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Energy scattering for a class of the defocusing inhomogeneous non-
linear Schrodinger equation

VAN DUONG DINH

Abstract. In this paper, we consider a class of the defocusing inhomogeneous nonlinear Schrédinger equa-
tion

i+ Au— x| Pul%u =0, u(©0)=uyeH',

with b, @ > 0. We first study the decaying property of global solutions for the equation when 0 < o < o*
where a* = ilizzb for d > 3. The proof makes use of an argument of Visciglia (Math Res Lett 16(5):919—
926, 2009). We next use this decay to show the energy scattering for the equation in the case oy < @ < o*,

where oy = 4-2b

1. Introduction

Consider the Cauchy problem for the inhomogeneous nonlinear Schrédinger equa-
tion

{ia,u+Au+u|x|”|ul°‘u =0, (INLS)

u(0) = ug,

where u : R x RY — C, ugy - RY — C, uw = x1 and @, b > 0. The parameters
w = 1 and u = —1 correspond to the focusing and defocusing cases, respectively.
The case b = 0 is the well-known nonlinear Schrodinger equation which has been
studied extensively over the last three decades. In the end of the last century, it was
suggested that stable high power propagation can be achieved in a plasma by sending
a preliminary laser beam that creates a channel with a reduced electron density, and
thus reduces the nonlinearity inside the channel (see [14] and [17]). In this situation,
the beam propagation can be modeled by the inhomogeneous nonlinear Schrodinger
equation of the form

i0u + Au+ K(x)|u|*u = 0. (1.1)

Mathematics Subject Classification: 35G20, 35G25, 35Q55
Keywords: Inhomogeneous nonlinear Schrodinger equation, Scattering theory, Virial inequality, Decay-
ing solution.

® Birkhduser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00028-019-00481-0&domain=pdf

412 V. D. DINH J. Evol. Equ.

The (INLS) is a particular case of (1.1) with K (x) = |x|_b. Equation (1.1) has been
attracted a lot of interest in a past several years. Bergé in [1] studied formally the
stability condition for soliton solutions of (1.1). Towers—Malomed in [24] observed
by means of variational approximation and direct simulations that a certain type of
time-dependent nonlinear medium gives rise to completely stable beams. Merle in
[19] and Rapha¢l-Szeftel in [21] studied (1.1) for k1 < K(x) < kp with ky, kp > 0.
Fibich—Wang in [11] investigated (1.1) with K (x) := K (¢|x|) where € > 0 is small
and K € C*(R?) N L®(R?). The case K (x) = |x|? with b > 0 is studied by many
authors (see e.g. [3,18] and [26] and references therein).

Before reviewing known results for the (INLS), we recall some facts for this equa-
tion. We first note that the (INLS) is invariant under the scaling

2=b .9
u; (t,x) :=Ax« u(A“t, rx), A > 0.

An easy computation shows

2-b
N aare

_d
lur O gy ey = 2luoll gr (ray-

The critical Sobolev exponent is thus defined by

d 2-b
Ve == — . (1.2)
2 o

Moreover, the (INLS) has the following conserved quantities:

M@u(t)) := /d lu(t, x)|>dx = M(uo), (1.3)
R
Eu(t)) := /Rd %|Vu(t,x)|2 - i 2|x|*h|u(t,x)|°‘+2dx = E(up). (1.4)

The well-posedness for the (INLS) was first studied by Genoud—Stuart in [12,
Appendix] by using an argument of Cazenave [2, Chapter 3] which does not use
Strichartz estimates. More precisely, they showed that the focusing (INLS) with 0 <
b < min{2, d} is well-posed in H!(R?):

— locally if 0 < a < o7,

— globally for any initial data if 0 < o < a,,

— globally for small initial data if o, < @ < ¥,

where o, and o* are defined by

4-2b 4-2b it d >3
= —, a*:=1] 42 -7 1.5
* a - { 0o ifd=1,2. (1.5)

In the case « = a, (L2-critical), Genoud in [13] showed that the focusing (INLS)
with 0 < b < min{2, d} is globally well-posed in H'(RY) assuming ug € H'(RY)
and

luoll 2@y < 1Q1IL2wa).
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where Q is the unique nonnegative, radially symmetric, decreasing solution of the
ground state equation

AQ— 0+ 1xI7101 7 0 =0,

Also, Combet—Genoud in [5] established the classification of minimal mass blow-up
solutions for the focusing L2-critical (INLS).

In the case o, < o < «*, Farah in [8] showed that the focusing (INLS) with
0 < b < min{2, d} is globally well-posedness in H'!(R?) by assuming ug € H'(R?)
and

E(u0)*M(ug)' ™7 < E(Q)*M(Q)' 77, (1.6)
(d 1- (d (d 1— c
||v“0||}£2(Rd)||MO||ngRd) < ||VQ||)£2(R¢1)||Q||L2(]]/W),

where Q is the unique nonnegative, radially symmetric, decreasing solution of the
ground state equation

AQ - Q+IxI7P101* 0 = 0.

He also proved that if ug € H'RY) N L2(RY, |x|*>dx) =: X satisfies (1.6) and

c 1-vy c 1-vyc
IV 20175 gy 1101 20y = 1V QU ooy 1012 (17)

then the corresponding solution blows up in finite time. Afterward, Farah—Guzman in
[9] and [10] proved that the above global solution scatters in H 1 (Rd ) under the radial
condition of the initial data.

In [7], the author showed the existence of finite time blow-up H !-solutions for the
focusing L2-critical and Lz—supercritical (INLS).

Guzman in [16] used Strichartz estimates and the contraction mapping argument to
establish the well-posedness for the (INLS) in Sobolev spaces. Precisely, he showed
that:

- if0 < o < a,and 0 < b < min{2, d}, then the (INLS) is locally well-posed in
L%(R?). It is then globally well-posed in L?(R¢) by the mass conservation.
—if0<a <a@,0<b <band max{0, y.} <y < min{%, 1} where

4-2b - d d -
- —Zify <5 ~ cifd=1,2,3
= a2y 'Y =72 d p:=13 P 1.8
o if % an : 2 ifd > 4, (1.8)

then the (INLS) is locally well-posed in H? (R?).
—ifoa, <a<a,0<b<bandy. <y < min{%,l},then the (INLS) is
globally well-posed in H? (RY) for small initial data.

In particular, Guzman proved the following local well-posedness in the energy space
for the (INLS).
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THEOREM 1. [16] Letd > 2,0 < b < b and 0 < a < o*. Then the (INLS) is
locally well-posed in H' (R?). Moreover, the global solutions to the defocusing (INLS)
satisfy u € LY (R, W14 (RY)) for any Schrodinger admissible pair (p, q).

loc

Recently, the author in [6] improved the range of b in Theorem 1 in the two and
three-dimensional spatial spaces. More precisely, he proved the following:

THEOREM 2. [6] Let

d>4, 0<b<2, O0<ua<a,

or
d=3, 0<b<l1l O<a<dao,
or
6 —4b
d=3, 1<b<-, O<a<—,
2b — 1
or

d=2, 0<b<1l, O<ua<oa”.

Then the (INLS) is locally well-posed in H ! (Rd). Moreover, the global solutions to
the defocusing (INLS) satisfy u e LII;C (R, WL4(RY)) for any Schridinger admissible
pair (p, q).

The results of Guzman [16] and Dinh [6] about the local well-posedness of (INLS)
in H'(R) are a bit weaker than the one of Genoud—Stuart [12]. Precisely, they do
not treat the case d = 1, and there is a restriction on the validity of » when d = 2 or
3. Note also that the author in [6] pointed out that one cannot expect a similar result
as Theorems 1 or 2 holds in the one-dimensional case by using Strichartz estimates.
Although the result showed by Genoud—Stuart is strong, but one does not know whether
the global solutions to the defocusing (INLS) belong to L{;C(R, w4 (R?)) for any
Schrodinger admissible pair (p, ¢). This property plays an important role in proving
the energy scattering for the defocusing (INLS).

Note that the local well-posedness (which is also available for the defocusing case)
of Genoud-Stuart in [12] and the conservations of mass and energy immediately
give the global well-posedness in H L(RY) for the defocusing (INLS). In [6], the
author used the pseudo-conformal conservation law to show the decaying property of
global solutions by assuming the initial data in X [see the definition before (1.7)]. In
particular, he showed that in the case o € [, @*), global solutions have the same
decay as solutions of the linear Schrédinger equation, that is for 2 < g < % when
d>30r2<g<oowhend =2o0r2 <g <ocowhend =1,

_g(l_1
O lee < 1070, w20,
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This allows the author to prove the scattering in X' for a certain class of the defocusing
(INLS). We refer the reader to [6] for more details.

The main purpose of this paper is to show the energy scattering for the defocusing
(INLS). Before stating our results, let us recall the two known methods to prove the
energy scattering for the nonlinear Schrodinger equation (NLS). The first one is to use
the classical Morawetz inequality to derive the decay of global solutions, and then use
it to prove the global Strichartz bound of solutions (see e.g. [15] and [20] or [2]). The
second one is to use the interaction Morawetz inequality to derive directly the global
Strichartz bound for solutions (see e.g. [4,23] and references therein). With the global
Strichartz bound at hand, the energy scattering follows easily. Note also that Visciglia
in [25] used the interaction Morawetz inequality to show the decaying property of
global solutions for the (NLS) in any dimensions. This approach is a complement
to [15] where the classical Morawetz inequality only allowed to prove the decaying
property in spatial dimensions greater than or equal to three. It is worth noticing that
the (INLS) does not enjoy the conservation of momentum which is crucial to prove
the interaction Morawetz-type inequality (see e.g. [4]). We thus do not attempt to
show the interaction Morawetz-type inequality for the defocusing (INLS). It is also
not clear to us that the techniques of [15] and [20] can be applied for the defocusing
(INLS). Fortunately, we are able to use the classical Morawetz-type inequality and an
argument of [25] to show the decaying property of global solutions for the defocusing
(INLS). More precisely, we have the following decaying property of global solutions
to the defocusing (INLS).

THEOREM 3. Letd > 3,0 <b <2and 0 < a < o*. Let ug € H'(R?) and
u € C(R, HY(RY)) be the unique global solution to the defocusing (INLS). Then,

i (40l oy = 0, (19)

* 2
forevery q € (2,2%), where 2* := 755.

The proof of this result is based on the classical Morawetz-type inequality and an
argument of Visciglia in [25]. The classical Morawetz-type inequality related to the
defocusing (INLS) is derived by using the same argument of that for the classical
(NLS). This inequality is enough to prove the decaying property for global solutions
of the defocusing (INLS) by following the technique of [25]. Note that in [25], the
author used the interaction Morawetz inequality to show the decay of solutions for
the defocusing (NLS) in any dimensions. We expect that the decay (1.9) still holds in
dimensions 1 and 2. But it is not clear to us how to prove it at the moment.

Using the decaying property given in Theorem 3, we are able to show the energy
scattering for the defocusing (INLS). Due to the singularity of |x|~?, the scattering
result does not cover the full range of exponents as in Theorem 2. Our main result is
the following:

THEOREM 4. Let

d>4, 0<b<2, o, <a<a,
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or
5
d =3, O<b<Z, o, <a<3—2b.

Let ug € H'(RY) and u be the unique global solution to the defocusing (INLS). Then
there exist u§ e H'(R?) such that

: itA, £
lim () = e Aug | g1 e, = 0.

The proof of this result is based on a standard argument as for the nonlinear
Schrodinger equation (see e.g. [2, Chapter 7]). Because of the singularity |x| ™, one
needs to be careful in order to control the nonlinearity in terms of decaying norms
and Strichartz norms. The singularity also leads to a restriction on the ranges of b and
« compared to those in Theorem 3. We expect that the same result still holds true in
the two-dimensional case. This expectation will be possible if one can show the same
decay as in Theorem 3 in 2D.

The plan of this paper is as follows. In Sect. 2, we introduce some notations and give
some preliminary results related to our problem. We also derive classical Morawetz-
type inequalities for the defocusing (INLS) in Sect. 2. The proof of the decaying
property of Theorem 3 is given in Sect. 3. Section 4 is devoted to the proof of the
scattering result of Theorem 4.

2. Preliminaries

In the sequel, the notation A < B denotes an estimate of the form A < CB for
some constant C > 0. The constant C may change from line to line.

2.1. Nonlinearity

Let F(x,z) := |x|7? f(z) with b > 0 and f(z) := |z|*z. The complex derivatives
of f are

o+2
2

9. f(2) = 121, %f<z>=%|z|“—2z2.

We have for z, w € C,

1

f@)— fw) = / <3zf(w +0Ez—w)z—w)+f(w+60(E—w)z — w)d@.
0

Thus,
|F(x,2) — F(x,w)| < xI72(z + [w]*)|z — w]. 2.1

To deal with the singularity |x|~”, we have the following remark.
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REMARK 1. [16] Let B := B(0,1) = {x € R? : |x| < 1} and B := R9\B.
Then

—b o d
x| llygy < oo if — > b,
14
and
x| ™oy 3oy < 00 if — < b.
2.2. Strichartz estimates

Let J C Rand p, g € [1, co]. We define the mixed norm

p L
» = t,x)|%d )q)p
Il .8, (fj(fRﬂm Ol

with a usual modification when either p or ¢ is infinity. When there is no risk of
confusion, we may write L/ L{ instead of L} (J, LY). We also use L], when p = g.

DEFINITION 1. A pair (p, q) is said to be Schrodinger admissible, for short
(p.q) €S, if

2 d d
(p.q) € 2,001, (p.g.d) #(2,00,2), =+ —==.
p q 2
We denote for any spacetime slab J x RY,
u 2 5y = Ssu ull;r 59y, lvllg2 = inf v » . 2.2)
lullsce2, (p,q)is llizr g ey Nvllsz, ol I ”L{’ u.Lf

We next recall well-known Strichartz estimates for the linear Schrodinger equation.
‘We refer the reader to [2] and [22] for more details.

PROPOSITION 1. Let u be a solution to the linear Schrodinger equation, namely
t
M(t) ZellAuO+/ el(I_S)AF(S)dS,
0

for some data ug, F. Then,

||M||5(L2,]R) S ||M0||L§ + ||F||s/(L2,R)~ (2.3)

2.3. Classical Morawetz-type inequality

In this section, we derive classical Morawetz inequalities for the defocusing (INLS)
by following an argument of [23]. Given a smooth real-valued function a, we define
the Morawetz action by

M, (t) :=2/ Va(x) - Im @(t, x)Vu(t, x))dx. (2.4)
R4

By a direct computation, we have the following result.
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LEMMA 1. [23] If u is a smooth-in-time and Schwartz-in-space solution to
10;u + Au = N(u),

with N (u) satisfying Im (N (u)u) = 0, then we have

d
iMa(t) = —fAza(x)|u(t,x)|2dx+4 Z /8/2ka(x)Re (u(r, x)d;u(t, x))dx
dt =t

+ 2/ Va(x) - {N), u},(t, x)dx,
2.5)
where { f, g}p :=Re (fVg — gV f) is the momentum bracket.

We refer the reader to [23, Lemma 5.3] for the proof of this result. Note that if

N@u) = F(x,u) = |x|~?|u|%u, then we have!

2
(Nu),u}, = —a‘)‘?wur’w“”) - a—+2vqxr”)|u|“+2. (2.6)

In particular, we have the following result.

COROLLARY 1. If u is a smooth-in-time and Schwartz-in-space solution to the
defocusing (INLS), then we have

d
%Ma(t) = — / A2a(x)|u(t, x)|2dx +4 .;1 / B?ka(x)Re (Oku(t, x)d;u(t, x))dx
Jk=
+a2—f2 Aa()|x| P lu(, x)|*+Hdx
_ . —b a42
O[_i_Z/Va()c) V(x| |u(t, x)|*=dx. 2.7

With the help of Corollary 1, we obtain the following classical Morawetz-type
inequalities for the defocusing (INLS).

PROPOSITION 2. Letd > 3,0 < b < 2 and u be a solution to the defocusing
(INLS) on the spacetime slab J x R?. Then

// x| 2 Hu(e, x)|*2dxdr < oo. (2.8)
J JRA
Proof. We consider a(x) = |x|. An easy computation shows
X 1 XXk
dia(x :—], 82»a_x :—(6 _']_)’
1= D) =g O

1 See “Appendix” for the proof.
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for j,k=1,...,d. This implies

X d—1
Va(x) = T Aa(x) = N

and

—A’a(x) = —(d—1>A(l)—{4”(d‘“50 ifd =3,

x| @=-D=3)  jfg>4,

|x[?

where & is the Dirac delta function. Since a is a convex function, it is well-known
that

d
> are(@udju) > 0.
jk=1

Therefore, applying (2.7) with a(x) = |x|, we get

d 20(d — 1) +4b
— My (1) > —f| =P u(e, x) | dx.
dr
Thus,
—b—1 at2
/ / |x] |u(z, x)|*"“dxdr S sup [ M)y (1))
J JRA telJ
S ||”(t)||L,°°(J,L§)||V”(t)||Ll°°(/,L%) < Q.
The last estimate follows from the conservations of mass and energy. U

REMARK 2. The above method breaks down for d < 2 since the distribution
— A%(|x]) is not positive anymore. In this case, one can adapt an argument of Nakanishi
in [20] to show

// x|l u(r, )% P dxdr < o (2.9)
Re (12 4+ IXIZ)2

However, we do not know whether the estimate (2.9) is sufficient to prove the decay
of global solutions to the defocusing (INLS).

3. Decay of global solutions

In this section, we will give the proof of Theorem 3. To do so, we follow the argument
of Visciglia in [25]. Let us start with the following result.

LEMMA 2. Letd > 3,0 <b <2and0 < a < a*. Let x € Cgo be a cutoff

wnction and r, € H! be a sequence such that
x q

sup ||1p,,||HJ <00, and Y, — V¥ weakly in Hxl.

neN
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Let v, and v € C(R, H xl) be the corresponding solutions to the defocusing (INLS)
with initial data r,, and , respectively. Then for every € > 0, there exists T (¢) > 0
and n(¢) € N such that

sup I x (va (1) = vl 2 <€, Vn > n(e). (3.1
te(0,T (¢)) :

Proof. By the conservations of mass and energy,

sup {10,010 1001y | < 0. (3:2)
teR,neN

By Rellich’s compactness lemma, up to a subsequence,
Tim_ X (W = ¥)lz = 0. (3.3)
Now let w, (¢, x) := x(x)v,(t, x) and w(z, x) := x (x)v(¢, x). It is easy to see that
18wy = —Awy + 2V - Vo + v Ax 4 x x| [oal*v, - wn(0) = x ¥,
and
iyw=—Aw+2Vyx  -Vo+vAx + X|x|7b|v|°‘v, w(0) = x .

Thus, by Duhamel formula,

t
wa (1) —w(t) = " (Y — V) — i / e IA (29 - V(wa(5) = v(s))
0
+ (Un(s) = () Ay )ds

! .
—i /0 A (7 (0 )0 (5) = [ 0(s) )ds. B4y

Due to the singularity of |x|~?, we need to consider two cases:

Case 1 The support of x does not contain the origin. In this case, the proof follows
as in [25, Lemma 1.1]. For reader’s convenience, we recall some details. Denote
J = (0, T). Let us introduce the following Schrédinger admissible pair (p, q):

8 4d

P=ava T d e

Using Strichartz estimates, we get

= wllp g0y S W = Wz + 195 Vn =01 12

—b o o
Hlwn =0 AXN L3 (g 12y + DX Gl o = 0D e

(3.5)
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2d_
We use (3.2), Holder’s inequality and the Sobolev embedding H! c L{ to get
lw, — w”Lr”(j,sz) S x (W — 1ﬁ)”L% + /]

+ lx v = vl sup(||vn<r>|| 2+ OI )

L
S X W = llzz + 11+ 1] =5 o — vlizr ey

We learn from the above estimate and (3.3) that for every € > 0, there exists n(€) € N
and 7T (¢) > 0 such that

L” (J,LD

lwn — w”Lf(I(e),LZ) <€, 3.6)

for all n > n(e), where I (¢) = (0, T (¢)). By applying again Strichartz estimate and
arguing as above, we obtain

1-2

lwn =l 2o s 00,22 SIX Wn = W2 + CL@IHT @17 lwn — wllp s 19)-

Combining this estimate with (3.2) and (3.6), we prove (3.1).
Case 2 The support of x contains the origin. Without loss of generality, we assume
that supp(x) C B, where B is the ball centered at the origin and of radius 1. Since we

are considering 0 < o < _— , there exists § € (0, - 2)> such that « = % —46.
Let us choose a Schrédmger admlss1ble pair (p, g) with
B 4 . 2d
P=a=w@—s 17 @2+
In the view of (3.5), it suffices to bound || x |x|~2(|va|%vn — [V|*V)]| , .. To do

LY (J,LY)
this, we use Holder’s inequality, Sobolev embedding and (3.2) to get t

—b o o
= ol = IV

—b o o
<
= lxI77(val"va — [v] v)”Lf/(J,Lz/(B))

—b
SN Ly gy Hvnl v — |”|av”L”’(J Lr)

S om0l 5y 590 (I O 2, + 10OI 5,
L - L B

d—2)8
<11

- v”L}U(‘]’LZ)v 3.7

where

d 2d
= :
d—-2)56+b 4—2b+(d—2)(1 —35)

y:

By Remark 1, || |x|_h||Lr (B) <0 provided % > b, and it is easy to check that

d
S —@—-25+b>b.

With (3.7) at hand, we argue as in Case 1 to have (3.1). O
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REMARK 3. It is not hard to check that Lemma 2 still holds true for any d >
1,0 < b <min{2,d}and 0 < o < ™.

We are now able to prove the decaying property of global solutions to the defocusing
(INLS).

Proof of Theorem 3. We only consider the case t — +o00, the caset — —oo is treated
similarly. We first note that by interpolating between L)ZC -norm, L%’—norm and LY with
2 < g < 2%, it suffices to prove (1.9) forg = 2 + %. We next recall the following
localized Gagliardo—Nirenberg inequality

4
d
el ;‘ = (5w gll2o,) "Il (3.8)

4 =
n
xeRd

where Q,(x) is the cubic in R? centered at x whose edge has length r. To see (3.8),
we take a recovering of R¢ with disjoint cubes Q1 (x j) and associate with a positive
partition of unity Y j xj = 1. Using the usual Gagliardo-Nirenberg inequality, we
have

2;?4 2/ X Olpo i dx = 2 el

N TN
< Dzl Izl
. :

< ”(p”H1 Sup <||¢||L2(Q1(X))>
xeRd

d
24+

where the functions x; = X; satisfy x; € Cgo(Rd), 0 < x; < 1 and supp(x;) C
01(x;).

Let u be the global solution to the defocusing (INLS) with initial data ug € Hxl.
The conservations of mass and energy show that

sup [[u() | 1 < 0.
teR .

Assume by the absurd that there is a sequence #, — oo such that

||u(tl’l)|| 2+% z 60 > 0’ (3.9)
Ly

for all n € N. By applying (3.8) with ¢ = u(t,, x), we see from (3.9) that there exists
a sequence (x),eN of R4 such that

lu@) 20, (x,y) = €1 > 0, (3.10)

for all n € N. We now set ¥, (¢, x) := u(t,, x + x,). By the conservations of mass
and energy,

sup (|l 11 < oc.
neN
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Thus, up to a subsequence, there exists ¥ € H' such that v, — v weakly in H xl By
Rellich’s compactness lemma, up to a subsequence, we have

Jm 1 = YllL2(g,0)) = O- (3.11)

We also have from (3.10) that ||y, ||L2(Q1(0)) > ¢€1. Thus, (3.11) ensures that there
exists a positive real number still denoted by €; such that

1V lz200,0)) = €1- (3.12)
Let us now introduce v, (¢, x) and v(¢, x) as the solutions to

{iatvn + Avy — [x — xu| 7P |0n|%v, = 0,
vn(o) = Kﬁn,

and

{iatv + Av — |x — x| P v|*v = 0,
v(0) = ¥,

Let x be any cutoff function supported in Q>(0) such that x = 1 on Q1(0). We have
from (3.12) and a continuity argument that there exists 77 > 0 such that

. €]
inf v()|l;2 = —.
nf vl = 5

Next, applying Lemma 2, there exists 75 > 0 and N € N such that

€1
sup I x (v, (2) — v(t)”LE < Z’
1€(0,T5)

foralln > N. Thus, we get for all t € (0, Tp) with Tp = min{77, T>}and alln > N,

€
Ien®llzz 2 vz = Ix @) = vz = 5

By the choice of y, we have for all t € (0, Tp) and alln > N,

€1
lva (DNl 220,00 = 1 (3.13)

By the uniqueness of local solution to the (INLS),
Vp(t, x) = u(t +ty, x + x).

Thus, forall ¢ € (t,,t, + Tp) and alln > N,

€1
Nl 2205y = 1 (3.14)
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Moreover, as lim,,_, o t, = +00, We can suppose2 that t,41 —t, > To forn > N.By
Holder’s inequality,

€1
)l Let2(0r 000y 2 MO L2(0x0)) = T (3.15)

forallt € (t,,t, + To) and alln > N.

The classical Morawetz inequality (2.8) combined with (3.15) imply
+00
00 > / / 707 (e, x) 1% T2 dxdr
0 R4

ta+Tp
> Z / / lu(t, x)|*T2dxds
tn Q2 (xp)

n>N

er\at2
23 (3) =

n>N

This is impossible, and the proof is complete. U

4. Scattering property

In this section, we give the proof of the scattering property given in Theorem 4. To
do this, we use Strichartz estimates and the decaying property given in Theorem 3 to
obtain a bound on global solutions. The scattering property follows easily from the
standard argument.

LEMMA 3. Letd, b and a be as in Theorem 4. Let u be a solution to the defocusing
(INLS) on a spacetime slab J x R? and ty € J. Then there exists 01, 6> € (0, «) and
q1,q2 € (2,2%) such that

itA a—0; 1+6; a—6 146,

e reem sy Tl o) lellsery

u(to) sy S lull

where |lullss) = || (V) ullsez2, -

Proof. By Duhamel’s formula, the solution to the defocusing (INLS) can be written
as

t

ut) = " uty) — i / D x| 7P [u(s)|Yu(s)ds.
0]

The Strichartz estimate (2.3) implies

itA

—b —b
llu = " Cuo) sy < Ml ™"l ullg 2 5y + IVAxI Nl w2, 1)-

2 One can reduce the value of Tp and increase the value of N if necessary.
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We next bound

—b _b
=2l ull g2, gy < 12 Nl ull g2y, )
Pl ullg 1280y, ) = A1+ As,
IV (Pl )l 2.0y < IV Al w528,

F IV W) g 2oy, sy = Bi + Ba.
On B By Holder’s inequality and Remark 1,

—b ~b
Ay =< llx 7 ul® SN2 gy el

ull : ull
LV, L (BY) LI ,L

S Ml g
N~ )

< 0(79| 1+6]
S o M5 o

provided that (p1, g1) € S and
1 1 1 d 1 a+1 1

14+6
e, L S22 he0w), o=
q1 Y1 U1 Y1 (%1 q1 P P1

This implies

d 4 d(a +2)
no qi

>b, p1=601+2€2,a+2). “.1

The first condition in (4.1) is equivalent to g; > %. Let us choose

_da+2)

for some 0 < € « 1 to be chosen later. Since o, < @ < «*, by taking € > 0
sufficiently small, it is easy to see that ¢; € (2, 2*). It remains to check p; < o + 2.
Since (p1, g1) € S, we need to show

2 d d 2 d da+2)—4

— > or <
D1 2 q a+2 q1 2(a +2)

It is in turn equivalent to

dla+2)(da —4+2b)+e(d—Db)da+2)—4] > 0.

Since ¢ > o, = %, the above inequality holds true by taking € > 0 small enough.
We thus obtain
< a—0 146, < a—0 14-6;
AvS NS o IR o) S NS o Il (4.3)

We next bound

- —b—1
By < xI"V(ul®wW g 208y 5 + 11X ulull g 1208y, 5) =t B + Bra.
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By the fractional chain rule, we estimate

Bi1 < x|V ([ul*w)|l ,

: S Pl o IVl
Ltl(‘]szl(B)) ~ Ly (B) Ltpl , vl

(J,Lx")

S Ml S IVl o I s o
X
t

< | *" ul|” Vu
S ”L;”(J,Lj’.l)” ||Lf’1(J,L§{1)” ”Lf’l(J,LZl)’

provided that (p1, q1) € S and

1 1 1 d 1 +1 1 146
_/:_+_, _>b, _=Ol y = 1, 916(0,0[).
9 Y1 v Y U] q1 )41 q1
This implies
d d 2
d gD e t2e )

Y1 q1
This condition is exactly (4.1). Therefore, we choose ¢; as in (4.2) and get

—0 (% a—0 146,
By < u||* ! \Y < ! . (44
11NIIMIIL?O(J,L?)IIMIILIm(J’LZ.)II uIILgl(,,L;u)NIIMIILIOO(J’L%IIMIIS(,) (4.4)

We next bound

—b—1 —b—1
By < [l S [ e s [T
t sbox

< Mall® a0 Ilu
S Wl il 0155

ull oy
L (L (B))
< a—60] 01
S ||M||L,°°(J,Lf£1)”u”L,”l oyl -

When d > 4 We use the homogeneous Sobolev embedding |[[u/| , 1 < |IVul a1 to
have

< a—0p 01
Bz SNl ooy par 1l o1 g VU 21 101y

The above estimates hold true provided that (p1, g1) € S and

1 1 1 d 1 o 1 1 1+6
_/=_+_9 _>b+17 _=_+_7 ) = ) 9]6(0,“),
91 Y1 U] Y1 U1 q1 ni P P1
and
J 1 1 1
q <d, —=———.
nt q d

Note that the last condition allows us to use the homogeneous Sobolev embedding.
The above requirements imply
d da+2
_dat?

2 —d
14! q1

Il>b+1, p1=01+2€2,a+2).
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This is exactly (4.1). We thus choose g; as in (4.2). Note that by taking € > 0 small
enough, the requirement ¢; < d is satisfied if

d 2

@t oo w<d—b-2. 4.5)
d—»>b

Since d > 4, it is easy to check that o* = % < d — b — 2. We thus get for

d>4,0<b<2anda, <a < a*,

Bir < llu a—0 u ]+61' 4.6
12 S Ml pory el (4.6)

When d = 3 We first note that (4.5) does not hold true. We use instead the inhomo-
geneous Sobolev embedding [lufl,n < || (V) ull, a1 to have

-6 9
Bz < lullf lull I {V)

u Pl q1y .
L&, LY LIV, LIy ”L, ,L3h

The above estimate holds true provided that (p1, g1) € S and
1 1 1 3 1 I 146

1 o
= — b —, —>b4l, —=—4—, — , 01 €0, ),
g1 1 v N vi q1 ni py P1

and

1 T
3<q17 nle(QI»OO) onr —=—, TG(O, 1)
ni q1
Here the last condition ensures the inhomogeneous Sobolev embedding. The above
requirements imply

1 1
3_3_3(a+ +T)>b—1 3o + +t)<

S 2—b.
4! q q

Let us choose

3a+14+71)
= -———-- E,
q1 b

for some 0 < € < 1 to be chosen later. It remains to check
q1 € 3,6), preR,a+2).

By taking € > 0 small enough, the condition g; € (3, 6) implies
l-b—1t<a<3-2b—r1. “.7

Since (p1, q1) € S, the condition? p1 < « + 2 is equivalent to

3 3 2 2

= — > .
2 q1 D1 o+2

3 Note that g1 < 6 implies p; > 2.
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The above condition is then equivalent to
3[3a% 4 (1 + 2b)a +4b — 6 + 1(3a + 2)] + €2 — b) B +2) > 0.
By taking € > O sufficiently small, the above inequality holds true provided that
3% + (1 +2b)a +4b — 6 + t(3a +2) > 0. (4.8)
Now, if we take 7 closed to 0, (4.7) and (4.8) imply

—1—=2b+ V4b%2 —44b + 7
l1-b<a<3-2b, a> + + 3.

6
Combining this with the assumption % =o, <o <o =4—2b, we have
4 —-2b 5
<a<3-2b, 0<b<-. 4.9)
3 4
‘We thus obtain for d = 3 and «, b as in (4.9),
a—0; 1+6;
Buz S Iulf, o Iul5(7)- (4.10)

On B¢ By Holder’s inequality and Remark 1,

b
Ay <l ul®ull

N =il P 117
L2 (L2 By ~ L B9

1“ull
LP2,L?)

S Ml

~ LE gy

< |lu a—6r u 1+6,

SNl gy 1 o g 12y

provided that (p2, ¢2) € S and
1 1 1 d 1 a+1 1 1+6

/:_—‘f__, —<b’ el . — = N 926(0,&).
9 Y2 vz " v2 9 Py P2
This implies
d d(a+2)
—=d————<b, pp=6h+2ec2,a+?2). (4.11)
72 q2

The first condition in (4.11) implies g < %. Let us choose

d(a+2)
= —— —F¢, 4.12
P=—"T, "€ (4.12)
for some 0 < € < 1 to be chosen later. By taking € > 0 small enough, the assumption
a, < a < a*ensures gy € (2, 2%). Itremains to check pr» < a+2. Since (p2, g2) € S,

it is equivalent to

d d 2 2 d dla+2)—4
> onr - < —
2 q@ p2 a+?2 9 2(x+2)
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A direct computation shows that the above condition is equivalent to
do+2)(da —442b) —e(d —b)ld(a+2)—4] > 0.

Since o > %, the above inequality holds true by taking € > 0 small enough. We
thus get

) 146, a—0) 1+62
Ay S lull¥? < . 4.1
2 ”u”Lfo(J,LZz)”u”L,pz(J,LZZ) ~ ||u||L?O(J,LZ2)||u||S(‘,) (4.13)

We next bound
By < 617"V (ul“w) g r2per, 1y + Nx1™" "l “ullgir2pe) gy = Bar + Boa.
By the fractional chain rule, Holder’s inequality and Remark 1,

By < |IxI7°V(ulw) ,

/ / < X - Y2 pe V( u
b b ey & T2 190

o
wll
L2,

< 'Mu® Vu
S Ml IVl

< ) &)
< ||u||L;,O(J’L;12)||u||Ltpz(J’L¥2)”V“”LZQ(J,LZZ)’

provided that (p2, g2) € S and
1 1 1 d 1 a+1 1 146,

/:——'——, —<b, — = ) ) = ) 926(0’05)
q, Y2 V2 V2 v2 q2 123 P2

These conditions are exactly those for A;. We thus choose g5 as in (4.12) and obtain

—0, 6
By < |lu||%27 ul||”?
21 S lull I ”sz(J,Lﬁ?)

— 146
LE(1L) IVull 2y oy S Nl5? o lullglyy (4.14)

LE(LLP)
It remains to treat Byy. By Holder’s inequality and Remark 1,

—b—1 o —b—1 o
By < |l|x] lul“ull / S x| ;72 gey Hul®ull
L2 (L2 (B9 L7 (B9 L2,

< o
S Ml ozl

< Jlu 2 b2 "
SN T e 1 SN 7 Jrepppe
provided that
1 1 1 d 1 o 1 1 1+6;
—=—+—, —<b+l, —=—+—, —= . 02€(0,).
q, Y2 V2 V2 v2 q2 n2 Py p2

(4.15)

As for Bj;, we separate two cases: d > 4 and d = 3.
When d > 4 We use the homogeneous Sobolev embedding [u]|, < || Vull a1
provided that

1
Qp<d, —=——--.
ny
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Thus, (4.15) implies

d da+2 d@+2
d_ g9t it - g i2cat).
2 q2 q92

This condition is exactly (4.11). We thus choose ¢> as in (4.12). Note that by taking
€ > 0 small enough, this condition holds true if we have
d(a+2)

<d or a<d—b-—2.
d—»>b

Since d > 4, we always have % < d — b — 2. Therefore, the last estimate holds
true for o, < @ < a*. Weobtainford >4,0 <b <2and o, < o < a*,

< a—6r (%) < a—0 1+6,
B2 S W oo 1002 e 1V e g ey S T o 55T 416)

When d = 3 We use the inhomogeneous Sobolev embedding [[u[ ,»> S || (V) ull 2
provided that '

1
>3, me(@oo) or —=-—, te(1).
nj q2
Thus, (4.15) implies

3 3a+1+1) 3a+1+1)
_— < —_— >

— =3 b+1 2—b.
V2 q2 q2
Let us choose
3a+14+1)
©="aop S

for some 0 < € « 1 to be chosen later. We need to check ¢» € (3,6) and p, €
(2, o + 2). By taking € > 0 sufficiently small, these conditions hold true if we have

l-b—1t<a<3-2b—r, 3a2+(1+2b)a+4b—6+r(3a+2)>O.

Taking 7 closed to 0, we have

—1—2b+4b2 —44b + 73

1-b<a<3-2b, o> 3

By the assumption % < a < 4 —2b, we see that b and « satisfy (4.9). Therefore,

we get ford = 3 and b, « as in (4.9),

< a—0; 6> < a—6 1+62
By S ”u”L?O(J,Lzz) ”“”szU’Lzz)” (V) ””L{’Z(J,LZZ) ~ ”u”L?(J’L?)”u”S(J) .
4.17)

Collecting (4.3), (4.4), (4.6), (4.10), (4.13), (4.14), (4.16) and (4.17), we complete the
proof. 0
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COROLLARY 2. Letd, b and o be as in Theorem 4. Let ug € Hl(Rd) and u be
the unique global solution to the defocusing (INLS). Then

ue Ll R, Wi,

for any Schrodinger admissible pair (p, q).

Proof. By applying Lemma 3 with J = (T, ¢) and using the decaying property given
in Theorem 3, we see that there exist 61, 6, € (0, @) such that

146 146
lulls.oy < Ie(llgs + er(Dlulsiet, + e lul 5 F -

where €1(T), e2(T) — 0 as T — +o00. By the conservations law and the continuity
argument (see e.g. [2, Lemma 7.7.4] or [22, Section 1.3]), we learn that for T large
enough,

lullscr.n) < C,

for some C > 0 independent of . We thus get u € LP((T, +00), Wo'?) for any
(p,q) € S. Similarly, we prove as well that u € Ltp((—oo, -T), le’q) for any
(p. g) € S. Combining these facts and the local well-posedness given in Theorem 2,
we obtain u € L” (R, W,'?) for any Schrédinger admissible pair (p, ¢). O

We are now able to prove Theorem 4. The proof is based on a standard argument
(see e.g. [2, Section 8.3] or [22, Section 3.6]).

Proof of Theorem 4. Let u be the global solution to the defocusing (INLS) with initial
dataug € H xl By Duhamel’s formula,

t
ut) = e'"ug — i/ I x| 7P lu(s)|Yu(s)ds. (4.18)
0

As in the proof of Lemma 3, we see that there exists 01, 6> € (0, ) and gy, g2 € (2, 2%)
such that

- —0 1+6 —0 1+6
19) (e Pl ")l o,y S Ml o ey + 0TS o Tl -
Thus, Theorem 3 and Corollary 2 imply
V) (el lul“w) [ 112,y < 00 (4.19)
Let 0 < ;1 < t» < +00. By Strichartz estimates and (4.19), we have
le™2%u(t2) — e Au)ll g1 S V) e Pl W) g 22, 1y.12y) = 05

as t1, t» — +oo. This implies that the limit

+ : —itA
Uy = lim e u(t
0 t——+00 ( )
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exists in H XI Moreover,

) too
u(t) — e”Auar = —i/ ¢TI 7P ()| Y u(s)ds.
t

Applying again Strichartz estimates, we get
lim |lu(r) — e ul =0.
dim () Sl

This shows the energy scattering for positive time, the one for negative time is treated
similarly. The proof is complete. U
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Appendix

In this “Appendix”, we will give the proof of (2.6). Let N(u) = F(x,u) =
1x|7?u|%u. We compute

\V4 (lxl—b|u|a+2) — (|x|—b> |M|Ol+2 + |x|—hv (|u|0l+2)

\Y%
v
v

(1170) 112 + (@ + 2) x| ul*Re (Vuin)
X

(

| |—b) %2 4 (@ + 2)|x| P |u|*Re (VD).
Similarly,

V (B 1ul2) = v (el Pl ) = V (117 4ul@) w4+ 1517l “aVa,
or

v <|x|_b|u|“ﬁ) W=V (|x|—”|u|“+2) — x| w7V,
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Therefore,

{N(u).u}, = Re <|x|_b|u|“uVﬁ — uV(|x|—”|u|“u))

— 2Re (|x|—”|u|°‘uvm - V(|x|_b|u|°‘+2>

2 _ _ -
=~ (VO Pl ) = V(e )l #2) = 9 (17 2
a+2

2
— _LV <|x|7b|u|01+2> _ _v <|x|7b> |u|Dt+2
a+2 a+2
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