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Abstract. In this paper, we study the time periodic travelingwave solutions for aKermack–McKendrick SIR
epidemicmodelwith individuals diffusion and environment heterogeneity. In terms of the basic reproduction
number R0 of the corresponding periodic ordinary differential model and the minimal wave speed c∗, we
establish the existence of periodic traveling wave solutions by the method of super- and sub-solutions,
the fixed-point theorem, as applied to a truncated problem on a large but finite interval, and the limiting
arguments. We further obtain the nonexistence of periodic traveling wave solutions for two cases involved
with R0 and c∗.

1. Introduction

In this paper, we are interested in the following time periodic reaction–diffusion
epidemic system

⎧
⎪⎪⎨

⎪⎪⎩

∂S(t,x)
∂t = d1�S(t, x) − β(t)S(t, x)I (t, x), t > 0, x ∈ R,

∂ I (t,x)
∂t = d2�I (t, x) + β(t)S(t, x)I (t, x) − γ (t)I (t, x), t > 0, x ∈ R,

∂R(t,x)
∂t = d3�R(t, x) + γ (t)I (t, x), t > 0, x ∈ R,

(1.1)

which describes the evolution of an epidemic within a spatially distributed population
of individuals in a seasonal forcing environment. Here, S(t, x), I (t, x) and R(t, x)
denote the densities of the susceptible, infected and recovered/removed individuals at
time t and located at the spatial position x ∈ R, respectively. The positive constants
d1, d2 andd3 are the diffusion rates for the susceptible, infected and recovered/removed
individuals, respectively. The disease transmission rate β(t) and the recovery rate γ (t)
are all positive T -periodic continuous functions in t .
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The kinetic system of (1.1) is
⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = −β(t)S(t)I (t), t > 0,

d I (t)
dt = β(t)S(t)I (t) − γ (t)I (t), t > 0,

dR(t)
dt = γ (t)I (t), t > 0,

(1.2)

which has been deeply studied by Bacaër and Gomes [2], where they observed some-
what counterintuitive conclusions quite different from what is in a constant environ-
ment, that is, the classic Kermack–McKendrick SIR epidemic model [26] (see also
[1,5]):

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = −βS(t)I (t), t > 0,

d I (t)
dt = βS(t)I (t) − γ I (t), t > 0,

dR(t)
dt = γ I (t), t > 0,

(1.3)

but almost compatible with occurrence. The consequence in [2] implies that the behav-
ior of epidemics under the seasonal forcing is not a straightforward generalization of
the known results in a constant environment. In fact, it was reported that the transmis-
sion rates and the recovery rates of many epidemics can be significantly impacted by
seasonality, see London and Yorke [30] for the yearly outbreaks of measles, chicken-
pox andmumps, andHethcote andYorke [21] for the seasonal oscillation of gonorrhea.
In particular, London and Yorke [30] pointed out that there are two significant factors
influencing the dynamics of epidemics and contributing to the one-year periodicity of
the contact rate: (i) weather/climatic factors such as temperature and relative humid-
ity; (ii) social behavior (contact patterns) influenced by public holidays (children due
to school terms), vacations. Figure 1 in [8] also states that most human respiratory
pathogens exhibit and annual increase in incidence eachwinter, although there are vari-
ations in the timing of onset and magnitude of the increase. For more on the impact
of the seasonality in epidemic models, we refer to [19,20,32] and a review paper [6].
Here, we would like to emphasize that models (1.2) and (1.3) are usually used to
describe the transmission of disease whose time scale is rather fast with respect to the
vital dynamic of the population. Therefore, the vital dynamics is not incorporated into
(1.2) and (1.3) and the total population number remains invariant in the transmission
process of the epidemic. As mentioned above, the transmission dynamics of many
epidemics such as measles, chickenpox, mumps and gonorrhea [21,30] are signifi-
cantly influenced by seasonality. On the other hand, the total number of the population
usually remains (almost) invariant within several years. Thus, if we neglect (or do not
consider) the effect of the vital dynamics of the population, then the system such as
(1.2) (and (1.1)) is rather reasonable and should do duty for an admonition to interpret
the epidemics influenced by seasonality.
To consider the propagation dynamics of (1.1), in which the random walk of indi-

viduals and the seasonality are incorporated, traveling wave solution is a key topic.
For the autonomous version of system (1.1), namely
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⎧
⎪⎪⎨

⎪⎪⎩

∂S(t,x)
∂t = d1�S(t, x) − βS(t, x)I (t, x), t > 0, x ∈ R,

∂ I (t,x)
∂t = d2�I (t, x) + βS(t, x)I (t, x) − γ I (t, x), t > 0, x ∈ R,

∂R(t,x)
∂t = d3�R(t, x) + γ I (t, x), t > 0, x ∈ R,

(1.4)

there has been extensive research on the traveling waves for the first two equations of
(1.4) (the R equation can be decoupled). Kallen [24] andKallen et al. [25] have studied
the existence of traveling wave solutions when d1 = 0. Particularly, Hosnono and
Ilyas [22] proved that there admits a pair of traveling wave solution (S(x + ct), I (x +
ct)) satisfying S(−∞) = S0 > 0, S(+∞) = S∞ < S0, I (±∞) = 0 for each
c ≥ c∗ = 2

√
βS0d2(1 − γ /βS0) when the basic reproduction number R0 := βS0

γ

of system (1.3) is larger than unit, which represents the transition from the initial
disease-free equilibrium (S0, 0, 0) to another disease- free state (S∞, 0, 0) with S∞
being determined by the model coefficients. Since then, there have been extensive
investigations on traveling wave solutions of system (1.4) (see, e.g., [18,23,40] and
references therein), and its variants such as age-infection structure [10,11], delays or
non-local delays [34], spatially discrete structure [17] and non-local dispersal case
[37]. We also refer to [9] for the long-term behavior of (1.4) with spatial heterogeneity
(d1 = 0).

In the current work, we are concerned with time periodic traveling wave solutions
(see the definition in the next section) for problem (1.1). Since system (1.1) involved
with the same non-monotone structure as system (1.4), which implies that (1.1) does
not have comparison principle, the theory andmethods for monotone periodic systems
(see, e.g., [13,28,41,42]) are no longer effective. In addition, differently from system
(1.4), problem (1.1) gives rise to a periodic parabolic system of wave profile, which
leads to failure for the approaches in the aforementioned literatures to system (1.4).
Recently, Wang et al. [35] studied time periodic traveling wave solutions for the
following periodic and diffusive SIR model with standard incidence:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂t S(t, x) = d1�S(t, x) − β(t)S(t,x)I (t,x)

S(t,x)+I (t,x) ,

∂
∂t I (t, x) = d2�I (t, x) + β(t)S(t,x)I (t,x)

S(t,x)+I (t,x) − γ (t)I (t, x),

∂
∂t R(t, x) = d3�R(t, x) + γ (t)I (t, x).

(1.5)

Here, S(t, x), I (t, x) and R(t, x) denote the densities of the susceptible, infected and
recovered individuals at time t and in location x , respectively. The coefficients in
(1.5) represent the same meaning as in system (1.1). It should be pointed out that the
incidence in (1.5) reflects the recovered individuals is removed from the population
and not involved in the contact and disease transmission (see [33]). They proved that

if the basic reproduction number R0 :=
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

of kinetic system of (1.5) is larger

than unit, there exists a critical value c∗ = 2
√

1
d2T

∫ T
0 [β(t) − γ (T )]dt such that for

any wave speed c > c∗, system (1.5) admits a time periodic traveling wave solution.
Furthermore, they obtained the nonexistence of periodic traveling wave solutions for
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two cases:(i) R0 ≤ 1; (ii) R0 > 1 and c < c∗. The literature [35] makes an elementary
attempt and provides a novel train of thought to solve the existence of time periodic
traveling wave solutions for periodic and non-monotone systems.
Note that mass action in (1.1) and standard incidence infection mechanism in (1.5)

are widely adopted in modeling infectious diseases transmission. From the epidemio-
logical perspective, the mass action is appropriate for modeling contact between infec-
tious individuals and susceptible individuals in small population size, while utilizing
the standard incidence frequently depends on population size, that is, it is suitable for
larger population size. Another observation is that the basic reproduction number of
the kinetic system associated with (1.1) is dependent on population size (see Sect. 2),
while the basic reproduction number of kinetic system of (1.5) is independent of pop-
ulation size. The aforementioned difference on two incidence functions leads to some
distinction on mathematical analysis in the corresponding models. In addition, in view
of the bilinear incidence (or mass action infection mechanism) in system (1.1), the
derivation of existence of periodic traveling wave solutions to (1.1) becomes much
more challenging. Precisely speaking, it is difficult to verify the boundedness of I . On
the other hand, the method on the nonexistence of periodic traveling wave solutions

of (1.5) when R0 :=
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

> 1 and c < c∗, can be hardly applied to system

(1.1). Motivated by the ideas in [10,35,39], we shall consider the truncated problem
on a finite interval and apply the limiting arguments to deal with the periodic traveling
wave problem associated with (1.1). This will extend the research strategy on periodic
traveling wave solutions for periodic and non-monotone systems. Here, we empha-
size that in [39] a similar argument was used to establish the existence of periodic
traveling wave solution for a time periodic and delayed reaction–diffusion equation
without quasi-monotonicity, which describes the growth of mature population of a
single species living in a fluctuating environment.
The rest of this paper is organized as follows. In the next section, by constructing

a suitable pair of super- and sub-solutions and applying the Schauder’s fixed-point
theorem to a similar problem on a bounded domain, we then use some a priori estima-
tions and a limiting procedure to establish the existence of the periodic traveling wave
solutions. Section 3 is devoted to the study of the nonexistence of periodic traveling
wave solutions for two cases. A brief discussion completes the paper.

2. Existence of periodic traveling waves

In this section,we focus on the existenceof the non-trivial and timeperiodic traveling
waves (φ(t, z), ψ(t, z)) of system (1.1). Since the R equation of system (1.1) can be
decoupled, it is sufficient to consider the following system

⎧
⎨

⎩

∂S(t,x)
∂t = d1�S(t, x) − β(t)S(t, x)I (t, x), t > 0, x ∈ R,

∂ I (t,x)
∂t = d2�I (t, x) + β(t)S(t, x)I (t, x) − γ (t)I (t, x) t > 0, x ∈ R.

(2.1)
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Time periodic traveling waves to system (2.1) are defined to be solutions of the form

(
S(t, x)
I (t, x)

)

=
(

φ(t, x + ct)
ψ(t, x + ct)

)

,

(
φ(t + T, z)
ψ(t + T, z)

)

=
(

φ(t, z)
ψ(t, z)

)

(2.2)

satisfying

(
φ(t,±∞)

ψ(t,±∞)

)

=
(

φ±(t)
ψ±(t)

)

,

where c is called the wave speed, z = x + ct is the moving coordinate and

(
φ+(t)
ψ+(t)

)

and

(
φ−(t)
ψ−(t)

)

are two periodic solutions of the corresponding kinetic system:

⎧
⎨

⎩

dS
dt = −β(t)S(t)I (t),

d I
dt = β(t)S(t)I (t) − γ (t)I (t).

(2.3)

Such solutions (φ,ψ) must satisfy the following system:
⎧
⎨

⎩

φt (t, z) = d1φzz(t, z) − cφz(t, z) − β(t)φ(t, z)ψ(t, z),

ψt (t, z) = d2ψzz(t, z) − cψz(t, z) + β(t)φ(t, z)ψ(t, z) − γ (t)ψ(t, z).
(2.4)

This system is posed on (t, x) ∈ R+ × R and is supplemented with the following
asymptotic boundary conditions

φ(t,−∞) = S0, φ(t,∞) = S∞, ψ(t,±∞) = 0 uniformly in t ∈ R. (2.5)

Here, S0 > 0 is a constant, and (S0, 0) is the initial disease-free steady state. The
parameter c > 0 is the wave speed, while constant S∞ ≥ 0 describes the density of
susceptible individuals after the epidemic.
Our basic procedure to prove the existence of periodic traveling wave solutions is

as follows. Firstly, by constructing some suitable super- and sub-solutions for (2.4),
we obtain a closed and convex set �N of initial functions lying between the sub- and
super-solutions. Secondly, we consider the truncated problem posed on the bounded
domain and define a nonlinear solution operator F on �N , and then, we apply the
Schauder’s fixed- point theorem to F after verifying the complete continuity of it.
Finally, on the basis of some proposed a priori estimations of the obtained fixed point
of F , a limiting procedure can be used to extend the bounded interval to R, and then,
the existence of periodic traveling wave solutions is established. By similar arguments
to [35], we further verify the asymptotic boundary conditions for periodic traveling
wave solutions.
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2.1. Construction of sub- and super-solutions

Linearizing system (2.4) at the disease-free steady state (S0, 0), we have the fol-
lowing equation:

Ĩt (t, x) = d2 Ĩzz − cĨz(t, z) + (S0β(t) − γ (t)) Ĩ (t, x).

Define

	c(λ) = d2λ
2 − cλ + �, c ∈ R, λ ∈ R (2.6)

where � := 1
T

∫ T
0 (S0β(t) − γ (t)) dt . Clearly, � > 0 if the basic reproduction number

R0 := S0
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

> 1. In what follows, we always assume that R0 > 1. Let

λ1 = c − √
c2 − 4d2�

2d2
, λ2 = c + √

c2 − 4d2�

2d2

if c > c∗ := 2
√
d2�. Then, we have 	c(λ1) = 	c(λ2) = 0 and 	c(λ) < 0,∀λ ∈

(λ1, λ2).
Fixing c > c∗, we set

K (t) := exp

(∫ t

0
[d2λ21 − cλ1 + (S0β(s) − γ (s)]ds

)

.

It is easy to see that K (t) is T -periodic. We further define the following functions

φ+(t, z) := S0, φ−(t, z) := max{S0(1 − M1e
ε1z), 0)},

ψ+(t, z) := K (t)eλ1z, ψ−(t, z) := max{K (t)eλ1z(1 − M2e
ε2z), 0},

where Mi and εi , i = 1, 2 are all positive constants and will be determined below.
Then, we can inductively establish the following results.

Lemma 2.1. The function ψ+(t, z) = K (t)eλ1z satisfies the following linear equa-
tion:

ψt = d2ψzz + cψz − (β(t)S0 − γ (t)) ψ. (2.7)

Lemma 2.2. For sufficiently small ε1 such that 0 < ε1 < λ1 and sufficiently large
M1 > 1, the function φ− satisfies

φt − d1φzz + cφz ≤ −β(t)φψ+ (2.8)

for any z 	= z1 := −ε−1
1 lnM1.

Proof. In case where z > −ε−1
1 lnM1, we have φ−(t, z) = 0, which implies (2.8)

holds.
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In case where z < −ε−1
1 lnM1, then φ−(t, z) = S0 (1 − M1eε1z) . Thus, we need

only to prove that

d1S0M1ε
2
1e

ε1z − cS0M1ε1e
ε1z ≤ −β(t)S0

(
1 − M1e

ε1z
)
K (t)eλ1z .

That is,

M1ε1 (c − d1ε1) ≥ β(t)
(
1 − M1e

ε1z
)
K (t)e(λ1−ε1)z .

So for z < z1 := −ε−1
1 lnM1, it is sufficient to verify

M1ε1 (c − d1ε1) ≥ β(t)K (t)e−ε−1
1 (λc−ε1) lnM = β(t)K (t)M

−ε−1
1 (λ1−ε1)

1 , ∀t ∈ R.

Since both β(t) and K (t) are positive T -periodic functions, the above inequality
is valid as long as we choose M1 = 1/ε1 with ε1 > 0 sufficiently small and
0 < ε1 < λ1. �

Lemma 2.3. Suppose ε2 > 0 is sufficiently small such that ε2 < min{ε1, λ2 − λ1},
and M2 is sufficiently large such that −ε−1

2 lnM2 < −ε−1
1 lnM1. Then, the function

ψ− satisfies

ψt − d2ψzz + cψz ≤ β(t)φ−ψ − γ (t)ψ (2.9)

for any z 	= z2 := −ε−1
2 lnM2.

Proof. Choose M2 large enough to ensure that −ε−1
2 lnM2 < −ε−1

1 lnM1. For z >

z2 := −ε−1
2 lnM2, one has ψ−(t, z) = 0, and hence, the inequality (2.9) holds.

When z < z2 := −ε−1
2 lnM2, ψ−(t, z) = K (t)eλ1z (1 − M2eε2z) and φ−(t, z) =

S0(1−M1eε1z). In order to obtain (2.9), we only need to verify the following inequality

ψ−
t − d2ψ

−
zz + cψ−

z − (β(t)S0 − γ (t)) ψ− ≤ β(t)
(
φ− − S0

)
ψ−. (2.10)

By the expression of K (t) and ψ−, it follows that

ψ−
t − d2ψ

−
zz + cψ−

z − (β(t)S0 − γ (t)) ψ−

= K ′(t)eλ1z
(
1 − M2e

ε2z
) − d2

[
λ21K (t)eλ1z

(
1 − M2e

ε2z
) − λ1ε2M2K (t)e(λ1+ε2)z

−(λ1 + ε2)ε2M2K (t)e(λ1+ε2)z
]

+ c
[
λ1K (t)eλ1z

(
1 − M2e

ε2z
) − ε2M2K (t)e(λ1+ε2)z

]

−[β(t)S0 − γ (t)]K (t)eλ1z
(
1 − M2e

ε2z
)

= eλ1z
{
K ′(t) − d2λ

2
1K (t) + cλ1K (t) − [β(t)S0 − γ (t)]K (t)

}

−M2e
(λ1+ε2)z

{
K ′(t) − d2(λ1 + ε2)

2K (t) + c(λ1 + ε2)K (t) − [β(t)S0 − γ (t)]K (t)
}

= −M2e
(λ1+ε2)z K (t)

{[
d2λ

2
1 − cλ1

]
−

[
d2(λ1 + ε2)

2 − c(λ1 + ε2)
]}

= M2e
(λ1+ε2)z K (t)	c(λ1 + ε2).
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Then, the inequality (2.10) is equivalent to

M2e
ε2z	c(λ1 + ε2) ≤ −β(t)S0M1e

ε1z(1 − M2e
ε2z) (2.11)

Owing to ε1 < λ2 − λ1, we have λ1 + ε2 ∈ (λ1, λ2), and hence,

	c(λ1 + ε2) = d2(λ1 + ε2)
2 − c(λ1 + ε2) + � < 0.

Since β(t) is positive and T -periodic in R, the inequality (2.11) is true if and only if

−M2	c(λ1 + ε2) ≥ β(t)S0M1e
(ε1−ε2)z .

Thus, when z < −ε−1
2 lnM2, we need to show

−M2	c(λ1 + ε2) ≥ β(t)S0M1M
−(ε1−ε2)/ε2
2

for all t ∈ [0, T ]. The last inequality holds true when we choose sufficiently small
ε2 < ε1 and M2 large enough. �

2.2. Reduction to a fixed-point problem

Take N > −z2. Define

�N :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ̃, ψ̃) ∈ C(R × [−N , N ],R2) :

φ̃(t, z) = φ̃(t + T, z), ∀ t ∈ R, z ∈ [−N , N ],
ψ̃(t, z) = ψ̃(t + T, z), ∀ t ∈ R, z ∈ [−N , N ];
φ−(t, z) ≤ φ̃(t, z) ≤ φ+(t, z), ∀t ∈ R, z ∈ [−N , N ],
ψ−(t, z) ≤ ψ̃(t, z) ≤ ψ+(t, z), ∀t ∈ R, z ∈ [−N , N ];
φ̃(t,±N ) = φ−(t,±N ), ∀t ∈ R,

ψ̃(t,±N ) = ψ−(t,±N ), ∀t ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

For any given (φ̃, ψ̃) ∈ �N , define maps

f1[φ̃, ψ̃](t, z) = α1φ̃(t, z) − β(t)φ̃(t, z)ψ̃(t, z)

and

f2[φ̃, ψ̃](t, z) = α2ψ̃(t, z) + β(t)φ̃(t, z)ψ̃(t, z) − γ (t)ψ̃(t, z),

where α1 and α2 are positive constants and satisfy α1 > maxt∈[0,T ] β(t)K (t)eλ1N and
α2 > maxt∈[0,T ] γ (t), respectively. Let Ai u = di∂zzu − c∂zu − αi u, i = 1, 2. Fix a
(φ̃, ψ̃) ∈ �N . Consider the following linear parabolic initial boundary value problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tφ(t, z) − A1φ(t, z) = f1[φ̃, ψ̃](t, z), t > 0, z ∈ [−N , N ],
∂tψ(t, z) − A2ψ(t, z) = f2[φ̃, ψ̃](t, z), t > 0, z ∈ [−N , N ],
φ(0, z) = φ0(z), ψ(0, z)=ψ0(z), z ∈ [−N , N ], φ0, ψ0 ∈ C([−N , N ]),
φ(t, ±N ) = G1(t, ±N ), ψ(t, ±N ) = G2(t, ±N ), t ≥ 0,

(2.12)
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where G1(t, z) = 1
2φ

−(t,−N ) − z
2N φ−(t,−N ) and G2(t, z) = 1

2ψ
−(t,−N ) −

z
2N ψ−(t,−N ) for all t ∈ [0, T ] and z ∈ [−N , N ]. It is easy to see that
G1(t,±N ) = φ−(t,±N ),G2(t,±N ) = ψ−(t,±N ) for t ∈ R, and the function
Gi is T -periodic and belongs to C1,2(R × [−N , N ]) for i = 1, 2. Let V1(t, z) =
φ(t, z) − G1(t, z), V2(t, z) = ψ(t, z) − G2(t, z) and G̃i = Ai Gi (t, z) − ∂tGi (t, z).
Then, the problem (2.12) reduces to the following system on (V1, V2) :
⎧
⎪⎪⎨

⎪⎪⎩

∂t Vi (t, z)−Ai Vi (t, z) = fi [φ̃, ψ̃](t, z)+G̃i (t, z), i=1, 2, t>0, z ∈ [−N , N ],
V1(0, z) = φ0(z) − G1(0, z), V2(0, z) = φ0(z) − G2(0, z), z ∈ [−N , N ],
Vi (t,±N ) = 0, i = 1, 2, t ≥ 0.

(2.13)

Define the realization of Ai in C([−N , N ]) with homogeneous Dirichlet boundary
condition,

D(A0
i )=

⎧
⎨

⎩
u ∈

⋂

p≥1

W 2,p
loc ((−N , N )) : u,Ai u ∈ C([−N , N ]), u|±N=0

⎫
⎬

⎭
, A0

i u = Ai u, i=1, 2.

Let Ti (t)t≥0 be the strongly continuous analytic semigroup generated by A0
i :

D(A0
i ) ⊂ C([−N , N ]) → C([−N , N ]) (see, e.g., [7,31]). It is easy to see that

Ti (t)w(x) = e−αi t
∫ N

−N
�i (t, x, y)w(y)dy, i = 1, 2, w(·) ∈ C([−N , N ]),

(2.14)

for t > 0, x ∈ [−N , N ], where �i , i = 1, 2 is the Green function associated with
di∂xx − c∂x , i = 1, 2 and Dirichlet boundary condition. Then, system (2.13) can be
rewritten as the following integral system

⎧
⎨

⎩

V1(t, z) = T1(t) (φ0 − G1(0)) (z) + ∫ t
0 T1(t − s)

(
f1[φ̃, ψ̃](s) + G̃1(s)

)
(z)ds,

V2(t, z) = T2(t) (ψ0−G2(0)) (z)+∫ t
0 T2(t − s)

(
f2[φ̃, ψ̃](s)+G̃2(s)

)
(z)ds

(2.15)

for all t ≥ 0 and z ∈ [−N , N ]. Then, (φ(t, z), ψ(t, z)) satisfies that

⎧
⎨

⎩

φ(t, z)=T1(t) (φ0−G1(0)) (z)+ ∫ t
0 T1(t−s)

(
f1[φ̃, ψ̃](s)+G̃1(s)

)
(z)ds+G1(t, z),

ψ(t, z)=T2(t) (ψ0−G2(0)) (z)+ ∫ t
0 T2(t−s)

(
f2[φ̃, ψ̃](s)+G̃2(s)

)
(z)ds+G2(t, z)

(2.16)

for all t ≥ 0 and z ∈ [−N , N ]. We call a solution of (2.16) as a mild solution
of (2.12). Since fi [φ̃, ψ̃] ∈ C(R × [−N , N ]) and fi [φ̃, ψ̃](t, ·) ∈ C([−N , N ]),
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it follows from [31, Theorem 5.1.17] that the functions φ and ψ defined by (2.16)
belong to C([0, 2T ] × [−N , N ]) ∩ Cθ,2θ ([ε, 2T ] × [−N , N ]) for every ε ∈ (0, 2T )

and θ ∈ (0, 1).
Define a set

�′
N :=

⎧
⎪⎪⎨

⎪⎪⎩

(φ0, ψ0) ∈ C([−N , N ],R2):
φ−(0, z) ≤ φ0(z) ≤ φ+(0, z), z ∈ [−N , N ],
ψ−(0, z) ≤ ψ0(z) ≤ ψ+(0, z), z ∈ [−N , N ],
φ0(±N ) = φ−(0, ±N ), ψ0(±N ) = ψ−(0,±N )

⎫
⎪⎪⎬

⎪⎪⎭

with the usual supreme norm. Obviously, �′
N is a closed and convex set.

Lemma 2.4. For any (φ0, ψ0) ∈ �′
N , let (φN (t, z;φ0, ψ0), ψN (t, z;φ0, ψ0)) be the

solutions of the system (2.16) with the initial value (φ0, ψ0). Then,

φ−(t, z) ≤ φN (t, z;φ0, ψ0) ≤ φ+(t, z), ψ−(t, z) ≤ ψN (t, z;φ0, ψ0) ≤ ψ+(t, z)

for (t, z) ∈ [0,+∞) × [−N , N ].
Proof. Let us first recall that for the given (φ̃, ψ̃) ∈ �N , there hold

φ−(t, z) ≤ φ̃(t, z) ≤ φ+(t, z), ψ−(t, z) ≤ ψ̃(t, z) ≤ ψ+(t, z),

∀(t, z) ∈ R × [−N , N ],
while every (φ0, ψ0) ∈ �′

N satisfies

φ−(0, z) ≤ φ0(z) ≤ φ+(0, z), ψ−(0, z) ≤ ψ0(z) ≤ ψ+(0, z), ∀z ∈ [−N , N ].
We are ready to prove that φN (t, z;φ0, ψ0) ≤ φ+(t, z) for all t ≥ 0 and z ∈ [−N , N ].
Let φ be the solution of the following equation

φ(t) = T1(t) (φ0 − G1(0)) +
∫ t

0
T1(t − s)

(
f1[φ+, ψ−](s) + G̃1(s)

)
ds

+G1(t), t ≥ 0.

Since f1[φ̃, ψ̃] ≤ f1[φ+, ψ−], we have
φN (t, ·;φ0, ψ0) ≤ φ(t, ·;φ0, ψ0), ∀t ≥ 0. (2.17)

In addition, since f1[φ+, ψ−] ∈ Cθ/2,θ (R×[−N , N ]) for some θ ∈ (0, 1), it follows
from [31, Theorems 5.1.18 and 5.1.19] that φ ∈ C([0,+∞) × [−N , N ]) is differ-
entiable with respect to t in (0,+∞) × [−N , N ], φ(t, ·) belongs to W 2,p

loc ((−N , N ))

for every p ≥ 1, and ∂tφ,A1φ ∈ Cθ/2,θ ([δ,+∞) × [−N , N ]) for any δ > 0. As a
consequence, we see that φ ∈ C([0,+∞) × [−N , N ]) ∩C1,2((0,+∞) × [−N , N ])
and satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

∂tφ(t, z) − A1φ(t, z) = f1[φ+, ψ−](t, z), t > 0, z ∈ [−N , N ],
φ(0, z) = φ0(z), z ∈ [−N , N ],
φ(t,±N ) = G1(t,±N ) = φ−(t,±N ), t ≥ 0.
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On the other hand, it is easy to see that φ+ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

∂tφ
+(t, z) − A1φ

+(t, z) = α1φ
+(t, z) ≥ f1[φ+, ψ−](t, z), t > 0, z ∈ [−N , N ],

φ+(0, z) = S0 ≥ φ0(z), z ∈ [−N , N ],
φ+(t,±N ) = S0 ≥ G1(t,±N ) = φ−(t,±N ), t ≥ 0.

Thus, the parabolic comparison principle indicates that

φ(t, z) ≤ φ+(t, z), ∀(t, z) ∈ [0,+∞) × [−N , N ]. (2.18)

In view of (2.17) and (2.18), we have that

φN (t, z;φ0, ψ0) ≤ φ(t, z;φ0, ψ0) ≤ φ+(t, z), ∀(t, z) ∈ [0,+∞) × [−N , N ].
Let φ be the solution of the following equation

φ(t) = T1(t) (φ0−G1(0)) +
∫ t

0
T1(t−s)

(
f1[φ−, ψ+](s)+G̃1(s)

)
ds + G1(t), t≥0.

Thus, we have

φN (t, ·;φ0, ψ0) ≥ φ(t, ·;φ0, ψ0), ∀t ≥ 0, (2.19)

because of f1[φ̃, ψ̃] ≥ f1[φ−, ψ+]. Additionally, since f1[φ−, ψ+] ∈ Cθ/2,θ (R ×
[−N , N ]) for some θ ∈ (0, 1), we conclude from [31, Theorems 5.1.18 and 5.1.19]
that φ ∈ C([0,+∞) × [−N , N ]) ∩ C1,2((0,+∞) × [−N , N ]) satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

∂tφ(t, z) − A1φ(t, z) = f1[φ−, ψ+](t, z), t > 0, z ∈ [−N , N ],
φ(0, z) = φ0(z), z ∈ [−N , N ],
φ(t,±N ) = G1(t,±N ) = φ−(t,±N ), t ≥ 0.

Let φ∗ ≡ 0. Then, φ∗ satisfies

∂tφ
∗(t, z) − A1φ

∗(t, z) ≤ f1[φ−, ψ+], t ∈ [0,+∞), z ∈ [−N , N ],
and hence, the parabolic comparison principle implies that φ(t, z) ≥ 0 for all t ∈
[0,+∞) and z ∈ [−N , N ]. When (t, z) ∈ R× (−∞, z1), it follows from Lemma 2.2
that φ−(t, z) = S0(1 − M1eε1z) satisfies (2.8). Thus,

∂t

(
φ(t, z) − φ−(t, z)

)
− A1

(
φ(t, z) − φ−(t, z)

)
≥ 0,

(t, z) ∈ (0,+∞) × [−N , z1).

Hence, it follows from the maximum principle [15, Chapter 2, Theorem 1] that

φ(t, z) ≥ φ−(t, z), (t, z) ∈ (0,+∞) × [−N , z1).
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Note that φ−(t, z) = max{S0(1 − M1eε1z), 0}. Therefore, we further have that
φN (t, z;φ0, ψ0) ≥ φ(t, z;φ0, ψ0) ≥ φ−(t, z), ∀(t, z) ∈ [0,+∞) × [−N , N ].
In the following, we consider ψN (t, z;φ0, ψ0) for t ∈ [0,+∞) and z ∈ [−N , N ].

Let ψ be the solution of the following equation

ψ(t) = T2(t) (ψ0−G2(0))+
∫ t

0
T2(t−s)

(
f2[φ+, ψ+](s)+G̃2(s)

)
ds+G2(t), t≥0.

Clearly,

ψ(t, ·;φ0, ψ0) ≥ ψN (t, ·;φ0, ψ0), ∀t ∈ [0,+∞).

On the other hand, since f2[φ−, ψ+] ∈ Cθ/2,θ ([0, T ]×[−N , N ]) for some θ ∈ (0, 1),
it follows from [31, Theorems 5.1.18 and 5.1.19] that ψ ∈ C([0,+∞)×[−N , N ])∩
C1,2((0,+∞) × [−N , N ]) satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

∂tψ(t, z) − A2ψ(t, z) = f2[φ+, ψ+](t, z), t > 0, z ∈ [−N , N ],
ψ(0, z) = ψ0(z), z ∈ [−N , N ],
ψ(t,±N ) = G2(t,±N ) = ψ−(t,±N ), t ≥ 0.

In view of Lemma 2.1, (2.7) can be rewritten as
⎧
⎪⎪⎨

⎪⎪⎩

∂tψ
+(t, z) − A2ψ

+(t, z) = P[ψ+](t, z), t ∈ (0,+∞), z ∈ [−N , N ],
ψ+(0, z) = eλ1z, z ∈ [−N , N ],
ψ+(t,±N ) = K (t)e±λ1N , t ∈ [0,+∞),

where P[ψ+](t, z) = α2ψ
+ + β(t)S0ψ+ − γ (t)ψ+, (t, z) ∈ R × [−N , N ]. Since

P[ψ+](t, z) ≥ f2[φ+, ψ+](t, z) for t ∈ (0,+∞) and z ∈ [−N , N ], ψ+(0, ·) ≥
ψ0(·) and ψ+(·,±N ) ≥ G2(·,±N ), we can conclude from the parabolic comparison
principle that

ψ(t, z) ≤ ψ+(t, z), ∀(t, z) ∈ [0,+∞) × [−N , N ].
Thus, we further have that

ψN (t, z;φ0, ψ0) ≤ ψ(t, z;φ0, ψ0) ≤ ψ+(t, z), ∀(t, z) ∈ [0,+∞) × [−N , N ].
Finally, we show that ψN (t, z;φ0, ψ0) ≥ ψ−(t, z) for all t ∈ [0,+∞) and z ∈
[−N , N ]. Let ψ be the solution of the following equation

ψ(t) = T2(t) (ψ0−G2(0))+
∫ t

0
T2(t−s)

(
f2[φ−, ψ−](s)+G̃2(s)

)
ds+G2(t), t≥0.

It is obvious that ψ(t, ·;φ0, ψ0) ≤ ψN (t, ·;φ0, ψ0) for all t ≥ 0. In addition, since
f2[φ+, ψ−] ∈ Cθ/2,θ ([0, T ] × [−N , N ]) for some θ ∈ (0, 1), it follows from [31,
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Theorems 5.1.18 and 5.1.19] that ψ ∈ C([0,+∞) × [−N , N ]) ∩ C1,2((0,+∞) ×
[−N , N ]) satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

∂tψ(t, z) − A2ψ(t, z) = f2[φ−, ψ−](t, z), t ∈ (0, T ], z ∈ [−N , N ],
ψ(0, z) = ψ0(z) ≥ 0, z ∈ [−N , N ],
ψ(t,±N ) = G2(t,±N ) = ψ−(t,±N ) ≥ 0, t ∈ [0, T ].

Let ψ∗(t, z) ≡ 0. Then, ψ∗(t, z) satisfies

∂tψ
∗(t, z) − A2ψ

∗(t, z) ≤ f2[φ−, ψ−], t ∈ [0,+∞), z ∈ [−N , N ],
and hence, the parabolic comparison principle implies that ψ(t, z) ≥ 0 for all t ∈
[0,+∞) and z ∈ [−N , N ]. When (t, z) ∈ R × (−∞, z2), we see that ψ−(t, z) =
K (t)eλ1z(1 − M2eε2z). Thus, by Lemma 2.3, we have

∂t

(
ψ(t, z) − ψ−(t, z)

)
− A2

(
ψ(t, z) − ψ−(t, z)

)
≥ 0,

∀(t, z) ∈ (0,+∞) × [−N , z2).

Consequently, the maximum principle [15, Chapter 2, Theorem 1] yields that

ψ(t, z) ≥ ψ−(t, z), ∀(t, z)∈[0,+∞) × [−N , z2).

Therefore, we further have that

ψN (t, z;φ0, ψ0) ≥ ψ(t, z;φ0, ψ0)≥ψ−(t, z), ∀(t, z) ∈ [0,+∞) × [−N , N ].
This completes the proof. �

For a given (φ̃, ψ̃) ∈ �N , we define a map F(φ̃,ψ̃) : �′
N → C([−N , N ],R2) by

F(φ̃,ψ̃)[φ0, ψ0](·) = (φN (T, ·;φ0, ψ0), ψN (T, ·;φ0, ψ0)) ,

where (φN (t, z;φ0, ψ0), ψN (t, z;φ0, ψ0)) is the solution of (2.12). With the aid of
Lemma 2.4 and the periodicity of φ−, ψ−, φ+ and ψ+, we have F(φ̃,ψ̃)

(
�′
N

) ⊂ �′
N .

Clearly, �′
N is a complete metric space with a distance induced by the supreme norm.

For any
(
φ1
0 , ψ

1
0

)
,
(
φ2
0 , ψ

2
0

) ∈ �′
N , it follows from (2.14) and (2.16) that

∥
∥
∥φN (T, ·;φ1

0 , ψ
1
0 ) − φN (T, ·;φ2

0 , ψ
2
0 )

∥
∥
∥
C([−N ,N ])

= sup
z∈[−N ,N ]

∣
∣
∣
∣e

−αT
∫ N

−N
�1(T, z, y)

(
φ1
0(y) − φ2

0(y)
)
dy

∣
∣
∣
∣

≤ e−α1T
∥
∥
∥φ1

0 − φ2
0

∥
∥
∥
C([−N ,N ]) .

Similarly, we have
∥
∥
∥ψN (T, ·;φ1

0 , ψ
1
0 ) − ψN (T, ·;φ2

0 , ψ
2
0 )

∥
∥
∥
C([−N ,N ]) ≤ e−α2T

∥
∥
∥ψ1

0 − ψ2
0

∥
∥
∥
C([−N ,N ]) .
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Since e−αT < 1, we see that F(φ̃,ψ̃) : �′
N → �′

N is a contraction map. It then fol-
lows from the Banach fixed-point theorem that F(φ̃,ψ̃) admits a unique fixed point

(φ∗
0 , ψ

∗
0 ) ∈ �′

N . Let (φ̂∗
N (t, z), ψ̂∗

N (t, z)) = (
φN (t, z;φ∗

0 , ψ
∗
0 ), ψN (t, z;φ∗

0 , ψ
∗
0 )

)

for all t ∈ [0,+∞) and z ∈ [−N , N ], where (φN (t, z;φ∗
0 , ψ

∗
0 ), ψN (t, z;φ∗

0 , ψ
∗
0 ))

is the solution of (2.16) with initial value (φ∗
0 , ψ

∗
0 ). In view of (φ∗

0 (z), ψ
∗
0 (z)) =

(φN (T, z;φ∗
0 , ψ

∗
0 ), ψN (T, z;φ∗

0 , ψ
∗
0 )), we get (φ̂∗

N (t + T, z), ψ̂∗
N (t + T, z)) =

(φ̂∗
N (t, z), ψ̂∗

N (t, z)) for all t ∈ [0,+∞) and z ∈ [−N , N ].Define (φ∗
N (t, z), ψ∗

N (t, z))

= (φ̂∗
N (t − kT, z), ψ̂∗

N (t − kT, z)) for t ∈ R and z ∈ [−N , N ], where k ∈ Z satisfies
kT ≤ t ≤ (k + 1)T . Then, (φ∗

N (t + T, z), ψ∗
N (t + T, z)) = (φ∗

N (t, z), ψ∗
N (t, z)) for

all t ∈ R and z ∈ [−N , N ]. According to Lemma 2.4, we see that (φ∗
N , ψ∗

N ) ∈ �N .

Moreover, (φ∗
N , ψ∗

N ) satisfies

⎧
⎨

⎩

φ∗
N (t) = T1(t − s)

(
φ∗
N (s) − G1(s)

) + ∫ t
s T1(t − θ)

(
f1[φ̃, ψ̃](θ) + G̃1(θ)

)
dθ + G1(t),

ψ∗
N (t) = T2(t − s)

(
ψ∗
N (s) − G2(s)

) + ∫ t
s T2(t − θ)

(
f2[φ̃, ψ̃](θ) + G̃2(θ)

)
dθ + G2(t)

(2.20)

for all t ≥ s. On the basis of the above discussion, we obtain the following theorem.

Theorem 2.5. For any given (φ̃, ψ̃) ∈ �N , there exists a unique (φ∗
N , ψ∗

N ) ∈ �N

such that (2.20) holds.

Following Theorem 2.5, we can define an operator F : �N → �N by F(φ̃, ψ̃) =
(φ∗

N , ψ∗
N ). We further show the properties of the operator F .

Lemma 2.6. The operator F : �N → �N is completely continuous.

Proof. For any (φ̃, ψ̃) ∈ �N , there holds fi [φ̃, ψ̃](·, ·) ∈ C(R × [−N , N ]) and
fi [φ̃, ψ̃](t + T, z) = fi [φ̃, ψ̃](t, z) for i = 1, 2, (t, z) ∈ R × [−N , N ]. Note that
fi [φ̃, ψ̃], i = 1, 2 are uniformly bounded with respect to (φ̃, ψ̃) ∈ �N . For any given
(φ̃, ψ̃) ∈ �N , let (φ∗

N , ψ∗
N ) = F(φ̃, ψ̃) ∈ �N . By [31, Theorem 5.1.17], it follows

from (2.20)with s = 0 thatφ∗
N , ψ∗

N ∈ Cθ/2,θ ([T, 2T ]×[−N , N ]) for every θ ∈ (0, 1)
and there exists Ci (θ) > 0, i = 1, 2 such that

∥
∥φ∗

N

∥
∥
Cθ/2,θ ([T,2T ]×[−N ,N ])

≤ C1(θ)
(
T−θ/2‖φ∗

N (0)−G1(0)‖∞+‖ f1[φ̃, ψ̃]‖∞+‖G1‖C0,1

)

and

∥
∥ψ∗

N

∥
∥
Cθ/2,θ ([T,2T ]×[−N ,N ])

≤ C2(θ)
(
T−θ/2‖ψ∗

N (0)−G2(0)‖∞+‖ f2[φ̃, ψ̃]‖∞+‖G2‖C0,1

)
.

Since φ∗
N , ψ∗

N are T -periodic, we have that φ∗
N , ψ∗

N ∈ Cθ/2,θ (R × [−N , N ]), and
there exists Ki

0(θ) > 0, i = 1, 2 such that
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∥
∥φ∗

N

∥
∥
Cθ/2,θ (R×[−N ,N ]) ≤ K 1

0 (θ),
∥
∥ψ∗

N

∥
∥
Cθ/2,θ (R×[−N ,N ]) ≤ K 2

0 (θ),

which implies that F is compact on �N .

We further prove the continuity of F . For any (φ̃i , ψ̃i ) ∈ �N , i = 1, 2, there exists
a positive constant M such that |φ̃i (t, z)| ≤ M and |ψ̃i (t, z)| ≤ M for i = 1, 2, t ∈ R

and z ∈ [−N , N ], and let (φ∗
i,N (t, z; φ̃i , ψ̃i ), ψ∗

i,N (t, z; φ̃i , ψ̃i )) = F(φ̃i , ψ̃i ), i =
1, 2. By virtue of (2.14) and (2.20), we have

φ∗
i,N (T, z; φ̃i , ψ̃i )

= e−α1T
∫ N

−N
�1(T, z, y)

[
φ∗
i,N (0, y) − G1(0, y)

]
dy + G1(T, z)

+
∫ T

0
e−α1s

∫ N

−N
�1(s, z, y)

(
f1[φ̃i , ψ̃i ](T − s, y) + G̃1(T−s, y)

)
dyds

and

ψ∗
i,N (T, z; φ̃i , ψ̃i )

= e−α2T
∫ N

−N
�2(T, z, y)

[
φ∗
i,N (0, y) − G2(0, y)

]
dy + G2(T, z)

+
∫ T

0
e−α2s

∫ N

−N
�2(s, z, y)

(
f2[φ̃i , ψ̃i ](T − s, y) + G̃2(T − s, y)

)
dyds.

Then, there holds

∣
∣
∣φ

∗
1,N (T, z; φ̃1, ψ̃1) − φ∗

2,N (T, z; φ̃2, ψ̃2)

∣
∣
∣

≤ e−α1T
∫ N

−N
�1(T, z, y)

∣
∣φ∗

1,N (0, y) − φ∗
2,N (0, y)

∣
∣ dy

+
∫ T

0
e−α1s

∫ N

−N
�1(s, z, y)

[
β(T−s)φ̃1(T−s, y)

(
ψ̃1(T−s, y)−ψ̃2(T − s, y)

)

+β(T − s)ψ̃2(T − s, y)
(
φ̃1(T − s, y) − φ̃2(T − s, y)

) ]
dyds

≤ e−α1T
∥
∥φ∗

1,N (0) − φ∗
2,N (0)

∥
∥
C([−N ,N ]) + β̃M(1 − e−α1T )

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥

+β̃M(1 − e−α1T )

∥
∥
∥φ̃1 − φ̃2

∥
∥
∥ ,

where β̃ := maxt∈[0,T ] β(t). Since φ∗
i,N (t + T, z; φ̃i , ψ̃i ) = φ∗

i,N (t, z; φ̃i , ψ̃i ) for all
t ∈ R and z ∈ [−N , N ], we can get from the above inequality that

∥
∥φ∗

1,N (0) − φ∗
2,N (0)

∥
∥
C([−N ,N ]) ≤ β̃M

∥
∥
∥ψ̃1 − ψ̃2

∥
∥
∥ + β̃M

∥
∥
∥φ̃1 − φ̃2

∥
∥
∥ .
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Additionally, φ∗
i,N (t, z; φ̃i , ψ̃i ) satisfies

φ∗
i,N (t, z; φ̃i , ψ̃i )

= e−α1t
∫ N

−N
�1(t, z, y)

[
φ∗
i,N (0, y) − G1(0, y)

]
dy + G1(t, z)

+
∫ t

0
e−α1s

∫ N

−N
�1(s, z, y)

(
f1[φ̃i , ψ̃i ](t − s, y) + G̃1(t − s, y)

)
dyds.

Thus, by similar arguments to above, it is not difficult to show that φ∗
N (t, z; φ̃, ψ̃)

is continuous in (φ̃, ψ̃). Similarly, we can prove that ψ∗
N (t, z; φ̃, ψ̃) is continuous in

(φ̃, ψ̃). The proof is complete. �

With the aid of Lemma 2.6, we can conclude from the Shauder’s fixed-point theorem
that F admits a fixed point (φ∗

N , ψ∗
N ) ∈ �N . In particular, (φ∗

N (t + T, ·), ψ∗
N (t +

T, ·)) = (φ∗
N (t, ·), ψ∗

N (t, ·)) for all t ∈ R. Note that φ∗
N , ψ∗

N ∈ Cθ/2,θ (R×[−N , N ])
for some θ ∈ (0, 1). By [31, Theorem 5.1.18 and 5.1.19], we have that φ∗

N , ψ∗
N ∈

C1,2(R × [−N , N ]) satisfy
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tφ
∗
N (t, z) = d1∂zzφ∗

N (t, z) − c∂zφ∗
N (t, z) − β(t)φ∗

N (t, z)ψ∗
N (t, z),

(t, z) ∈ R × [−N , N ],
∂tψ

∗
N (t, z) = d2∂zzψ∗

N (t, z)−c∂zψ∗
N (t, z)+β(t)φ∗

N (t, z)ψ∗
N (t, z)−γ (t)ψ∗

N (t, z),

φ∗
N (t,±N ) = φ−(t,±N ), ψ∗

N (t,±N ) = ψ−(t,±N ), t ∈ R.

(2.21)

The following theorem lists some local uniform estimates on φ∗
N and ψ∗

N .

Theorem 2.7. Let p ≥ 2. For any given Z > 0, there exists a constant C(p, Z) > 0
such that for sufficiently large N > max{Z ,−z2}, there hold

∥
∥φ∗

N

∥
∥
W 1,2

p ([0,T ]×[−Z ,Z ]) ,
∥
∥φ∗

N

∥
∥
W 1,2

p ([0,T ]×[−Z ,Z ]) ≤ C.

Furthermore, there exists a constant C ′(Z) > 0 such that for any z0 ∈ R, there hold

∥
∥φ∗

N

∥
∥
C(1+θ)/2,1+θ ([0,T ]×[z0−Z ,z0+Z ]) ,

∥
∥φ∗

N

∥
∥
C(1+θ)/2,1+θ ([0,T ]×[z0−Z ,z0+Z ]) ≤ C ′

(2.22)

for sufficiently large N > max{Z + |z0|,−z2}, where θ ∈ (0, 1).

Proof. Fix Z > 0 and z0 ∈ R. Let N > max{Z + |z0|,−z2}. In view of the above
discussion, we see that
⎧
⎨

⎩

∂tφ
∗
N (t, z) = d1∂zzφ∗

N (t, z) − c∂zφ∗
N (t, z) − β(t)φ∗

N (t, z)ψ∗
N (t, z),

∂tψ
∗
N (t, z) = d2∂zzψ∗

N (t, z) − c∂zψ∗
N (t, z)+β(t)φ∗

N (t, z)ψ∗
N (t, z) − γ (t)ψ∗

N (t, z)
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for all (t, z) ∈ R×(−N , N ).Since (φ∗
N , ψ∗

N ) ∈ �N , there exists aM > 0 independent
of N such that

sup
(t,z)∈R×[−N ,N ]

φ∗
N (t, z) < M, sup

(t,z)∈R×[−N ,N ]
ψ∗
N (t, z) < M.

Let W 1
N (t, z) := e

− c(z−z0)

2d1 φ∗
N (t, z), W 2

N (t, z) := e
− c(z−z0)

2d2 ψ∗
N (t, z) for any t ∈ R and

z ∈ [−N , N ]. It then follows that

∂tW
1
N (t, z) = d1∂zzW

1
N (t, z) − c2

4d1
e
− c(z−z0)

2d1 φ∗
N (t, z) − β(t)φ∗

N (t, z)ψ∗
N (t, z),

∂tW
2
N (t, z) = d2∂zzW

2
N (t, z) − c2

4d2
e
− c(z−z0)

2d2 ψ∗
N (t, z) + β(t)φ∗

N (t, z)ψ∗
N (t, z)

−γ (t)ψ∗
N (t, z)

for any (t, z) ∈ R × (−N , N ). For (t ′, z′) ∈ R
2 and r > 0, define

Q((t ′, z′), r) :=
{
(t, z) ∈ R

2
∣
∣|z − z′| < r, |t − t ′| < r, t < t ′

}
.

For the given Z > 0, take R = max{2Z ,
√
3T }. Define

h1N (t, z) = − c2

4d1
e
− c(z−z0)

2d1 φ∗
N (t, z) − β(t)φ∗

N (t, z)ψ∗
N (t, z),

h2N (t, z) = − c2

4d2
e
− c(z−z0)

2d2 ψ∗
N (t, z) + β(t)φ∗

N (t, z)ψ∗
N (t, z) − γ (t)ψ∗

N (t, z).

According to [29, Proposition 7.14], for N > 72R + |z0|, there exists a constant
C1(p, R) independent of N , such that

∥
∥
∥∂zW

i
N

∥
∥
∥
L p(Q((2T,z0),2R))

≤ C1

(∥
∥
∥Wi

N

∥
∥
∥
L p(Q((2T,z0),72R))

+
∥
∥
∥hiN

∥
∥
∥
L p(Q((2T,z0),72R))

)

, i = 1, 2.

This implies that there exists a constant C2(p, R), which is independent of N , such
that

∥
∥∂zφ

∗
N

∥
∥
L p(Q((2T,z0),2R))

,
∥
∥∂zψ

∗
N

∥
∥
L p(Q((2T,z0),2R))

≤ C2.

In view of the equations for φ∗
N and ψ∗

N , we further conclude from [29, Proposi-
tion 7.18] that there exists a constant C3(p, R) independent of N , such that

∥
∥∂zzφ

∗
N

∥
∥
L p(Q((2T,z0),R))

+ ∥
∥∂tφ

∗
N

∥
∥
L p(Q((2T,z0),R))

≤ C3,
∥
∥∂zzψ

∗
N

∥
∥
L p(Q((2T,z0),R))

+ ∥
∥∂tψ

∗
N

∥
∥
L p(Q((2T,z0),R))

≤ C3,

As a consequence, there exists a constant C(p, R), which is independent of N , such
that

∥
∥φ∗

N

∥
∥
W 1,2

p (Q((2T,z0),R))
,
∥
∥ψ∗

N

∥
∥
W 1,2

p (Q((2T,z0),R))
≤ C.



1046 L. Zhang et al. J. Evol. Equ.

On account of [0, T ] × [−Z , Z ] ⊂ Q((2T, 0), R), we have

∥
∥φ∗

N

∥
∥
W 1,2

p ([0,T ]×[−Z ,Z ]) ,
∥
∥ψ∗

N

∥
∥
W 1,2

p ([0,T ]×[−Z ,Z ]) ≤ C.

Here, R merely depends on Z , and then, C only relies on Z and p.
Take p > 3. Then, the embedding theorem indicates that

φ∗
N , ψ∗

N ∈ C (1+θ)/2,1+θ ([0, T ] × [z0 − Z , z0 + Z ]) for some θ ∈ (0, 1)

and

∥
∥φ∗

N

∥
∥
C(1+θ)/2,1+θ ([0,T ]×[−Z ,Z ]) ,

∥
∥ψ∗

N

∥
∥
C(1+θ)/2,1+θ ([0,T ]×[−Z ,Z ]) ≤ C ′,

where C ′ > 0 is a constant depending upon p and Z . �

Let
(
φ∗
N , ψ∗

N

)
be the solution of the system (2.21), andwe further have the following

estimations.

Proposition 2.8. There exists a constant C0 such that

1

T

∫ N

−N

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dtdz < C0,

1

T

∫ N

−N

∫ T

0
ψ∗
N (t, z)dtdz < C0

for any N > −z2. In particular,
∫ T
0 ∂zφ

∗
N (t, z)dt ≤ 0 for z ∈ [−N , N ] and N > −z2.

Proof. For z ∈ [−N , N ], define

�∗(z) = 1

T

∫ T

0
φ∗
N (t, z)dt, �∗(z) = 1

T

∫ T

0
ψ∗
N (t, z)dt,

�±(z) = 1

T

∫ T

0
φ±(t, z)dt, �±(z) = 1

T

∫ T

0
ψ±(t, z)dt.

Clearly,

�−(z) ≤ �∗(z) ≤ �+(z), �−(z) ≤ �∗(z) ≤ �+(z), ∀z ∈ [−N , N ].

In view of (2.21), we have

c�∗
z = d1�

∗
zz − 1

T

∫ T

0
β(t)ψ∗

N (t, z)ψ∗
N (t, z)dt, ∀z ∈ [−N , N ], (2.23)

where the subscripts z and zz represent the first derivative and the second derivative
for one function on z, respectively. It follows from (2.23) that

(
e−cz/d1�∗

z

)

z
= e−cz/d1

(
�∗

zz − c�∗
z/d1

)

= e−cz/d1

d1T

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dt, ∀z ∈ [−N , N ].
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Integrating two sides of the last equality from z ∈ [−N , N ) to N yields

�∗
z (z) = e−c(N−z)/d1�∗

z (N ) − 1

d1T

∫ N

z
e−c(ξ−z)/d1

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dtdξ.

Since �∗(z) ≥ 0 = �∗(N ) = �−(N ) for z ∈ [−N , N ], we have that �∗
z (N ) ≤ 0,

and hence, �∗
z (z) ≤ 0 for z ∈ [−N , N ]. In particular, �∗

z (z) 	≡ 0. Making an
integration from −N to N for Eq. (2.23), we obtain

1

T

∫ N

−N

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dtdz

= c
(
�∗(−N ) − �∗(N )

) + d1
(
�∗

z (N ) − �∗
z (−N )

)
,

≤ (c + d1)S0

(2.24)

due to �∗(−N ) ≤ S0 and

�∗
z (−N ) ≥ �−

z (−N ) = d

dz

(
1

T

∫ T

0
φ−(t, z)dt

)∣
∣
∣
∣
z=−N

= −S0M1ε1e
−ε1N ≥ −S0.

Let γ̂ := mint∈[0,T ] γ (t) and γ̃ := maxt∈[0,T ] γ (t). Then, �∗ satisfies

−d2�
∗
zz + c�∗

z + γ̂ �∗ = 1

T

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dt

− 1

T

∫ T

0

(
γ (t) − γ̂

)
ψ∗
N (t, z)dt.

Integrating the two sides of the last equality on [−N , N ], we have
∫ N

−N
�∗(z)dz ≤ d2

γ̂

(
�∗

z (N ) − �∗
z (−N )

) + c

γ̂

(
�∗(−N ) − �∗(N )

)

+ 1

γ̂ T

∫ N

−N

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dtdz.

Since �∗
z (N ) ≤ 0, �∗

z (−N ) ≥ �−
z (−N ) > 0, �∗(−N ) = �−(−N ) and the

inequality (2.24) holds, we can conclude from the last equality that

∫ N

−N
�∗(z)dz ≤ 1

γ̂

(
c�−(−N ) + cS0 + d1S0

)
.

Thus, there exists a constant C0 > 0 independent of N > −z2 such that

1

T

∫ N

−N

∫ T

0
β(t)φ∗

N (t, z)ψ∗
N (t, z)dtdy < C0,

1

T

∫ N

−N

∫ T

0
ψ∗
N (t, z)dtdz < C0.

This completes the proof. �
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2.3. Existence of periodic traveling waves

This subsection is concerned with the existence of periodic traveling waves.

Theorem 2.9. Assume that R0 > 1. For any c > c∗, the system (2.1) admits a time
periodic traveling wave solution (φ∗, ψ∗) satisfying (2.4) and (2.5). Furthermore,
there hold 0 < 1

T

∫ T
0 ψ∗(t, z)dt ≤ S0 − S∞ for any z ∈ R, and

1

T

∫ ∞

−∞

∫ T

0
γ (t)ψ∗(t, z)dtdz

= 1

T

∫ ∞

−∞

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dtdz = c[S0 − S∞].

Proof. The proof is divided into four parts.

I. Existence of periodic traveling waves Let {Nm} be an increasing sequence such that
Nm ≥ −z2 and limm→+∞ Nm = +∞. It then follows that the solutions (φ∗

Nm
, ψ∗

Nm
) ∈

�Nm satisfy Theorem 2.7 and (2.21). In light of the periodicity of (φ∗
Nm

, ψ∗
Nm

) in t ∈ R,

we can extract a subsequence of (φ∗
Nm

, ψ∗
Nm

), still denoted by (φ∗
Nm

, ψ∗
Nm

), tending

toward functions (φ∗, ψ∗) ∈ C(R2) in the following topologies

(φ∗
Nm

, ψ∗
Nm

) → (φ∗, ψ∗) in C
1+β
2 ,1+β

loc (R2), in H1
loc(R

2) weakly and in

L2
loc(R, H2

loc(R)) weakly, (2.25)

where β ∈ (0, θ) and θ ∈ (0, 1) is given in (2.22). It is obvious that (φ∗, ψ∗) ∈
C

1+β
2 ,1+β(R2) ∩ H1

loc(R
2) ∩ L2

loc(R, H2
loc(R)). Since (φ∗

Nm
, ψ∗

Nm
) is T -periodic in t ,

we have (φ∗(t + T, z), ψ∗(t + T, z)) = (φ∗(t, z), ψ∗(t, z)) for all t ∈ R and z ∈ R,
and hence, the estimation (2.22) implies that for any N > 0, there exists a constant
C3 > 0 such that

∥
∥φ∗∥∥

C
1+β
2 ,1+β

[0,T ]×[−N ,N ](R2)

+ ∥
∥ψ∗∥∥

C
1+β
2 ,1+β

[0,T ]×[−N ,N ](R2)

≤ C3. (2.26)

Letu, v ∈ C∞
0 (R2)begiven.Then, for sufficiently largem ∈ N satisfying supp(u)×

supp(v) ⊂ R × (−Nm, Nm), we have that (φ∗
Nm

, ψ∗
Nm

) satisfy the equalities

∫ ∫

R2
∂t u(t, z)φ∗

Nm
(t, z)dtdz − d1

∫ ∫

R2
∂zu(t, z)∂zφ

∗
Nm

(t, z)dtdz

= c
∫ ∫

R2
u(t, z)∂zφ

∗
Nm

(t, z)dtdz +
∫ ∫

R2
β(t)u(t, z)φ∗

Nm
(t, z)ψ∗

Nm
dtdz

and
∫ ∫

R2
∂tv(t, z)ψ∗

Nm
(t, z)dtdz − d2

∫ ∫

R2
∂zv(t, z)∂zψ

∗
Nm

(t, z)dtdz

= c
∫ ∫

R2
v(t, z)∂zψ

∗
Nm

(t, z)dtdz −
∫ ∫

R2
β(t)v(t, z)φ∗

Nm
(t, z)ψ∗

Nm
dtdz
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+
∫ ∫

R2
γ (t)v(t, z)ψ∗

Nm
dtdz.

On the basis of (2.25), we have that (φ∗, ψ∗) satisfy
∫ ∫

R2
∂t u(t, z)φ∗(t, z)dtdz − d1

∫ ∫

R2
∂zu(t, z)∂zφ

∗(t, z)dtdz

= c
∫ ∫

R2
u(t, z)∂zφ

∗(t, z)dtdz +
∫ ∫

R2
β(t)u(t, z)φ∗(t, z)ψ∗dtdz

and

∫ ∫

R2
∂tv(t, z)ψ∗(t, z)dtdz − d2

∫ ∫

R2
∂zv(t, z)∂zψ

∗(t, z)dtdz

= c
∫ ∫

R2
v(t, z)∂zψ

∗(t, z)dtdz −
∫ ∫

R2
β(t)v(t, z)φ∗(t, z)ψ∗dtdz

+
∫ ∫

R2
γ (t)v(t, z)ψ∗dtdz

for any u, v ∈ C∞
0 (R2). Then, we conclude that (φ∗, ψ∗) satisfy

⎧
⎨

⎩

∂tφ
∗(t, z) = d1∂zzφ∗(t, z) − c∂zφ∗(t, z) − β(t)φ∗(t, z)ψ∗(t, z),

∂tψ
∗(t, z) = d2∂zzψ∗(t, z) − c∂zψ∗(t, z) + β(t)φ∗(t, z)ψ∗(t, z) − γ (t)ψ∗(t, z)

almost everywhere in (t, z) ∈ R
2. Consider the following Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

∂tw1(t, z) = d1∂zzw1(t, z) − c∂zw1(t, z) − β(t)φ∗(t, z)ψ∗(t, z), t > 0, z ∈ R,

∂tw2(t, z) = d2∂zzw2(t, z) − c∂zw2(t, z) + β(t)φ∗(t, z)ψ∗(t, z) − γ (t)ψ∗(t, z),

w1(0, z) = φ∗(0, z), w2(0, z) = ψ∗(0, z), z ∈ R.

(2.27)

Clearly, (φ∗(t, z), ψ∗(t, z)) is a strong solution of (2.27). Moreover, [31, Theo-
rem 5.1.3 and 5.1.4] imply that (φ∗, ψ∗) is the unique strong solution of (2.27), and
hence, φ∗, ψ∗ ∈ C1+ ν

2 ,2+ν(R2) for some ν ∈ (0, 1) and satisfy (2.4), that is,

⎧
⎨

⎩

∂tφ
∗(t, z) = d1∂zzφ∗(t, z) − c∂zφ∗(t, z) − β(t)φ∗(t, z)ψ∗(t, z),

∂tψ
∗(t, z) = d2∂zzψ∗(t, z) − c∂zψ∗(t, z) + β(t)φ∗(t, z)ψ∗(t, z) − γ (t)ψ∗(t, z)

(2.28)

for (t, z) ∈ R
2.Furthermore, it follows fromProposition 2.8 that there exists a constant

C0 > 0 such that
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1

T

∫ ∞

−∞

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dtdz < C0,

1

T

∫ ∞

−∞

∫ T

0
ψ∗(t, z)dtdz < C0.

(2.29)

Note that (φ∗, ψ∗) satisfies that

φ−(t, z) ≤ φ∗(t, z) ≤ S0, ψ−(t, z) ≤ ψ∗(t, z) ≤ ψ+(t, z), (t, z) ∈ R
2,

and hence, there hold φ∗(t, z) → S0 and ψ∗(t, z) → 0 uniformly for t ∈ R, as
z → −∞.

II. The asymptotic behavior of ψ∗ as z → +∞ Define �(z) = 1
T

∫ T
0 ψ∗(t, z)dt .

Then, �(z) satisfies

− d2�zz + c�z + γ̂ � = 1

T

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dt

− 1

T

∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, z)dt, (2.30)

where γ̂ is defined as in the proof of Proposition 2.8. Denote by

λ̂± := c ± √
c2 + 4d2γ̂

2d2

the two roots of the characteristic equation

−d2λ
2 + cλ + γ̂ = 0.

In addition, denote

ρ̂ := d2
(
λ̂+ − λ̂−)

=
√

c2 + 4d2γ̂ .

Clearly, λ̂− < 0 < λ̂+. It follows from (2.30) and (2.29) that

�(z) = 1

ρ̂T

∫ z

−∞
eλ̂

−(z−y)

[∫ T

0
β(t)φ∗(t, y)ψ∗(t, y) −

∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, y)

]

dtdy

+ 1

ρ̂T

∫ ∞
z

eλ̂
+(z−y)

[∫ T

0
β(t)φ∗(t, y)ψ∗(t, y) −

∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, y)

]

dtdy

and

�z(z) = λ̂−
ρ̂T

∫ z

−∞
eλ̂

−(z−y)

[∫ T

0
β(t)φ∗(t, y)ψ∗(t, y) −

∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, y)

]

dtdy

+ λ̂+
ρ̂T

∫ ∞
z

eλ̂
+(z−y)

[∫ T

0
β(t)φ∗(t, y)ψ∗(t, y) −

∫ T

0

(
γ (t) − γ̂

)
ψ∗(t, y)

]

dtdy

≤ λ̂−
ρ̂T

∫ z

−∞
eλ̂

−(z−y)
∫ T

0
β(t)φ∗(t, y)ψ∗(t, y)dtdy
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+ λ̂+
ρ̂T

∫ ∞
z

eλ̂
+(z−y)

∫ T

0
β(t)φ∗(t, y)ψ∗(t, y)dtdy

= λ̂−
ρ̂T

∫ ∞
0

eλ̂
−y

∫ T

0
β(t)φ∗(t, z − y)ψ∗(t, z − y)dtdy

+ λ̂+
ρ̂T

∫ 0

−∞
eλ̂

+y
∫ T

0
β(t)φ∗(t, z − y)ψ∗(t, z − y)dtdy.

Since λ̂− < 0 < λ̂+ and ρ̂ := d2
(
λ̂+ − λ̂−

)
, we have

|�z(z)| ≤ 1

d2T

∫ ∞

−∞

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dtdz.

It then follows from the integrability of
∫ T
0 β(t)φ∗(t, ·)ψ∗(t, ·)dt on R that �z is

uniformly bounded. Consequently, following
∫ ∞
−∞ �(z)dz < C0, we must have

�(z) → 0 as z → ∞. We further apply Harnack inequalities ([35, Lemma 2.9]
(see also [14]) with τ = −T, θ = T and D := Dz = (z − 1

4 , z + 1
4 ),U =

(z − 1
2 , z + 1

2 ),� = (z − 1, z + 1) with z ∈ R) for the second equation of sys-
tem (2.28), we have

sup
(0,T )×D

ψ∗(t, y) ≤ C ′
0 inf

(2T,3T )×D
ψ∗(t, z)

= C ′
0 min

[2T,3T ]×D
ψ∗(t, y)

≤ C ′
0 min

D
ψ∗(0, y),

where C ′
0 is a positive constant independent of D. Since ψ∗ is periodic in time t ,

ψ∗(t, z) → 0 uniformly for t ∈ R, as z → ∞. As a consequence, there holds
ψ∗(t, z) ≤ C0 for (t, z) ∈ R

2.

III. The asymptotic behavior of φ∗ as z → ∞ By virtue of the estimate (2.26) and
Laudau type inequalities (see, e.g., [4,27]), we have

∣
∣φ∗

z

∣
∣
L∞([0,T ]×(−∞,M]) ≤ 2

∣
∣φ∗ − S0

∣
∣
1
2
L∞([0,T ]×(−∞,M])

∣
∣φ∗

zz

∣
∣
1
2
L∞([0,T ]×(−∞,M]) .

Consequently,

lim
z→−∞ φ∗

z (t, z) = 0 uniformly for t ∈ R.

Define �(z) = 1
T

∫ T
0 φ∗(t, z)dt . It is obvious that �z(z) → 0 as z → −∞. It then

follows from the first equation of system (2.28) that

c�z = d1�zz − 1

T

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dt. (2.31)

It is easy to see from the last equation

(
e−cz/d1�z

)

z
= e−cz/d1 (�zz − c�z/d1) = e−cz/d1

d1T

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dt.
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Since 1
T

∫ T
0 β(t)φ∗(t, z)ψ∗(t, z)dt is integrable on R, an integration from z to ∞ for

the last equality yields

e−cz/d1�z(z) = − 1

d1T

∫ ∞

z
e−cy/d1

∫ T

0
β(t)φ∗(t, y)ψ∗(t, y)dtdy,

which implies that �z(z) < 0 for z ∈ R, and hence, �(∞) exists and �(∞) <

�(−∞) = S0. It follows from the Barbălat’s lemma (see, e.g., [3,12]) that�z(z) → 0
as z → ∞. Integrating two sides of (2.31) from −∞ to ∞ on z leads to

1

T

∫ ∞

−∞

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dtdz = c[S0 − �(∞)] = c[S0 − S∞],

where S∞ := �(∞) < S0.
By similar arguments to [35, Theorem 2.10], we prove that φ∗(t, z) → S∞ uni-

formly for t ∈ R, as z → ∞. In the light of T -periodicity of φ∗, it is sufficient to
show

lim sup
z→∞

max
t∈[0,T ] φ

∗(t, z) =: S∞+ = S∞ = S∞− := lim inf
z→∞ min

t∈[0,T ] φ
∗(t, z).

Clearly, there exist {tn} and {zn} satisfying {tn} ⊂ [0, T ] and zn → ∞ (as n → ∞),
respectively, such that

lim
n→∞ φ∗(tn, zn) = S∞+ .

Let φn(t, z) = φ∗(t+tn, z+zn), ψn(t, z) = ψ∗(t+tn, z+zn),∀n ∈ N, t ∈ R, z ∈ R.

Based on the estimation (2.26) and the uniformboundedness of�,�z, � and�z , there
exists a subsequence of (φn(t, z), ψn(t, z)), still denoted by (φn(t, z), ψn(t, z)), con-
verging to (φ∗(t, z), 0) inCν/2,ν

loc (R×R) for some ν ∈ (0, 1), as n → ∞. Particularly,
we have φ∗(0, 0) = S∞+ and

φ∗(t + T, z) = φ∗(t, z), φ∗(t, z) ≤ S∞+ , ∀(t, z) ∈ R × R.

Since {tn} ⊂ [0, T ], without loss of generality, let tn → t∗ ∈ [0, T ]. Then, φ+∗ (t, z) =
φ∗(t − t∗, z) satisfies

φ+∗ (t) = T1(t)φ
+∗ (0) +

∫ t

0
T1(t − s) f1[φ+∗ , 0](s)ds

= T1(t)φ
+∗ (0) +

∫ t

0
T1(t − s)α1φ

+∗ (s)ds.

Accordingly, φ+∗ (t, z) satisfies

∂tφ
+∗ (t, z) = d1∂zzφ

+∗ (t, z) − c∂zφ
+∗ (t, z), (t, z) ∈ R × R.

As a result of φ+∗ (t∗, 0) = S∞+ and φ+∗ (t, z) ≤ S∞+ , the maximum principle indicates
that φ+∗ (t, z) ≡ S∞+ for t < t∗. Since φ+∗ is T -periodic in t , we have φ+∗ (t, z) ≡
S∞+ ,∀t ∈ R, and hence �+∗ (z) := 1

T

∫ T
0 φ+∗ (t, z)dt ≡ S∞+ . On the other hand,



Vol. 20 (2020) Time periodic traveling waves in a periodic 1053

�+∗ (z) = 1

T

∫ T

0
φ+∗ (t, z)dt = 1

T

∫ T

0
φ∗(t − t∗, z)dt

= lim
n→∞

1

T

∫ T

0
φn(t − t∗, z)dt

= lim
n→∞

1

T

∫ T

0
φ∗(t − t∗ + tn, z + zn)dt

= S∞,

which implies S∞+ = S∞.Thus, lim supz→∞ maxt∈[0,T ] φ∗(t, z) = S∞. Similarly, we
can prove lim inf z→∞ mint∈[0,T ] φ∗(t, z) = S∞. This implies that φ+∗ (t, z) converges
to S∞ uniformly in t ∈ R as z → ∞.

IV. The properties forψ∗ We use the similar arguments to [35, Theorem 2.10](see also
[33]) check on the properties for ψ∗. Since �(z) satisfies

− d2�zz + c�z = 1

T

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dt − 1

T

∫ T

0
γ (t)ψ∗(t, z)dt,

(2.32)

an integration of (2.32) on R yields

1

T

∫ ∞

−∞

∫ T

0
γ (t)ψ∗(t, z)dtdz

= 1

T

∫ ∞

−∞

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dtdz = c[S0 − S∞].

Similar to the aforementioned proof on the asymptotic behavior of φ∗
z (t, z) as z →

−∞, we can show that

lim
z→±∞ ψ∗

z (t, z) = 0 (2.33)

uniformly for t ∈ R. For any z ∈ R, define a function

�∗∗(z) = 1

cT

∫ z

−∞

∫ T

0
γ (t)ψ∗(t, y)dtdy

+ 1

cT

∫ ∞

z
ec/d2(z−y)

∫ T

0
γ (t)ψ∗(t, y)dtdy. (2.34)

It is not difficult to see that �∗∗(z) satisfies the following equation:

c�∗∗
z (z) = d2�

∗∗
zz (z) + 1

T

∫ T

0
γ (t)ψ∗(t, y)dt, ∀z ∈ R.

By means of (2.33) and L’Hôpital’s rule, it follows that

lim
z→−∞ �∗∗(z) = 0, lim

z→∞ �∗∗(z) = 1

cT

∫ ∞

−∞

∫ T

0
γ (t)ψ∗(t, y)dy = S0 − S∞
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and

lim
z→±∞ �∗∗

z (z) = 0.

Define a new function

�̂(z) := �(z) + �∗∗(z), ∀z ∈ R,

where �(z) = 1
T

∫ T
0 ψ∗(t, z)dt. On the basis of (2.33) and (2.34) that

c�̂z(z) = d2�̂zz(z) + 1

T

∫ T

0
β(t)φ∗(t, z)ψ∗(t, z)dt, ∀z ∈ R.

Multiplying two sides of the above equation by e−c/d2z and integrating from z to ∞,

we have

�̂z(z) = 1

d2T

∫ ∞

z
ec/d2(z−y)

∫ T

0
β(t)φ∗(t, y)ψ∗(t, y)dtdy.

Then, it is obvious that �̂(z) is non-decreasing in R. Note that limz→∞ �̂(z) =
S0 − S∞. Hence, �̂(z) ≤ S0 − S∞ for all z ∈ R. In view of the definition of �̂(z)
and �∗(z), we conclude that �(z) ≤ �̂(z) ≤ S0 − S∞ for all z ∈ R, that is,
0 ≤ 1

T

∫ T
0 ψ∗(t, z)dt ≤ S0 − S∞ for any z ∈ R. The proof is complete. �

3. Nonexistence of periodic traveling waves

In this section, our task is to investigate the nonexistence of time periodic traveling
waves for two cases. Firstly, we prove that there is no time periodic traveling wave in
the case where R0 ≤ 1.

Theorem 3.1. Assume that R0 = S0
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

≤ 1. Then, for any c ≥ 0, there is

no time periodic traveling wave solutions (φ,ψ) satisfying the asymptotic boundary
conditions (2.5) uniformly for t ∈ R.

Proof. By contradiction, we assume that there exists a time periodic, non-trivial and
nonnegative solution (φ(t, z), ψ(t, z)) of (2.4) satisfying (2.5) uniformly for t ∈ R,
that is,

⎧
⎨

⎩

φt (t, z) = d1φzz(t, z) − cφz(t, z) − β(t)φ(t, z)ψ(t, z),

ψt (t, z) = d2ψzz(t, z) − cψz(t, z) + β(t)φ(t, z)ψ(t, z) − γ (t)ψ(t, z)

and

φ(t,−∞) = S0, φ(t,∞) = S∞, ψ(t,±∞) = 0 uniformly in t ∈ R.
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Due to theT -periodicity ofψ(t, z) and theparabolicmaximumprinciple, it follows that
ψ(t, z) > 0 for t ∈ R, z ∈ R. In addition, it is not difficult to show that φ(t, z) ≤ S0
for t ∈ R, z ∈ R. In fact, suppose that there exists (t0, x0) such that S(t0, x0) > S0.
Thus,

0 = ∂S(t, x)

∂t

∣
∣
∣
∣
(t0,x0)

= d1�S(t, x)
∣
∣
∣
(t0,x0)

− β(t0)S(t0, x0)I (t0, x0) < 0,

which is a contradiction. Letψ(t) = ∫ ∞
−∞ ψ(t, z)dz. Then, by the asymptotical bound-

ary conditions (2.5) and (2.33), we have

d

dt
ψ(t) = (β(t)S0 − γ (t)) ψ(t) + f (t), ∀t ∈ R,

where

f (t) = β(t)
∫ ∞

−∞
(φ(t, z) − S0) ψ(t, z)dz < 0, ∀t ∈ R.

It is easy to see that ψ(t + T ) = ψ(t), f (t + T ) = f (t),∀t ∈ R. According to the
positivity of ψ(t), we see that

d
dt ψ(t)

ψ(t)
= (β(t)S0 − γ (t)) + f (t)

ψ(t)
, ∀t ∈ R.

Integrating both two sides of the above equality from 0 to T , we obtain

0 =
∫ T

0
(β(t)S0 − γ (t)) dt +

∫ T

0

f (t)

ψ(t)
dt < 0

due to the periodicity and positivity of ψ(t) and R0 = S0
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

≤ 1. This is a

contradiction. �
Next, we prove the nonexistence of periodic traveling waves for the case where

R0 > 1 and c < c∗.

Theorem 3.2. Assume that R0 > 1and0 < c < c∗ = 2
√
d2� = 2

√
d2

∫ T
0 (S0β(t)−γ (t))

T .

System (2.4) does not have a time periodic traveling waves (φ,ψ) satisfying (2.5) uni-
formly for t ∈ R.

Proof. Suppose, by contradiction, that there exists such a traveling wave solution

(φ(t, x + ct), ψ(t, x + ct) satisfying (2.5) for some c < c∗ = 2

√
d2

∫ T
0 (S0β(t)−γ (t))

T .

Since R0 = S0
∫ T
0 β(t)dt

∫ T
0 γ (t)dt

, we have
∫ T
0 [β(t)S0 − γ (t)]dt > 0, and hence, there exists

a sufficiently small δ0 > 0 such that
∫ T
0 [β(t)(S0 − δ0) − γ (t)]dt > 0. For each

δ ∈ (0, δ0), define �δ by

�δ = 1

T

∫ T

0
[β(t)(S0 − δ) − γ (t)]dt.
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We fix a δ ∈ (0, 1) such that c < 2
√
d2�δ . Since limz→−∞ φ(t, z) = S0,∀t ∈ R, we

can choose a Mδ > 0 such that S0 − δ ≤ φ(t, z) ≤ S0 + δ, ∀z < −Mδ uniformly for

t ∈ R. Fix a c0 ∈ (c, 2
√
d2�δ) and let Mc0 =

√

4d2�δ−c20
2d2

. Define

Qδ(t) = exp

(∫ t

0
[β(s)(S0 − δ) − γ (s)]ds − �δt

)

.

Clearly,

dQδ(t)

dt
= [β(t)(S0 − δ) − γ (t)]Qδ(t) − �δQδ(t).

We consider a function wc0(t, z) := e
c0z
2d2 sin(Mc0 z)Q

δ(t). It is easy to verify that
wc0(t, z) satisfywc0(t+T, z) = wc0(t, z) for z ∈ R. Further, somedirectmanipulation
yields

∂twc0(t, z) = d2∂zzwc0(t, z) − c0∂zwc0(t, z) + [β(t)(S0 − δ)

− γ (t)]wc0(t, z), t > 0, z ∈ R.

Let k0 ∈ N
+ such that (2k0−1)π

Mc0
> Mδ . Then, let y1 = − 2k0π

Mc0
, y2 = − (2k0−1)π

Mc0
.

Clearly, sin(Mc0 y1) = sin(Mc0 y2) = 0, sin(Mc0 z) > 0, ∀z ∈ (y1, y2). Since ψ(0, z)
is strictly positive on [y1, y2], then there exists an ε > 0 such that εw0(0, z) ≤
ψ(0, z), ∀z ∈ [y1, y2]. Consider the functionφ(t, x+(c−c0)t) andψ(t, x+(c−c0)t),
∀t > 0, x ∈ [y1, y2]. Denote ψ̂(t, x) := ψ(t, x + (c − c0)t). Since (φ(t, z), ψ(t, z))
is a solution of system (2.4), we have

∂t ψ̂(t, x) = d2∂xx ψ̂(t, x) − c0∂x ψ̂(t, x) + β(t)φ(t, x + (c − c0)t)ψ̂(t, x)

− γ (t)ψ̂(t, x)

Sinceφ(t, z) ≥ S0−δ,∀z < −Mδ uniformly for t ∈ R, it follows from above equality
that ψ̂ satisfies

∂t ψ̂(t, x) ≥ d2∂xx ψ̂(t, x) − c0∂x ψ̂(t, x) + β(t)(S0 − δ)ψ̂(t, x) − γ (t)ψ̂(t, x)

for all t > 0 and x ∈ [y1, y2]. In view of c − c0 < 0 and y1 < y2 < −Mδ , we have
x + (c − c0)t ≤ −Mδ , ∀t ≥ 0, x ∈ [y1, y2]. Let ψ̌(t, x) := ψ(t, x + (c − c0)t) −
εwc0(t, x) = ψ̂(t, x) − εwc0(t, x) for all t ≥ 0 and x ∈ [y1, y2]. Then, we can derive
that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t ψ̌(t, x) ≥ d2∂xx ψ̌(t, x) − c0∂x ψ̌(t, x)

+β(t)(S0 − δ)ψ̌(t, x) − γ (t)ψ̌(t, x), t ≥ 0, x ∈ [y1, y2],
ψ̌(0, x) ≥ 0, x ∈ [y1, y2],
ψ̌(t, y j ) ≥ 0, j = 1, 2.

In view of the maximum principle of the parabolic equations, we are led to the
conclusion that ψ̌ ≥ 0 for all t > 0 and x ∈ [y1, y2], which implies that
ψ(t, x + (c − c0)t) ≥ εwc0(t, x) for all t > 0 and x ∈ [y1, y2]. Since c − c0 < 0,
there is a contradiction that ψ(t, x + (c − c0)t) → 0 as t → +∞. �
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4. Discussion

In this paper, we investigated time periodic traveling waves for system (1.1) with
bilinear incidence in a seasonal forcing environment. To overcome the unboundedness
of mass action (bilinear incidence) function, we considered a truncated problem on
a large but finite interval and applied the limiting arguments to obtain the existence
of periodic traveling waves for each c > c∗ when R0 > 1. In addition, we also
proved the nonexistence of periodic traveling waves for either R0 ≤ 1 or c < c∗ and
R0 > 1. The idea and method of this paper also apply to other periodic and non-
monotone evolution systems provided that some new techniques are developed for
the verification of the asymptotic boundary condition. Unfortunately, we cannot prove
the existence of time periodic traveling waves with critical wave speed c = c∗, which
remains an open problem for future investigation. The substantial difficulty is again due
to the unboundedness of bilinear incidence, which makes the construction of proper
sub- and super-solutions muchmore challenging (if not impossible). At the same time,
since system (1.1) is non-autonomous and non-monotone, and the I -component of the
periodic traveling wave with wave speed c > c∗ is a time periodic pulse wave, it is
also difficult to get the existence of critical periodic traveling wave by taking the limit
of a sequence of periodic traveling wave with wave speeds cn , where cn > c∗ and
cn → c∗, see [36,39]. Nevertheless, when the bilinear incidence is replaced by the
standard incidence in (1.1) [i.e., system (1.5)], Zhang and Wang [38] recently proved
the existence of time periodic traveling wave with the minimal wave speed c∗ by
constructing sub- and super-solutions similar to those for some autonomous systems,
see [16,43] and the references therein.
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[14] J. Földes, P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic sym-

metry, Discrete Contin. Dynam. Syst., 25(2009) 133–157.
[15] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N.J.,

1964.
[16] S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435(2016)

20–37.
[17] S.-C. Fu, J.-S. Guo, C.-C. Wu, Traveling wave solutions for a discrete diffusive epidemic model. J.

Nonlinear Convex Anal., 17(2016) 1739–1751.
[18] S.-C. Fu, J.-C. Tsai,Wave propagation in predator-prey systems,Nonlinearity, 28(2015) 4389–4423.
[19] H. Hethcote, Asymptotic behavior in a deterministic epidemic model, Bull. Math. Biol., 35(1973)

607–614.
[20] H. Hethcote, S. Levin, Periodicity in Epidemiological Models, in: S.A. Levin, T.G. Hallam, L.

Gross (Eds.), Applied Mathematical Ecology, Biomathematics, vol. 18, Springer, Berlin, 1989.
[21] H.Hethcote, J.A.Yorke,GonorrheaTransmissionDynamics andControl, LectureNotes inBiomath,

56, Springer-Verlag, Berlin, 1984.
[22] Y. Hosono, B. Ilyas, B. Existence of traveling waves with any positive speed for a diffusive epidemic

model, Nonlinear World., 1(1994) 277–290.
[23] W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone

reaction–diffusion systems, J. Differential Equations, 260(2016) 2190–2224.
[24] A. Kallen, Thresholds and travelling waves in an epidemic model for rabies, Nonlinear Anal.,

8(1984) 851–856.
[25] A. Kallen, P. Arcuri, J.D. Murray, A simple model for the spread and control of rabies, J. Theor.

Biol., 116(1985) 377–393.
[26] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc.

R. Soc. Lond. B, 115(1927) 700–720.
[27] E. Landau, Einige Ungleichungen für zweimal differentzierban funktionen, Proc. London Math.

Soc., 13(1913) 43–49.
[28] X. Liang, Y. Yi, X.-Q. Zhao, Spreading speeds and traveling waves for perioidc evolution systems,

J. Differential Equations, 231(2006) 57–77.
[29] Gary M. Second order parabolic differential equations, World Scientific Publishing Co., Inc., River

Edge, NJ, 1996.
[30] W.P. London, J.A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps I. Seasonal

variation in contact rates, Am. J. Epidemiol., 98(1973) 453–468.

http://arxiv.org/abs/1411.1611


Vol. 20 (2020) Time periodic traveling waves in a periodic 1059

[31] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser,
Boston, 1995.

[32] J. Ma, Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Bio. Eng.,
3(2006) 161–172.

[33] X.-S. Wang, H. Wang, J. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak
propagation, Discrete Contin. Dyn. Syst., 32(2012) 3303–3324.

[34] Z.-C. Wang, J. Wu, Travelling waves of a diffusive Kermack–McKendrick epidemic model with
non-local delayed transmission, Proc. Roy. Soc. Lond., 466(2010) 237–261.

[35] Z.-C. Wang, L. Zhang, X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR
epidemic model, J. Dyn. Diff. Equat., 30(2018) 379–403.

[36] C.-C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic
model. J. Differential Equations, 262(2017) 272–282.

[37] F.-Y. Yang, W.-T. Li, Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack–McKendrick
epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18(2013) 1969–1993.

[38] L. Zhang, S.-M. Wang, Critical periodic traveling waves for a periodic and diffusive epidemic
model, accepted by Applicable Analysis, 2019.

[39] L. Zhang, Z.-C. Wang, X.-Q. Zhao, Propagation dynamics of a time periodic and delayed reaction–
diffusion model without quasi-monotonicity, Trans. Amer. Math. Soc., 372(2019) 1751–1782.

[40] T. Zhang,W.Wang, K.Wang,Minimal wave speed for a class of non-cooperative diffusion–reaction
systems, J. Differential Equations, 260(2016) 2763–2791.

[41] G. Zhao, S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves
for a periodic Lotka–Volterra competition system with diffusion, J. Math. Pures Appl. 95(2011)
627–671.

[42] G. Zhao, S. Ruan, Time periodic traveling wave solutions for periodic advection–reaction–diffusion
systems, J. Differential Equations, 257(2014), 1078–1147.

[43] J. Zhou, L. Song, J. Wei, H. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal.
Appl., 476(2019) 522–538.

Liang Zhang and Zhi-Cheng Wang
School of Mathematics and Statistics
Lanzhou University
Lanzhou
730000 Gansu
People’s Republic of China
E-mail: wangzhch@lzu.edu.cn

Xiao-Qiang Zhao
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John’s NL A1C 5S7
Canada


	Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality
	Abstract
	1. Introduction
	2. Existence of periodic traveling waves
	2.1. Construction of sub- and super-solutions
	2.2. Reduction to a fixed-point problem
	2.3. Existence of periodic traveling waves

	3. Nonexistence of periodic traveling waves
	4. Discussion
	Acknowledgements
	REFERENCES




