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A doubly critical semilinear heat equation in the L' space

YASUHITO MIYAMOTO

Abstract. We study the existence and nonexistence for a Cauchy problem of the semilinear heat equation:

ou=Au+ulP~lu inRN x (0, 7),
u(x,0) = ¢(x) in RV

in LY(RY). Here, N > 1, p=1+2/Nand ¢ € L'®RN)is a possibly sign-changing initial function.
Since N(p — 1)/2 = 1, the L! space is scale critical and this problem is known as a doubly critical
case. It is known that a solution does not necessarily exist for every ¢ € L! (]R{N ). Let Xy = {¢ €
Llluc (RN) | fRN |p| [log(e + |¢|)]q dx < oo}(C L! (RN)). In this paper, we construct a local-in-time
mild solution in LI(RN) for ¢ € Xq if ¢ > N/2. We show that, for each 0 < g < N/2, there is a
nonnegative initial function ¢y € X4 such that the problem has no nonnegative solution, using a necessary
condition given by Baras—Pierre (Ann Inst Henri Poincaré Anal Non Linéaire 2:185-212, 1985). Since
Xq C XNy forg > N/2, X p becomes a sharp integrability condition. We also prove a uniqueness in a
certain set of functions which guarantees the uniqueness of the solution constructed by our method.

1. Introduction and main results

We consider the existence and nonexistence for a Cauchy problem of the semilinear
heat equation

du=Au+ ulPlu inRY x (0, 7),

1.1
u(x, 0) = ¢ (x) inRY, (4.1

where N > 1, p = 14 2/N and ¢ is a possibly sign-changing initial function. When
¢ € L®(RV), one can easily construct a solution by using a fixed point argument.
When ¢ ¢ L®(R"), the solvability depends on the balance between the strength of
the singularity of ¢ and the growth rate of the nonlinearity. Weissler [13] studied the
solvability of (1.1), and obtained the following:

Proposition 1.1. Let g, := N(p — 1)/2. Then, the following (i) and (ii) hold:
(i) (Existence, subcritical and critical cases) Assume either bothq > q. and g > 1
orq = qc > 1. The problem (1.1) has a local-in-time solution for ¢ € L1 (RM).
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(ii) (Nonexistence, supercritical case) For each 1 < q < q., there is ¢ € L1 (RM)
such that (1.1) has no local-in-time nonnegative solution.

Let u(x, t) be a function such that u satisfies the equation in (1.1). We consider
the scaled function u; (x,t) := kz/(l’_l)u(kx, Azt). Then, u; also satisfies the same
equation. We can easily see that [|u; (x, 0)||q = |lu(x, 0)||q if and only if ¢ = ¢q..
It is well known that ¢, is a threshold as Proposition 1.1 shows. However, the case
q =q. = 1l,ie., p =1+2/N,isnot covered by Proposition 1.1, and it is known that
there is a nonnegative initial function ¢ € L'(RN) such that (1.1) with p=1+2/N
has no local-in-time nonnegative solution. See Brezis—Cazenave [2, Theorem 11],
Celik—Zhou [3, Theorem 4.1] or Laister et al. [7, Corollary 4.5] for nonexistence
results. See [1,6,11] and references therein for existence and nonexistence results
with measures as initial data. In [2, Section 7.5], the case p = 1 4+ 2/N is referred to
as “doubly critical case.” Several open problems were given in [2]. It was mentioned
in [14, p.32] that (1.1) has a local-in-time solution if ¢ € L'(®RN) N L2(RN) for
some g > 1. However, a solvability condition was not well studied. See Table 1. For
a detailed history about the existence, nonexistence and uniqueness of (1.1), see [3,
Section 1].

In this paper, we obtain a sharp integrability condition on ¢ € L'(RM) which
determines the existence and nonexistence of a local-in-time solution in the case
p =142/N. We also show that a solution constructed in Theorem 1.3 is unique in
a certain set of functions. Throughout the present paper, we define f (1) = |u|”~'u.
Let L9(RY), 1 < g < oo, denote the usual Lebesgue space on R" equipped with the
norm || - [|,. For ¢ € L'(R"), we define

SO[P1(x) = /RN Gi(x = y)¢(y)dy,

where G; (x — y) 1= (4mt)~N/2 exp (—%). The function S(¢)[¢] is a solution of
the linear heat equation with initial function ¢. We give a definition of a solution of

(1.1).
Definition 1.2. Let u and i be measurable functions on RV x (0, T).

(i) (Integral solution) We call u an integral solution of (1.1) if there is 7 > 0 such
that u satisfies the integral equation

u(t) = Flul(t) ae.x eRY, 0<r<T, and
lu()|loo <ocofor0 <t <T, (1.2)

where
t
Flul(t) = S(t)¢ +/0 S(t — ) f(u(s))ds.

(i1) (Mild solution) We call u a mild solution if « is an integral solution and u(¢) €
C([0,T), L' (RY)).
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(iii) We call & a supersolution of (1.1) if u satisfies the integral inequality F[u](t) <
i(t) <ooforae.x e RV, 0<r<T.

For 0 < g < oo, we define a set of functions by
Xy = {¢<x) € Lige(RY) ’ /RN 1 [log(e + [¢D]" dx < oo}.

It is clear that X, C L'(R") and that X,, C X, if g1 > ¢>. The main theorem of
the paper is the following:

Theorem 1.3. Let N > 1 and p = 1+ 2/N. Then, the following (i) and (ii) hold:
(i) (Existence) If ¢ € X4 for some g > N /2, then (1.1) has a local-in-time mild
solution u(t), and this mild solution satisfies the following:

there is C > 0 such that |u(t)| o < CF%(— logt)™4 for smallt > 0. (1.3)

In particular, (1.1) has a local-in-time mild solution for every ¢ € Xn .

(ii) (Nonexistence) For each 0 < g < N /2, there is a nonnegative initial function
¢o € Xy, which is explicitly given by (4.1), such that (1.1) has no local-in-time
nonnegative integral solution, and hence (1.1) has no local-in-time nonnegative
mild solution.

Remark 1.4. (i) The function ¢ in Theorem 1.3(i) is not necessarily nonnegative.

(ii) Theorem 1.3 indicates that Xy 2 (C L'®RN))isan optimal set of initial functions
for the case p = 1+ 2/N and Xy is slightly smaller than L'(RV). This
situation is different from the case p > 1 + 2/N, since (1.1) is always solvable
in the scale critical space LNP=D/2 for p > 14 2/N (Proposition 1.1 (i)).

(iii) L'(RN) is larger than the optimal set for p = 1 + 2/N. On the other hand,
it follows from Proposition 1.1(i) thatif 1 < p < 1 4 2/N, then (1.1) has a
solution for all ¢ € L'(RN). Therefore, L' (R") is small enough for the case
l<p<1+4+2/N.

(iv) The function ¢g given in Theorem 1.3(ii) is modified from ¥ (x) given by (1.9).
This function comes from Baras—Pierre [1], and Theorem 1.3(ii) is a rather easy
consequence of [1, Proposition 3.2]. However, we include Theorem 1.3(ii) for a
complete description of the borderline property of Xy 2.

(v) Laister et al. [7] obtained a necessary and sufficient condition for the existence
of a local-in-time nonnegative solution of

:atu — Au+h@) inRN x(0,7), s

u(x,0) =¢x) >0 inRN.

They showed that when & (u) = ult2/N [log(e +u)]™", (1.4) has a local-in-time
nonnegative solution for every nonnegative ¢ € L' (RV)if 1 < r < Ap,and(1.4)
does not always have if 0 < r < 1. Here, A > 0 is a certain constant. Therefore,
the optimal growth of 4 (u) for L' (RV) is slightly smaller than u!+2/N .
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(vi) The exponent p = 1 4+ 2/N, which is called Fujita exponent, also plays a key
role in the study of global-in-time solutions. If 1 < p < 1 4+ 2/N, then every
nontrivial nonnegative solution of (1.1) blows up in a finite time. If p > 1+2/N,
then (1.1) has a global-in-time nonnegative solution. See Fujita [4]. In particular,
in the case p = 1 + 2/N we cannot expect a global existence of a classical
solution for small initial data.

The next theorem is about the uniqueness of the integral solution in a certain class.

Theorem 1.5. Let N > 1, p = 1 +2/N and q > N/2. Then, an integral solution
u(t) of (1.1) is unique in the set

{u(t) e L'®RY)

sup N2 (—log ) |Ju(t)]ls < oo} . (1.5)

0<t<T
Therefore, a solution given by Theorem 1.3 is unique.

Remark 1.6. (i) If there were a solution that does not satisfy (1.5), then the unique-
ness fails. However, it seems to be an open problem.
(ii) In the case ¢ = N /2, the uniqueness under (1.5) is left open.
(iii) For general p and g, the uniqueness of a solution of (1.1) is known in the set
N (1 1

sup t7<giﬁ> ()]l g <00t .
0<t<T

{u(t) e LY(RY)

See Haraux—Weissler [5] and [13]. For an unconditional uniqueness with a certain
range of p and ¢, see [2, Theorem 4].

(iv) The nonuniqueness in L?(R") is also known for (1.1). For p > 1 4+ 2/N and
1 <g < Np-1/2<p+1,see[5]. Forp =g = N/(N — 2), see
Ni—Sacks [8] and Terraneo [12].

Let us mention technical details. We assume that ¢ € X, for some g > N/2. Using
a monotone method, we construct a nonnegative mild solution w(#) of

w=Aw+ f(w) inRN x (0, T),

1.6
w(x,0) =|p(x)| inRV. (10)

We define g(u) by

g(w) = u[log(p + |uD]”, (1.7)

where p > 1 is chosen appropriately. We will see that if p > e, then g(u) is convex
for u > 0 and g plays a crucial role in the construction of the solution of (1.6). In
order to construct a nonnegative solution we use a method developed by Robinson—
Sierzgga [10] with the convex function g, which was also used in Hisa—Ishige [6]. We
define a sequence of functions (u,,)fjozo by

{un(t) = Flup_11(t) for0 <t < T ifn>1, 08

uo(t) = 0.
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Then, we show that —w(?) < u,(t) < w() for0 <t < T. Since |u,(¢)] < w(t),
we can extract a convergent subsequence in Cloc (]RN x (0, 7)), using a parabolic
regularization, the dominated convergence theorem and a diagonal argument. The
limit function becomes a mild solution of (1.1).

In the nonexistence part, we use a necessary condition for the existence of a nonneg-
ative solution of (1.1) obtained by Baras—Pierre [1], which is stated in Proposition 2.2
in the present paper. Using their result, one can show that there is cop > 0 such that if
¢ (x) > cor(x) in a neighborhood of the origin, then (1.1) has no nonnegative integral
solution. Here,

Y(x) = x|~V (—log |x|)7%71 for 0 < |x] < 1/e. (1.9)

See also [6]. Foreach 0 < g < N /2, we will see that a modified function ¢, which is
given by (4.1), belongs to X ;. We show that ¢g does not satisfy the necessary condition
for the existence of an integral solution stated in Proposition 2.2. Hence, (1.1) with ¢
has no nonnegative solution for each 0 < g < N/2.

This paper consists of five sections. In Sect. 2, we recall known results including
a monotone method, a necessary condition on the existence for (1.1) and LP-L9-
estimates. In Sect. 3, we prove Theorem 1.3(i). In Sect. 4, we prove Theorem 1.3(ii).
In Sect. 5, we prove Theorem 1.5.

2. Preliminaries

First, we recall the monotonicity method.

Lemma 2.1. LetO < T < oo, and let f be a continuous nondecreasing function such
that f(0) > 0. The problem (1.1) has a nonnegative integral solution forO <t < T
if and only if (1.1) has a nonnegative supersolution for 0 <t < T. Moreover, if a
nonnegative supersolution u(t) exists, then the solution u(t) obtained in this lemma
satisfies 0 < u(t) < u(t).

Proof. This lemma is well known. See [10, Theorem 2.1] for details. However, we
briefly show the proof for readers’ convenience.

If (1.1) has an integral solution, then the solution is also a supersolution. Thus, it is
enough to show that (1.1) has an integral solution if (1.1) has a supersolution. Let u
be a supersolution for 0 < ¢t < T. Letu; = S(¢)¢. We define u,,,n =2,3, ..., by

up = Flup—1].
Then, we can show by induction that

O<uj<ur<-<up<--<ii<ooaexecRY 0<t<T.

This indicates that the limit lim,,_, o, 4, (x, t) which is denoted by u(x, t) exists for
almost all x € RV and 0 < ¢ < T. By the monotone convergence theorem, we see
that
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lim Flup—1] = Flul,
n—00

and hence u = F[u]. Then, u is an integral solution of (1.1). Itis clear that 0 < u(¢) <
u(t). O

Baras—Pierre [1] studied necessary conditions for the existence of an integral so-
lution in the case p > 1. See also [6] for details of necessary conditions including
Proposition 2.2. The following proposition is a variant of [1, Proposition 3.2].

Proposition 2.2. Let N > 1 and p = 1 + 2/N. If u(t) is a nonnegative integral
solution, i.e., u(t) satisfies (1.2) with a nonnegative initial function ¢ and some T > 0,
then there exists a constant yy > 0 depending only on N and p such that

¢(x)dx < y0|10gt|_% forall 0 <1 <T, 2.1
B(t)

where B(t) := {x e RN | |x| < t}.

Lemma 2.3. Let g > 0 be fixed, and let

Xg.p = {qb e L'®RY) ‘ /RN 18] [log(p + 16D)]" dx < oo} . 2.2)

Then, ¢ € Xy,p forall p > 1 ifand only if ¢ € Xy » for some o > 1.

Proof. We consider only the case ¢ > 0. Itis enough to show that¢ € X, , forall p >
lif¢ € X, » forsomeo > 1.Let p > 1befixed, and let&(s) := log(p+s)/(log(o +
s5)). By L’Hospital’s rule, we see that limg_, o §(s) = limg_ 5o (s + 0)/(s + p) = 1.
Since & (s) is bounded on each compact interval in [0, 00), we see that & (s) is bounded
in [0, 00), and hence there is C > 0 such that log(p + s) < Clog(o + s) for s > 0.
This inequality indicates that ¢ € X, , if ¢ € Xy 5. O

Because of Lemma 2.1, we do not care about p > 1in(2.2). Inparticular, if ¢ € X,
then ||g(¢)|l; < oo forevery p > 1.

Proposition 2.4. (i) Let N > land 1 < a < f < oo. There is C > 0 such that,
for ¢ € LYRN),

150l < e @) gl for > 0.

(ii) Let N > land 1 < a < B < oo. Then, for each ¢ € L"‘(RN) and Cy > 0,
there is ty = to(Co, ¢) such that

N

I1S®llg = Cot_7(5_3) for 0 <t < 1.

For Proposition 2.4(i) (resp. (ii)), see [9, Proposition 48.4] (resp. [2, Lemma 8]).
Note that C¢ > 0 in (ii) can be chosen arbitrary small.
We collect various properties of g defined by (1.7).
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Lemma 2.5. Let g > 0 and let g(s) := s[log(p + s)]179. Then, the following holds:
(i) If p > 1, then g'(s) > O fors > 0.

(ii) If p > e, then g"(s) > 0 for s > 0.

(iii) If p = e, then g1(s) < g~ (s) for s = 0.

(iv) If p > 1, then there is C1 > 0 such that g~ (s) < g1(C1s) fors > 0.
(v) If p > e/~ then g=1(s5)? /s is nondecreasing for s > 0.

(vi) If p > e, then, for ¢ € L'(RN),

S(tg < g7 (S()g(@)) for t > 0.

Proof. By direct calculation, we have

/ _ qg—1 qs
g (s) = [log(p + )] log(p +5) + ——1,
s+ p
_ qllog(s + p)}9~2
(s 4+ p)?
Thus, (i) and (ii) hold.
(iii) Since p > e, we have

N $ !
-5 | e
8(81(s)) [log(p + )17 [ 0% (p * [log(p + 5)14 )]
[log(p +9)1¢ = s 23)

g"(s) [s {log(p +5) + g — 1} + 2plog(p + )] .

«__ 5
~ [log(p +$))4

for s > 0. By (i), we see that g_1 (s) exists and it is increasing. By (2.3), we see that
g1(s) < g~ (s) fors > 0.

(iv) Let £(s) := (8(81(5))/$)"/7 = log(p + qageprey)/(08(p + 5)). Then, for
each compact interval I C [0, 00), there is ¢ > 0 such that £(s) > ¢ for s € I. By
L’Hospital’s rule, we have

. . 1+ % 1 q
lim £(s) = lim 5 : 1-— 5 =1
500 s—oo 1+ Lflog(p + 5)]4 1+ £ log(p + 5)
and hence there is c¢o > 0 such that £(s) > ¢ for s > 0. Thus, g‘l(cgs) < gi1(s) for
s > 0. Then, the conclusion holds.
(v) By (i), we see that g(t) is increasing. Let s := g(r). Then, g NP )s =
P~ log(p + 7)] 7. Since p > ?/P=1 we have

d 1 P2
dr [log(p + )14~ [log(p + 7)]9+!

qt
{(p—l)IOg(p+r)— }>0.
p+T

Thus, g_l(s)P/s is increasing for s > 0.

(vi) Because of (ii), g is convex. By Jensen’s inequality, we see that g(S(t)¢) <
S(1)g(¢). Since g~ ! exists and g~ is increasing, the conclusion holds. The proof is
complete. 0
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3. Existence

Lemma3.1. Let N > land p = 1+ 2/N. Assume that ¢ > 0. If ¢ € X, for
some g > N /2, then (1.1) has a local-in-time nonnegative mild solution u(t), and
(@)oo < Ct=N2(=logt)~ for small t > 0.

Proof. First, we consider the case ¢ = N/2. Let p > max{e? /p=1) e} be fixed. Let
g be defined by (1.7). Here, ¢ = N/2 and g satisfies Lemma 2.5. We define

() ==2g" " (S()g(@)).

We show that u is a supersolution. By Lemma 2.5(vi), we have

o u(r)
Sn¢ =g (SMg@) = —=. (3.1

Next, we have

t
/ S(z =) f(u(s))ds
0

! - (S(s)g(¢>))"]
=27 St — S CERSASY) A\ 2048 d
/O (t s)[ (s)g(#) o2 @) s
g7 (S(s)g(9))”

S(s)g(9) 00
_ St)g(¢p) g7 ! g8~ (S(s)g(9)”
2Pg (s H H ds. (3.2
= SO | 5g @) soe@) L& CP
Since g(¢) € L'(RY), by Proposition 2.4(ii) we have
IS(1)g (@)oo < Cot /2. (3.3)

By Lemma 2.5(v), we see that g~!(u)? /u is nondecreasing for u > 0. Using (3.3)
and Lemma 2.5(iv), we have

(NI

H g 1 (S(s)g(g))?

<
S(s)g(®) o 1S(s)g (@)oo
gfl (Cost/Z)p - CPC2/N - Cg/NC{ (3 4)
Cos 2 = {[log (p + CoCrs VA7 = s(—logoyrd

for0 < s < s9(Cp), where Ci is a constant independent of Cy. Using Lemma 2.5(iii)
and (3.3), we have

H S(t)g(¢) H H S(t)g(¢) H
g1 (5(0g(¢)) g1(8(1)g(@)

< [tog(p + IS8 1)]" = [logtp + Cor¥/)]" = Chi=logn? (3.5)

I[tog(p + S)g@N] ] .
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for0 <t < t9(Cp), where g is defined in Lemma 2.5 and C é is a constant independent
of Co. By (3.4) and (3.5) we have

H S(1)g () H g (S®)e@)”
1 (S(hg(9)) S(S)g(¢)

2/N
<C/ C1C2( IOgI) / W

o0

2/N

=)V ciCy(—Tlogn)? C| C2 (3.6)

N(—logn)4 _

for 0 < t < min{so(Cp), to(Co)}. By Proposition 2.4(ii), we can take Co > 0 such
that 2771¢/N €| C)/N < 1. By (3.1), (3.2) and (3.6), we have

t
Flul() = St)¢ +/0 St —s) f(us)ds < %ﬁ(t) + %ﬁ(l) = u(r)

for small + > Q. Thus, there is T > 0 such that F[u] < u for 0 < ¢t < T, and hence
u is a supersolution. By Lemma 2.1, we see that there is 7 > 0 such that (1.1) has a
solution for 0 < ¢ < T, and u(¢) is clearly nonnegative. Moreover,

0 <u@) <i(t) =287 (5()g(@)) < Ct_%(—logl)_q, (3.7)
which is the estimate in the assertion. We show that u () € C([0, T), L' (RV)). Since

ls~" @], = Cllully. by (3.6) and Proposition 2.4(i) we have

! _ 2N o 2| 1
lut) = SOy < / st = fas| = cieg e swsen]

2
< Cz/Nclcz ClIS@e@lly = cz/Nclcéﬁc/ lg@)ll; (3.8)

for small r > 0, where C’ is independent of Cy. By Proposition 2.4(ii), we can take
Co > 0 arbitrary small, and hence

lu() — S®¢|; — 0 as ¢ | 0.

Since S(t) is a strongly continuous semigroup on L' (RY) (see e.g., [9, Section 48.2]),
we have

lu@®) = ¢l < llu@) = SOl + ISE)¢ — ¢l = 0 as 7§ 0. (3.9)

It follows from (3.2) and (3.6) that )
We see thatif 0 < ¢t < T, then

LS —s)f(ﬁ(s))ds”l <oofor0 <t <T.

lu(t +h) —u(@®)ll; = 0 as h — 0. (3.10)

By (3.9)and (3.10), we see thatu(t) € C([0, T), L'(RM)). The proof of (i) is complete.
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Next, we consider the case ¢ > N /2. The argument is the same until (3.6). We
have

H S(1)g(9) H g (S6)8@)” ds
“1(S(t)g(9)) (s)g<¢> .
2/N
<G, CCZ( logt)? / —s(—logs)m
2/N 7 v
= LD (jog ¥ (3.11)
pPq —

instead of (3.6). Since the RHS of (3.11) goestoOast | 0, therest of the proofis almost
the same with obvious modifications. In particular, (3.7) holds even for g > N /2. We
omit the details. O

We consider (1.6), where ¢ is given in (1.1). By Lemma 3.1, we see that (1.6) has
a local-in-time solution which is denoted by w(¢). We consider the sequence (u,)5
defined by (1.8). Then, the following lemma says that ||u, (¢)|| o, can be controlled by
w(t).

Lemma 3.2. Let u, be as defined by (1.8), and let w be a solution of (1.6) on (0, T).
Then,

—w(t) < up(r) <w(t) forae.x e RY and0 <t < T. (3.12)
Proof. 1t is clear from the definitions of u( and w(z) that
up(t) <w() for 0 <t <T.

We assume that u,,_1(t) < w(t) on (0, T). Then, we have
t
w(t) = S(1)|| +/0 St —s) f(w(s))ds

= s+ [ S~ 5) f a1 5))ds
= un(1),
and hence u, (t) < w(t) for 0 < t < T. Thus, by induction we see that, forn > 0,
up(t) <w(@) on 0 <t <T. (3.13)

Itis clear that ug () > —w(¢) forO < t < T. We assume that u,_1(t) > —w(t) on
(0, T). Then, we have

t
un(t) = S(t)¢ +/0 St —5) fun—1(s))ds

t
> =S¢l +f0 St —s) f(=w(s))ds = —w(r),
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and hence, u, () > —w(t) on (0, T). Thus, by induction we see that for n > 0,
—w() <u,(t) on 0<t<T. (3.14)

By (3.13) and (3.14), we see that (3.12) holds. O

Proof of Theorem 1.3. (i) Let (uy);2, be defined by (1.8). Using an induction ar-
gument with a parabolic regularity theorem, we can show that, for each n > 1,
u, € CEL(RYN x (0, T)) and u, satisfies the equation

Bty = Auy + f(up—1) in RN x (0, T)

in the classical sense. Let K be an arbitrary compact subset in RN x (0, T), and let
K1, K> be two compact sets such that K C K1 C K> C RN x (0, T). Because of
Lemma 3.2, f(u,—1) is bounded in C(K>). By a parabolic regularity theorem, we see
that u,, is bounded in C¥¥/2(K ). Using a parabolic regularity theorem again, we see
that u,,1 is bounded in C27-147/2(K).

In the following, we use a diagonal argument to obtain a convergent subsequence

in RY x (0,7). Let Q; = {x € RV x| < j} x []% (fjﬂ;T]. Since ()25 is
bounded in C%1(Q1), by Ascoli—Arzera theorem there is a subsequence (1 x) C (4,)
and u} € C(Q1) such that uy; — uj in C(Q1) as k — oo. Since (u1 )z, is
bounded in C%1(Q,), there is a subsequence (u2,x) C (u1,,) and u3 € C(Q2) such
that up y — wu3 in C(Q2) as k — oo. Repeating this argument, we have a double
sequence (u k) and a sequence (uj) such that, foreach j > 1, u;x — uj‘ in C(Q;)
as k — oo. We still denote u,, , by u,,i.e., u, := u,_,. Itis clear that ujl = uz inQj
if ji < jp.Since RN x (0,T) = USZ: Q) there is u* € C(R" x (0, T)) such that
u, — u*in C(K) as n — oo for every compact set K € RY x (0, T'). In particular,

up, — u* ae.in RY x (0, 7). (3.15)

Let w be a solution of (1.6). It follows from Lemma 3.2 that |u,(x, )| < w(x,1).
Since

G (x = Yun(y, D] < 1Gi(x = Yyw(y, )] for y e RY,
and
Gi(x = Nw(y, 1) € LyRY),

by the dominated convergence theorem we see that

lim S(t)u,, = lim Gi(s — Yu,(y, t)dy
N

n—oQ n—o00 R

/RN Gi(s — y)u™(y, ndy = S(t)u™. (3.16)
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By (3.2) and (3.6), we see that if 7 > 0 is small, then
! 1
[ [, Grmste =i snayds = €57 5056 < o
0

for each (x,1) € RN x (0, T), and hence G;_s(x — y) f(w(y,s)) € L(I},’S)(RN X
(0, T)). Since

|Gt—s(x - Y)f(”n—l(ya S))|
<|Gi—s(x — y) f(w(y, 5))| forae. (y,s) € RN x (0,T)

and

Gis(x — y) f(w(y, ) € L{, o R x (0, T)),

by the dominated convergence theorem we see that
t t
tim [ 50 =) £ )ds = fim [ [ Gt =)o sdds
n—oo 0 n—o0 0 RN

t t
- / / Gy (x = V) fu* (v, 8))dyds = / St —9)fWs)Hds. (317
0 JRN 0

Thus, we take a limit of u, = Flu,—_1]. By (3.15), (3.16) and (3.17), we see that
u*(t) = Flu*](t) for0 <t < T.

Since |u,| < w, we see that [u*| < w. Since |u*| < win RY x (0, T), by (3.8) and
the arbitrariness of Cp > 0 we have

t
|u*@) — S, = H /0 St —s) f (u*(s))ds

1

=

—0ast|0.

t
/ S(t — ) f (w(s))ds
0

1

Then, [[u*(t) —¢ll; < llu*@) — SOl + I1S®)¢ —¢ll; — Oasr | 0. Since

Hfot S —s5) f(w(s)) 1 < oofor0 < t < T, we canshow by a similar way to the proof

of Lemma 3.1 that u*(t) € C((0, T), L'(RN)). Thus, u*(t) € C([0, T), L'(RN)),
and hence u*(7) is a mild solution. Since |u*(7)| < w(t), by Lemma 3.1 we have (1.3).
The proof of (i) is complete. 0

4. Nonexistence

Let 0 < g < N/2 be fixed. Then, thereis 0 < ¢ < N/2 — q. We define ¢ by

1Y (< log T E I it (x| < 1/e,

= 4.1
$o(x) x> 1e. 4.1
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Lemma4.1. Let 0 < g < N/2, and let ¢o be defined by (4.1). Then, the following
holds:

(i) ¢o € Xq(C L' ®R")).
(ii) The function ¢g does not satisfy (2.1) forany T > 0.

Proof. (i) We write ¢o(r) = r~~ (—logr)™N/>=1%¢ for 0 < r < 1/e. Since log(e +
s) < 1+logs fors > 0, we have

N
log(e + |¢ol) <1 — Nlogr — <5 +1-— 8) log(—logr) < —2Nlogr (4.2)

forO <r < 1/e.Let B(t) :=={x € RN | |x| < 1}. Using (4.2), we have

/e 2N (—logr)4rV=1dr
1 Tdx < wy_
/B . ol Logte + lgoD]" dx = o / e

0

1/e dr (2N)wy-
< 2N) oy / = <oo, (43
= 2CN)wn-1 0 r(—lognV/Hl—a=e T N _ @3

where wy_1 denotes the area of the unit sphere S¥-1in RNV, By (4.3), we see that
do € Xq4.

(i1) Suppose the contrary, i.e., there exists yp > 0 such that (2.1) holds. When
0 <17 < 1/e, we have

dr
r(— log r)N/2+1—a

¢o(x)dx = CUNflv/(;

_ C
~ (—logT)N/2=e’

B(t)

where C > 0 is independent of 7. Then,

$o(x)dx

which is a contradiction. Thus, the conclusion holds. O

Proof of Theorem 1.3 (ii). Let 0 < g < N/2. It follows from Lemma 4.1(i) that
¢o € X,4. By Lemma 4.1(ii), we see that there does not exist y9 > 0 such that (2.1)
holds. By Proposition 2.2, the problem (1.1) with ¢ has no nonnegative integral
solution. O

5. Uniqueness

Proof of Theorem 1.5. Letq > N /2.Suppose that (1.1) has two integral solutions u(z)
and v(z). Using Young’s inequality and the inequality [|u(t) |l < Ct~N/?(—1log1)74,
we have
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t
uua)—vawls‘/
0

Giog+ { (Pl + po)" ™) =)} | as

t
-1 -1
spﬂﬂaﬁm@w&-WN&)MSWHMS—MMh

O<s<t

! ds
fcﬁ { £ sup Jlu(s) = vl -

sN/2(—log s)q}p_ 0<s<t

Since

¢ N(—log)1-24/N
/ NG Jog )~r-Dags = N 108D
0 2g — N

and1—-2g/N < 0,wecanchoose T > Osuchthathol s~NP=D/2(_1og s)~(P=Dadg
< 1/2 forevery 0 <t < T. Then, we have

1
sup Jlu(t) —v(®)lly = 5 sup fuls) — vl

0<t<T 0<s<T

which implies the uniqueness. 0
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