
 a.e. $x \in \mathbb{R}^N$, $0 < t < T$

This indicates that the limit $\lim_{n\to\infty} u_n(x, t)$ which is denoted by u(x, t) exists for almost all $x \in \mathbb{R}^N$ and 0 < t < T. By the monotone convergence theorem, we see that

$$\lim_{n\to\infty}\mathcal{F}[u_{n-1}]=\mathcal{F}[u],$$

and hence $u = \mathcal{F}[u]$. Then, u is an integral solution of (1.1). It is clear that $0 \le u(t) \le \bar{u}(t)$.

Baras–Pierre [1] studied necessary conditions for the existence of an integral solution in the case p > 1. See also [6] for details of necessary conditions including Proposition 2.2. The following proposition is a variant of [1, Proposition 3.2].

Proposition 2.2. Let $N \ge 1$ and p = 1 + 2/N. If u(t) is a nonnegative integral solution, i.e., u(t) satisfies (1.2) with a nonnegative initial function ϕ and some T > 0, then there exists a constant $\gamma_0 > 0$ depending only on N and p such that

$$\int_{B(\tau)} \phi(x) \mathrm{d}x \le \gamma_0 |\log \tau|^{-\frac{N}{2}} \text{ for all } 0 < \tau < T,$$
(2.1)

where $B(\tau) := \{ x \in \mathbb{R}^N \mid |x| < \tau \}.$

Lemma 2.3. Let $q \ge 0$ be fixed, and let

$$X_{q,\rho} := \left\{ \phi \in L^1(\mathbb{R}^N) \ \left| \ \int_{\mathbb{R}^N} |\phi| \left[\log(\rho + |\phi|) \right]^q \mathrm{d}x < \infty \right\}.$$
(2.2)

Then, $\phi \in X_{q,\rho}$ for all $\rho > 1$ if and only if $\phi \in X_{q,\sigma}$ for some $\sigma > 1$.

Proof. We consider only the case q > 0. It is enough to show that $\phi \in X_{q,\rho}$ for all $\rho > 1$ if $\phi \in X_{q,\sigma}$ for some $\sigma > 1$. Let $\rho > 1$ be fixed, and let $\xi(s) := \log(\rho+s)/(\log(\sigma+s))$. By L'Hospital's rule, we see that $\lim_{s\to\infty} \xi(s) = \lim_{s\to\infty} (s+\sigma)/(s+\rho) = 1$. Since $\xi(s)$ is bounded on each compact interval in $[0, \infty)$, we see that $\xi(s)$ is bounded in $[0, \infty)$, and hence there is C > 0 such that $\log(\rho + s) \le C \log(\sigma + s)$ for $s \ge 0$. This inequality indicates that $\phi \in X_{q,\rho}$ if $\phi \in X_{q,\sigma}$.

Because of Lemma 2.1, we do not care about $\rho > 1$ in (2.2). In particular, if $\phi \in X_q$, then $||g(\phi)||_1 < \infty$ for every $\rho > 1$.

Proposition 2.4. (i) Let $N \ge 1$ and $1 \le \alpha \le \beta \le \infty$. There is C > 0 such that, for $\phi \in L^{\alpha}(\mathbb{R}^N)$,

$$\|S(t)\phi\|_{\beta} \leq Ct^{-\frac{N}{2}\left(\frac{1}{\alpha} - \frac{1}{\beta}\right)} \|\phi\|_{\alpha} \text{ for } t > 0.$$

(ii) Let $N \ge 1$ and $1 \le \alpha < \beta \le \infty$. Then, for each $\phi \in L^{\alpha}(\mathbb{R}^N)$ and $C_0 > 0$, there is $t_0 = t_0(C_0, \phi)$ such that

$$\|S(t)\phi\|_{\beta} \le C_0 t^{-\frac{N}{2}\left(\frac{1}{\alpha} - \frac{1}{\beta}\right)} \text{ for } 0 < t < t_0$$

For Proposition 2.4(i) (resp. (ii)), see [9, Proposition 48.4] (resp. [2, Lemma 8]). Note that $C_0 > 0$ in (ii) can be chosen arbitrary small.

We collect various properties of g defined by (1.7).

Lemma 2.5. Let q > 0 and let $g_1(s) := s[\log(\rho + s)]^{-q}$. Then, the following holds:

(i) If $\rho > 1$, then g'(s) > 0 for s > 0. (ii) If $\rho \ge e$, then g''(s) > 0 for s > 0. (iii) If $\rho \ge e$, then $g_1(s) \le g^{-1}(s)$ for $s \ge 0$. (iv) If $\rho > 1$, then there is $C_1 > 0$ such that $g^{-1}(s) \le g_1(C_1s)$ for $s \ge 0$. (v) If $\rho > e^{q/(p-1)}$, then $g^{-1}(s)^p/s$ is nondecreasing for $s \ge 0$. (vi) If $\rho \ge e$, then, for $\phi \in L^1(\mathbb{R}^N)$,

$$S(t)\phi \le g^{-1}(S(t)g(\phi))$$
 for $t \ge 0$.

Proof. By direct calculation, we have

$$g'(s) = [\log(\rho + s)]^{q-1} \left\{ \log(\rho + s) + \frac{qs}{s+\rho} \right\},$$

$$g''(s) = \frac{q[\log(s+\rho)]^{q-2}}{(s+\rho)^2} \left[s \left\{ \log(\rho + s) + q - 1 \right\} + 2\rho \log(\rho + s) \right].$$

Thus, (i) and (ii) hold.

(iii) Since $\rho \ge e$, we have

$$g(g_1(s)) = \frac{s}{[\log(\rho+s)]^q} \left[\log\left(\rho + \frac{s}{[\log(\rho+s)]^q}\right) \right]^q$$
$$\leq \frac{s}{[\log(\rho+s)]^q} [\log(\rho+s)]^q = s \tag{2.3}$$

for $s \ge 0$. By (i), we see that $g^{-1}(s)$ exists and it is increasing. By (2.3), we see that $g_1(s) \le g^{-1}(s)$ for $s \ge 0$.

(iv) Let $\xi(s) := (g(g_1(s))/s)^{1/q} = \log(\rho + \frac{s}{[\log(\rho+s)]^q})/(\log(\rho+s))$. Then, for each compact interval $I \subset [0, \infty)$, there is c > 0 such that $\xi(s) > c$ for $s \in I$. By L'Hospital's rule, we have

$$\lim_{s \to \infty} \xi(s) = \lim_{s \to \infty} \frac{1 + \frac{\rho}{s}}{1 + \frac{\rho}{s} [\log(\rho + s)]^q} \left\{ 1 - \frac{1}{1 + \frac{\rho}{s}} \frac{q}{\log(\rho + s)} \right\} = 1,$$

and hence there is $c_0 > 0$ such that $\xi(s) \ge c_0$ for $s \ge 0$. Thus, $g^{-1}(c_0^q s) \le g_1(s)$ for $s \ge 0$. Then, the conclusion holds.

(v) By (i), we see that $g(\tau)$ is increasing. Let $s := g(\tau)$. Then, $g^{-1}(s)^p/s = \tau^{p-1} \left[\log(\rho + \tau) \right]^{-q}$. Since $\rho > e^{q/(p-1)}$, we have

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \frac{\tau^{p-1}}{[\log(\rho+\tau)]^q} = \frac{\tau^{p-2}}{[\log(\rho+\tau)]^{q+1}} \left\{ (p-1)\log(\rho+\tau) - \frac{q\tau}{\rho+\tau} \right\} > 0.$$

Thus, $g^{-1}(s)^p/s$ is increasing for $s \ge 0$.

(vi) Because of (ii), g is convex. By Jensen's inequality, we see that $g(S(t)\phi) \leq S(t)g(\phi)$. Since g^{-1} exists and g^{-1} is increasing, the conclusion holds. The proof is complete.

3. Existence

Lemma 3.1. Let $N \ge 1$ and p = 1 + 2/N. Assume that $\phi \ge 0$. If $\phi \in X_q$ for some $q \ge N/2$, then (1.1) has a local-in-time nonnegative mild solution u(t), and $||u(t)||_{\infty} \le Ct^{-N/2}(-\log t)^{-q}$ for small t > 0.

Proof. First, we consider the case q = N/2. Let $\rho \ge \max\{e^{q/(p-1)}, e\}$ be fixed. Let g be defined by (1.7). Here, q = N/2 and g satisfies Lemma 2.5. We define

$$\bar{u}(t) := 2g^{-1}(S(t)g(\phi)).$$

We show that \bar{u} is a supersolution. By Lemma 2.5(vi), we have

$$S(t)\phi \le g^{-1}(S(t)g(\phi)) = \frac{\bar{u}(t)}{2}.$$
 (3.1)

Next, we have

$$\int_{0}^{t} S(t-s) f(\bar{u}(s)) ds$$

$$= 2^{p} \int_{0}^{t} S(t-s) \left[S(s)g(\phi) \frac{g^{-1} (S(s)g(\phi))^{p}}{S(s)g(\phi)} \right] ds$$

$$\leq 2^{p} S(t)g(\phi) \int_{0}^{t} \left\| \frac{g^{-1} (S(s)g(\phi))^{p}}{S(s)g(\phi)} \right\|_{\infty} ds$$

$$\leq 2^{p} g^{-1} (S(t)g(\phi)) \left\| \frac{S(t)g(\phi)}{g^{-1} (S(t)g(\phi))} \right\|_{\infty} \int_{0}^{t} \left\| \frac{g^{-1} (S(s)g(\phi))^{p}}{S(s)g(\phi)} \right\|_{\infty} ds. \quad (3.2)$$

Since $g(\phi) \in L^1(\mathbb{R}^N)$, by Proposition 2.4(ii) we have

$$\|S(t)g(\phi)\|_{\infty} \le C_0 t^{-N/2}.$$
(3.3)

By Lemma 2.5(v), we see that $g^{-1}(u)^p/u$ is nondecreasing for $u \ge 0$. Using (3.3) and Lemma 2.5(iv), we have

$$\left\|\frac{g^{-1}(S(s)g(\phi))^{p}}{S(s)g(\phi)}\right\|_{\infty} \leq \frac{g^{-1}\left(\|S(s)g(\phi)\|_{\infty}\right)^{p}}{\|S(s)g(\phi)\|_{\infty}}$$
$$\leq \frac{g^{-1}(C_{0}s^{-N/2})^{p}}{C_{0}s^{-N/2}} \leq \frac{C_{1}^{p}C_{0}^{2/N}}{s\left[\log\left(\rho + C_{0}C_{1}s^{-N/2}\right)\right]^{pq}} \leq \frac{C_{0}^{2/N}C_{1}'}{s(-\log s)^{pq}}$$
(3.4)

for $0 < s < s_0(C_0)$, where C'_1 is a constant independent of C_0 . Using Lemma 2.5(iii) and (3.3), we have

$$\left\| \frac{S(t)g(\phi)}{g^{-1}(S(t)g(\phi))} \right\|_{\infty} \leq \left\| \frac{S(t)g(\phi)}{g_1(S(t)g(\phi))} \right\|_{\infty} = \left\| \left[\log(\rho + S(t)g(\phi)) \right]^q \right\|_{\infty}$$

$$\leq \left[\log(\rho + \|S(t)g(\phi)\|_{\infty}) \right]^q \leq \left[\log(\rho + C_0 t^{-N/2}) \right]^q \leq C_2' (-\log t)^q (3.5)$$

$$\left\| \frac{S(t)g(\phi)}{g^{-1}(S(t)g(\phi))} \right\|_{\infty} \int_{0}^{t} \left\| \frac{g^{-1}(S(s)g(\phi))^{p}}{S(s)g(\phi)} \right\|_{\infty} ds$$

$$\leq C_{0}^{2/N} C_{1}' C_{2}' (-\log t)^{q} \int_{0}^{t} \frac{ds}{s(-\log s)^{pq}}$$

$$= C_{0}^{2/N} C_{1}' C_{2}' (-\log t)^{q} \frac{2}{N(-\log t)^{q}} = C_{0}^{2/N} C_{1}' C_{2}' \frac{2}{N}$$
(3.6)

for $0 < t < \min\{s_0(C_0), t_0(C_0)\}$. By Proposition 2.4(ii), we can take $C_0 > 0$ such that $2^{p+1}C_0^{2/N}C_1'C_2'/N < 1$. By (3.1), (3.2) and (3.6), we have

$$\mathcal{F}[\bar{u}](t) = S(t)\phi + \int_0^t S(t-s)f(\bar{u}(s))ds \le \frac{1}{2}\bar{u}(t) + \frac{1}{2}\bar{u}(t) = \bar{u}(t)$$

for small t > 0. Thus, there is T > 0 such that $\mathcal{F}[\bar{u}] \le \bar{u}$ for 0 < t < T, and hence \bar{u} is a supersolution. By Lemma 2.1, we see that there is T > 0 such that (1.1) has a solution for 0 < t < T, and u(t) is clearly nonnegative. Moreover,

$$0 \le u(t) \le \bar{u}(t) = 2g^{-1}(S(t)g(\phi)) \le Ct^{-\frac{N}{2}}(-\log t)^{-q},$$
(3.7)

which is the estimate in the assertion. We show that $u(t) \in C([0, T), L^1(\mathbb{R}^N))$. Since $||g^{-1}(u)||_1 \leq C ||u||_1$, by (3.6) and Proposition 2.4(i) we have

$$\|u(t) - S(t)\phi\|_{1} \leq \left\| \int_{0}^{t} S(t-s) f(\bar{u}(s)) ds \right\|_{1} \leq C_{0}^{2/N} C_{1}' C_{2}' \frac{2}{N} \left\| g^{-1}(S(t)g(\phi)) \right\|_{1}$$

$$\leq C_{0}^{2/N} C_{1}' C_{2}' \frac{2}{N} C \left\| S(t)g(\phi) \right\|_{1} \leq C_{0}^{2/N} C_{1}' C_{2}' \frac{2}{N} C' \left\| g(\phi) \right\|_{1}$$
(3.8)

for small t > 0, where C' is independent of C_0 . By Proposition 2.4(ii), we can take $C_0 > 0$ arbitrary small, and hence

$$||u(t) - S(t)\phi||_1 \to 0$$
 as $t \downarrow 0$.

Since S(t) is a strongly continuous semigroup on $L^1(\mathbb{R}^N)$ (see e.g., [9, Section 48.2]), we have

$$\|u(t) - \phi\|_{1} \le \|u(t) - S(t)\phi\|_{1} + \|S(t)\phi - \phi\|_{1} \to 0 \text{ as } t \downarrow 0.$$
(3.9)

It follows from (3.2) and (3.6) that $\left\| \int_0^t S(t-s) f(\bar{u}(s)) ds \right\|_1 < \infty$ for 0 < t < T. We see that if 0 < t < T, then

$$||u(t+h) - u(t)||_1 \to 0 \text{ as } h \to 0.$$
 (3.10)

By (3.9) and (3.10), we see that $u(t) \in C([0, T), L^1(\mathbb{R}^N))$. The proof of (i) is complete.

Next, we consider the case q > N/2. The argument is the same until (3.6). We have

$$\begin{aligned} \left\| \frac{S(t)g(\phi)}{g^{-1}(S(t)g(\phi))} \right\|_{\infty} & \int_{0}^{t} \left\| \frac{g^{-1}(S(s)g(\phi))^{p}}{S(s)g(\phi)} \right\|_{\infty} \mathrm{d}s \\ & \leq C_{0}^{2/N} C_{1}^{\prime} C_{2}^{\prime} (-\log t)^{q} \int_{0}^{t} \frac{\mathrm{d}s}{s(-\log s)^{pq}} \\ & = \frac{C_{1}^{2/N} C_{1}^{\prime} C_{2}^{\prime}}{pq - 1} (-\log t)^{1 - \frac{2q}{N}} \end{aligned}$$
(3.11)

instead of (3.6). Since the RHS of (3.11) goes to 0 as $t \downarrow 0$, the rest of the proof is almost the same with obvious modifications. In particular, (3.7) holds even for q > N/2. We omit the details.

We consider (1.6), where ϕ is given in (1.1). By Lemma 3.1, we see that (1.6) has a local-in-time solution which is denoted by w(t). We consider the sequence $(u_n)_{n=0}^{\infty}$ defined by (1.8). Then, the following lemma says that $||u_n(t)||_{\infty}$ can be controlled by w(t).

Lemma 3.2. Let u_n be as defined by (1.8), and let w be a solution of (1.6) on (0, T). *Then,*

$$-w(t) \le u_n(t) \le w(t) \quad \text{for a.e. } x \in \mathbb{R}^N \quad \text{and } 0 < t < T.$$
(3.12)

Proof. It is clear from the definitions of u_0 and w(t) that

$$u_0(t) \le w(t)$$
 for $0 < t < T$.

We assume that $u_{n-1}(t) \le w(t)$ on (0, T). Then, we have

$$w(t) = S(t)|\phi| + \int_0^t S(t-s)f(w(s))ds$$

$$\geq S(t)\phi + \int_0^t S(t-s)f(u_{n-1}(s))ds$$

$$= u_n(t),$$

and hence $u_n(t) \le w(t)$ for 0 < t < T. Thus, by induction we see that, for $n \ge 0$,

$$u_n(t) \le w(t) \text{ on } 0 < t < T.$$
 (3.13)

It is clear that $u_0(t) \ge -w(t)$ for 0 < t < T. We assume that $u_{n-1}(t) \ge -w(t)$ on (0, T). Then, we have

$$u_n(t) = S(t)\phi + \int_0^t S(t-s)f(u_{n-1}(s))ds$$

$$\geq -S(t)|\phi| + \int_0^t S(t-s)f(-w(s))ds = -w(t),$$

and hence, $u_n(t) \ge -w(t)$ on (0, T). Thus, by induction we see that for $n \ge 0$,

$$-w(t) \le u_n(t)$$
 on $0 < t < T$. (3.14)

By (3.13) and (3.14), we see that (3.12) holds.

Proof of Theorem 1.3. (i) Let $(u_n)_{n=0}^{\infty}$ be defined by (1.8). Using an induction argument with a parabolic regularity theorem, we can show that, for each $n \ge 1$, $u_n \in C^{2,1}(\mathbb{R}^N \times (0, T))$ and u_n satisfies the equation

$$\partial_t u_n = \Delta u_n + f(u_{n-1})$$
 in $\mathbb{R}^N \times (0, T)$

in the classical sense. Let *K* be an arbitrary compact subset in $\mathbb{R}^N \times (0, T)$, and let K_1, K_2 be two compact sets such that $K \subset K_1 \subset K_2 \subset \mathbb{R}^N \times (0, T)$. Because of Lemma 3.2, $f(u_{n-1})$ is bounded in $C(K_2)$. By a parabolic regularity theorem, we see that u_n is bounded in $C^{\gamma,\gamma/2}(K_1)$. Using a parabolic regularity theorem again, we see that u_{n+1} is bounded in $C^{2+\gamma,1+\gamma/2}(K)$.

In the following, we use a diagonal argument to obtain a convergent subsequence in $\mathbb{R}^N \times (0, T)$. Let $Q_j := \overline{\{x \in \mathbb{R}^N \mid |x| \le j\}} \times \left[\frac{T}{j+2}, \frac{(j+1)T}{j+2}\right]$. Since $(u_n)_{n=3}^{\infty}$ is bounded in $C^{2,1}(Q_1)$, by Ascoli–Arzerà theorem there is a subsequence $(u_{1,k}) \subset (u_n)$ and $u_1^* \in C(Q_1)$ such that $u_{1,k} \to u_1^*$ in $C(Q_1)$ as $k \to \infty$. Since $(u_{1,k})_{k=1}^{\infty}$ is bounded in $C^{2,1}(Q_2)$, there is a subsequence $(u_{2,k}) \subset (u_{1,n})$ and $u_2^* \in C(Q_2)$ such that $u_{2,k} \to u_2^*$ in $C(Q_2)$ as $k \to \infty$. Repeating this argument, we have a double sequence $(u_{j,k})$ and a sequence (u_j^*) such that, for each $j \ge 1, u_{j,k} \to u_j^*$ in $C(Q_j)$ as $k \to \infty$. We still denote $u_{n,n}$ by u_n , i.e., $u_n := u_{n,n}$. It is clear that $u_{j_1}^* \equiv u_{j_2}^*$ in Q_{j_1} if $j_1 \le j_2$. Since $\mathbb{R}^N \times (0, T) = \bigcup_{j=1}^{\infty} Q_j$, there is $u^* \in C(\mathbb{R}^N \times (0, T))$ such that $u_n \to u^*$ in C(K) as $n \to \infty$ for every compact set $K \subset \mathbb{R}^N \times (0, T)$. In particular,

$$u_n \to u^*$$
 a.e. in $\mathbb{R}^N \times (0, T)$. (3.15)

Let w be a solution of (1.6). It follows from Lemma 3.2 that $|u_n(x, t)| \le w(x, t)$. Since

$$|G_t(x-y)u_n(y,t)| \le |G_t(x-y)w(y,t)| \text{ for } y \in \mathbb{R}^N,$$

and

$$G_t(x-y)w(y,t) \in L^1_y(\mathbb{R}^N),$$

by the dominated convergence theorem we see that

$$\lim_{n \to \infty} S(t)u_n = \lim_{n \to \infty} \int_{\mathbb{R}^N} G_t(s-y)u_n(y,t)dy$$
$$= \int_{\mathbb{R}^N} G_t(s-y)u^*(y,t)dy = S(t)u^*.$$
(3.16)

 \square

By (3.2) and (3.6), we see that if T > 0 is small, then

$$\int_0^t \int_{\mathbb{R}^N} G_{t-s}(x-y) f(w(y,s)) dy ds \le Cg^{-1}(S(t)g(\phi)) < \infty$$

for each $(x, t) \in \mathbb{R}^N \times (0, T)$, and hence $G_{t-s}(x - y) f(w(y, s)) \in L^1_{(y,s)}(\mathbb{R}^N \times (0, T))$. Since

$$\begin{aligned} |G_{t-s}(x-y)f(u_{n-1}(y,s))| \\ &\leq |G_{t-s}(x-y)f(w(y,s))| \text{ for a.e. } (y,s) \in \mathbb{R}^N \times (0,T) \end{aligned}$$

and

$$G_{t-s}(x-y)f(w(y,s)) \in L^{1}_{(y,s)}(\mathbb{R}^{N} \times (0,T)),$$

by the dominated convergence theorem we see that

$$\lim_{n \to \infty} \int_0^t S(t-s) f(u_{n-1}(s)) ds = \lim_{n \to \infty} \int_0^t \int_{\mathbb{R}^N} G_{t-s}(x-y) f(u_{n-1}(y,s)) dy ds$$
$$= \int_0^t \int_{\mathbb{R}^N} G_{t-s}(x-y) f(u^*(y,s)) dy ds = \int_0^t S(t-s) f(u^*(s)) ds.$$
(3.17)

Thus, we take a limit of $u_n = \mathcal{F}[u_{n-1}]$. By (3.15), (3.16) and (3.17), we see that $u^*(t) = \mathcal{F}[u^*](t)$ for 0 < t < T.

Since $|u_n| \le w$, we see that $|u^*| \le w$. Since $|u^*| \le w$ in $\mathbb{R}^N \times (0, T)$, by (3.8) and the arbitrariness of $C_0 > 0$ we have

$$\|u^{*}(t) - S(t)\phi\|_{1} = \left\|\int_{0}^{t} S(t-s)f(u^{*}(s))ds\right\|_{1}$$

$$\leq \left\|\int_{0}^{t} S(t-s)f(w(s))ds\right\|_{1} \to 0 \text{ as } t \downarrow 0.$$

Then, $||u^*(t) - \phi||_1 \leq ||u^*(t) - S(t)\phi||_1 + ||S(t)\phi - \phi||_1 \rightarrow 0$ as $t \downarrow 0$. Since $\left\|\int_0^t S(t-s)f(w(s))\right\|_1 < \infty$ for 0 < t < T, we can show by a similar way to the proof of Lemma 3.1 that $u^*(t) \in C((0, T), L^1(\mathbb{R}^N))$. Thus, $u^*(t) \in C([0, T), L^1(\mathbb{R}^N))$, and hence $u^*(t)$ is a mild solution. Since $|u^*(t)| \leq w(t)$, by Lemma 3.1 we have (1.3). The proof of (i) is complete.

4. Nonexistence

Let $0 \le q < N/2$ be fixed. Then, there is $0 < \varepsilon < N/2 - q$. We define ϕ_0 by

$$\phi_0(x) := \begin{cases} |x|^{-N} (-\log|x|)^{-\frac{N}{2}-1+\varepsilon} & \text{if } |x| < 1/e, \\ 0 & \text{if } |x| \ge 1/e. \end{cases}$$
(4.1)

Lemma 4.1. Let $0 \le q < N/2$, and let ϕ_0 be defined by (4.1). Then, the following

- (*i*) $\phi_0 \in X_a (\subset L^1(\mathbb{R}^N)).$
- (ii) The function ϕ_0 does not satisfy (2.1) for any T > 0.

Proof. (i) We write $\phi_0(r) = r^{-N} (-\log r)^{-N/2-1+\varepsilon}$ for 0 < r < 1/e. Since $\log(e + s) \le 1 + \log s$ for $s \ge 0$, we have

$$\log(e+|\phi_0|) \le 1 - N\log r - \left(\frac{N}{2} + 1 - \varepsilon\right)\log(-\log r) \le -2N\log r \quad (4.2)$$

for 0 < r < 1/e. Let $B(\tau) := \{x \in \mathbb{R}^N \mid |x| < \tau\}$. Using (4.2), we have

$$\int_{B(1/e)} |\phi_0| \left[\log(e + |\phi_0|) \right]^q dx \le \omega_{N-1} \int_0^{1/e} \frac{(2N)^q (-\log r)^q r^{N-1} dr}{r^N (-\log r)^{N/2+1-\varepsilon}} \le (2N)^q \omega_{N-1} \int_0^{1/e} \frac{dr}{r (-\log r)^{N/2+1-q-\varepsilon}} = \frac{(2N)^q \omega_{N-1}}{\frac{N}{2} - q - \varepsilon} < \infty, \quad (4.3)$$

where ω_{N-1} denotes the area of the unit sphere \mathbb{S}^{N-1} in \mathbb{R}^N . By (4.3), we see that $\phi_0 \in X_q$.

(ii) Suppose the contrary, i.e., there exists $\gamma_0 > 0$ such that (2.1) holds. When $0 < \tau < 1/e$, we have

$$\int_{B(\tau)} \phi_0(x) dx = \omega_{N-1} \int_0^\tau \frac{dr}{r(-\log r)^{N/2+1-\varepsilon}}$$
$$= \frac{C}{(-\log \tau)^{N/2-\varepsilon}},$$

where C > 0 is independent of τ . Then,

$$\gamma_0 \ge \frac{\int_{B(\tau)} \phi_0(x) \mathrm{d}x}{(-\log \tau)^{-N/2}} \ge C(-\log \tau)^{\varepsilon} \to \infty \text{ as } \tau \downarrow 0.$$

which is a contradiction. Thus, the conclusion holds.

Proof of Theorem 1.3 (ii). Let $0 \le q < N/2$. It follows from Lemma 4.1(i) that $\phi_0 \in X_q$. By Lemma 4.1(ii), we see that there does not exist $\gamma_0 > 0$ such that (2.1) holds. By Proposition 2.2, the problem (1.1) with ϕ_0 has no nonnegative integral solution.

5. Uniqueness

Proof of Theorem 1.5. Let q > N/2. Suppose that (1.1) has two integral solutions u(t) and v(t). Using Young's inequality and the inequality $||u(t)||_{\infty} \le Ct^{-N/2}(-\log t)^{-q}$, we have

holds:

$$\begin{aligned} \|u(t) - v(t)\|_{1} &\leq \int_{0}^{t} \left\| G_{t-s} * \left\{ \left(p|u|^{p-1} + p|v|^{p-1} \right) (u-v) \right\} \right\|_{1} \mathrm{d}s \\ &\leq p \int_{0}^{t} \|G_{t-s}\|_{1} \left(\|u\|_{\infty}^{p-1} + \|v\|_{\infty}^{p-1} \right) \mathrm{d}s \sup_{0 \leq s \leq t} \|u(s) - v(s)\|_{1} \\ &\leq C \int_{0}^{t} \frac{\mathrm{d}s}{\left\{ s^{N/2} (-\log s)^{q} \right\}^{p-1}} \sup_{0 \leq s \leq t} \|u(s) - v(s)\|_{1}. \end{aligned}$$

Since

$$\int_0^t s^{-N(p-1)/2} (-\log s)^{-(p-1)q} ds = \frac{N(-\log t)^{1-2q/N}}{2q-N}$$

and 1-2q/N < 0, we can choose T > 0 such that $C \int_0^t s^{-N(p-1)/2} (-\log s)^{-(p-1)q} ds$ < 1/2 for every $0 \le t \le T$. Then, we have

$$\sup_{0 \le t \le T} \|u(t) - v(t)\|_1 \le \frac{1}{2} \sup_{0 \le s \le T} \|u(s) - v(s)\|_1,$$

which implies the uniqueness.

Acknowledgements

The author was supported by JSPS KAKENHI Grant Number 19H01797.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

- P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185–212.
- H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277–304.
- [3] C. Celik and Z. Zhou, No local L¹ solution for a nonlinear heat equation, Comm. Partial Differential Equations **28** (2003), 1807–1831.
- [4] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I **13** (1966), 109–124.
- [5] A. Haraux and F. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), 167–189.
- [6] K. Hisa and K. Ishige, Existence of solutions for a fractional semilinear parabolic equation with singular initial data, Nonlinear Anal. 175 (2018), 108–132.
- [7] R. Laister, J. Robinson, M. Sierżęga and A. Vidal-López, A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1519–1538.
- [8] W. Ni and P. Sacks, Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc. 287 (1985), 657–671.
- [9] P. Quittner and P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2007. xii+584 pp. ISBN: 978-3-7643-8441-8.

 \square

- [10] J. Robinson and M. Sierżęga, Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut. 26 (2013), 341–360.
- [11] J. Takahashi, Solvability of a semilinear parabolic equation with measures as initial data, Geometric properties for parabolic and elliptic PDE's, Springer Proc. Math. Stat., vol. 176, Springer, 2016, ISBN: 978-3-319-41538-3, pp. 257–276.
- [12] E. Terraneo, Non-uniqueness for a critical non-linear heat equation, Comm. Partial Differential Equations 27 (2002), 185–218.
- [13] F. Weissler, Local existence and nonexistence for semilinear parabolic equations in L^p, Indiana Univ. Math. J. 29 (1980), 79–102.
- [14] F. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29–40.

Yasuhito Miyamoto Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan E-mail: miyamoto@ms.u-tokyo.ac.jp