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Abstract. Westudy the boundedness and convergence to equilibriumofweak solutions to reaction–diffusion
systems with nonlinear diffusion. The nonlinear diffusion is of porous medium type, and the nonlinear re-
action terms are assumed to grow polynomially and to dissipate (or conserve) the total mass. By utilising
duality estimates, the dissipation of the total mass and the smoothing effect of the porous medium equation,
we prove that if the exponents of the nonlinear diffusion terms are high enough, then weak solutions are
bounded, locally Hölder continuous and their L∞(�)-norm grows in time at most polynomially. In order
to show convergence to equilibrium, we consider a specific class of nonlinear reaction–diffusion models,
which describe a single reversible reaction with arbitrarily many chemical substances. By exploiting a gen-
eralised logarithmic Sobolev inequality, an indirect diffusion effect and the polynomial in time growth of the
L∞(�)-norm, we show an entropy–entropy production inequality which implies exponential convergence
to equilibrium in L p(�)-norm, for any 1 ≤ p < ∞, with explicit rates and constants.
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1. Introduction and main results

In this article, we study the boundedness and convergence to equilibrium of weak
solutions to reaction–diffusion systems with nonlinear diffusion

⎧
⎨

⎩

∂t ui − di�(umi
i ) = fi (u), x ∈ �, t > 0, i = 1, . . . , S,

di∇(umi
i ) · −→n = 0, x ∈ ∂�, t > 0, i = 1, . . . , S,

ui (x, 0) = ui,0(x), x ∈ �, i = 1, . . . , S,

(S)
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with the unknown functions u = (u1, . . . , uS) and ui : � × R+ �→ R, the positive
diffusion coefficients di > 0, the porous medium exponents mi > 1 and where
� ⊂ R

d denotes a bounded domain with sufficiently smooth boundary ∂� (e.g. ∂�

is of class C2+� for some � > 0) with outward unit normal −→n on ∂�. Moreover, the
conditions imposed on the nonlinear reaction terms fi (u) and the non-negative initial
data ui,0 will be specified later.
The first part of this paper considers weak solutions to system (S). Our aim is to

provide sufficient conditions on the porous medium exponents mi and on the non-
linearities fi (u), under which weak solutions are indeed bounded in L∞ (and thus
locally Hölder continuous) for all times and grow at most polynomially in time. More
precisely, we assume the following conditions on the nonlinearities:

(i) The nonlinearities fi : RS → R are locally Lipschitz functions and satisfy

| fi (u)| ≤ C(1 + |u|ν), ∀u = (u1, . . . , uS) ∈ R
S, ∀i = 1, . . . , S, (G)

where R 
 ν ≥ 1 is the maximal growth exponent of the reaction terms.
(ii) There exist positive constants λ1, . . . , λS > 0 such that:

S∑

i=1

λi fi (u) ≤ 0, ∀u ∈ R
S, (M)

which formally implies the following mass dissipation law

d

dt

∫

�

S∑

i=1

λi uidx ≤ 0.

(iii) The nonlinearities are assumed quasi-positive, that is for all i = 1, . . . , S, holds

f (u1, . . . , ui−1, 0, ui+1, . . . , uS) ≥ 0, ∀u1, . . . , uS ≥ 0. (P)

The quasi-positivity condition (P) ensures global non-negativity of solutions
subject to non-negative initial data, see e.g. [26,36].

The existence of global weak solutions to (S) subject to homogeneous Dirichlet
boundary conditions and under the assumptions (G)–(M)–(P) was recently obtained
in [26]. The proof of the following Theorem 1.1 on the existence of weak solutions
to (S) subject to Neumann boundary conditions uses similar arguments to [26] and is
postponed to Sect. 5.

Theorem 1.1. Assume the conditions (G), (M) and (P) and consider non-negative
initial data (ui,0) ∈ L2(�)S. If

mi > max{ν − 1; 1} for all i = 1 . . . S,

then, there exists a global weak non-negative solution to system (S) in the sense
that, for all i = 1, . . . , S, ui ∈ C([0,+∞); L1(�)), umi

i ∈ L1(0, T ;W 1,1(�)),
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fi (u) ∈ L1(� × [0, T ]) and

−
∫

�

ψ(0)ui,0dx −
∫ T

0

∫

�

(ui∂tψ + diu
mi
i �ψ)dxdt =

∫ T

0

∫

�

ψ fi (u)dxdt

for all test function ψ ∈ C2,1(� × [0, T ]) with ∇ψ · −→n = 0 on ∂� × (0, T ) and
ψ(·, T ) = 0.
Moreover, a solution u = (u1, . . . , uS) to (S) with (M) and (P) satisfy

‖ui‖Lmi+1(QT ) ≤ C for all T > 0 and i = 1, . . . , S,

where the constant C depends on the L2-norm of the initial data, the constants λi in
(M), the diffusion coefficients di > 0 and the domain �.

Remark 1.1. With amore careful analysis, it seems possible to generalise Theorem1.1
and consider initial data ui,0 ∈ L1(�). We refer the interested reader to [38] for the
case of systems with quadratic nonlinearities and L1 initial data.

Given the weak solutions of Theorem 1.1, our aim is to establish their boundedness
and a polynomially in time growing L∞-estimate under stronger assumptions on the
porous medium exponents mi : first, we recall the a priori estimate ui ∈ Lmi+1(QT )

of Theorem 1.1 and the growth condition (G) imply fi (u) ∈ L1+�(QT ) for some
� > 0, which also justifies the definition of weak solutions in Theorem 1.1. In fact,
the L1+� integrability guarantees uniform integrability of nonlinearities in a suitable
approximating scheme (see the proof of Theorem 1.1 in Sect. 5).
Intuitively, Theorem 1.1 states that larger exponentsmi yield higher integrability of

the nonlinearities fi (u). Moreover, the functions ui solve a porous medium equation
with the right-hand side having higher integrability. Thus, by quantifying the smooth-
ing effect from the porous medium equation, this allows to start a bootstrap argument,
which eventually leads to boundedness of ui in L∞. In particular, it is of importance
that our argument allows to show that the growth in time of the L∞-norms is at most
polynomial. The first main result of this article is the following theorem.

Theorem 1.2. (Global bounded weak solutions) Let � ⊂ R
d be bounded with suffi-

ciently smooth boundary. Let the initial data 0 ≤ ui,0 ∈ L∞(�), assume the conditions
(G), (M) and (P) and mi > max{ν − 1; 1} for all i = 1 . . . S as required by Theorem
1.1. Finally, in dimensions d ≥ 3, we additionally assume

mi > ν − 4

d + 2
, ∀i = 1 . . . S. (1)

Then, any weak solution of (S) obtained in Theorem 1.1 is bounded in L∞(�) and
grows in time at most polynomially in the sense that, for any T > 0,

‖ui‖L∞(QT ) ≤ CT , ∀i = 1 . . . S

where CT is a constant which depends at most polynomially on time. Consequently,
these solutions are locally (in QT ) Hölder continuous, see e.g. [43].
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Remark 1.2. (Weakened assumptions on mass dissipation and initial data) If one is
only interested in the boundedness of solutions but not in the polynomial growth of
the L∞-norm, then the mass dissipation condition (M) can in fact be weakened to

S∑

i=1

λi fi (u) ≤ C1

S∑

i=1

|ui | + C2 for all u ∈ R
S,

for some positive constants C1,C2.
Also the assumed initial regularity ui,0 ∈ L∞(�) is not optimal and could be relaxed

to L p integrability for sufficiently large p according to the details of the proof yet at
the price of the readability of the Theorem.

Remark 1.3. When mi = 1, the condition (1) becomes

ν <
d + 6

d + 2
,

which agrees with the results for linear diffusion systems obtained in [8, Proposi-
tion 1.4].

Theorem 1.2 contributes to the large literature on global existence and boundedness
of solutions to reaction–diffusion systems, which nevertheless poses still many open
questions due to the lack of a unified approach (maximum principles do not hold
for general systems). The largest part of the available literature, however, considers
the case of linear diffusion, i.e. mi = 1 in system (S). We refer the reader to the
extensive review of Pierre [36] and the references therein, in particular [2,4–6,14,22–
25,31,35,37,39]
The case of nonlinear diffusion, on the other hand, is much less investigated. Most

of the existing results considered special systems with special structures, see e.g.
[28,30,42]. Up to the best of our knowledge, system (S) under the general structural
assumptions (G)–(M)–(P) was only studied very recently in [26], where the authors
showed the global existence of weak solutions. Therefore, the present paper serves
as the first result to show the boundedness of weak solutions by assuming stronger
conditions on porous medium exponents. Moreover, our proof allows to estimate
explicitly the growth in time of the L∞-norm, which turns out to be essential in
studying the large-time behaviour of solutions in the following second part of the
paper.
The second main result of this paper proves exponential convergence to equilibrium

for a class of reaction–diffusion systems with porous media diffusion of the form (S),
where the nonlinearities model the following reversible reaction with arbitrarily many
chemical substances

α1A1 + · · · + αMAM
kb�
k f

β1B1 + · · · + βNBN . (2)

Here, αi , βi ∈ [1,+∞) are the stoichiometric coefficients of the M + N involved
substances A1, . . . ,AM , B1, . . . ,BN and k f , kb > 0 are the forward and backward
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reaction rate constants. For simplicity, yet without loss of generality, we assume k f =
kb = 1. By applying mass action kinetics to (2) and by using the short notation

a = (a1, . . . , aM ), b = (b1, . . . , bN ), α = (α1, . . . , αM ), β = (β1, . . . , βN ),

aα =
M∏

i=1

aαi
i , bβ =

N∏

j=1

b
β j
j ,

we study the following reaction–diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ai − di�(ami
i ) = fi (a, b) := − αi

[
aα − bβ

]
, ∀i = 1, . . . , M x ∈ �, t > 0,

∂t b j − h j�(b
p j
j ) = g j (a, b) :=β j

[
aα − bβ

]
, ∀ j = 1, . . . , N x ∈ �, t > 0,

di∇(ami
i ) · −→n = 0, ∀i = 1, . . . , M, x ∈ ∂�, t > 0,

h j∇(b
p j
j ) · −→n = 0, ∀ j = 1, . . . , N , x ∈ ∂�, t > 0,

ai (x, 0) = ai,0(x), ∀i = 1, . . . , M, x ∈ �,

b j (x, 0) = b j,0(x), ∀ j = 1, . . . , N , x ∈ �.

(R)

Here, di , h j > 0 are diffusion coefficients, and mi , p j > 1 are nonlinear diffusion
exponents. It is clear that (R) is a special case of (S). It is also straightforward to verify
condition (P), while condition (G) is satisfied by choosing,

ν = max

{ M∑

i=1

αi ,

N∑

j=1

β j

}

.

Finally condition (M) is a consequence from noting that

1

M

M∑

i=1

1

αi
fi (a, b) + 1

N

N∑

j=1

1

β j
g j (a, b) = 0.

After having the conditions (P), (G) and (M) verified, Theorem 1.1 implies the
existence of global weak non-negative solutions of system (R) provided

mi , p j > max {ν − 1; 1} for all i = 1 . . . M, j = 1 . . . N .

Moreover by Theorem 1.2, these solutions are bounded in dimensions d = 1, 2, or in
dimensions d ≥ 3 when additionally assuming

mi , p j > ν − 4

d + 2
for all i = 1 . . . M, j = 1 . . . N .

Bymultiplying the equations for ai and b j with β j and αi , respectively, and by adding
the resulting terms, integration by parts with the homogeneous Neumann boundary
conditions implies that these solutions satisfy the following mass conservation laws:
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β j

∫

�

ai (x, t)dx + αi

∫

�

b j (x, t)dx

= β j

∫

�

ai,0(x)dx + αi

∫

�

b j,0(x)dx =: Mi j > 0, ∀i, j, (3)

amongst which exactly M + N − 1 linearly independent conservation laws ought to
be selected and only the corresponding M + N − 1 components of the initial mass
vector Mi j need to be calculated from the initial data.

System (R) possesses for each fixed positive initial mass vector (Mi j ) a unique posi-
tive detailedbalanced equilibrium (a∞, b∞) = (a1,∞, . . . , aM,∞, b1,∞, . . . , bN ,∞) ∈
(0,∞)M+N , which is the solutions of the following equilibrium equations:

{∏M
i=1 a

αi
i∞ = ∏N

j=1 b
β j
j∞,

β j ai∞ + αi b j∞ = Mi j , ∀i, j,

wherewe recall that the second line constitutes of onlyM+N−1 linearly independent
conditions.

To study the convergence to equilibrium for (R), we will use the so-called entropy
method, which recently proved a highly suitable tool in the analysis of the large-time
behaviour of dissipative PDE systems.With respect to reaction–diffusion systemswith
linear diffusion, we refer in particular to [10–13,19,20,33].

The key entropy functional (or in this case the free energy functional) of system (R)
is defined by

E[a, b] =
M∑

i=1

∫

�

(ai ln ai − ai + 1)dx +
N∑

j=1

∫

�

(b j ln b j − b j + 1)dx

which dissipates according to the non-negative entropy production functional, that is
formally

− d

dt
E[a, b] =: D[a, b] =

M∑

i=1

di

∫

�

|∇ai |2
a2−mi
i

dx +
N∑

j=1

h j

∫

�

|∇b j |2
b
2−p j
j

dx

+
∫

�

(aα − bβ) ln
aα

bβ
dx ≥ 0.

In the case of linear diffusion, i.e. mi = p j = 1 for all i = 1 . . . M, j = 1 . . . N , the
convergence to equilibrium of solutions of (R) (or some special cases) was recently
studied in e.g. [10,12,19,33,40].

Let us briefly review the entropy method used in the case of linear diffusion and
then highlight the difficulties to be overcome in the current paper when dealing with
nonlinear diffusion. In the case of linear diffusion, the entropy production writes as



Vol. 20 (2020) Reaction–diffusion systems with nonlinear diffusion 963

Dlin[a, b] =
M∑

i=1

di

∫

�

|∇ai |2
ai

dx +
N∑

j=1

h j

∫

�

|∇b j |2
b j

dx

+
∫

�

(aα − bβ) ln
aα

bβ
dx ≥ 0

and the entropy method consists in establishing a functional inequality of the form

Dlin[a, b] ≥ λ(E[a, b] − E[a∞, b∞]) (4)

for all functions a = (ai ), b = (b j ) satisfying the conservation laws (3). In order to
do that, one first uses an additivity property of the relative entropy to calculate

E[a, b] − E[a∞, b∞] =
⎡

⎣
M∑

i=1

∫

�

ai log
ai
ai
dx +

N∑

j=1

∫

�

b j log
b j

b j
dx

⎤

⎦

+
[

M∑

i=1

(ai log
ai
ai,∞

− ai + ai,∞)

+
N∑

j=1

(b j log
b j

b j,∞
− b j + b j,∞)

⎤

⎦

=: I1 + I2.

The term I1 is controlled in terms of the entropy production Dlin[a, b] thanks to the
logarithmic Sobolev inequality (LSI)

∫

�

|∇ f |2
f

dx ≥ CLSI

∫

�

f log
f

f
dx for all 0 ≤ f ∈ H1(�). (5)

The remain term I2 only involves the averages of the concentrations ai , b j and can be
controlled by Dlin[a, b] through lengthly, technical, but constructive estimates (see
e.g. [19,40] for more details). Note that this entropy approach applies successfully to
more complex chemical reaction networks than (R), see [13,20,32,33]. We emphasise
that the logarithmic Sobolev inequality (5) is not only used to control the term I1 but
also plays an important role in the estimates controlling the term I2.
In the case of nonlinear diffusion as here considered, we need a generalisation of the

LSI (5) to exponents mi , p j ≥ 1. In this paper, we utilise the following generalisation
(see e.g. [34]): for any m > (d − 2)+/d with (d − 2)+ = max{d − 2; 0}, there exists
a constant C(�,m) > 0 such that

∫

�

|∇ f |2
f 2−m

dx ≥ C(�,m) f
m−1

∫

�

f log
f

f
dx .

Whenm = 1, this coincides with the classical logarithmic Sobolev inequality (5). For
system (R), we have in particular
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∫

�

|∇ai |2
a2−mi
i

dx ≥ C(�,mi ) a
mi−1
i

∫

�

ai log
ai
ai
dx and

∫

�

|∇b j |2
b
2−p j
j

dx ≥ C(�, p j ) b
p j−1
j

∫

�

b j log
b j

b j
dx . (6)

Note that if we assume the averages ai and b j to be bounded below by a positive
constant, then one can apply the same strategy as for the linear diffusion case in order
to obtain the convergence to equilibrium. However, there is no chemical/physical
reason for such a lower bound to hold in the transient behaviour of system (R) subject
to general initial data. There are even perfectly admissible initial conditions, where
some averages are zero since the corresponding species have not yet been formed.

To overcome this difficulty, we first observe that the mass conservation laws (3)
subject to a positive mass vector Mi, j > 0 imply that the averages ai and b j cannot
be simultaneously small. Thus, at any fixed time, at least one of the inequalities in (6)
is useful, since either ai ≥ ε or b j ≥ ε for some suitably chosen ε > 0 depending on
Mi, j > 0. Secondly, we are able to compensate the still lacking lower bounds in (6)
by a phenomena which can be called “indirect diffusion effect” and which means in
our context that the reversible reaction (2) transfers diffusion from a species ai (with
strictly positive diffusion bound in (6) due to ai ≥ ε) to other species b j (with lacking
positive lower diffusion bound) in terms of a functional inequality, see Lemma 3.2
below.

Examples of indirect diffusion effect inequalities were already derived in e.g. [11,
17,18], yet typically with a proof which requires uniform in time L∞-bounds on the
solutions, which is a severe technical restriction as L∞-bounds for general reaction–
diffusion systems are often unknown due to the lack of comparison principles. Note
that also the L∞-bounds of Theorem 1.1 would be insufficient since polynomially
growing and not uniform in time.

In this work, we are able to prove an indirect diffusion functional inequality without
using any L∞-bounds on solutions but instead by exploiting the special structure of
(R), see Lemma 3.2. Nevertheless, in the remaining part of applying the entropy
method, the polynomial growth in time of the L∞-norm of Theorem 1.2 is still needed
in one estimate concerning the relative entropy, yet the L∞-norm appears onlywithin a
logarithm. While it is unclear to us whether this is essential or just technical necessary
in our approach, it allows to derive a time-dependent entropy–entropy production
inequality (as a generalisation of the functional inequality (4)) of the form

D[a(T ), b(T )] ≥ �(T )(E[a(T ), b(T )] − E[a∞, b∞]) for all T > 0, (7)

where the function� : R+ → R+ is of order 1/ ln(1+T ) and satisfies
∫ +∞
0 �(τ)dτ =

+∞. Thus, a classical Gronwall argument implies explicit algebraic decay of
E[a(T ), b(T )] − E[a∞, b∞] to zero and thus algebraic convergence to equilibrium
in relative entropy.
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To obtain exponential from algebraic decay, we show that after some sufficiently
large time T0 > 0, the averages ai (T ) and b j (T ) are bounded below by a positive con-
stant for all T ≥ T0 (since the equilibrium (a∞, b∞) consists of positive constants).
Hence, for T ≥ T0, we can use the inequalities (6) like in the case for systems with lin-
ear diffusion and obtain accordingly exponential convergence to equilibrium. Finally,
since T0 can be explicitly estimated, one recovers global exponential convergence to
equilibrium (i.e. for all T ≥ 0) at the price of a smaller, yet explicit constant. Hence,
the second main result of this paper is the following theorem.

Theorem 1.3. Let � ⊂ R
d be bounded with sufficiently smooth boundary. Consider

system (R)—which satisfies the conditions (G), (M) and (P)—subject to non-negative
initial data ai,0, b j,0 ∈ L∞(�). Assume for all i = 1 . . . M, j = 1 . . . N that

mi , p j > max{ν − 1; 1}, where ν = max

{ M∑

i=1

αi ,

N∑

j=1

β j

}

.

Moreover, in dimensions d ≥ 3, we additionally assume

mi , p j > ν − 4

d + 2
, for all i = 1 . . . M, j = 1 . . . N .

Finally, consider a positive initial mass vector Mi j > 0, which uniquely determines a
positive equilibrium (ai∞, b j∞) of system (R).
Then, the bounded global weak solutions of Theorem 1.2 converge exponentially to

(a∞, b∞) in all L p-norms for 1 ≤ p < ∞, that is

M∑

i=1

‖ai (t) − ai∞‖L p(�) +
N∑

j=1

‖b j (t) − b j∞‖L p(�) ≤ C e−λpt

where the constant C > 0 and the convergence rateλp > 0 can be computed explicitly.

Remark 1.4. We remark that in Theorem 1.3, we showed the convergence to equilib-
rium in any L p-norm with p < ∞. In the case of linear diffusion, i.e. mi = 1 for all
i = 1, . . . , S, we are able to get the exponential convergence to equilibrium in L∞-
norm thanks to the Duhamel formula for semilinear equations, see [16, Proof of Theo-
rem 5.1] (see also [21] for local stability in L∞-norm). This technique is not applicable
for nonlinear diffusion, and therefore, the question of global stability in L∞-norm for
(S) remains as an interesting open problem.

Notation:

• We denote by ‖ · ‖ the usual norm of L2(�). For other 1 ≤ p < +∞, we write
‖ · ‖p as the norm of L p(�).

• For any T > 0, QT = � × (0, T ) and L p(QT ) =: L p(0, T ; L p(�)). The
space-time norm is defined as usual

‖ f ‖p
L p(QT ) =

∫ T

0

∫

�

| f (x, t)|pdxdt.
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• Throughout this work, we will denote by CT a generic positive constant which
depends on certain parameters, and more importantly CT grows at most polyno-
mially, i.e. there exists a polynomial P(x) such that CT ≤ P(T ) for all T > 0.

Organisation of the paper:Sect. 2 states the proof of Theorem1.2. The proof of Theo-
rem 1.3 is detailed in Sect. 3. This proof uses also a previously proven entropy–entropy
production estimate for reaction–diffusion systems with linear diffusion, which is re-
called in Sect. 4 for the sake of completeness. Finally, the existence of global weak
solution is stated in Sect. 5.

2. Boundedness and local continuity of weak solutions

In this section, we prove for sufficiently large diffusion exponents mi that the weak
solutions obtained in Theorem 1.1 are actually bounded in L∞ and thus locally Hölder
continuous. In Lemma 2.1, we devise a bootstrap argument for the inhomogeneous
porous media equation which proves that if the porous media exponents mi and the
initial integrability are high enough, then the weak solutions of Theorem 1.1 satisfy an
improve integrability in a space Ls(QT ) and the Ls-norm grows at most polynomially
in time T .

Lemma 2.1. (Smoothing effect of porous medium equation) Suppose that m ≥ 1.
Assume f ∈ L p0(QT ) for some p0 > 1 with ‖ f ‖L p0 (QT ) ≤ CT . Let u be the
weak solution to the inhomogeneous porous medium equation with positive diffusion
coefficient δ > 0

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − δ�(|u|m−1u) = f, x ∈ �, t > 0,

δ∇(|u|m−1u) · −→n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,

(8)

and subject to initial data u0 ∈ L∞(�). Then, u satisfies

‖u‖Lr (QT ) ≤ CT , ∀r ∈ [1, s),
where

s =
{

+∞, if p0 ≥ d+2
2 ,

(md+2)p0
d+2−2p0

, if p0 < d+2
2 ,

and with a constant CT , which only depends on q, d,m,� and at most polynomially
on T .

Remark 2.1. In the linear case m = 1, Lemma 2.1 recovers the corresponding reg-
ularity estimates of the heat equation, see [8]. While the smoothing effect stated in
Lemma 2.1 is certainly well known, our main contribution here lies in the polynomial
growth in time of the norms, which will be crucial in Sect. 3.
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Proof. The existence of theweak solution to (8) canbeobtainedby standard techniques
[43, Chapter 11] so we omit it here. The idea of the proof of this lemma follows [8,
Lemma 3.3] and is divided into several steps.
Step 1. Let μ > 1. By multiplying (8) by μ|u|μ−1sign(u) (more precisely by mul-
tiplying with a smoothed version of the modulus |u| and its derivative sign(u) and
letting then the smoothing tend to zero) then integrating over �, we obtain

d

dt
‖u‖μ

μ − δμ

∫

�

�(|u|m−1u)|u|μ−1sign(u)dx = μ

∫

�

f |u|μ−1sign(u)dx . (9)

Integration by parts and the homogeneous Neumann boundary condition∇(|u|m−1u) ·−→n = 0 lead to

− δμ

∫

�

�(|u|m−1u)|u|μ−1sign(u)dx

≥ m(μ − 1)μδ

∫

�

|u|m+μ−3|∇u|2dx + mμδ

∫

�

|u|m+μ−2|∇u|2dx

≥ 4m(μ − 1)μδ

(m + μ − 1)2
︸ ︷︷ ︸

=:C(μ)

∫

�

∣
∣
∣∇

(
|u|m+μ−1

2

)∣
∣
∣
2
dx .

By Hölder’s inequality
∣
∣
∣
∣μ

∫

�

f |u|μ−1sign(u)dx

∣
∣
∣
∣ ≤ μ‖ f ‖p0‖u‖μ−1

p0(μ−1)
p0−1

.

Therefore, it follows from (9) that

d

dt
‖u‖μ

μ + C(μ)

∫

�

∣
∣
∣∇

(
|u|m+μ−1

2

)∣
∣
∣
2
dx ≤ μ‖ f ‖p0‖u‖μ−1

p0(μ−1)
p0−1

. (10)

Step 2. Choose μ = p0 > 1 in (10), we get

d

dt
‖u‖p0

p0 + C(p0)
∫

�

∣
∣
∣∇

(
|u|m+p0−1

2

)∣
∣
∣
2
dx ≤ p0‖ f ‖p0‖u‖p0−1

p0 . (11)

By applying for r < 1 the elementary inequality

y′ ≤ α(t)y1−r �⇒ y(T ) ≤
[

y(0)r + r
∫ T

0
α(t)dt

]1/r

, (12)

to (11) with r = 1/p0 and y(t) = ‖u(t)‖p0
p0 , we obtain

‖u(T )‖p0
p0 ≤

[

‖u0‖p0 +
∫ T

0
‖ f ‖p0dt

]p0

≤
[
‖u0‖p0 + ‖ f ‖L p0 (QT )T

(p0−1)/p0
]p0 =: CT,0. (13)
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That means

u ∈ L∞(0, T ; L p0(�)) and ‖u(T )‖p0
p0 ≤ CT,0 (14)

withCT,0 is defined in (13) grows at most polynomially in T . By integrating (11) with
respect to t on (0, T ) and by using Young’s inequality and the convention r0:=m +
p0 − 1 > 1, we get

C(p0)
∫ T

0

∫

�

∣
∣
∣∇

(
|u| r02

)∣
∣
∣
2
dxdt ≤ ‖u0‖p0

p0 + p0

∫ T

0
‖ f ‖p0‖u‖p0−1

p0 dt

≤ ‖u0‖p0
p0 + p0‖ f ‖L p0 (QT )‖u‖p0−1

L p0 (QT )
.

By adding C(p0)
∫ T
0

∫

�

∣
∣
∣|u| r02

∣
∣
∣
2
dxdt to both sides, we have

C(p0)
∫ T

0

∥
∥
∥|u| r02

∥
∥
∥
2

H1(�)
dt = C(p0)

∫ T

0

[∫

�

∣
∣
∣∇

(
|u| r02

)∣
∣
∣
2
dx +

∫

�

∣
∣
∣|u| r02

∣
∣
∣
2
dx

]

dt

≤ ‖u0‖p0
p0 + p0‖ f ‖L p0 (QT )‖u‖p0−1

L p0 (QT )

+ C(p0)
∫ T

0
‖u‖r0r0dt. (15)

By the Sobolev’s embedding, we have

C(p0)
∫ T

0

∥
∥
∥|u| r02

∥
∥
∥
2

H1(�)
≥ C(p0)C

2
S

∫ T

0
‖u‖r0s0dt with

s0 =
{

r0d
d−2 if d ≥ 3,

r0 < s0 < ∞ arbitrary if d = 1, 2.
(16)

On the other hand, by using the bound ‖u(t)‖p0
p0 ≤ CT,0 in (14) and the interpolation

inequality

‖u‖r0 ≤ ‖u‖γ
p0‖u‖1−γ

s0 ≤ Cγ /p0
T,0 ‖u‖1−γ

s0 with
1

r0
= γ

p0
+ 1 − γ

s0
for

γ = 2p0
2p0 + (m − 1)d

∈ (0, 1],

we estimate in the cases m > 1 for which γ < 1

C(p0)
∫ T

0
‖u‖r0r0dt ≤ C(p0)

∫ T

0
Cγ r0/p0
T,0 ‖u‖(1−γ )r0

s0 dt

≤ C(p0)C2
S

2

∫ T

0
‖u‖r0s0dt + CCr0/p0

T,0 T, (17)

where we have used Young’s inequality (with the exponents 1 = (1 − γ ) + γ ) in the
last step. Note that if m = 1, the bound (17) holds still true yet without the first term
and with r0/p0 = 1. Inserting (16) and (17) into (15) leads to
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∫ T

0
‖u‖r0s0dt ≤ 2

C(p0)C2
S

[
‖u0‖p0

p0 + p0‖ f ‖L p0 (QT )‖u‖p0−1
L p0 (QT )

+ CCr0/p0
T,0 T

]

≤ 2

C(p0)C2
S

[

‖u0‖p0
p0 + p0‖ f ‖L p0 (QT )

(
TCT,0

) p0−1
p0 + CCr0/p0

T,0 T

]

=: DT,0 (use (14)). (18)

It follows that

u ∈ Lr0(0, T ; Ls0(�)) with

{
s0 = r0d

d−2 if d ≥ 3,

r0 < s0 < ∞ arbitrary if d = 1, 2,
(19)

and
∫ T

0
‖u‖r0s0dt ≤ DT,0

with DT,0 defined in (18).
Next, we construct a sequence pn ≥ 1 based on the estimate (14) and (19) such

that

‖u(T )‖pn
pn ≤ CT,n (20)

and
∫ T

0
‖u‖rnsndt ≤ DT,n with rn = m + pn − 1 and

{
sn = rnd

d−2 if d ≥ 3,

rn < sn < ∞ arbitrary if d = 1, 2,
(21)

in which CT,n and DT,n are constants growing at most polynomially in T .
Step 3 (Iteration of (20)). In (10), we set μ = pn+1 for pn+1 to be chosen later. Thus,
we have

d

dt
‖u‖pn+1

pn+1 + C(pn+1)

∫

�

∣
∣
∣∇

(
|u| rn+1

2

)∣
∣
∣
2
dx ≤ pn+1‖ f ‖p0‖u‖pn+1−1

p0(pn+1−1)
p0−1

, (22)

where we recall that rn+1 = m + pn+1 − 1. By L p- interpolation, we have

‖u‖ p0(pn+1−1)
p0−1

≤ ‖u‖1−θ
pn+1

‖u‖θ
sn

and where pn+1 > 1 has to be chosen such that p0(pn+1−1)
p0−1 ∈ (pn+1, sn) with pn+1 <

sn , which entails θ ∈ (0, 1) in

p0 − 1

p0(pn+1 − 1)
= 1 − θ

pn+1
+ θ

sn
. (23)

Note that p0(pn+1−1)
p0−1 > pn+1 is always satisfied provided that pn+1 > p0, i.e. that the

sequence pn is strictly monotone increasing.
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It then follows from (22) (by neglecting the second term on the left-hand side) that

d

dt
‖u‖pn+1

pn+1 ≤ pn+1‖ f ‖p0‖u‖θ(pn+1−1)
sn

(‖u‖pn+1
pn+1

)1− 1+θ(pn+1−1)
pn+1 .

By applying again the elementary inequality (12) with y(t) = ‖u(t)‖pn+1
pn+1 and r =

1+θ(pn+1−1)
pn+1

< 1, it yields

‖u(T )‖pn+1
pn+1

≤
[

‖u0‖1+θ(pn+1−1)
pn+1 + (1 + θ(pn+1 − 1))

∫ T

0
‖ f ‖p0‖u‖θ(pn+1−1)

sn dt

] pn+1
1+θ(pn+1−1)

≤
⎡

⎣‖u0‖1+θ(pn+1−1)
pn+1 + (1 + θ(pn+1 − 1))‖ f ‖L p0 (QT )

(∫ T

0
‖u‖θ(pn+1−1) p0

p0−1
sn dt

)p0−1
p0

⎤

⎦

pn+1
1+θ(pn+1−1)

.

(24)

In order to continue estimating by using (21), we choose pn+1 as

θ(pn+1 − 1)
p0

p0 − 1
= rn . (25)

Since rn = sn
d−2
d , Eq. (25) implies θ

sn
= (1 − 2

d )
p0−1

p0(pn+1−1) and thus with (23)

θ = 1 − 2

d

p0 − 1

p0

pn+1

pn+1 − 1
< 1. (26)

In order to verify that above choice of pn+1 satisfies
p0(pn+1−1)

p0−1 < sn , we insert (26)
into (25) and calculate

(pn+1 − 1)
p0

p0 − 1
− 2

d
pn+1 = sn

d − 2

d

⇒ sn − p0(pn+1 − 1)

p0 − 1
= 2

d
(sn − pn+1) > 0.

Similar, by recalling sn
d−2
d = rn = m − 1 + pn , we get the iteration

pn+1 = pn
d(p0 − 1)

p0(d − 2) + 2
+ d[(m − 1)(p0 − 1) + p0]

p0(d − 2) + 2
. (27)
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Altogether, by inserting (25) into (24), we obtain thanks to (21)

‖u(T )‖pn+1
pn+1 ≤

⎡

⎣‖u0‖1+θ(pn+1−1)

pn+1
+ (1 + θ(pn+1 − 1))

‖ f ‖L p0 (QT )

(∫ T

0
‖u‖rnsndt

) p0−1
p0

⎤

⎦

pn+1
1+θ(pn+1−1)

≤
[

‖u0‖1+θ(pn+1−1)

pn+1
+ (1 + θ(pn+1 − 1))

‖ f ‖L p0 (QT )D
p0−1
p0

T,n

] pn+1
1+θ(pn+1−1)

=: CT,n+1

(28)

and thus

u ∈ L∞(0, T ; L pn+1(�)) and ‖u(T )‖pn+1
pn+1 ≤ CT,n+1. (29)

Step 4 (Iteration of (21)). We will use similar arguments to Step 2. Integrating (22)

and adding
∫ T
0

∫

�

∣
∣
∣|u| rn+1

2

∣
∣
∣
2
dxdt to both sides yields in particular

C(pn+1)

∫ T

0

∥
∥
∥|u| rn+1

2

∥
∥
∥
2

H1(�)
dt = C(pn+1)

∫ T

0

∫

�

[∣
∣
∣∇

(
|u| rn+1

2

)∣
∣
∣
2
dx

+
∣
∣
∣|u| rn+1

2

∣
∣
∣
2
dx

]

dt

≤ ‖u0‖pn+1
pn+1 + pn+1

∫ T

0
‖ f ‖p0‖u‖pn+1−1

p0(pn+1−1)
p0−1

dt

+ C(pn+1)

∫ T

0
‖u‖rn+1

rn+1dt

≤ ‖u0‖pn+1
pn+1 + pn+1

∫ T

0
‖ f ‖p0‖u‖θ(pn+1−1)

sn ‖u‖(1−θ)(pn+1−1)
pn+1 dt

+ C(pn+1)

∫ T

0
‖u‖rn+1

rn+1dt (θ in (23))

≤ ‖u0‖pn+1
pn+1 + pn+1C

(1−θ)
(pn+1−1)

pn+1
T,n+1

∫ T

0
‖ f ‖p0‖u‖θ(pn+1−1)

sn dt

+ C(pn+1)

∫ T

0
‖u‖rn+1

rn+1dt (using (29))

≤ ‖u0‖pn+1
pn+1 + pn+1C

(1−θ)
(pn+1−1)

pn+1
T,n+1 ‖ f ‖L p0 (QT )

(∫ T

0
‖u‖rnsndt

)p0−1
p0

+ C(pn+1)

∫ T

0
‖u‖rn+1

rn+1dt (using (25))
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≤ ‖u0‖pn+1
pn+1 + pn+1C

(1−θ)
(pn+1−1)

pn+1
T,n+1 ‖ f ‖L p0 (QT )D

p0−1
p0

T,n

+ C(pn+1)

∫ T

0
‖u‖rn+1

rn+1dt (using (21)). (30)

Now by Sobolev’s embedding

C(pn+1)

∫ T

0

∥
∥
∥|u| rn+1

2

∥
∥
∥
2

H1(�)
dt ≥ C(pn+1)C

2
S

∫ T

0
‖u‖rn+1

sn+1dt

with sn+1 =
{

rn+1d
d−2 if d ≥ 3,

rn+1 < sn+1 < ∞ arbitrary if d = 1, 2.
(31)

By the bound ‖u(t)‖pn+1
pn+1 ≤ CT,n+1, the interpolation inequality

‖u‖rn+1 ≤ ‖u‖γ
pn+1‖u‖1−γ

sn+1 ≤ Cγ /pn+1
T,n+1 ‖u‖1−γ

sn+1

with
1

rn+1
= γ

pn+1
+ 1 − γ

sn+1
for γ = 2pn+1

2pn+1 + (m − 1)d
∈ (0, 1]. (32)

Like in Step 2 in case m > 1 and γ < 1, we have by Young’s inequality,

C(pn+1)

∫ T

0
‖u‖rn+1

rn+1dt ≤ C(pn+1)

∫ T

0
Cγ rn+1/pn+1
T,n+1 ‖u‖(1−γ )rn+1

sn+1 dt

≤ C(pn+1)C2
S

2

∫ T

0
‖u‖rn+1

sn+1dt + CTCrn+1/pn+1
T,n+1

analogue to (17) while the case m = 1 and rn+1/pn+1 = 1 follows without interpo-
lation and the first term on the right-hand side above. Combining (30), (31) and (32)
yields

C(pn+1)C2
S

2

∫ T

0
‖u‖rn+1

sn+1dt ≤ ‖u0‖pn+1
pn+1 + pn+1C

(1−θ)
(pn+1−1)

pn+1
T,n+1 ‖ f ‖L p0 (QT )D

p0−1
p0

T,n

+CTCrn+1/pn+1
T,n+1 ,

hence
∫ T

0
‖u‖rn+1

sn+1dt ≤ DT,n+1

with

DT,n+1:= 2

C(pn+1)C2
S

[

‖u0‖pn+1
pn+1 + pn+1C

(1−θ)
(pn+1−1)

pn+1
T,n+1 ‖ f ‖L p0 (QT )D

p0−1
p0

T,n

+CTCrn+1/pn+1
T,n+1

]

. (33)



Vol. 20 (2020) Reaction–diffusion systems with nonlinear diffusion 973

Step 5. Passing to the limit as n → ∞. Considering the iteration (27), the only possible
fixed point p∞ of the sequence pn is

p∞ = d[(m − 1)(p0 − 1) + p0]
2[ d+2

2 − p0]
.

Hence, p∞ < 0 if and only if p0 > d+2
2 . In particular, it is straightforward to check

that the sequence pn defined by (27) is strictly monotone increasing if and only if
either pn < p∞ in the case p0 < d+2

2 or pn > p∞ in the case p0 > d+2
2 when

p∞ < 0 holds or p0 = d+2
2 where p∞ = +∞.

Therefore, we have as n → ∞

pn −→
{
p∞ if p0 < d+2

2 ,

+∞ if p0 ≥ d+2
2 .

Step 6 (Interpolation). From (20) and (21) and by using the interpolation

L∞(0, T ; L pn (�)) ∩ Lrn (0, T ; Lsn (�)) ↪→ L
d+2
d pn+m−1(QT )

we get u ∈ Lr (QT ) for all r < ∞ in the case p0 ≥ d+2
2 . In the case p0 < d+2

2 , we
obtain u ∈ Ls(QT ) for all

s <
d + 2

d
p∞ + m − 1 = (md + 2)p0

d + 2 − 2p0
.

This completes the proof of Lemma 2.1. �

Lemma 2.2. Let u be a weak solution to (S) and

‖u‖Lq0 (QT ) ≤ CT , ∀i = 1, . . . , S, with q0 >
d(ν − m) + 2(ν − 1)

2
,

where m = min{mi : i = 1 . . . S}, ν is defined in (G), and CT is growing at most
polynomially in T .

Then, it follows that ‖ui‖L∞(QT ) ≤ CT for all i = 1 . . . S.

Proof. From ui ∈ Lq0(QT ) for all i = 1, . . . , S, we have fi (u) ∈ Lq0/ν(QT ).
Moreover, note that the quasi-positivity assumption (P) ensures non-negative solutions
u for non-negative initial data ui,0. Hence, the concentrations ui satisfy the (non-sign-
changing) porous media equation

∂t ui − di�(umi
i ) = fi (u) ∈ Lq0/ν(QT ).

Lemma 2.1 implies that if q0/ν ≥ d+2
2 , then ui ∈ Lr (QT ) for all r < ∞, while if

q0/ν < d+2
2 , then
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ui ∈ Ls(QT ) for all s < q1 := (md + 2)q0
ν(d + 2) − 2q0

≤ (mid + 2)q0
ν(d + 2) − 2q0

, for all i = 1 . . . S,

since m ≤ mi . We then construct a sequence qn (equally for all i = 1, . . . , S) such
that

qn+1 = (md + 2)qn
ν(d + 2) − 2qn

for n ≥ 0. (34)

It follows that

qn+1

qn
= md + 2

ν(d + 2) − 2qn
.

Therefore, as long as ν(d + 2) − 2qn > 0 ⇐⇒ qn <
(d+2)ν

2 ,

qn+1

qn
> 1 for all n ≥ 0 ⇐⇒ q0 >

d(ν − m) + 2(ν − 1)

2
.

Hence with q0 >
d(ν−m)+2(ν−1)

2 , after finitely many steps, we arrive at qn >
(d+2)ν

2 .

From ui ∈ Ls(QT ) for all s < qn , we have in particular ui ∈ L
(d+2)ν

2 (QT ), which

implies fi (u) ∈ L
d+2
2 (QT ) for i = 1, . . . , S. By applying Lemma 2.1 once more, we

obtain ui ∈ Lr (QT ) for all r, q < ∞. Thus,

∂t ui − di�(umi
i ) = fi (u) ∈ Lr (QT ) for all s < ∞

with ‖ fi (u)‖Lr (QT ) ≤ CT for some r > d+2
2 . Therefore,

‖ui‖L∞(QT ) ≤ CT for all i = 1, . . . , S,

thanks to the following Lemma 2.3. �

Lemma 2.3. Let u be the solution to
⎧
⎪⎪⎨

⎪⎪⎩

∂t u − δ�(|u|m−1u) = f, (x, t) ∈ QT ,

∇(|u|m−1u) · −→n = 0, (x, t) ∈ ∂� × (0, T ),

u(x, 0) = u0(x), x ∈ �,

with u0 ∈ L∞(�) and ‖ f ‖Lq (QT ) ≤ CT for some q > d+2
2 . Then,

‖u‖L∞(QT ) ≤ CT . (35)

Though the boundedness result of this Lemma has been cited in many works, we
are unable to find a precise reference.We therefore give in this paper a full proof based
on the famous Moser iteration. Moreover, our proof shows the polynomial growth of
the L∞-norm in (35), which is important for our sequel analysis.
To prove Lemma 2.3, we need the following two lemmas.
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Lemma 2.4. [7, Lemma 2.5] Let {yn}n≥1 be a sequence of positive numbers which
satisfies

yn+1 ≤ K Bn(yγ
n + yκ

n )

where K , B > 0 and γ, κ > 1 are independent of n. Then there exists ε > 0 such
that, if y1 ≤ ε, then

lim
n→∞ yn = 0.

Lemma 2.5. [27, II.§3] Define

W (0, T ) :=
{

u : QT → R such that ‖u‖2W (0,T ):= sup
t∈(0,T )

‖u(t)‖2

+
∫ T

0
‖u(t)‖2H1(�)

dt < +∞
}

.

For p, q satisfying

1

p
+ d

2q
= d

4
,

there exists a constant C independent of T such that

‖u‖L p(0,T ;Lq (�)) ≤ C‖u‖W (0,T ).

In particular, when p = q = 2 + 4
d ,

‖u‖
L2+ 4

d (QT )
≤ C‖u‖W (0,T ).

Proof of Lemma 2.3. Let k ≥ 1 be a constant which will be specified later. For each
i ≥ 0, we define

vi :=
(

u − k + k

2i

)

+
= max

{

u − k + k

2i
; 0
}

and

Ai :=
{

(x, t) ∈ QT : u(x, t) ≥ k − k

2i

}

.

The following simple observations will be helpful

vi+1(x, t) ≤ vi (x, t) for all (x, t) ∈ Ai ,

vi (x, t) ≥ k

2i+1 for all (x, t) ∈ Ai+1 ⊂ Ai .
(36)
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By multiplying the equation ∂t u − δ�(|u|m−1u) = f by vi+1 and integrating on QT ,
we have

sup
t∈(0,T )

‖vi+1(t)‖2 + 2δm
∫ T

0

∫

�

|u|m−1|∇vi+1|2dxdt

≤ ‖vi+1(0)‖2 + 2
∫ T

0

∫

�

f vi+1dxdt. (37)

Note that u ≥ k − k
2i

≥ k
2 on Ai , we have

2δm
∫ T

0

∫

�

|u|m−1|∇vi+1|2dx ≥ 2δm
∫∫

Ai

|u|m−1|∇vi+1|2dx

≥ δm
km−1

2m−2

∫∫

Ai

|∇vi+1|2dxdt

≥ δm

2m−2

∫ T

0

∫

�

|∇vi+1|2dxdt

thanks to k ≥ 1, and the fact that vi+1 ≡ 0 on QT \Ai+1 ⊃ QT \Ai since Ai+1 ⊂ Ai .
By adding

∫ T
0 ‖vi+1‖2dt to both sides of (37), we get

sup
t∈(0,T )

‖vi+1(t)‖2 + δm

2m−2

∫ T

0
‖vi+1‖2H1(�)

dxdt

≤ C
∫ T

0
‖vi+1‖2dt + ‖vi+1(0)‖2 +

∫ T

0

∫

�

f vi+1dxdt.

which yields

C‖vi+1‖2W (0,T ) ≤
∫ T

0
‖vi+1‖2dt + ‖vi+1(0)‖2 +

∫ T

0

∫

�

f vi+1dxdt. (38)

By definition,

‖vi+1(0)‖2 =
∥
∥
∥
∥

(

u0 − k + k

2i+1

)

+

∥
∥
∥
∥

2

= 0 (39)

when we choose k ≥ 2‖u0‖L∞(�). By using (36), we have with 1 ≤ 2i+1

k vi on Ai+1

∫ T

0

∫

�

|vi+1|2dxdt =
∫ T

0

∫

�

1Ai+1 |vi+1|2dxdt

≤
∫ T

0

∫

�

1Ai+1 |vi |2dxdt

≤
(
2i+1

k

) 4
d
∫ T

0

∫

�

1Ai+1 |vi |2+
4
d dxdt

≤ C(24/d)i‖vi‖2+
4
d

W (0,T ).

(40)
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Since q > d+2
2 , we have

σ := q − 1

q

(

2 + 4

d

)

> 2.

Moreover,

σq

q − 1
= 2 + 4

d

thus

‖vi‖
L

σq
q−1 (QT )

≤ C‖vi‖W (0,T ).

We now can use Hölder’s inequality to estimate with (36)

∫ T

0

∫

�

f vi+1dxdt ≤
∫ T

0

∫

�

f vi+1

(
2i+1

k

)σ−1

vσ−1
i dxdt

≤
(
2i+1

k

)σ−1 ∫ T

0

∫

�

| f ||vi |σdxdt
≤ C(2σ−1)i‖ f ‖Lq (QT )‖vi‖σ

L
σq
q−1 (QT )

≤ C(2σ−1)i‖ f ‖Lq (QT )‖vi‖σ
W (0,T ). (41)

Inserting (38), (39) and (41) into (37) leads to

‖vi+1‖2W (0,T ) ≤ C(1 + ‖ f ‖Lq (QT ))B
i (‖vi‖2+

4
d

W (0,T ) + ‖vi‖σ
W (0,T )) (42)

for all i ≥ 0, where B = max{24/d; 2σ−1}. By setting Yi = ‖vi‖2W (0,T ), we obtain a
sequence {Yn}n≥1 satisfying the property in Lemma 2.4. It remains to show that Y1 is
small enough.
We show now that for any ε > 0, there exists k ≥ max{1; 2‖u0‖L∞(�)} large

enough such that

Y1 = ‖v1‖W (0,T ) ≤ ε. (43)

From Step 2 in the proof of Lemma 2.1, we have

‖u‖L∞(0,T ;Lq (�)) + ‖u‖Lr (0,T ;Ls (�)) ≤ CT

where r = m + q − 1 ≥ q and s = rd
d−2 if d ≥ 2 and r <s < +∞ arbitrary if d ≤ 2.

By interpolation, see e.g. [15, Lemma 4.1], we see that

‖u‖Lτ (QT ) ≤ CT with τ =
{

dr+2q
d if d ≥ 3,

< r + q arbitrary if d ≤ 2.
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Direct calculations show that τ > 2 + 4
d if d ≥ 2 and τ > 3 if d = 1. In particular,

‖u‖
L2+ 4

d (QT )
≤ CT for d ≥ 2 and ‖u‖L3(QT ) ≤ CT for d = 1. (44)

From (38),

C‖v1‖2W (0,T ) ≤
∫ T

0
‖v1(t)‖2dt + ‖v1(0)‖2 +

∫ T

0

∫

�

f v1dxdt. (45)

Since k ≥ 2‖u0‖L∞(�), ‖v1(0)‖2 = ‖(u0 − k/2)+‖2 = 0.
Consider now the case d ≥ 2. By using (36), it yields

∫ T

0

∫

�

|v1|2dxdt =
∫ T

0

∫

�

1A1 |v1|2dxdt ≤
(
4

k

) 4
d
∫ T

0

∫

�

|v0|2+ 4
d dxdt

≤
(
4

k

) 4
d ‖u‖2+

4
d

L2+ 4
d

≤
(
4

k

) 4
d

CT , (46)

recalling that v0 = u+. Similarly to (41), we get

∫ T

0

∫

�

f v1dxdt ≤
(
4

k

)σ−1

‖ f ‖Lq (QT )‖u‖σ

L2+ 4
d (QT )

≤
(
4

k

)σ−1

CT . (47)

From (42), (45) and (46), we get (43) if

k = 4max

{(
CT

ε

) d
4 ;

(
CT

ε

) 1
σ−1

}

.

Thus, with this choice of k, it follows that

0 = lim
i→∞ Yi = ‖(u − k)+‖2,

and hence,

‖u‖L∞(QT ) ≤ k = 4max

{(
CT

ε

) d
4 ;

(
CT

ε

) 1
σ−1

}

which is our desired estimate.
The proof for the case d = 1 is very similar using the

∫ T

0

∫

�

|v1|2dxdt ≤ 4

k

∫ T

0

∫

�

|v0|3dxdt ≤ 4

k
CT

and

∫ T

0

∫

�

f v1dxdt ≤
(
4

k

) 4ξ
1+2ξ ‖ f ‖Lq (QT )‖u‖1+

4ξ
1+2ξ

L3(QT )
≤
(
4

k

) 4ξ
1+2ξ

CT

where ξ = 1
2 (2q − 3) > 0. We therefore omit the details. �
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Now, we are ready to prove the boundedness of solutions to (S):

Proof of Theorem 1.2. Assuming mi > ν − 1, the existence of weak solutions fol-
lows similar to [26,38] and is proven in Sect. 5 in detail. By the duality estimates in
Lemma 5.1, we have

ui ∈ Lmi+1(QT ) for all i = 1, . . . , S.

Because mi > ν − 4
2+d , it follows that

mi + 1 >
d(ν − mi ) + 2(ν − 1)

2
.

Therefore, Lemma 2.2 yields ui ∈ L∞(QT ) and ‖ui‖L∞(QT ) ≤ CT for arbitrary
T > 0, which shows that the weak solutions are bounded and the L∞(�) norms
grows at most polynomially in time.
The local Hölder continuity of the bounded weak solutions is a classical result, see

e.g. [9] or [43, Theorem 7.18]. �

3. Convergence to equilibrium

In this section, we prove exponential convergence to equilibrium of solutions to (R)
by using the entropymethod.We start by recalling the entropy (free energy) functional

E[a, b] =
M∑

i=1

∫

�

(ai ln ai − ai + 1)dx +
N∑

j=1

∫

�

(b j ln b j − b j + 1)dx

and its non-negative entropy production (free energy dissipation) functional D[a, b]:=
− d

dt E[a, b], i.e.

D[a, b] =
M∑

i=1

di

∫

�

|∇ai |2
a2−mi
i

dx +
N∑

j=1

h j

∫

�

|∇b j |2
b
2−p j
j

dx +
∫

�

(aα − bβ) ln
aα

bβ
dx ≥ 0,

where we have used the short-hand notation

aα =
M∏

i=1

aαi
i and bβ =

N∏

j=1

b
β j
j .

Moreover, the following additivity property of the relative entropy holds

E[a, b] − E[a∞, b∞]

=
M∑

i=1

∫

�

(

ai ln
ai
ai∞

− ai + ai∞
)

dx +
N∑

j=1

∫

�

(

b j ln
b j

b j∞
− b j + b j∞

)

dx
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=
M∑

i=1

∫

�

(

ai ln
ai
ai

)

dx +
N∑

j=1

∫

�

(

b j ln
b j

b j

)

dx

+
M∑

i=1

∫

�

(

ai ln
ai
ai∞

− ai + ai∞
)

dx +
N∑

j=1

∫

�

(

b j ln
b j

b j∞
− b j + b j∞

)

dx .

The first Lemma 3.1 of this section states the generalisation of the logarithmic
Sobolev inequality, which shall use in our approach.

Lemma 3.1. (A generalised logarithmic Sobolev inequalities, [34]) Assume that m ≥
(d−2)+/d where (d−2)+ = max{0, d−2}. Then, there exists a constantC(�,m) > 0
such that

∫

�

|∇u|2
u2−m

dx ≥ C(�,m) u m−1
∫

�

u ln
u

u
dx ≥ C(�,m) u m−1‖√u − √

u‖2

where u = ∫

�
udx.

Proof. The first inequality follows from [34]. The second estimate follows from an
elementary inequality:

∫

�

u ln
u

u
dx =

∫

�

(
u ln

u

u
− u + u

)
dx ≥

∫

�

(
√
u − √

u)2dx .

�

The estimates in Lemma 3.1 constitute a generalisation of the logarithmic Sobolev
inequality (5), which is recovered by settingm = 1 and for which the pre-factor um−1

vanishes. In the case of porous media diffusionm > 1, the pre-factor um−1 causes the
lower bounds in Lemma 3.1 to degenerate for small spatial averages u. In particular,
we have by Lemma 3.1 the following lower bound for the entropy production

D[a, b] ≥
M∑

i=1

diC(�,mi )ai
mi−1

∫

�

ai ln
ai
ai
dx

+
N∑

j=1

h jC(�, p j )b j
p j−1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx (48)

≥ C0

⎡

⎣
M∑

i=1

ai
mi−1

∫

�

ai ln
ai
ai
dx

+
N∑

j=1

b j
p j−1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx

⎤

⎦ .

The problem of degeneracy appears when some averages ai or b j do not satisfy
a positive lower bound. To overcome this problem, we first observe that due to the
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mass conservation laws (3) not all spatial averages can be small at the same time. If,
for instance, a particular ai is sufficiently small (w.r.t. Mi j ), then another b j can’t be
arbitrarily small because of a mass conservation law (3) connecting these two species,
i.e.

β j ai + αi b j = Mi j > 0, (49)

The following crucial Lemma 3.2 shows functional inequalities, which quantity
the so-called “indirect diffusion effect” and allows to compensate the lacking lower
bounds for the species, whose spatial averages do not satisfy a lower bound.
We first introduce some convenient notations:

Ai = √
ai , Ai∞ = √

ai∞, Bj = √
b j , Bj∞ = √

b j∞,

δi (x) = Ai (x) − Ai , ∀x ∈ �, η j (x) = Bj (x) − Bj , ∀x ∈ �,

where

Ai =
∫

�

Aidx and Bj =
∫

�

Bjdx .

Moreover,

Aα =
M∏

i=1

Aαi
i and Bβ =

N∏

j=1

B
β j
j .

The conservation laws are now rewritten as

β j A2
i + αi B2

j = Mi j > 0 ∀i = 1 . . . M, j = 1 . . . N . (50)

Lemma 3.2. (“Indirect diffusion transfer” functional inequality) Let Ai , Bj : � →
R+ with i = 1 . . . M and j = 1 . . . N be non-negative functions satisfying the con-
servation laws (50) and ε > 0 be a constant to be determined later. Assume that for
some J ∈ {1, . . . , N },

B2
j ≤ ε for all j = 1 . . . J.

Then, there exists a constant K1 which depends on ε such that:

M∑

i=1

‖δi‖2 +
N∑

j=J+1

‖η j‖2 + ‖Aα − Bβ‖2 ≥ K1

J∑

j=1

‖η j‖2 (51)

Remark 3.1. Note that when the last term on the left-hand side ‖Aα − Bβ‖2 diverges,
the inequality holds trivially. Therefore, in the proof, we only consider the case when
it is finite.
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Proof. Due to the mass conservation laws (50), we have the following natural bounds,

A2
i , B

2
j ≤ M2

0 , ∀i = 1, . . . , M, ∀ j = 1, . . . , N

for some constant M0 > 0. Therefore, by Jensen’s inequality, recalling that |�| = 1,

Ai ≤
√

A2
i ≤ M0, Bj ≤

√

B2
j ≤ M0, ∀i, j.

From these bounds, we get an upper bound for the right-hand side of (51)

J∑

j=1

‖η j‖2 =
J∑

j=1

(B2
j − Bj

2
) ≤

J∑

j=1

B2
j ≤ M2

0 J.

We consider the following two cases.
Case 1: If there exists i ∈ {1, . . . , M} such that ‖δi‖2 ≥ ε or there exists a j ∈

{J + 1, . . . , N } such that ‖η j‖2 ≥ ε, we have:

M∑

i=1

‖δi‖2 +
N∑

j=J+1

‖η j‖2 + ‖Aα − Bβ‖2 ≥ ε ≥ ε

M2
0 J

J∑

j=1

‖η j‖2

hence, the desired inequality (51) holds with K1 = ε

M2
0 J

.

Case 2: Assume ‖δi‖2 ≤ ε for all i ∈ {1, . . . , M} and ‖η j‖2 ≤ ε for all j ∈
{J + 1, . . . , N }, which together with the above assumption B2

j ≤ ε and η2j ≤ B2
j for

all j = 1 . . . J implies ‖η j‖2 ≤ ε for all j ∈ {1, . . . , N }.,
Let λ > 0 and denote by

�i A = {x ∈ � : |δi (x)| ≤ λ
√

ε} for i = 1, . . . , M.

Then

ε ≥
∫

�

|δi (x)|2dx ≥
∫

�\�i A

|δi (x)|2dx ≥ λ2ε|�\�i A|

thus

|�\�i A| ≤ 1

λ2
which implies |�i A| ≥ 1 − 1

λ2

Similarly we get,

|� j B | ≥ 1 − 1

λ2
where � j B = {x ∈ � : |η j (x)| ≤ λ

√
ε} ∀ j = 1, . . . , N .

Now choose λ2 = 2(M + N ) and consider G = ∩M
i=1�i A ∩N

j=1 � j B . Then, we have

|G| ≥ 1
2 . Note that |δi (x)| ≤ λ

√
ε and |η j (x)| ≤ λ

√
ε for all x ∈ G and for all i, j .

Moreover, ∀x ∈ G

Ai (x) = Ai + δi (x) ≤ Ai + |δi (x)| ≤ M0 + λ
√

ε ≤ 2M0



Vol. 20 (2020) Reaction–diffusion systems with nonlinear diffusion 983

and similarly Bj (x) ≤ 2M0, ∀i, j if we choose ε such that

λ
√

ε ≤ M0.

By Taylor’s expansion, we have

Aα =
M∏

i=1

Aαi
i =

M∏

i=1

(Ai + δi )
αi =

M∏

i=1

Ai
αi + R(Ai , δi )

M∑

i=1

δi

where the remainder terms R dependspolynomially on Ai and δi .Note that |R(Ai , δi )| ≤
C0(M0) on G, we estimate with (x − y)2 ≥ 1

2 x
2 − y2

‖Aα − Bβ‖2 =
∫

�

(
M∏

i=1

Aαi
i − Bβ

)2

dx

≥
∫

G

(
M∏

i=1

Ai
αi − Bβ + R(Ai , δi )

M∑

i=1

δi

)2

dx

≥ 1

2

∫

G

(
M∏

i=1

Ai
αi − Bβ

)2

dx −
∫

G

∣
∣R(Ai , δi )

∣
∣2

∣
∣
∣
∣
∣

M∑

i=1

δi

∣
∣
∣
∣
∣

2

≥ 1

2

∫

G

(
M∏

i=1

Ai
αi − Bβ

)2

dx − C0(M0)
2M

∫

G

M∑

i=1

|δi |2

≥ 1

2

∫

G

(
M∏

i=1

Ai
αi − Bβ

)2

dx − C0(M0)
2M

∫

G

M∑

i=1

‖δi‖2

≥ 1

2

∫

G

(
M∏

i=1

Ai
αi − Bβ

)2

dx − C0(M0)
2M2ε

where we used ‖δi‖2 ≤ ε in the last inequality.
In order to estimate further, we use again Taylor’s expansion

Bβ =
N∏

j=1

(Bj + η j )
β j =

N∏

j=1

Bj
β j + Q(Bj , η j )

N∑

j=1

η j

where again, Q depends polynomially on Bj , η j , which implies |Q(B j , η j )| ≤
C1(M0) on G. Therefore,

∫

G

(
M∏

i=1

Ai
αi − Bβ

)2

dx =
∫

G

⎛

⎝
M∏

i=1

Ai
αi −

N∏

j=1

Bj
β j − Q(Bj , η j )

N∑

j=1

η j

⎞

⎠

2

dx

≥ 1

2

∫

G

⎛

⎝
M∏

i=1

Ai
αi −

N∏

j=1

Bj
β j

⎞

⎠

2

dx
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−
∫

G
|Q(Bj , η j )|2|

N∑

j=1

η j |2dx

≥ 1

2

∫

G

⎛

⎝
M∏

i=1

Ai
αi −

N∏

j=1

Bj
β j

⎞

⎠

2

dx − C1(M0)
2N 2ε

where we used that ‖η j‖2 ≤ ε for all j = 1, . . . , N .
Combining these two estimates, we arrive at

‖Aα − Bβ‖2 ≥ 1

4
|G|

⎛

⎝
M∏

i=1

Ai
αi −

N∏

j=1

Bj
β j

⎞

⎠

2

−ε

(
1

2
C1(M0)

2N 2 + C0(M0)
2M2

)

. (52)

By Jensen’s inequality and the assumption of the Lemma, we have

Bj ≤
√

B2
j ≤ √

ε, ∀ j = 1, . . . , J.

On the other hand Bj ≤
√

B2
j ≤ M0, ∀ j = J + 1, . . . , N . Thus, the conservation

law (50) and ‖δi‖2 ≤ ε yield

Ai =
√

A2
i − ‖δi‖2 =

√
1

β1
(Mi1 − αi B2

1 ) − ‖δi‖2

≥
√

Mi1

β1
− αi

β1
ε − ε ∀i = 1, . . . , M.

Hence, by using |G| ≥ 1
2 , we get from (52) that

‖Aα − Bβ‖2 ≥ 1

8

⎡

⎣
M∏

i=1

(
Mi1

β1
− αi

β1
ε − ε

)αi /2

−
J∏

j=1

(
√

ε)β j

N∏

j=J+1

M
β j
0

⎤

⎦

2

− C2ε.

Because the right-hand side of the above inequality converges to 1
8

∏M
i=1

(Mi1
β1

)αi as
ε → 0, we can choose ε > 0 small enough, but still explicit, such that

‖Aα − Bβ‖2 ≥ 1

16

M∏

i=1

(Mi1

β1

)αi ≥ 1

16M2
0 J

M∏

i=1

(Mi1

β1

)αi
J∑

j=1

‖η j‖2,

which implies the desired inequality (51) with the constant

K1 = 1

16M2
0 J

M∏

i=1

(Mi1

β1

)αi
.

�
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Lemma 3.3. (A time-dependent entropy–entropy production estimate) Let (a, b) =
(a1, . . . , aM , b1, . . . , bN ) with ai , b j : QT → R+ be non-negative functions, which
satisfy the conservation laws (3). Moreover,

‖ai‖L∞(QT ) ≤ CT and ‖b j‖L∞(QT ) ≤ CT for all i, j.

Then, there exists a constant K2 > 0 independent of T such that,

D[a(T ), b(T )] ≥ K2
1

1 + ln(1 + T )
(E[a(T ), b(T )] − E[a∞, b∞]).

Proof. Let ε > 0 be a small constant chosen in Lemma 3.2.Wewill consider two cases
and for convenience we will drop T in ai (T ) and b j (T ) when there is no confusion.
Case 1. Assume ai ≥ ε for all i = 1, . . . , M and b j ≥ ε for all j = 1, . . . , N . By
applying (48), we have

D[a, b] ≥
M∑

i=1

diC(�,mi )ε
mi−1

∫

�

ai ln
ai
ai
dx

+
N∑

j=1

h jC(�, p j )ε
p j−1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx

≥ K3

⎡

⎣
M∑

i=1

∫

�

ai ln
ai
ai
dx +

N∑

j=1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx

⎤

⎦

with

K3 = min
i=1...M; j=1...N

{diC(�,mi )ε
mi−1; h jC(�, p j )ε

p j−1; 1}.

Using an entropy–entropy production inequality in case of system (R) with linear
diffusion, see Lemma 4.1 below, we know that

M∑

i=1

∫

�

ai ln
ai
ai
dx +

N∑

j=1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx

≥ K4(E[a, b] − E[a∞, b∞])
for an explicit constant K4 > 0. Therefore,

D[a, b] ≥ K3K4(E[a, b] − E[a∞, b∞]).
Case 2. Suppose either ai ≤ ε for some i ∈ {1, . . . , M} or b j ≤ ε for some j =
1, . . . , N .
Due to the mass conservation laws β j ai +αi b j = Mi j , it cannot happen that ai ≤ ε

and b j ≤ ε simultaneously for a sufficiently small ε, e.g. ε <
Mi j
2 min

{
1
β j

; 1
αi

}
.

Therefore, without loss of generality, we can assume that

b j ≤ ε ∀ j = 1, . . . , J and b j ≥ ε ∀ j = J + 1, . . . , N
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for some J ∈ {1, . . . , N }. Moreover, by mass conservation laws

ai = 1

β1
(Mi1 − αi b1) ≥ 1

β1
(Mi1 − αiε), for all i = 1, . . . , M.

Thus, we can apply Lemma 3.1 to D[a, b] and estimate

D[a, b] ≥
M∑

i=1

diC(�,mi )

[
1

β1
(Mi1 − αiε)

]mi−1 ∫

�

ai ln
ai
ai
dx

+
N∑

j=J+1

h jC(�, p j )ε
p j−1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx

≥ K5

⎡

⎣
M∑

i=1

∥
∥
∥
√
ai − √

ai
∥
∥
∥
2 +

N∑

j=J+1

∥
∥
∥
√
b j − √

b j

∥
∥
∥
2 + ∥

∥Aα − Bβ
∥
∥2

⎤

⎦

= K5

⎡

⎣
M∑

i=1

‖δi‖2 +
N∑

j=J+1

‖η j‖2 + ∥
∥Aα − Bβ

∥
∥2

⎤

⎦ ,

where we have used (x − y) ln(x/y) ≥ 4(
√
x − √

y)2 and

K5 = min
i=1...M; j=J+1...N

{

diC(�,mi )

[
1

β1
(Mi1 − αiε)

]mi−1

; h jC(�, p j )ε
p j−1; 4

}

.

Applying Lemma 3.2 yields

D[a, b] ≥ K6

⎡

⎣
M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 + ∥
∥Aα − Bβ

∥
∥2

⎤

⎦

where

K6 = 1

2
min{K5; K5K1}.

By using another functional inequality, which was already proven in the case of linear
diffusion, see (61) in Sect. 4, we have

D[a, b] ≥ K7

[
M∑

i=1

(

‖δi‖2 + |
√

A2
i − Ai,∞|2

)

+
N∑

j=1

(

‖η j‖2 + |
√

B2
j − Bj,∞|2

)
⎤

⎦ . (53)

Now, we estimate E[a, b] − E[a∞, b∞] from above. Consider the two variables
function

�(x, y) = x ln(x/y) − x + y

(
√
x − √

y)2
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which is continuous in (0,∞)2 and�(·, y) is increasing for each fixed y > 0. It holds
that

E[a, b] − E[a∞, b∞]

=
M∑

i=1

∫

�

�(ai , ai,∞)(Ai − Ai,∞)2dx +
N∑

j=1

∫

�

�(b j , b j,∞)(Bj − Bj,∞)2dx

≤ max
i=1...M; j=1...N

{�(‖ai‖L∞(QT ), ai,∞);�(‖b j‖L∞(QT ), b j,∞)}
⎡

⎣
M∑

i=1

‖Ai − Ai,∞‖2 +
N∑

j=1

‖Bj − Bj,∞‖2
⎤

⎦

≤ K8(1 + ln(1 + T ))

⎡

⎣
M∑

i=1

(‖δi‖2 + |Ai − Ai,∞|2)

+
N∑

j=1

(‖η j‖2 + |B j − Bj,∞|2)
⎤

⎦ ,

(54)

where in the last inequality, we have used the estimates ‖ai‖L∞(QT ) ≤ CT and
‖b j‖L∞(QT ) ≤ CT and that CT is a constant growing at most polynomially w.r.t.
T .

Next, from ‖δi‖2 = A2
i − A

2
i = (

√

A2
i − Ai )(

√

A2
i + Ai ), we have

Ai =
√

A2
i − ‖δi‖2

√

A2
i + Ai

=
√

A2
i − Qi (Ai )‖δi‖ with Qi (Ai ) = ‖δi‖

√

A2
i + Ai

.

It’s obvious that Q(Ai ) ≥ 0 and moreover

Qi (Ai )
2 = A2

i − A
2
i

(

√

A2
i + Ai )2

=
√

A2
i − Ai

√

A2
i + Ai

≤ 1.

Therefore,

|Ai − Ai,∞|2 ≤ 2

(

|
√

A2
i − Ai |2 + |

√

A2
i − Ai,∞|2

)

= 2

(

Qi (Ai )
2‖δi‖2 + |

√

A2
i − Ai,∞|2

)

≤ 2

(

‖δi‖2 + |
√

A2
i − Ai,∞|2

)

for all i = 1 . . . M

and similarly

|B j − Bj,∞|2 ≤ 2

(

‖ηi‖2 + |
√

B2
j − Bj,∞|2

)

for all j = 1 . . . N .
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Hence, it follows from (54) that

E[a, b] − E[a∞, b∞] ≤ 3K8(1 + ln(1 + T ))

⎡

⎣
M∑

i=1

(‖δi‖2 + |
√

A2
i − Ai,∞|2)

+
N∑

j=1

(‖η j‖2 + |
√

B2
j − Bj,∞|2)

⎤

⎦ . (55)

A combination of (53) and (55) yields

D[a, b] ≥ K7

3K8(1 + ln(1 + T ))
(E[a, b] − E[a∞, b∞]).

Finally, from Case 1 and Case 2, we can conclude the proof of Lemma 3.3 with

K2 = min

{

K3K4; K7

3K8

}

.

�

Remark 3.2. Theassumptions‖ai‖L∞(QT ) ≤ CT and‖b j‖L∞(QT ) ≤ CT inLemma3.3
are only needed to estimate E[a, b]−E[a∞, b∞] above as in (54). In the case of linear
diffusion, it is possible to avoid these L∞-bounds by using the additivity of the relative
entropy (see also the proof of Lemma 4.1 in Sect. 4), i.e.

E[a, b] − E[a∞, b∞] = (E[a, b] − E[a, b]) + (E[a, b] − E[a∞, b∞]).
However, while for linear diffusion, the logarithmic Sobolev inequality controls to
first part E[a, b]− E[a, b] ≤ C(CLSI)D[a, b], such an estimate is unclear in the case
of porous media diffusion, where the generalised logarithmic Sobolev inequality in
Lemma 3.1 degenerates for states without lower bounds on the spatial averages.

We need also the following Csiszár–Kullback–Pinsker type inequality. The proof is
standard and can be found in e.g. [13,19].

Lemma 3.4. There exists a constant CCKP > 0 such that for any measurable non-
negative functions ai , b j : � → R+ satisfying the mass conservation (49), there
holds

E[a, b] − E[a∞, b∞] ≥ CCKP

⎛

⎝
M∑

i=1

‖ai − ai,∞‖21 +
N∑

j=1

‖b j − b j,∞‖21
⎞

⎠ .

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Due to the condition

mi , p j > max

{

ν − min

{
4

d + 2
; 1
}

; 1
}

∀i = 1 . . . M, j = 1 . . . N ,
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we can apply Theorem 1.2 to show boundedness of the weak solution (a, b) to (R),
i.e.

‖ai‖L∞(QT ) ≤ CT , ‖b j‖L∞(QT ) ≤ CT , ∀i = 1 . . . M, j = 1 . . . N .

By applying Lemma 3.3, this yields

D[a(T ), b(T )] ≥ K2
1

1 + ln(1 + T )
(E[a(T ), b(T )] − E[a∞, b∞]).

Moreover, due to the boundedness of solutions, we have the entropy–entropy produc-
tion relation

d

dt
(E[a, b] − E[a∞, b∞]) = d

dt
E[a, b] = −D[a, b]

≤ −K2
1

1 + ln(1 + T )
(E[a, b] − E[a∞, b∞]).

A classical Gronwall’s inequality leads to

E[a(T ), b(T )] − E[a∞, b∞]
≤ exp

(

−K2

∫ T

0

dτ

1 + ln(1 + τ)

)

(E[a0, b0] − E[a∞, b∞]).

By direct calculations,

exp

(

−K2

∫ T

0

dτ

1 + ln(1 + τ)

)

≥ exp

(

−K2

∫ T

0

dτ

1 + τ

)

= (1 + T )−K2 .

Hence,

E[a(T ), b(T )] − E[a∞, b∞] ≤ (1 + T )−K2(E[a0, b0] − E[a∞, b∞]), (56)

and therefore thanks to the Csiszár–Kullback–Pinsker inequality in Lemma 3.4

M∑

i=1

‖ai (T ) − ai,∞‖21 +
N∑

j=1

‖b j (T ) − b j,∞‖21

≤ C−1
CKP(1 + T )−K2(E[a0, b0] − E[a∞, b∞]) (57)

which implies algebraic convergence to equilibrium of solutions to (R).
We will now show that from this it is possible to recover exponential convergence.

Since the right-hand side of (57) tends to zero as T → ∞, we can choose

T0 = max

⎧
⎨

⎩
1;
[
C−1
CKP(E[a0, b0] − E[a∞, b∞])

1
2 mini=1...M; j=1...N {a2i,∞, b2j,∞}

]1/K2

− 1

⎫
⎬

⎭
(58)

which implies for all t ≥ T0

‖ai (t) − ai,∞‖1 ≤ 1

2
ai,∞ and ‖b j (t) − b j,∞‖1 ≤ 1

2
b j,∞,
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and thus,

ai (t) = ‖ai (t)‖1 ≥ 1

2
ai,∞ and b j (t) = ‖b j (t)‖1 ≥ 1

2
b j,∞ for all t ≥ T0.

Therefore, for all t ≥ T0, we can apply these lower bounds on the spatial averages
bounds and Lemma 3.1 to estimate the entropy–entropy production as follows

D[a(t), b(t)] ≥ C1

⎡

⎣
M∑

i=1

∫

�

ai ln
ai
ai
dx +

N∑

j=1

∫

�

b j ln
b j

b j
dx

+
∫

�

(aα − bβ) ln
aα

bβ
dx

⎤

⎦ for all t ≥ T0,

with

C1 = min
i=1...M; j=1...N

{

diC(�,mi )

(
1

2
ai,∞

)mi−1

; h jC(�, p j )

(
1

2
b j,∞

)p j−1

; 1
}

.

By applying again Lemma 4.1, we obtain

D[a(t), b(t)] ≥ C1λ(E[a(t), b(t)] − E[a∞, b∞]) for all t ≥ T0,

which in a combination with the classical Gronwall’s inequality yields for all t ≥ T0,

E[a(t), b(t)] − E[a∞, b∞] ≤ e−λC1(t−T0)(E[a(T0), b(T0)] − E[a∞, b∞])
≤ e−λC1t eλC1T0(1 + T0)

−K2(E[a0, b0] − E[a∞, b∞])
≤ e−λC1t eλC1T0(E[a0, b0] − E[a∞, b∞])

where we used (56) for the second inequality. On the other hand, it follows from (56)
that for all 0 ≤ t < T0,

E[a(t), b(t)] − E[a∞, b∞] ≤ (1 + t)−K2(E[a0, b0] − E[a∞, b∞])
≤ e−λC1t eλC1T0(E[a0, b0] − E[a∞, b∞])

Due to the explicitness of T0 in (58), we eventually get the exponential convergence

E[a(t), b(t)] − E[a∞, b∞] ≤ C2e
−̂λt (E[a0, b0] − E[a∞, b∞]) for all t ≥ 0,

with the constant C2 = eλC1T0 and the rate λ̂ = λC1. Note that C2 is explicit since
T0 is explicit (see (58)). With another application of the Csiszár–Kullback–Pinsker
inequality in Lemma 3.4, this yields
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M∑

i=1

‖ai (t) − ai,∞‖21 +
N∑

j=1

‖b j (t) − b j,∞‖21

≤ C2C
−1
CKPe

−̂λt (E[a0, b0] − E[a∞, b∞]) ≤ C3e
−̂λt

with C3 = C2C
−1
CKP(E[a0, b0] − E[a∞, b∞]). Finally, by combining the above ex-

ponential L1-convergence with the at most polynomial grow L∞ a priori estimates
‖ai‖L∞(QT ), ‖b j‖L∞(QT ) ≤ CT , interpolation yields for any 1 < p < ∞,

‖ai (T ) − ai,∞‖p ≤ ‖ai (T ) − ai,∞‖θ∞‖ai (T ) − ai,∞‖1−θ
1

≤ Cθ
TC

1−θ
3 e−̂λ(1−θ)T ≤ C4e

−λpT

for some 0 < λp < λ̂(1−θ) sinceCT grows at most polynomially in T , and similarly

‖b j (T ) − b j,∞‖p ≤ ‖b j (T ) − b j,∞‖θ∞‖b j (T ) − b j,∞‖1−θ
1 ≤ C5e

−λpT .

This concludes the proof of Theorem 1.3. �

4. Entropy–entropy production inequality

Lemma 4.1. (Entropy–entropy production estimate) Let a∞ ∈ (0,∞)M and b∞ ∈
(0,∞)N satisfy

aα∞ = bβ∞

where α ∈ [1,∞)M and β ∈ [1,∞)N .
Then, there exists an explicit constant λ > 0 depending on a∞, b∞, α, β and

the domain �, such that for any non-negative functions a = (ai ) : � → R
M+ and

b = (b j ) : � → R
N+ satisfying

β j ai + αi b j = β j ai,∞ + αi b j,∞ for all i = 1, . . . , M, j = 1, . . . , N ,

the following entropy–entropy production inequality holds

D̃[a, b] ≥ λ(E[a, b] − E[a∞, b∞])
where

D̃[a, b] =
M∑

i=1

∫

�

ai ln
ai
ai
dx +

N∑

j=1

∫

�

b j ln
b j

b j
dx +

∫

�

(aα − bβ) ln
aα

bβ
dx

and

E[a, b] =
M∑

i=1

∫

�

(ai ln ai − ai + 1)dx +
N∑

j=1

∫

�

(b j ln b j − b j + 1)dx .
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Remark 4.1. The above entropy–entropy production inequality was first proved in
[19] in a constructive way with explicit bounds on the constant λ. The proof stated
here follows the line of a significantly simplified version presented in [20].

Proof. First, by the additivity of the relative entropy, we have

E[a, b] − E[a∞, b∞] = (E[a, b] − E[a, b]) + (E[a, b] − E[a∞, b∞])

=
⎡

⎣
M∑

i=1

∫

�

ai ln
ai
ai
dx +

N∑

j=1

∫

�

b j ln
b j

b j
dx

⎤

⎦

+
⎡

⎣
M∑

i=1

(

ai ln
ai
ai,∞

− ai + ai,∞
)

+
N∑

j=1

(

b j ln
b j

b j,∞
− b j + b j,∞

)⎤

⎦

=: (I ) + (I I ).

It is straightforward that (I ) can be controlled by D̃[a, b], i.e.
1

2
D̃[a, b] ≥ 1

2
× (I ).

It remains to control (I I ). To do that, we first introduce the following useful notations
and definitions

Ai = √
ai , Bj = √

b j , Ai,∞ = √
ai,∞, Bj,∞ = √

b j,∞,

δi (x) = Ai (x) − Ai , η j (x) = Bj (x) − B j ,

and

Aα =
M∏

i=1

Aαi
i , Bβ =

N∏

j=1

B
β j
j .

By the elementary inequality (x − y) ln(x/y) ≥ 4(
√
x − √

y)2, we have

∫

�

ai ln
ai
ai
dx =

∫

�

(

ai ln
ai
ai

− ai + ai

)

dx ≥ 4
∫

�

(
√
ai − √

ai )
2dx ≥ 4‖δi‖2

and similarly
∫

�
b j ln

b j

b j
dx ≥ 4‖η j‖2. Moreover,

∫

�
(aα − bβ) ln aα

bβ dx ≥ 4‖Aα −
Bβ‖2. Therefore,

1

2
D̃[a, b] ≥ 2

⎡

⎣
M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 + ‖Aα − Bβ‖2
⎤

⎦ . (59)
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In order to bound to estimate the right-hand side of (59) with an upper bound of (I I ),
we first observe from the conservation laws

β j ai + αi b j = β j ai,∞ + αi b j,∞, for all i, j.

that there exists a constant M0 > 0 such that

ai , b j ≤ M2
0 , for all i, j.

Next, we note that the two variables function

�(x, y) = x ln(x/y) − x + y

(
√
x − √

y)2

is continuous on (0,∞)2, and �(·, y) is increasing for each fixed y. Then, the term
(I I ) is estimated as

(I I ) =
M∑

i=1

�(ai , ai,∞)(
√
ai − √

ai,∞)2 +
N∑

j=1

�(b j , b j,∞)(

√

b j − √
b j,∞)2

≤ max
i, j

{�(M2
0 , ai,∞);�(M2

0 , b j,∞)}
( M∑

i=1

(

√

A2
i − Ai,∞)2

+
N∑

j=1

(

√

B2
j − Bj,∞)2

)

. (60)

From (59) and (60), it remains to show that

M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 + ‖Aα − Bβ‖2

≥ C0

( M∑

i=1

(

√

A2
i − Ai,∞)2 +

N∑

j=1

(

√

B2
j − Bj,∞)2

)

(61)

for some constant C0 > 0. By using Lemma 4.2, we have with A = (A1, . . . , AM )

and B = (B1, . . . , BN )

M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 + ‖Aα − Bβ‖2

≥ C1

( M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 +
∣
∣
∣A

α − B
β
∣
∣
∣
2
)

(62)

for some constant C1 > 0. Using the ansatz

A2
i = A2

i,∞(1 + μi )
2 and B2

j = B2
j,∞(1 + ζ j )

2, where μi , ζ j ∈ [−1,∞),
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(63)

the right-hand side of (61) writes as

RHS of (61) = C0

( M∑

i=1

μ2
i +

N∑

j=1

ζ 2
j

)

. (64)

Moreover, the bounds ai = A2
i ≤ M2

0 and b j = B2
j ≤ M2

0 imply

− 1 ≤ μi ≤ M1 and − 1 ≤ ζ j ≤ M1 (65)

for someconstantM1 > 0. From the ansatz (63) (and similar to theproof ofLemma3.3),
we have

Ai =
√

A2
i − Qi (Ai )‖δi‖ = Ai,∞(1 + μi ) − Qi (Ai )‖δi‖

Bj =
√

B2
j − R j (Bj )‖η j‖ = Bj,∞(1 + ζ j ) − R j (Bj )‖η j‖

where

0 ≤ Qi (Ai ):= ‖δi‖
√

A2
i + Ai

≤ 1 and 0 ≤ R j (Bj ):= ‖η j‖
√

B2
j + B j

≤ 1.

Next, we use Taylor expansion to estimate

Ai
αi = (

Ai,∞(1 + μi ) − Qi (Ai )‖δi‖
)αi = Aαi

i,∞(1 + μi )
αi + Q̂i‖δi‖

in which the Lagrange remainder term Q̂i = Q̂(μi , ‖δi‖) is uniformly bounded above
by a constant for all admissible values of μi and ‖δi‖ thanks to the boundedness of

μi and ‖δi‖ ≤
√

A2
i ≤ M0. Similarly,

Bj
β j = B

β j
j,∞(1 + ζ j )

β j + R̂ j‖η j‖
with uniformly bounded remainder R̂ j (ζ j , ‖η j‖). Thus,

∣
∣
∣A

α − B
β
∣
∣
∣
2 =

∣
∣
∣
∣

M∏

i=1

A
αi
i −

N∏

j=1

B
β j
j

∣
∣
∣
∣

2

=
∣
∣
∣
∣

M∏

i=1

(
Aαi
i,∞(1 + μi )

αi + Q̂i‖δi‖
)

−
N∏

j=1

(
B

β j
j,∞(1 + ζ j )

β j + R̂ j‖η j‖
)∣∣
∣
∣

2

=
∣
∣
∣
∣A

α∞
M∏

i=1

(1 + μi )
αi − Bβ∞

N∏

j=1

(1 + ζ j )
β j

+ �(Q̂i , R̂ j )

( M∑

i=1

‖δi‖ +
N∑

j=1

‖η j‖
)∣
∣
∣
∣

2



Vol. 20 (2020) Reaction–diffusion systems with nonlinear diffusion 995

with �(Q̂i , R̂ j ) is also uniformly bounded. Thus, by using (x + y)2 ≥ 1
2 x

2 − y2 and

Aα∞ = √
aα∞ =

√

bβ∞ = Bβ∞ and the Cauchy–Schwarz inequality,

∣
∣
∣A

α − B
β
∣
∣
∣
2 ≥ 1

2
Aα∞

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣

2

−|�|2(M + N )2
( M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2
)

. (66)

Hence, for any δ ∈ (0, 1) holds

M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 +
∣
∣
∣A

α − B
β
∣
∣
∣
2

≥
M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2

+ δ

(
1

2
Aα∞

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣

2

− |�|2(M + N )2
( M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2
))

≥ δ

2
Aα∞

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣

2

by choosing δ small enough such that 1 ≥ δ|�|2(M + N )2 since � is uniformly
bounded above. This leads in combination with (62) to a lower bound of the left-hand
side of (61)

LHS of (61) ≥ C1
δ

2
Aα∞

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣

2

. (67)

From (64) and (67), it is sufficient to prove

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣

2

≥ C2

( M∑

i=1

μ2
i +

N∑

j=1

ζ 2
j

)

. (68)

In order to do so, we note that the conservation laws

β j ai + αi b j = β j ai,∞ + αi b j,∞

rewritten in terms of the ansatz (63), i.e.

β j A
2
i,∞(μ2

i + 2μi ) + αi B
2
j,∞(ζ 2

j + 2ζ j ) = 0.
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imply μiζ j ≤ 0 thanks to μi , ζ j ≥ −1 for all i, j . Without loss of generality, we
assume μi ≥ 0 and ζ j ≤ 0 for all i, j . Then, for any 1 ≤ i0 ≤ M and 1 ≤ j0 ≤ N ,

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣ ≥

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

≥ (1 + μi0)
αi0 − (1 + ζ j0)

β j0

≥ (1 + μi0) − (1 + ζ j0) ≥ μi0 − ζ j0 ≥ 0.

Thus,

∣
∣
∣
∣

M∏

i=1

(1 + μi )
αi −

N∏

j=1

(1 + ζ j )
β j

∣
∣
∣
∣

2

≥ (μi0 − ζ j0)
2 = μ2

i0 − 2μi0ζ j0 + ζ 2
j0 ≥ μ2

i0 + ζ 2
j0 .

Since 1 ≤ i0 ≤ M and 1 ≤ j0 ≤ N are arbitrary, we finally obtain (68) with
C2 = 1/max{M; N }. �

Lemma 4.2. Let ai , b j be functions defined inLemma4.1. Then, there exists a constant
C such that

M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 + ‖Aα − Bβ‖2 ≥ C
∣
∣
∣A

α − B
β
∣
∣
∣
2
.

Proof. Fix a constant L > 0. Denote by

S = {x ∈ � : |δi (x)| ≤ L , |η j (x)| ≤ L for all i = 1, . . . , M, j = 1, . . . , N } and

S⊥ = �\S.

Recalling Ai ≤
√

A2
i ≤ M0 and Bj ≤

√

B2
j ≤ M0, we use Taylor expansion to

estimate

‖Aα − Bβ‖2 ≥
∫

S

∣
∣
∣
∣

M∏

i=1

(Ai + δi (x))
αi −

N∏

j=1

(B j + η j (x))
β j

∣
∣
∣
∣

2

dx

≥ 1

2

∣
∣
∣A

α − B
β
∣
∣
∣
2|S| − R̃(Ai , B j , |δi |, |η j |)

( M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2
)

(69)

where |R̃| ≤ C(M0, L) due to the boundedness of δi and η j in S. In S⊥, we have

M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 ≥
∫

S⊥

( M∑

i=1

|δi (x)|2 +
N∑

j=1

|η j (x)|2
)

dx ≥ L2|S⊥|.

Next, there clearly exists a constant� > 0 such that
∣
∣
∣A

α − B
β
∣
∣
∣
2 ≤ � since Ai , B j ≤

M0. Therefore,
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M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 ≥ L2|S⊥| ≥ L2

�

∣
∣
∣A

α − B
β
∣
∣
∣
2 |S⊥|. (70)

Combining (69) and (70), we find for any θ1, θ2 ∈ (0, 1)

M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2 + ‖Aα − Bβ‖2

≥ θ1
L2

�

∣
∣
∣A

α − B
β
∣
∣
∣
2 |S⊥| + (1 − θ1)

( M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2
)

+ θ2
1

2

∣
∣
∣A

α − B
β
∣
∣
∣
2 |S| − θ2|R̃|

( M∑

i=1

‖δi‖2 +
N∑

j=1

‖η j‖2
)

≥ min

{

θ1
L2

�
; θ2

1

2

} ∣
∣
∣A

α − B
β
∣
∣
∣
2
(|S| + |S⊥|)

= min

{

θ1
L2

�
; θ2

1

2

} ∣
∣
∣A

α − B
β
∣
∣
∣
2

by choosing θ1, θ2 small enough such that 1− θ1 − θ2|R̃| ≥ 0 and using |S| + |S⊥| =
|�| = 1. The proof of Lemma 4.2 is hence complete. �

5. Proof Theorem 1.1: existence of global weak solution to (S)

In this section, we give a proof Theorem 1.1 about the global existence of weak
solutions to (S) under the conditions (G)–(M)–(P). Consider the approximating system

∂t ui,ε − di�(umi
i,ε) = fi,ε(uε):= fi (uε)

1 + ε
∑S

i=1 | fi (uε)|
,

∇(umi
i,ε) · −→n = 0, ui,ε(x, 0) = ui,0,ε(x) (71)

where uε = (u1,ε, . . . , uS,ε) and the sequence of approximating non-negative initial
data ui,0,ε ∈ L∞(�) converges to ui,0 in L2(�). By the construction of the approxi-
mative system, it directly follows that the nonlinearities fi,ε still satisfy the conditions
(M) and (P). Moreover, for ε > 0

| fi,ε(uε)| ≤ | fi (uε)|
1 + ε

∑S
i=1 | fi (uε)|

≤ 1

ε
for all uε ∈ R

S .

Hence, by a classical result for the porous medium equation with L∞ data, there exists
a strong non-negative solution uε = (ui,ε)i=1...S (see e.g. [43, Section 8]) in the sense
that
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umi
i,ε ∈ L2

loc(0,+∞; H1(�)), ∂t ui,ε = di�(umi
i,ε) + fi,ε(uε) ∈ L1

loc(0,+∞; L1(�)),

ui,ε ∈ C([0, T ); L1(�)) and ui,ε(0) = ui,0,ε,

and the equation for ui,ε holds a.e. in QT for any T > 0. Therefore, it follows
immediately that

−
∫

�

ui,0,εψ(0)dx −
∫ T

0

∫

�

(∂tψui,ε + umi
i,ε�ψ)dxdt

=
∫ T

0

∫

�

fi,ε(uε)ψdxdt (72)

for any test function ψ ∈ C2,1(� × [0, T ]) with ψ(T ) = 0 and ∇ψ · −→n = 0 on
∂� × (0, T ). As for the existence of weak solutions, it can be obtained by classical
methods, for instance following the ideas in [1] and more precisely, derive a Lya-
punov functional similar to the one on p. 39. One can also use similar arguments in
[26, Proof of Lemma 2.3] with a few modifications to adapt to Neumann boundary
conditions.
In order to pass to the limit as ε → 0 in the weak formula (72), we use the following

uniform a priori estimates, which are a consequence of a duality argument in the spirit
of e.g. [36] and references therein.

Lemma 5.1. (Duality estimates and uniform a priori estimates for the approximating
solutions, cf. [26]) Let uε = (u1,ε, . . . , uS,ε) be the non-negative solutions to the
approximating system (71). Then,

‖ui,ε‖Lmi+1(QT ) ≤ CT for all T > 0 and i = 1, . . . , S, (73)

where the ε-independent constant CT depends only polynomially in T . Moreover, we
have

‖ fi,ε(uε)‖L1+δ(QT ) ≤ CT

for some δ > 0, where the constant CT depends at most polynomially in T > 0

Proof. The proof follows [26] with straightforward changes due to the considered
Neumann (instead of Dirichlet) boundary conditions. By setting

Z =
S∑

i=1

λi ui,ε and W =
S∑

i=1

diλi u
mi
i,ε

and by summing up the equations of systems (S), the mass dissipation property (M)
implies

∂t Z − �W ≤ 0 and ∇W · −→n = 0.
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Then, integration over (0, t) and multiplication with W (t) in L2(�) (due to the regu-
larity of the approximative solutions) lead after integration over � to

∫

�

(Z(t) − Z(0))W (t)dx −
∫

�

W (t)�
∫ t

0
W (s)dsdx ≤ 0. (74)

Next, we integrate by parts with homogeneous Neumann boundary conditions the
second term on the left-hand side and calculate

−
∫

�

W (t)�
∫ t

0
W (s)ds dx =

∫

�

∇W (t) · ∇
∫ t

0
W (s)ds dx

= 1

2

d

dt

∫

�

|∇
∫ t

0
W (s)ds|2dx .

Therefore, by integrating (74) with respect to t on (0, T ), we obtain

∫ T

0

∫

�

Z(t)W (t)dxdt + 1

2

∫

�

|∇
∫ T

0
W (s)ds|2dx ≤

∫ T

0

∫

�

Z(0)W (t)dxdt. (75)

Moreover, we note that

∫ T

0

∫

�

Z(t)W (t)dxdt =
∫ T

0

∫

�

(
S∑

i=1

λi ui,ε

)(
S∑

i=1

diλi u
mi
i,ε

)

dxdt

≥
S∑

i=1

diλ
2
i ‖ui,ε‖mi+1

Lmi+1(QT )
(76)

due to the non-negativity of functions ui,ε and the constant λi . To estimate the right-
hand side of (75) in terms of the L2-norm of Z(0), we first notice from ∂t Z−�W ≤ 0
that

Z(T ) − �

∫ T

0
Wdt ≤ Z(0).

Define ϕ(x) = ∫ T
0 W (x, t)dt , we have, thanks to Z(T ) ≥ 0,

−�ϕ ≤ Z(0) in � and ∇ϕ · −→n = 0 on ∂�.

Multiplying this inequality by ϕ ≥ 0 and using the Poincaré–Wirtinger inequality
‖∇ϕ‖2 ≥ CP‖ϕ − ϕ‖2 yield

CP‖ϕ − ϕ‖2 ≤ ‖∇ϕ‖2 ≤
∫

�

Z(0)ϕdx

=
∫

�

Z(0)(ϕ − ϕ)dx + ϕ

∫

�

Z(0)dx

≤ CP

2
‖ϕ − ϕ‖2 + 1

2CP
‖Z(0)‖2 + ϕ

∫

�

Z(0)dx .
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where ϕ = 1
|�|

∫

�
ϕdx . Thus,

‖ϕ − ϕ‖2 ≤ C‖Z(0)‖2 + ϕ‖Z(0)‖L1(�).

We can now estimate
∫ T

0

∫

�

Z(0)W (t)dxdt =
∫

�

ϕZ(0)dx =
∫

�

(ϕ − ϕ)Z(0)dx + ϕ

∫

�

Z(0)dx

≤ 2‖ϕ − ϕ‖2 + 2‖Z(0)‖2 + ϕ

∫

�

Z(0)dx

≤ C‖Z(0)‖2 + C‖Z(0)‖ϕ.

By inserting this into (75) and (76), we obtain

S∑

i=1

diλ
2
i ‖ui,ε‖mi+1

Lmi+1(QT )
≤ C‖Z(0)‖2 + C‖Z(0)‖ϕ

= C‖Z(0)‖2 + C‖Z(0)‖
S∑

i=1

diλi‖ui,ε‖mi
Lmi (QT )

.

An application of Young’s inequality gives us the first a priori estimate (73) of
Lemma 5.1.

Concerning the second uniform a priori estimate for the nonlinearities, we have

| fi,ε(uε)| ≤ | fi (uε)| ≤ C(1 + |uε|ν),
where C does not depend on ε. By the assumption mi > ν − 1 and the estimate of
‖ui,ε‖Lmi+1(QT ), we obtain ‖ fi,ε(uε)‖L1+δ(QT ) ≤ CT . �
The following compactness lemma allows to extract a converging subsequence from

the approximating system.

Lemma 5.2. [3] Let m > (d − 2)+/d with (d − 2)+ = max{0, d − 2}. The mapping
L1(�) × L1(QT ) 
 (u0, f ) �→ u ∈ L1(QT ) where u ∈ C([0, T ]; L1(�)) is the
weak solution to

∂t u − δ�(um) = f, ∇(um) · −→n = 0, u(0) = u0,

with δ > 0, is compact.

Proof of Theorem 1.1. Thanks to theuniformboundsof thenonlinearities inLemma5.1
and the compactness Lemma 5.2, there exists a subsequence (not relabelled) {ui,ε}ε
which converges in L1(QT ) to limit functions ui ∈ L1(QT ). From the Lmi+1-bound in
Lemma 5.1, it holds in fact that ui,ε (up to another subsequence) converges strongly to
ui in Lmi (QT ). For the nonlinearities,wefirst notice fromLemma5.1 that the sequence
{ fi,ε(uε)} is uniformly integrable. Moreover, for another subsequence ui,ε → ui a.e.
in QT , it follows that

fi,ε(uε) → fi (ui ) a.e. in QT .
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Therefore,we can applyVitali’sLemma, see e.g. [41,Chapter 16], to obtain fi,ε(uε) →
fi (ui ) strongly in L1(QT ). All this allows to pass to the limit in the weak formulation
(72) for any test function ψ ∈ C2,1(� × [0, T ]) with ψ(T ) = 0 and ∇ψ · −→n = 0 on
∂� × (0, T ). Hence, we get

−
∫

�

ψ(0)ui,0dx −
∫

QT

(∂tψui + umi
i �ψ)dxdt =

∫

QT

fi (u)ψdxdt.

The additional regularity umi
i ∈ L1(0, T ;W 1,1(�)) follows immediately from [29,

Lemma 4.7], 1 where

∫ T

0

∫

�

|∇umi
i |βdxdt ≤ C(T, ‖ui,0‖1, ‖ fi (u)‖L1(QT )) for all 1 ≤ β < 1 + 1

1 + mid
.

From the above estimate and fi (u) ∈ L1(QT ),we alsohave ∂t ui ∈ L1(0, T ; (W 1,1(�))∗)
which implies in particular ui ∈ C([0, T ]; L1(�)). This completes the proof of exis-
tence of global weak solutions. �
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