1. Evol. Equ. 20 (2020), 1029-1059
© 2019 Springer Nature Switzerland AG J .
1424-3199/20/031029-31, published online October 8, 2019 ournal of Evolution
https://doi.org/10.1007/500028-019-00544-2 Equations

®

Check for
updates

Time periodic traveling wave solutions for a Kermack-McKendrick
epidemic model with diffusion and seasonality

LIANG ZHANG, ZHI-CHENG WANG({ AND XIAO-QIANG ZHAO

Abstract. In this paper, we study the time periodic traveling wave solutions for a Kermack—McKendrick SIR
epidemic model with individuals diffusion and environment heterogeneity. In terms of the basic reproduction
number R of the corresponding periodic ordinary differential model and the minimal wave speed c*, we
establish the existence of periodic traveling wave solutions by the method of super- and sub-solutions,
the fixed-point theorem, as applied to a truncated problem on a large but finite interval, and the limiting
arguments. We further obtain the nonexistence of periodic traveling wave solutions for two cases involved
with Rg and ¢*.

1. Introduction

In this paper, we are interested in the following time periodic reaction—diffusion
epidemic system

8D — a1 AS(1, x) = B()S(t. ) (1, x), t>0, x eR,
ULD — dy AL (t, x) + BO)SE, ) (1, x) —yOI(t,x), t>0,xeR, (L)
IRLY) — A3 AR(t, x) + y (D (2, x), t>0, x eR,

which describes the evolution of an epidemic within a spatially distributed population
of individuals in a seasonal forcing environment. Here, S(¢, x), I (¢, x) and R(z, x)
denote the densities of the susceptible, infected and recovered/removed individuals at
time ¢ and located at the spatial position x € R, respectively. The positive constants
di, d» and d5 are the diffusion rates for the susceptible, infected and recovered/removed
individuals, respectively. The disease transmission rate 8 (¢) and the recovery rate y (¢)
are all positive T'-periodic continuous functions in ¢.
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Keywords: Periodic traveling wave solutions, Diffusive Kermack—-McKendrick model, Seasonality,
Bilinear incidence.
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The kinetic system of (1.1) is

O — _p1)SH (1), (>0,
a0 — BN (1) =y (1), 1> 0, (1.2)
RO — y()1(0), £ >0,

which has been deeply studied by Bacaér and Gomes [2], where they observed some-
what counterintuitive conclusions quite different from what is in a constant environ-
ment, that is, the classic Kermack—McKendrick SIR epidemic model [26] (see also

[L,5]):

a5 — _gS1)1(), >0,
L0 = BS)I(1) — yI(t), t>0, (1.3)
4RO =y 1 (1), >0,

but almost compatible with occurrence. The consequence in [2] implies that the behav-
ior of epidemics under the seasonal forcing is not a straightforward generalization of
the known results in a constant environment. In fact, it was reported that the transmis-
sion rates and the recovery rates of many epidemics can be significantly impacted by
seasonality, see London and Yorke [30] for the yearly outbreaks of measles, chicken-
pox and mumps, and Hethcote and Yorke [21] for the seasonal oscillation of gonorrhea.
In particular, London and Yorke [30] pointed out that there are two significant factors
influencing the dynamics of epidemics and contributing to the one-year periodicity of
the contact rate: (i) weather/climatic factors such as temperature and relative humid-
ity; (ii) social behavior (contact patterns) influenced by public holidays (children due
to school terms), vacations. Figure 1 in [8] also states that most human respiratory
pathogens exhibit and annual increase in incidence each winter, although there are vari-
ations in the timing of onset and magnitude of the increase. For more on the impact
of the seasonality in epidemic models, we refer to [19,20,32] and a review paper [6].
Here, we would like to emphasize that models (1.2) and (1.3) are usually used to
describe the transmission of disease whose time scale is rather fast with respect to the
vital dynamic of the population. Therefore, the vital dynamics is not incorporated into
(1.2) and (1.3) and the total population number remains invariant in the transmission
process of the epidemic. As mentioned above, the transmission dynamics of many
epidemics such as measles, chickenpox, mumps and gonorrhea [21,30] are signifi-
cantly influenced by seasonality. On the other hand, the total number of the population
usually remains (almost) invariant within several years. Thus, if we neglect (or do not
consider) the effect of the vital dynamics of the population, then the system such as
(1.2) (and (1.1)) is rather reasonable and should do duty for an admonition to interpret
the epidemics influenced by seasonality.

To consider the propagation dynamics of (1.1), in which the random walk of indi-
viduals and the seasonality are incorporated, traveling wave solution is a key topic.
For the autonomous version of system (1.1), namely
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BSUX) — gy AS(t, x) — BS(t, )1 (1, x), 1>0, xR,
LD — AL, x) + BS(t, ) (t,x) —yI(t,x), t>0,xeR, (14
aRzgtz‘X) =d3AR(t, x) + yI(1, x), t>0,xeR,

there has been extensive research on the traveling waves for the first two equations of
(1.4) (the R equation can be decoupled). Kallen [24] and Kallen et al. [25] have studied
the existence of traveling wave solutions when d; = 0. Particularly, Hosnono and
Ilyas [22] proved that there admits a pair of traveling wave solution (S(x +ct), I (x +
ct)) satisfying S(—o0) = So > 0, S(+00) = S < Sy, [ (£oo) = 0 for each
¢ > c¢* = 2./BSod2(1 — y/BSy) when the basic reproduction number Ry := @
of system (1.3) is larger than unit, which represents the transition from the initial
disease-free equilibrium (Sp, 0, 0) to another disease- free state (S°°, 0, 0) with §*°
being determined by the model coefficients. Since then, there have been extensive
investigations on traveling wave solutions of system (1.4) (see, e.g., [18,23,40] and
references therein), and its variants such as age-infection structure [10,11], delays or
non-local delays [34], spatially discrete structure [17] and non-local dispersal case
[37]. We also refer to [9] for the long-term behavior of (1.4) with spatial heterogeneity
(dy = 0).

In the current work, we are concerned with time periodic traveling wave solutions
(see the definition in the next section) for problem (1.1). Since system (1.1) involved
with the same non-monotone structure as system (1.4), which implies that (1.1) does
not have comparison principle, the theory and methods for monotone periodic systems
(see, e.g., [13,28,41,42]) are no longer effective. In addition, differently from system
(1.4), problem (1.1) gives rise to a periodic parabolic system of wave profile, which
leads to failure for the approaches in the aforementioned literatures to system (1.4).
Recently, Wang et al. [35] studied time periodic traveling wave solutions for the
following periodic and diffusive SIR model with standard incidence:

9 _ BWSE.0)I(t.x)
351, x) = diAS(1, X) — S o

g7l (1.0) = o AL (1,3) + BGESEEs — y (01 ), (15)

DR(t,x) = d3AR(t, x) + y (1) (t, x).

Here, S(¢, x), I (¢, x) and R(t, x) denote the densities of the susceptible, infected and
recovered individuals at time ¢ and in location x, respectively. The coefficients in
(1.5) represent the same meaning as in system (1.1). It should be pointed out that the
incidence in (1.5) reflects the recovered individuals is removed from the population

and not involved in the contact and disease transmission (see [33]). They proved that

T
if the basic reproduction number Ry := M
Jo vt

. . .. 1 T
than unit, there exists a critical value ¢* = 2\/ &t fo [B(t) — y(T)]dt such that for
any wave speed ¢ > ¢*, system (1.5) admits a time periodic traveling wave solution.
Furthermore, they obtained the nonexistence of periodic traveling wave solutions for

of kinetic system of (1.5) is larger
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two cases:(i) Ry < 1; (il)) Rg > 1 and ¢ < c*. The literature [35] makes an elementary
attempt and provides a novel train of thought to solve the existence of time periodic
traveling wave solutions for periodic and non-monotone systems.

Note that mass action in (1.1) and standard incidence infection mechanism in (1.5)
are widely adopted in modeling infectious diseases transmission. From the epidemio-
logical perspective, the mass action is appropriate for modeling contact between infec-
tious individuals and susceptible individuals in small population size, while utilizing
the standard incidence frequently depends on population size, that is, it is suitable for
larger population size. Another observation is that the basic reproduction number of
the kinetic system associated with (1.1) is dependent on population size (see Sect. 2),
while the basic reproduction number of kinetic system of (1.5) is independent of pop-
ulation size. The aforementioned difference on two incidence functions leads to some
distinction on mathematical analysis in the corresponding models. In addition, in view
of the bilinear incidence (or mass action infection mechanism) in system (1.1), the
derivation of existence of periodic traveling wave solutions to (1.1) becomes much
more challenging. Precisely speaking, it is difficult to verify the boundedness of 7. On
the other hand, the method on the nonexistence of periodic traveling wave solutions

— o B x -
of (1.5) when Ry := “%—— > 1 and ¢ < c*, can be hardly applied to system

Jo vt
(1.1). Motivated by the ideas in [10,35,39], we shall consider the truncated problem

on a finite interval and apply the limiting arguments to deal with the periodic traveling
wave problem associated with (1.1). This will extend the research strategy on periodic
traveling wave solutions for periodic and non-monotone systems. Here, we empha-
size that in [39] a similar argument was used to establish the existence of periodic
traveling wave solution for a time periodic and delayed reaction—diffusion equation
without quasi-monotonicity, which describes the growth of mature population of a
single species living in a fluctuating environment.

The rest of this paper is organized as follows. In the next section, by constructing
a suitable pair of super- and sub-solutions and applying the Schauder’s fixed-point
theorem to a similar problem on a bounded domain, we then use some a priori estima-
tions and a limiting procedure to establish the existence of the periodic traveling wave
solutions. Section 3 is devoted to the study of the nonexistence of periodic traveling
wave solutions for two cases. A brief discussion completes the paper.

2. Existence of periodic traveling waves

In this section, we focus on the existence of the non-trivial and time periodic traveling
waves (¢ (¢, z), ¥ (¢, z)) of system (1.1). Since the R equation of system (1.1) can be
decoupled, it is sufficient to consider the following system

BLD — @y AS(t, x) — BO)S(t, ) (8, %), >0, x eR,

‘ @2.1)
WD — gy AT (t, x) + BO)S(, ) (1, x) — y (I (t,x) >0, x €R.
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Time periodic traveling waves to system (2.1) are defined to be solutions of the form

(S(ux)) _ (¢(t,x +ct)) <¢(z +T, z)) _ <¢>(t,z)) 2.2)
I(t,x))  \y@,x+ct)) \Yye+T,2) ¥z '

<¢(r, ioo)) _ (mm)
Pt £00)) = \yan))

where c is called the wave speed, z = x + ct is the moving coordinate and (

satisfying

¢+(f)>
Yo (1)

(7 .. . . ..
and <¢ ( )> are two periodic solutions of the corresponding kinetic system:

V(1)

B = OIS 1),

(2.3)

G =BOSOIW) —yOI ).

Such solutions (¢, 1) must satisfy the following system:
$1(t,2) = di¢:(t,2) — cd:(t,2) = (P (1, )Y (1, 2), 2.4)

Vi1, 2) = datpre (1, 2) — e (1, 2) + BOP (1, )Y (1, 2) — y (DY (¢, 2).

This system is posed on (¢, x) € R4 x R and is supplemented with the following
asymptotic boundary conditions

@ (t, —00) = 8o, ¢(t, 00) = S, ¥(t, £o0) = O uniformly int € R.  (2.5)

Here, Sp > 0 is a constant, and (Sp, 0) is the initial disease-free steady state. The
parameter ¢ > 0 is the wave speed, while constant S*° > 0 describes the density of
susceptible individuals after the epidemic.

Our basic procedure to prove the existence of periodic traveling wave solutions is
as follows. Firstly, by constructing some suitable super- and sub-solutions for (2.4),
we obtain a closed and convex set Iy of initial functions lying between the sub- and
super-solutions. Secondly, we consider the truncated problem posed on the bounded
domain and define a nonlinear solution operator F on I'y, and then, we apply the
Schauder’s fixed- point theorem to F after verifying the complete continuity of it.
Finally, on the basis of some proposed a priori estimations of the obtained fixed point
of F, a limiting procedure can be used to extend the bounded interval to R, and then,
the existence of periodic traveling wave solutions is established. By similar arguments
to [35], we further verify the asymptotic boundary conditions for periodic traveling
wave solutions.
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2.1. Construction of sub- and super-solutions

Linearizing system (2.4) at the disease-free steady state (Sg, 0), we have the fol-
lowing equation:

L(t,x) = do I, — cL(t,2) + (SoB(t) — y W) (1, x).
Define
O =do)? —chi+0, ceR LeR (2.6)

where ¢ 1= % fOT (SoB(t) — y (1)) dt. Clearly, o > 0if the basic reproduction number
R o Sy B

= > 1. In what follows, we always assume that Ry > 1. Let
o y(0dr

; c—+/c2—4dyo . c++/c2 —4dyo
1= —5; M= 7>
2d> 2d>

if ¢ > ¢* := 2/do. Then, we have ®;(1]) = O,(A2) = 0 and O.(A) < 0,VA €
(A1, A2).
Fixing ¢ > ¢*, we set

t
K(t) :=exp </ [dz)»% —ch1 + (SoB(s) — y(s)]ds> .
0
It is easy to see that K (¢) is T-periodic. We further define the following functions

T (t,2) == So. ¢~ (1, 2) == max{So(1 — M%), 0)},
VT, 2) = K@), ¥ (t, 2) := max{K (1)e’'*(1 — M»e%), 0},

where M; and €;, i = 1, 2 are all positive constants and will be determined below.
Then, we can inductively establish the following results.

Lemma 2.1. The function ¥+ (t, z) = K(t)e*'* satisfies the following linear equa-
tion:

Yr = day; + e — (BO)So — y (@) V. 2.7

Lemma 2.2. For sufficiently small € such that 0 < €1 < A1 and sufficiently large
My > 1, the function ¢~ satisfies

¢ — didoz + e, < —BOPYT (2.8)
forany z # z1 := —61_1 In M.

Proof. In case where z > —61_1 In My, we have ¢~ (¢, z) = 0, which implies (2.8)
holds.
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In case where z < —61_1 In My, then ¢~ (¢, z) = So (1 — Mje€!?) . Thus, we need
only to prove that

diSoMiefe’ — cSoMyere's < —B(1)So (1 — M1e1%) K ()™=,

That is,

Miei (c —dien) = B(0) (1 = Mye?) K (e =<V%,
Soforz < z; := —el_l In My, it is sufficient to verify

_ el

Miey (c — dier) = BOK e Ceme0nM — gy gy, 47 vp e R
Since both B(¢) and K (¢) are positive T-periodic functions, the above inequality
is valid as long as we choose M| = 1/e; with €; > 0 sufficiently small and
0<e€ <Ap. O

Lemma 2.3. Suppose €2 > 0 is sufficiently small such that €, < min{ey, Ay — A1},
and M is sufficiently large such that —e, "M, < —€; "In M. Then, the function
W~ satisfies

Vi —daYz Y < B Y —y OV (2.9)

forany z # 75 := —E;l In M>.

Proof. Choose M; large enough to ensure that —e, "In M, < —el_l In M. For z >

zp = —62_1 In M>, one has ¥~ (¢, z) = 0, and hence, the inequality (2.9) holds.
When z < 75 = —62_1 InMs, v~ (t,2) = K(t)eM? (1 — Mpe?) and ¢~ (¢, 2) =
So(1—Mje€'%). Inorder to obtain (2.9), we only need to verify the following inequality
Y =y eyl —(BOSo—y ) YT <B@) (97 —So) v . (2.10)

By the expression of K () and ¢, it follows that

vy —day + ey, —(BOSo—v) Y
=K' ()M (1 — Mpe®?) — dy [A%K(t)e’m (1 = Mpe%) — 21y MK ()12

—01 + )M K (NeMFD ¢ [ K (07 (1= Mpe™) — MoK (117

—[B()So — y OIK (e (1 — Mpe®*)
=eMe {K/(t) — WK () + e K (1) — [B(1)Sy — y(t)]K(t)}

~Mre MK (1) = dy 01 + €K (1) + c(hy + K (1) = [B1)So = y OIK (1)}
=~ e+ K (1) [[id - e | =[G+ €)? = O + )]

= MpeM TR 1O (A + €2).
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Then, the inequality (2.10) is equivalent to

Me*Oc (M + €2) < —BB)SoM1e* (1 — Mre™?) (2.11)
Owing to €] < A» — A1, we have A1 + €2 € (A1, A2), and hence,

Oc(h1 + €) = da(h1 +€) —c(hi +€) +0 < 0.
Since B(t) is positive and T'-periodic in R, the inequality (2.11) is true if and only if

—MrOc (M + €) = B(t)SoMe %,
Thus, when z < —¢, 'In M>, we need to show
—M2Oc(h1 + €2) = B(1)SoMy My 7D/

for all + € [0, T']. The last inequality holds true when we choose sufficiently small
€y < €1 and M> large enough. O

2.2. Reduction to a fixed-point problem

Take N > —z5. Define

$(t,2) =9t +T,2),Vt€R, z€[-N,N],

V(t,2) =¥ +T,2),Vt €R, z €[N, NI;

¢ (t2) <p(t.2) <¢T(t.2), V1 €R, z € [N, N],
Y2 <Yt <yt(t2), Vi €R, z €[N, NI;
é(t, £N) = ¢~ (t, £N), Vt € R,

U (t, £N) =¥~ (t,£N), Vi € R

Ty =1 ) e CRx[-N, N],R?):

For any given (q~>, 1}) € 'y, define maps

filg, ¥1(t, 2) = a19(t, 2) — BWO)(t, DY (2, 2)

and

Ll U1, 2) = oV (t, 2) + B, DV (1, 2) — y ()Y (2, 2),

MN

where o1 and «; are positive constants and satisfy o1 > max;ejo,7] B(#) K (t)e and

ay > Maxe[o,7] y (1), respectively. Let A;u = d;0,,u — cd,u —aju,i = 1,2.Fixa
(¢, ¥) € T'y. Consider the following linear parabolic initial boundary value problem:
%p(t,2) — A1p(t.2) = fil$, V11, 2), t>0,z €[N, NI,
0y (t.2) — Aoy (t.2) = fold. P11, 2), t>0.2€[=NNL
#(0,2) = ¢o(2), ¥(0,2)=vYo(z), z€[-N,NI, ¢o,¥o € C(I—N,ND,
¢, £N)=G(t,£N), ¢, £N) = Ga(t,£N), t >0,
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where Gi(t,2) = $¢7(t,—N) — 556~ (t, —N) and Go(t,2) = Sy~ (1, —N) —
ﬁlﬁ_(t, —N) for all r € [0,T] and z € [—N,N]. It is easy to see that
Gi(t,£N) = ¢~ (t,£N), Go(t,£EN) = v~ (t,£N) for r € R, and the function
G; is T-periodic and belongs to Cl’z(R x [-N,N]) fori = 1,2. Let V|(t,z) =
¢(t,2) — Gi(t,2), Va(t, 2) = ¥(t,2) — Ga(t, 2) and G; = A;Gi(t, 2) — 8,Gi (1, 2).
Then, the problem (2.12) reduces to the following system on (Vy, V») :

Vit 2)—AiVi(t, 2) = fild, V1t 2)+Gi(t,2), i=1,2,t>0,z € [N, N1,
V1(0, 2) = ¢o(z) — G1(0,2), Va(0,2) = ¢po(z) — G2(0,2), z €[N, NJ,
Vi(t,£N) =0, i=1,2,1t>0.

(2.13)

Define the realization of A; in C([—N, N]) with homogeneous Dirichlet boundary
condition,

D(AN= {u € ﬂ WEP (=N, N)) s u, Aiu € C(I=N, N1, ulen=0 { , A% = Aju, i=1,2.
p=1

Let T;(t);>0 be the strongly continuous analytic semigroup generated by A? :
D(A?) C C([-N, N]) - C([—N, NJ)) (see, e.g., [7,31]). It is easy to see that
N
Ti(Hw(x) = e_“"’/ i@, x, yw(y)dy, =12 w()e C(—N,N),
~N
(2.14)

fort > 0,x € [—N, N], where I';,i = 1, 2 is the Green function associated with
d;9xx — cdy,1 = 1,2 and Dirichlet boundary condition. Then, system (2.13) can be
rewritten as the following integral system

Vitt, 2) = Ti(0) (9o — G1(O) @) + f3 Tyt = ) (fild, 1) + G1) (@),

Va(t, 2) = To0) o= G2(0) )+ fy Tat = ) (ol F15)+Ga(s) ) )l
(2.15)

forallr > Oand z € [—N, N]. Then, (¢ (z, 2), ¥ (t, z)) satisfies that

b D=Ti () (=G1(0) )+ fy T1t=9) (fild, TN$)+G1(9)) (2)ds+G1 (1, 2),

Yt D=T2() (Yo=G2(0)) )+ fy Tolt=5) (2l P1(6)+G2(s)) (ds+Gat, 2
(2.16)

forall r > 0 and z € [—N, N]. We call a solution of (2.16) as a mild solution
of (2.12). Since fi[¢. ¥]1 € C(R x [-N, N]) and f;[¢. ¥1(t,-) € C([—N,ND),
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it follows from [31, Theorem 5.1.17] that the functions ¢ and ¥ defined by (2.16)
belong to C([0,2T] x [-N, N]) N €% ([¢,2T] x [-N, N]) for every € € (0, 2T)
and 6 € (0, 1).

Define a set

¢~ (0,2) < ¢o(x) <97 (0.2), z € [-N, NI,
Ty =1 (@0, ¥0) € C(I-N, NLR?):¢7(0,2) < ¥o(2) < ¥ 1(0,2), z € [-N, N1,
$o(£N) = ¢ (0, £N), Yo(£N) =v (0, £N)
with the usual supreme norm. Obviously, F;\, is a closed and convex set.

Lemma 2.4. For any (¢o, Vo) € I'y, let (pn(t, z; do, V0), YN (2, 25 ¢o, Yo)) be the
solutions of the system (2.16) with the initial value (¢o, ¥o). Then,

¢ (1,2) < PN (t, 7 b0, o) < 6T (1,2), YT (t,2) < YN, 25 o, Yo) < YT, 2)
for (t,z) € [0, +00) x [=N, N].
Proof. Let us first recall that for the given (. &) € I'y, there hold
¢ (1.2 <dt.2) <¢T (1,2, Y2 =Y. =Y,
V(t,z) e Rx[-N, N],
while every (¢o, o) € I'y satisfies
$7(0,2) < ¢o(2) <¢7(0,2), ¥ (0,2) < Yo(x) <¥7(0,2), Vze[-N,N]

We are ready to prove that ¢y (¢, 2; ¢o, Yo) < ¢ (¢,z) forallt > 0Oandz € [-N, N].
Let ¢ be the solution of the following equation

é(1) = T1i(t) (do — G1(0)) + fo Ti(t —5) (f1[¢+, Y1) + él<s>) ds
+Gi(t), t=>0.
Since fi[$, V1 < filg™, ¥~ 1, we have
ON (L. do. Y0) < B(t. 5 po. Yo), ¥t = 0. 2.17)

In addition, since fi[¢T, ¥~ ] € C29(R x [=N, N]) for some 6 € (0, 1), it follows
from [31, Theorems 5.1.18 and 5.1.19] that ¢ € C([0, +00) x [—N, N]) is differ-
entiable with respect to ¢ in (0, +00) x [-N, N1, 5(1‘, -) belongs to Wli’cp((—N, N))
for every p > 1, and 9,9, A1¢ € C?/>9([8, +00) x [N, N]) forany § > 0. As a
consequence, we see that ¢ € C([0, +00) x [-N, N]) N C12((0, 4+00) x [-N, N])
and satisfies that

Pt 2) — Aip(t,2) = filpT. ¥ 71t 2), t>0,z€[-N,N],
$(0.2) = ¢o(2). ze[-N,N],
¢(t,£N) = G((t, £N) = ¢~ (t, £N), t>0.
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On the other hand, it is easy to see that ¢ satisfies

8l‘¢+(ta Z) - A1¢+(tv Z) - (X1¢+(t, Z) Z fl [¢+v W_](t, Z)’ r> O’ Z € [_Nv N]a
¢+(07 Z) = SO 2 ¢0(Z)7 Z € [_N7 N]s
¢t (t,£N)=So > Gi(t,£N) = ¢ (t,£N), t>0.

Thus, the parabolic comparison principle indicates that
P(t.2) <¢T(t,2), V(t,2) €[0,+00) x [N, N]. (2.18)
In view of (2.17) and (2.18), we have that
¢ (.23 g0, Yo) < B(t. 2: do. ¥o) < ¢ (1.2). V(1.2) € [0, +00) x [-N, N].

Let ¢ be the solution of the following equation

t
@) = T(1) (Po—G1(0)) +/0 Ti(t—s) (f] o, ¢+](S)+51(S)) ds +Gi(1), t=0.
Thus, we have
dn (T, -5 Po, Yo) = (1, -5 do, Yo), Vi =0, (2.19)

because of fi[¢, V] > fil¢~, ¥ 1. Additionally, since fi[¢—, v1] € C?/>/(R x
[—N, N]) for some 6 € (0, 1), we conclude from [31, Theorems 5.1.18 and 5.1.19]
that ¢ € C([0, +00) x [-N, N]) N C12((0, +00) x [N, N]) satisfies that

at?(t’ Z) - Al?(t’ Z) = f1[¢7’ w+](tv Z)v r> OyZ € [_N’ N]’
4_5(01 Z) = ¢0(Z)7 Z € [_Nv N]»
¢(t, £N) = G (t,£N) = ¢~ (1, £N), t>0.

Let 9* = 0. Then, 9* satisfies
9p*(t,2) — Ai19*(t,2) < filp~, ¥ 71, 1 €0, 400),z € [-N, N],

and hence, the parabolic comparison principle implies that ¢(7,z) > 0 for all 7 €
[0, 400) and z € [-N, N]. When (¢, z) € R x (—o00, z1), it follows from Lemma 2.2
that ¢~ (¢, z) = So(1 — Me€1?) satisfies (2.8). Thus,

o (2. = ¢~ (. 9) = Ai (6. ) — ¢, ) = 0,
(t,2) € (0, 400) X [=N, z1).

Hence, it follows from the maximum principle [15, Chapter 2, Theorem 1] that

¢, 2) > ¢~ (t,2), (1,2) € (0,400) x [=N, z1).
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Note that ¢~ (¢, z) = max{So(1 — M e%), 0}. Therefore, we further have that

N (1, 23 60, Yo) = @(1, 25 o, Yo) = ¢ (1,2), V(1,2) € [0, +00) X [-N, N].

In the following, we consider ¥y (¢, z; ¢o, ¥o) for t € [0, +00) and z € [-N, N].
Let ¥ be the solution of the following equation

t
V() = T(0) (Yo—Ga(0) + /O Ta(t=5) ( f2l9™, Y1) +G2(s) ) ds+Ga(0), 120,

Clearly,

w(ta';(ﬁOv WO) Z WN(I,'§¢O, wo)s Vl S [07 +OO)

On the other hand, since f>[¢p—, ¥ t] e Cg/z’g([O, T]1x[—N, N]) forsomef € (0, 1),
it follows from [31, Theorems 5.1.18 and 5.1.19] that? € C(0, +o0) x [-N, NN
C12((0, +00) x [—N, N]) satisfies that

Wy (t,2) — Ao¥(t,2) = frl¢T ¥ Tt 2), t>0,z€[-N,NJ,
J(Oa Z) = WO(Z)7 VRS [_N7 N]v
U(t,£N) = Go(t,£N) = ¥~ (t, £N), t>0.

In view of Lemma 2.1, (2.7) can be rewritten as
Wyt ) — Awt(t,2) = Py ™1, 2), 1€ (0,+00),z €[N, NI,
¥t (0,2) =M%, ze[-N,N],
Y, £N) = K(t)e™N, 1 € [0, +00),

where P[y+1(t,2) = ao T + B(O)Sov T — y ()Y, (£, 2) € R x [N, N]. Since
Pyt 2) = falgt, Tz, 2) fort € (0,4+00) and z € [-N, N], ¥ +(0,-) >
Yo(-) and (-, £N) > Ga(-, £N), we can conclude from the parabolic comparison
principle that

V(t,z) <¥t(t, z), Yt z)el0,+00) x [-N, N].
Thus, we further have that
YN, 25 do, Yo) < Y (1,25 g0, Yo) < ¥ (1,2), V1, 2) €0, +00) x [-N, N].

Finally, we show that ¥y (¢, z; ¢o, Yo) > ¥~ (t,z) for all t+ € [0, +00) and z €
[=N, N]. Let  be the solution of the following equation

t
V() = () (ho=Ga(0) + fo Da(t=s) (197, ¥ 10)+Ga(s)) ds+Gar). 120.

It is obvious that ﬂ(t’ -3¢0, Vo) < Un(t, -5 ¢o, Yo) for all t > 0. In addition, since
frlot, w1 e c?29([0, T1 x [-N, N]) for some 6 € (0, 1), it follows from [31,
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Theorems 5.1.18 and 5.1.19] that ¥ € C([0, +00) X [-N, N]) N C12((0, +00) x
[—N, N]) satisfies that

atﬁ(tv Z) - AZE(Z‘, Z) = f2[¢_a W_](t, Z)’ re (O’ T]» Z€ [_Na N]a
¥(0,2) = ¥o(2) =0, z€[-N,NJ,
z(t,:l:N)ZGz(t,:l:N)=1//7(l‘,:|:N)ZO, tel0,T].

Let *(z, z) = 0. Then, Y *(z, z) satisfies

atﬁ*(ta Z) - AZK*(Z‘, Z) S f2[¢_5 W_]’ re [07 +OO), Z € [_Na N]’

and hence, the parabolic comparison principle implies that (¢, z) > 0 for all 7 €
[0, +00) and z € [—N, N]. When (¢,z) € R x (—o00, z2), we see that ¥~ (¢, z) =
K (t)e*1%(1 — Me?). Thus, by Lemma 2.3, we have

o (V0= @2) — A (Ve D~ ¥ (1,2) 20
Y(t,z) € (0,400) x [=N, 22).
Consequently, the maximum principle [15, Chapter 2, Theorem 1] yields that
Yt z) =¥ (t,2), Y, 2)€l0, +00) x [N, z2).
Therefore, we further have that

UN(t, 23 do, Yo) = Y (T, 25 g0, Yo)=y (1,2), V(1,2) € [0, +00) X [-N, N].
This completes the proof. 0
For a given (¢, V) € I'y, we define a map F, @) : Ty = C([—=N, NJ, R?) by

Fig.31%0. %01() = @ (T. -1 0. o). ¥ (T. - do. o)) .

where (¢n (t, z; ¢o, Vo), Y (L, Z; o, Yo)) is the solution of (2.12). With the aid of
Lemma 2.4 and the periodicity of ¢~, ¥~, ¢* and ¥, we have F i (Ty) € Ty
Clearly, I', is a complete metric space with a distance induced by the supreme norm.
For any (@), ¥¢) . (#3. ¥3) € I'y, it follows from (2.14) and (2.16) that

o (T, 0,0 — o (T 5 95, )|

C([=N.N])

N
e [ rirz (b - g0)) dy‘
Y

= sup
2€[=N,N]

-

C(—N,N])

Similarly, we have

[on (T, 0, w0) = on (T, 5 63,90 | e |ug - i

C(- NN]) C([—N,NJ)
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Since e*T < 1, we see that F(JM/}) : Iy — I’y is a contraction map. It then fol-
lows from the Banach fixed-point theorem that Fg i admits a unique fixed point
(@5, ¥3) € Ty Let @y (1,2, ¥y (1, 2) = (dn(t, 2 85, ), ¥ (¢, 2 85, ¥5))
for all 1 € [0, +00) and z € [—N, N1, where (¢n (¢, z; ¢, V). U (t, 25 0§, V()
is the solution of (2.16) with initial value (¢, V). In view of (¢5(2), ¥ () =
(DN (T, 2 05 W), N (T, 25 65, YD, we get (@t + T,2), ¥kt + T,2) =
(@ (t, 2), ¥y (1, 2)) forallt € [0, +00)and z € [N, N1. Define (% (¢, 2), ¥ (1, 2))
= (§%(t —kT,2), ¥k (t —kT, 2)) fort € Rand z € [~N, N1, where k € Z satisfies
kT <t < (k+ 1)T. Then, (¢5(t +T,2), ¥y +T,z2) = (P, 2), ¥} (¢, 2)) for
allt € Rand z € [-N, N]. According to Lemma 2.4, we see that (¢}, ¥x) € I'y.
Moreover, (¢y, V5 ) satisfies

(D) =T1( =) (%) = G1) + f; Tyt = 0) (113, 71O + G 1)) db + G (1),
Y (1) = To(t — 5) (5 () — Go(9)) + [{ Talt — ) (fz[qS, V1) + Gz(@)) d6 + G (1)
(2.20)

for all + > s. On the basis of the above discussion, we obtain the following theorem.

Theorem 2.5. For any given (¢, W) € Ty, there exists a unique (dn-¥y) € Tn
such that (2.20) holds.

Following Theorem 2.5, we can define an operator F : I'y — [y by F(¢, ) =
(éN- ¥x). We further show the properties of the operator 7.

Lemma 2.6. The operator F : I'y — 'y is completely continuous.

Proof. For any (¢, ) € Ty, there holds fi[¢, ¥1(-,-) € C(R x [—N, N]) and
fild, U1t +T,2) = filg, ¥t z) fori = 1,2, (t,z) € R x [-N, N]. Note that
filg, ¥1,i = 1, 2 are uniformly bounded with respect to (¢, ) € I'y. For any given
(@, V) € Ty, let (9%, ¥}) = F($,¥) € Iy. By [31, Theorem 5.1.17], it follows
from (2.20) withs = Othat¢},, ¥% € C¥29([T, 2T x[—N, N]) forevery 6 € (0, 1)
and there exists C;(0) > 0,i = 1, 2 such that

||¢1*v ||C9/2-9([T,2T]><[—N,N])
< C16) (T2 193 OGO loc+ i1, oGl o )

and

” 2% ” CO20([T 2T1x[-N,N])
= C20) (TP 0 —G20) oo+ £21. Fllloc+Gallcon )

Since ¢y, ¥y are T-periodic, we have that ¢y, ¥y € C?29(R x [—N, N1, and
there exists Ké(@) > 0,i = 1, 2 such that
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H¢}k\’ HC6/2~0(RX[—N,N]) = Ké (9)7 “w;tf ”CQ/Z'H(RX[—N,N]) = Kg(e)a

which implies that F is compact on I'y.

We further prove the continuity of . For any (@i, Yi) € T, i = 1,2, there exists
a positive constant M such that |<f>i(t, z)| < M and |1Zi(t, )| <Mfori=1,2,teR
and z € [=N, N1, and let (¢} y (¢, z; §i, Vi), ¥y (t, 2 §i, Y1) = F(i, i), i =
1, 2. By virtue of (2.14) and (2.20), we have

¢ZN(T,z;¢~5i,15i)
N
:e_“'T/NFl(T,z,y) [¢7§ 0. ) — G1(0,y)]dy + G(T.z)
T N ~ o~ ~
+/ e‘“”/ Pi,29) (Ald Fil(T = 5.9) + G1(T =5, v)) dyds
0 —-N
and
Vi (T, 2 i, W)
N
el / Do, 2, 9) [ 50, 3) = G2(0. )] dy + Go(T.2)
-N
T N oo -
+/(; e““‘/ (s, 2,y) (f2[¢i,1/fi](T—S,Y)+G2(T_s’y))dyds'
—-N

Then, there holds

BN (T2 61,0 = 3y (T, 23 62 )|

N
< e“”f Ti(T, 2, y) |97 § (0, y) — ¢35 5 (0, y)| dy
N

T N _ - -
+/ e—ous/ TG, z, y)[ﬂ(T—s)¢1(T—s, y) (%(T—S, W=Y2(T =, y))
0 —N
+B(T = )T = 5.3) ($1(T = 5,3) = §a(T = 5,7)) |dvas
<e T |pf v (0) — ¢35 4 (0) ”C([fN,N]) +AM(1 —e™T) H vi=v H

+BM(1 =) |6y - 6

k]

where f 1= maxiefo.r] B(1). Since ¢y, (1 + T. 23 §i ¥i) = ¢y (1. 2: . ¥ for all
t €e Rand z € [-N, N], we can get from the above inequality that

678 = 5.5 O oy gy = M | T1 =02 + M1 |61 — 62
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Additionally, ¢* \ (1, z; ;, Vi) satisfies
&Nt 75 By Vi)

N
— e—mt/N it z,y) [¢:N(O, y) —G1(0, y)] dy+ Gi(t,2)
t N T3 g
—l—/ e_a”/ Ti(s,z, ) (fl[qﬁmﬁi](f—&y)"‘Gl(t _S’y)) dyds.
0 —-N

Thus, by similar arguments to above, it is not difficult to show that ¢>}t, (t, z; J), 1/~/)
is continuous in (qB, 1}). Similarly, we can prove that wl’f, (t, z; & 1}) is continuous in
(¢, ¥). The proof is complete. U

With the aid of Lemma 2.6, we can conclude from the Shauder’s fixed-point theorem
that 7 admits a fixed point (¢}, ¥5) € T'y. In particular, (¢5(t +T,-), ¥y (t +
T,) = (¢} (t,), ¥} (t, ) forall r € R. Note that ¢%, ¥% € C/>¢([R x [-N, N1)
for some 6 € (0, 1). By [31, Theorem 5.1.18 and 5.1.19], we have that ¢x,, ¥}, €
CL2(R x [—N, N)) satisfy

Py (1, 2) = d10:¢N (1, 2) — Oy (1, 2) — By (1, DY (1, 2),
(t,z) e Rx [-N, NJ],

0y (t,2) = da0 Uy (t, 2) —co N (t, D)+ BN (t, DY (E, D=y OYN (L, 2),
o5 (1, £N) = ¢~ (1, £N), ¥4, +N) =v (1, +N), 1R
2.21)

The following theorem lists some local uniform estimates on ¢y, and ¥/y,.

Theorem 2.7. Let p > 2. For any given Z > 0, there exists a constant C(p, Z) > 0
such that for sufficiently large N > max{Z, —z»}, there hold

C.

||¢1>:/||W12([0 TIx[-Z,Z])° |¢N“W, (0. T1x[~Z,2]) =

Furthermore, there exists a constant C'(Z) > 0 such that for any zog € R, there hold

C/
(2.22)

[ ] ov| =
Nl cU+0)/2.146 ([0, T1x[20—Z,z0+2Z]) > 1PN I CU+D/2.1%60 ([0, Tx [20—Z.z0+Z]) —

for sufficiently large N > max{Z + |zo|, —z2}, where 6 € (0, 1).

Proof. Fix Z > 0 and zg € R. Let N > max{Z + |zo|, —z2}. In view of the above
discussion, we see that

U@y (1, 2) = d10:9N (1, 2) — Oy (1, 2) — B()Py (1, DYy (1, 2),
Wy (1, 2) = d2d Yy (1, 2) — cO Yy (1, D+ BDPN (1, DY (1, 2) — v (DY (1, 2)



Vol. 20 (2020) Time periodic traveling waves in a periodic 1045

forall (t,z) € Rx (=N, N).Since (¢}, ¥5) € 'y, thereexistsa M > 0independent
of N such that

sup dn(t,z) < M, sup Yn(t,2) < M.
(t,2)€ERX[—N,N] (t,2)€ERX[—N,N]

_clz=zq) _clz=zq)
Let W,{,(t, 7 =e M ¢yt 2), W%,(t, 7):=e 2 Y3 (t,7) forany t € R and

z € [—=N, NJ. It then follows that

2 c(z—z0)
C _ce7z9)
IWy(t,2) = d1d Wh(t,2) — ys M (t,2) — BOR (t, DYN (. 2),

6‘2 _clz—zq)
AWy (t,2) = dad Wy (1, 2) — 1a5° Moyt 2) + BNt DY (., 2)

—y(OYy(t, 2)
for any (1,z) € R x (=N, N). For (¢, z/) € R? and r > 0, define

0t ), r) i= {(r,z) eR|iz—2|<rlt—1]<rt< ﬂ}.

For the given Z > 0, take R = max{2Z, /3T}. Define

| C2 _clz—zq)
hyt,2) = —ga-e ™ Pyt 2) = By (1. DYN (T, 2),
2 c(z—zq)
hy(t,z) = —4672[ 0 Uyt )+ BOPNE, DUN (T, 2) —yOYN(E, 2).

According to [29, Proposition 7.14], for N > 72R + |zo|, there exists a constant
C1(p, R) independent of N, such that

Wy

LP(Q((2T.20),2R))
=a (|

This implies that there exists a constant C,(p, R), which is independent of N, such
that

i

hiy i=1,2.

+ ‘ 9
LP(Q((2T,z0),72R)) L”(Q((ZT,zo)JZR)))

Cy.

|0:0% | Locoar.con2r + 1Y% | Lo ot cop2my) =

In view of the equations for ¢;t, and w;‘,, we further conclude from [29, Proposi-
tion 7.18] that there exists a constant C3(p, R) independent of N, such that

Cs,
Cs,

192208 | Lo cocor,200.20) T+ 108N | Locoiarcop. my =
[0:9 % Lo coar.conmn + 12N Lo coier.zo my =

As a consequence, there exists a constant C'(p, R), which is independent of N, such
that

C.

”‘7’;/ ” Wh2(Q(T,20),R)) * 129 ” WL (Q((2T.20), R)) =
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On accountof [0, T] x [—Z, Z] C Q((2T, 0), R), we have

*
129 ” W20, T1x[~Z.Z]) =C

lexl WhA(0,TIx[~Z,Z]) *

Here, R merely depends on Z, and then, C only relies on Z and p.
Take p > 3. Then, the embedding theorem indicates that

ok, Ui € CUTO2IH9 ([0 T x [z20 — Z, 20 + Z]) for some 6 € (0, 1)

and

* * /!
”¢N ”C(]+9)/211+0([0,T]X[fz,Z]) ) I/fN ”C('+9)/2~'+9([0,T]><[72,Z]) = C )
where C’ > 0 is a constant depending upon p and Z. 0

Let (¢}"\, , w;‘\‘,) be the solution of the system (2.21), and we further have the following
estimations.

Proposition 2.8. There exists a constant Co such that

1 N T 1 N T
—/ / B()py (t, )Yy (2, 2)dtdz < Co, —/ / Yy (t, 2)dtdz < Co
T J_nJo T J nJo

forany N > —z;. In particular, fOT E)qu}';,(t, z)dt <0forz € [-N,N]and N > —z5.

Proof. For z € [—N, N], define
1 (7 1 (7
P*(2) = —/ oN@t, dt, W(z) = —f Yy (t, 2)dt,
T Jo T Jo
+ Lt + + e +
() = = o (t,dt, V7 (2) = Y, 2)dt.
T Jo T Jo
Clearly,

P (z) < DPF() < DT (z), ¥ () <V¥*(z) <V¥T(2), Vze[-N, NI

In view of (2.21), we have

1 T
c®; =d o}, — ?/ BOYN(E, DYy, 2)dt, Vze[-N,N], (2.23)
0

where the subscripts , and ,, represent the first derivative and the second derivative
for one function on z, respectively. It follows from (2.23) that

(emhar) = e/ (0, — col/d)
Z
e—cz/dl

T
== / BWSL (1, DV (1, di, Yz € [=N, N1,
1T Jo
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Integrating two sides of the last equality from z € [-N, N) to N yields

1 N T
®1(0) = WDz - o [T e [ g, i, drds,
1 z 0

Since ®*(z) > 0 = ®*(N) = &~ (N) for z € [—N, N], we have that @;"(N) <0,
and hence, ®}(z) < 0 for z € [—=N, N]. In particular, ®¥(z) # 0. Making an
integration from —N to N for Eq. (2.23), we obtain

1 N T
T / / B¢y (1, )Yy (1, 2)dtdz
—N JO
=c(P*(=N) — ®*(N)) + di (PE(N) — dI(—=N)),
< (c+di)So

(2.24)

due to ®*(—N) < Sy and

= —S()M]E]E_GIN > —95.
z=—N

. _ a (1 [T _
CDZ(_N)Eq)Z (_N)ZE (7/(; 1) (t,Z)dl)

Let y := minsepo,77 ¥ (¢) and y := max,e[o, 7] ¥ (¢). Then, W* satisfies

* « L agr L r * %
—dy V7 + eV +y W / B® oy, )Yy (t, 2)dt
0

T
1 T
-7 | o -9 i
T Jo
Integrating the two sides of the last equality on [—N, N], we have
N * d2 k * c * *
/ W@z = F (VI —WIEN) + 5 (BN 9 )
-N

1 N T
+ o= f / BN, DYy (2, 2)dtdz.
yT J_nJo

Since W} (N) < 0,¥}(=N) = V7 (=N) > 0,¥*(—=N) = ¥~ (=N) and the
inequality (2.24) holds, we can conclude from the last equality that

N
1
/ V*(z)dz < ; (C‘IJ_(—N) + ¢So + di S()) .
—N

Thus, there exists a constant Cy > 0 independent of N > —z» such that

1 N T 1 N T
—/ / By (t, )Yy (t, )dtdy < Co, —/ f Vi (t, z)dtdz < Cy.
T J-~nJo T J-nJo

This completes the proof. 0
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2.3. Existence of periodic traveling waves

This subsection is concerned with the existence of periodic traveling waves.

Theorem 2.9. Assume that Ry > 1. For any ¢ > c*, the system (2.1) admits a time
periodic traveling wave solution (¢*, ™) satisfying (2.4) and (2.5). Furthermore,
there hold 0 < %fOT Y*(t, z)dt < So — S for any 7 € R, and

1 o0 T
= / / y(OV*(t, 2)dtdz
T —00 J0

o0 T
= %/ /(\) ﬁ(t)(p*(t, Z)¢*(t, Z)dldz =[Sy — SOO]

Proof. The proof is divided into four parts.

L. Existence of periodic traveling waves Let { N;,,} be an increasing sequence such that
Ny > —z2 and limy,—s 4 o0 N,y = +00. It then follows that the solutions (¢1”§,m, 1,0;’\‘,'") €
I'w,, satisfy Theorem 2.7 and (2.21). In light of the periodicity of (d);’(,m , 1//;'\‘,m) int € R,
we can extract a subsequence of (¢1”(,m, 1//1’(,'"), still denoted by (¢}*\,m, w;‘;,m), tending
toward functions (¢*, ¥*) € C(R?) in the following topologies

* * * Y : #’H‘ﬂ 2 : 1 2 :
(¢>Nm, 1//Nm) — (@%, ¥™) in Cy ¢ (R7), in H,,.(R”) weakly and in
L} (R, H2(R)) weakly, (2.25)

loc

where 8 € (0,60) and 0 € (0, 1) is given in (2.22). It is obvious that (¢*, ¥*) €
c B R2) N Hy (R?) N L (R, H (R)). Since (¢} , ¥}, ) is T-periodic in z,
we have (¢p*(t + T, 2), v*(t + T, z)) = (¢*(t,2), ¥*(t,z)) forallt € Rand z € R,
and hence, the estimation (2.22) implies that for any N > 0, there exists a constant

C3 > 0 such that

6] serep
[0,T]x[—N,N] [0,T]x[—N,N]

sl L2 PR o =¥ (2.26)

Letu,v € C§° (R?) be given. Then, for sufficiently large m € N satisfying supp(u) x
supp(v) C R x (=N, Npy,), we have that (¢;§,m, 1//1’(,m) satisfy the equalities

// dru(t, Z)‘,b;i/m(f, z)dtdz — d // o, u(t, Z)aij;t]m(t’ Qdtdz
R2 R2
= cf/‘zu(t,z)az@t/m(t,z)dtdz-i-//2ﬁ(t)u(t,z)qﬁ,’{,m(t,z)w;,mdtdz
R R
and

// B,U(t,z)l/f}f,m(t,z)dtdz—dQ// azv(t,z)aztlf;(]m(t,z)dtdz
R2 R2

=c/f v(t,z)azl//;’{,m(t,z)dtdz—// BOv(t, D)oy, (t, DYy ditdz
R2 R2
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+f/ y (v, D)y, didz.
RZ

On the basis of (2.25), we have that (¢*, ¥*) satisfy

f/ Blu(t,z)d)*(t,z)dtdz—dl// O.u(t, 2)0,¢™(t, z)dtdz
RR2 R2

:c// u(t,z)aqu*(t,z)dtdz—}—// Bu(t, 2)¢*(t, 2)v*drdz
R2 R2
and

// 8,v(t,z)w*(t,z)dtdz—d2// d;v(t, 2)0, (¢, 7)dtdz
R2 R2

=c// v(t,z)azw*(t,z)dtdz—// Bv(t, 2)*(t, 2)y*dedz
R2 R2

+// y(Ov(t, 2)y*drdz
RZ

forany u, v € Cg° (R?). Then, we conclude that (¢*, ¥*) satisfy

0:9*(t,2) = d10,,¢™(t,2) — c0.0*(t,2) — BO)P™ (¢, DV ™ (2, 2),
0 U*(t, ) = dody W*(t, 2) — cO U™ (2, z2) + BE)P*(t, DU*(t, 2) — Yy (OY*(¢, 2)

almost everywhere in (¢, z) € R2. Consider the following Cauchy problem

8twl(tv Z) = dlazzwl(ts Z) - Cazwl(tv Z) - ﬁ(t)¢*(tv Z)w*(tv Z)v r> 0’ Z€ R’
dwa(t, 2) = dadz;wa(t, 2) — cOwa(t, 2) + B()P™ (1, )Y ™ (1, 2) — y (Y *(1, 2),

wi(0,2) = ¢*(0, 2), w2(0,2) =v*(0,z), zeR.
2.27)

Clearly, (¢*(z,z), ¥*(t,z)) is a strong solution of (2.27). Moreover, [31, Theo-
rem 5.1.3 and 5.1.4] imply that (¢*, ¥*) is the unique strong solution of (2.27), and
hence, ¢*, ¥* € C'+2:21V(R2) for some v € (0, 1) and satisfy (2.4), that is,

O™ (1, 2) = d10-:9™ (1, 2) — c0:9™(t,2) — B(O)P™ (1, DY ™ (1, 2),

Y*(t,2) = dad ¥ (1, 2) — co ™ (t, z) + B (t, DY *(t, 2) — Y (OY*(1, 2)
(2.28)

for (z,z) € R2. Furthermore, it follows from Proposition 2.8 that there exists a constant
Co > 0 such that
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00 T 00 T
l/ / B)o*(t, )Y™*(t, 2)dtdz < Cy, l/ / Y (t, 2)dtdz < Cy.
T J_«Jo T J-xJo
(2.29)

Note that (¢*, y*) satisfies that
¢ (1.2) <¢*(t.2) < So. Y () <Yt <YT(t.2), (t.2)eR?,

and hence, there hold ¢*(z,z) — So and ¥*(z,z) — O uniformly for ¢t € R, as
7 — —o00.

II. The asymptotic behavior of ¥* as z — +o00 Define W(z) = %fOT (¢, z)dt.
Then, W (z) satisfies

T
— W + eV, + PV = %/0 B)P* (¢, Y™ (1, 2)dt

1 T
-7 /0 (y(t) — )7) V(2 2)dt, (2.30)
where 7 is defined as in the proof of Proposition 2.8. Denote by

ii L (== 02 + 4d2];
o 2d>

the two roots of the characteristic equation
—do)E+ch+9 =0.

In addition, denote

p:=dy ():J'_ — 5»_> = \/62 +4dyry.

Clearly, A~ < 0 < A*. It follows from (2.30) and (2.29) that

1 z A T T
W) = - f &) [ / B (1. )Wt y) — / (y(r)—ﬁ)w*(r,w}dzdy
PT J-co 0 0

1 [e%e) ):Jr ! T T
o f ey [/ BWG* (1. )Y (1. y) — f (wn—ﬁ)w*u,y)}drdy
oT J; 0 0
and
r—[F 5- T T
Vo) = 5 / G f ﬂ(r)zp*(z,y)x/f*(r,y)—f (v () = 7)¥* (. y) | drdy
oT J_ 0 0
):+ e’} 5»* T T )
+— f ey f BM)P*(t, Y™, y) — / (y@) = P)¥* @, y) | didy
oT J; 0 0
st s T
<2 / ) / BYG* (1, Y™ (1. y)didy
PT J -0 0
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At oo it my) T . N
A f PGS / BYG* (1. )0 (1. y)didy
oT J; 0
Y e . .
L [T / BOG™ (1.2 — YWtz — y)didy
oT Jo 0

i+ 0 3\+ T
42 / a / BUYG* (1.2 — YH(t. 2 — y)didy.
PT J-xo 0

Since A~ <0 <At andp :=d, ():+ — )AF), we have

1 00 T
W ()] = d_T/ / B)$™ (t, )Y *(t, 2)drdz.
2 —o0 J0O

It then follows from the integrability of fOT B)o*(t, )YU*(t, -)dt on R that W, is
uniformly bounded. Consequently, following /fooo V(z)dz < Cp, we must have
W(z) — 0as z — oo. We further apply Harnack inequalities ([35, Lemma 2.9]
(see also [14]) with 7 = —T,0 = Tand D := D, = (z — 3.2+ 1), U =
(z — %, z 4+ %), Q = (z—1,z+ 1) with z € R) for the second equation of sys-
tem (2.28), we have

sup Y¥(r,y) < Cy _inf  y¥(z,2)
(O,T)l::(D Y 0 2T,3T)xD

=Cy, min _y*(t,y)
[2T,3T|xD

<Cp mﬁin v (0, y),

where C, is a positive constant independent of D. Since ¥* is periodic in time 7,
¥*(t,z) — O uniformly for r € R, as z — o0o0. As a consequence, there holds
V*(t,z) < Co for (1, z) € R2.

III. The asymptotic behavior of ¢* as z — oo By virtue of the estimate (2.26) and

Laudau type inequalities (see, e.g., [4,27]), we have

1 1
|¢:|L°°([O,T]><(—00,M]) =2 |¢* - SO|IZ‘°°([O,T]><(—OO,M]) |¢;z|iw([o,T]x(—m,M]) .

Consequently,

lim ¢7(z,z) = 0 uniformly for 7 € R.
—>—00

Define ®(z) = %fOT @*(t, z)dt. It is obvious that ®,(z) — 0 as z — —oo. It then
follows from the first equation of system (2.28) that

T
cd, =d P, — %/ Bt)*(t, )Y ™ (t, z)dt. (2.31)
0

It is easy to see from the last equation
ez /dq

T

T
(e7est0.) = el (@ = cougin = o [ gt e v @, 2
z 0
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Since % fOT B(®)p*(t, 2)Y™* (¢, 7)dr is integrable on R, an integration from z to oo for
the last equality yields

e ID.(2) =

[e’e) T
v A fo B (1, Y)W (1, y)didy,

which implies that ®,(z) < O for z € R, and hence, ®(00) exists and ®(c0) <
D (—00) = Sp. It follows from the Barbilat’s lemma (see, e.g., [3,12]) that ®,(z) — 0
as z — oo. Integrating two sides of (2.31) from —o0 to co on z leads to

1 00 T
7/ /0 B)¢™(t, DY *(t, 2)dtdz = c[Sp — P(00)] = c[So — §*1,

where §° = ®(o0) < ).

By similar arguments to [35, Theorem 2.10], we prove that ¢*(¢, z) — S° uni-
formly for t € R, as z — oo. In the light of T-periodicity of ¢*, it is sufficient to
show

limsup max ¢*(t,z) =: S = S = $*° :=liminf min ¢*(¢, 7).
zﬁoopze 0,T]¢ (,2) + - 700 te[O,T]¢ .2)

Clearly, there exist {f,} and {z, } satisfying {t,} C [0, T] and z,, — oo (as n — 00),
respectively, such that

lim ¢*(tn, z0) = ST°.
n—0oo

Letg,(t,z) = ¢*(t+ty, 2+20), Yn(t,2) = Y™ (t+1t,, 24+2,), Vn e Nt € R, z € R.
Based on the estimation (2.26) and the uniform boundedness of ®, ®,, W and W, there
exists a subsequence of (¢, (¢, z), ¥, (¢, 2)), still denoted by (¢, (¢, z), ¥ (¢, 7)), con-
verging to (¢+(z, z), 0) in Cllz)/cz’v(}R x R) for some v € (0, 1), as n — oo. Particularly,
we have ¢, (0, 0) = S° and

¢t +T,2) = ¢u(t,2), $u(t,2) < ST, V(t,2) e RxR.

Since {t,} C [0, T, without loss of generality, letz, — t* € [0, T]. Then, ¢ (7, z) =
@it — ¥, 2) satisfies

t
67 (1) = Ti (NPT (0) + /0 Tit — ) fileT, 01(s)ds

t
— Ti(O$7 (0) + / Tyt — s)ard (s)ds.
0

Accordingly, ¢ (¢, 7) satisfies
ol (t,2) = d1d . (t,2) — cd0F (t,2), (t,2) e RxR.

As aresult of ¢ (1%, 0) = S° and ¢ (1, z) < S%°, the maximum principle indicates
that ¢;f (r,2) = ST° for t < t*. Since ¢ is T-periodic in 7, we have ¢ (1, z) =
8%°,Vr € R, and hence () := % fOT ¢ (1, 2)dt = S°. On the other hand,
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+ 1 r + 1 r *
o (z)=?/ @, (t,z)dt:—/ Gs(t — 17, 2)dt

= lim —/ @ (t —t*, 2)dt

n—oo T

n— oo

= lim —/ ¢ (t — * +th, 2+ zp)dt
= §*
which implies $¢° = $°°. Thus, lim sup, _, ., max;c(o,7] ¢* (¢, z) = S°°. Similarly, we

can prove lim inf,_, o, min;c[o, 77 ¢* (¢, z) = S°. This implies that ¢*+ (t, 7) converges
to S uniformly in r € R as z — oo.

1V. The properties for ¥* We use the similar arguments to [35, Theorem 2.10](see also
[33]) check on the properties for ¥*. Since W (z) satisfies

T T
— ¥, + eV, = l/ BM)Q* (1, )Y ™ (1, z)dt — l/ y Oy (t, z)dt,
T Jo T Jo
(2.32)

an integration of (2.32) on R yields

1 o0 T
—/ / y (OY*(t, z)dtdz
T —0o0 J0O
1 [} T
— ?/ /0 B)o™(t, D)Y*(t, 2)dtdz = c[Sp — S*°].

Similar to the aforementioned proof on the asymptotic behavior of ¢} (z, z) as z —
—00, we can show that

I
lim y2,2) =0 (233)

uniformly for ¢ € R. For any z € R, define a function
U = f / Y (V" (1. ydrdy
s [Tetnen [Dyopte naay. @3
cT z 0
It is not difficult to see that W**(z) satisfies the following equation:
1 T
V() = dry Vi (2) + ?/ y(OY* (@, y)dt, Vz eR.
0
By means of (2.33) and L’Hbpital’s rule, it follows that

1 o0 T
lim W) =0, lim W) = — / / y(OY*(t. y)dy = Sy — 5
7—>00 cT J_s0Jo

7—>—00
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and
Z_lirinoo U(z) =0.
Define a new function
U(z) := W(2) + V™ (2), VzeR,

where W (z) = %fOT Y*(t, z)dt. On the basis of (2.33) and (2.34) that

T
V. () = dy .- (2) + %/ BM)¢™(t, )Y (¢, 2)dt, Vz € R.
0

Multiplying two sides of the above equation by e~¢/%2? and integrating from z to oo,
we have

o0 T
b= o [ et /0 BG* (1. )V (1. y)didy.
z

Then, it is obvious that \i/(z) is non-decreasing in R. Note that lim,_, \il(z) =
So — S*. Hence, ¥(z) < Sy — S™ for all z € R. In view of the definition of ¥ (z)
and W*(z), we conclude that W(z) < W(z) < Sy — S for all z € R, that is,
0< %fOT Y (t, z)dt < Sop — S for any z € R. The proof is complete. 0

3. Nonexistence of periodic traveling waves

In this section, our task is to investigate the nonexistence of time periodic traveling
waves for two cases. Firstly, we prove that there is no time periodic traveling wave in
the case where Ry < 1.

So fy B()dt

I v
no time periodic traveling wave solutions (¢, V) satisfying the asymptotic boundary

conditions (2.5) uniformly for t € R.

Theorem 3.1. Assume that Ry = < 1. Then, for any ¢ > 0, there is

Proof. By contradiction, we assume that there exists a time periodic, non-trivial and
nonnegative solution (¢ (¢, z), ¥ (¢, z)) of (2.4) satisfying (2.5) uniformly for ¢ € R,
that is,

b (1, 2) = d1¢ (1, 2) — (. 2) — B()P(L. )Y (2, 2),
Vi1, 2) = datpreo (1, 2) — e (t, 2) + BOP (1, )Y (1, 2) — y (O (1, 2)

and

@ (1, —00) = Sp, ¢(t, 00) = S, ¥(t, £00) = 0 uniformly int € R.
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Due to the T -periodicity of ¥ (¢, z) and the parabolic maximum principle, it follows that
Y(t,z) > 0fort € R, z € R. In addition, it is not difficult to show that ¢ (¢, z) < Sy
fort € R, z € R. In fact, suppose that there exists (#y, xo) such that S(zy, xg) > Sp.
Thus,

883, %)
.Y’

0 =d|AS(t, x)

(t0,x0)

- B(to)S(to, x0)I (to, x0) <0,

(to,x0

which s a contradiction. Let ¥ (1) = f fooo ¥ (¢, 7)dz. Then, by the asymptotical bound-
ary conditions (2.5) and (2.33), we have

d— _
VO =BOS—y0) @)+ f@©, VieR,

where
f@ = ,B(t)/ (@(t,z2) — So) w(t,z)dz <0, VteR.

It is easy to see that ¥ (r + T) = ¥ (¢), f(t + T) = f(t),Vt € R. According to the
positivity of ¥ (), we see that

d

(@) £

— = HSo—y @) + =/, VvVt € R.
70 (B@®)So — (1)) 70 €

Integrating both two sides of the above equality from O to 7', we obtain

T T
0= / B(1)So — y (1)) dt + EACH
0 0o Y@

T
—SO{" BOA | This is a
Jo y@de
contradiction. O

due to the periodicity and positivity of v/ (t) and Ry =

Next, we prove the nonexistence of periodic traveling waves for the case where
Ry > landc < c*.

T
Theorem 3.2. Assume that Ry > 1and0 < ¢ < c* = 2,/dhg = 2, 2l SPO=r )
System (2.4) does not have a time periodic traveling waves (¢, V) satisfying (2.5) uni-
formly fort € R.

Proof. Suppose, by contradiction, that there exists such a traveling wave solution

. [ da 3 (SopH)—y (1))
(@(t, x +ct), Y(t, x + ct) satisfying (2.5) for some ¢ < ¢* = 24/ ——F——=.

So Jy Bt
[y
a sufficiently small §o > O such that fOT [B(t)(So — 80) — y(r)]dt > 0. For each

8 € (0, 8p), define @° by

Since Ry = , we have fOT [B(t)So — y(¢)]dt > 0, and hence, there exists

1 T
0’ = - / [B(1)(So — 8) — y(1)]dt.
0
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We fix a8 € (0, 1) such that ¢ < 2,/d0?%. Since lim,_, o ¢ (¢, 2) = So,Vt € R, we
can choose a Ms > 0O such that Sy — & < ¢ (¢, 2) < So + 8, Yz < —M; uniformly for

J4drod—c3
t € R.Fixacg € (¢, 2y/d20°) and let M, = %. Define

t
Q°(1) = exp (/0 [B(s)(So — &) — y(s)]ds — Q‘SI) .
Clearly,

doé()
dr

= [B(1)(So — &) — y()]1Q°(1) — 0° Q°(1).

ﬂ
We consider a function we, (7, 2) := 2 sin(M¢,2) Q°(1). It is easy to verify that
We, (2, 2) satisfy we, (14T, 2) = we, (t, z) for z € R. Further, some direct manipulation
yields
dwey (1, 2) = dadozwe, (t, 7) — cod e,y (£, 2) + [B(E)(So — 8)
—y(O)]we(t,2), t >0,z € R,

Let kg € NT such that (2k0 DT~ M;. Then, let y; = 2,(,‘[(2", v = (2]‘/“}#
Clearly, sin(M,,y1) = sm(Mcoyz) =0, sin(M.,z) > 0,Vz € (y;) y2). Since 1//(0 2)
is strictly positive on [y, y2], then there exists an € > 0 such that ewy(0,z) <
¥ (0, z), Yz € [y1, y2]. Consider the function ¢ (¢, x+(c—cp)t) and ¥ (¢, x+(c—cp)?t),
Vi > 0, x € [y1, y2]. Denote ¥ (¢, x) := ¥ (, x + (¢ — co)t). Since (¢ (¢, z), ¥ (7, 2))

is a solution of system (2.4), we have
D (t, x) = dadc (1, X) — cdx i (2, %) + B (2, x + (c — cO)DP (1, x)
—y P, x)
Since ¢ (¢, z) > Sp—6, Vz < —M;guniformly forz € R, it follows from above equality
that I/A/ satisfies
D (t,x) > drdux (2, x) — codx (2, X) + B(A)(So — T (1, x) — y (P (2, x)

forallt > 0 and x € [y, y2]. In view of ¢ — cp < O and y; < y» < —Ms, we have
X+ (c—co)t < —=Ms,Vt >0, x € [y, ;2] Let ¥z, x) := ¥ (t, x + (¢ — co)t) —
€Wey(t, x) = Y (t, x) —€we, (¢, x) forallt > Oand x € [y;, y2]. Then, we can derive
that

(1, x) = dder (2, x) — cod (2, x)

+ B (So — )Y (t, x) — y (DY (1, x), t = 0,x € [y, yal.

¥(0,%) = 0, x € [y1, ],

Y, yj) =0, j=12
In view of the maximum principle of the parabolic equations, we are led to the
conclusion that v > O for all + > 0 and x € [y1, y2], which implies that
Y(t, x 4+ (¢ — co)t) = ewey(t,x) forall t > 0 and x € [y, y2]. Since ¢ — ¢y < O,
there is a contradiction that ¥ (¢, x + (¢ — cg)t) — 0 ast — +o0. ]
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4. Discussion

In this paper, we investigated time periodic traveling waves for system (1.1) with
bilinear incidence in a seasonal forcing environment. To overcome the unboundedness
of mass action (bilinear incidence) function, we considered a truncated problem on
a large but finite interval and applied the limiting arguments to obtain the existence
of periodic traveling waves for each ¢ > ¢* when Ry > 1. In addition, we also
proved the nonexistence of periodic traveling waves for either Ry < 1 or ¢ < ¢* and
Ro > 1. The idea and method of this paper also apply to other periodic and non-
monotone evolution systems provided that some new techniques are developed for
the verification of the asymptotic boundary condition. Unfortunately, we cannot prove
the existence of time periodic traveling waves with critical wave speed ¢ = ¢*, which
remains an open problem for future investigation. The substantial difficulty is again due
to the unboundedness of bilinear incidence, which makes the construction of proper
sub- and super-solutions much more challenging (if not impossible). At the same time,
since system (1.1) is non-autonomous and non-monotone, and the 7-component of the
periodic traveling wave with wave speed ¢ > ¢* is a time periodic pulse wave, it is
also difficult to get the existence of critical periodic traveling wave by taking the limit
of a sequence of periodic traveling wave with wave speeds ¢, where ¢, > ¢* and
cn — ¢, see [36,39]. Nevertheless, when the bilinear incidence is replaced by the
standard incidence in (1.1) [i.e., system (1.5)], Zhang and Wang [38] recently proved
the existence of time periodic traveling wave with the minimal wave speed ¢* by
constructing sub- and super-solutions similar to those for some autonomous systems,
see [16,43] and the references therein.
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