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Abstract. In this paper, we consider a class of the defocusing inhomogeneous nonlinear Schrödinger equa-
tion

i∂t u + Δu − |x |−b|u|αu = 0, u(0) = u0 ∈ H1,

with b, α > 0. We first study the decaying property of global solutions for the equation when 0 < α < α�

where α� = 4−2b
d−2 for d ≥ 3. The proof makes use of an argument of Visciglia (Math Res Lett 16(5):919–

926, 2009). We next use this decay to show the energy scattering for the equation in the case α� < α < α�,
where α� = 4−2b

d .

1. Introduction

Consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger equa-
tion

{
i∂t u + Δu + μ|x |−b|u|αu = 0,

u(0) = u0,
(INLS)

where u : R × R
d → C, u0 : Rd → C, μ = ±1 and α, b > 0. The parameters

μ = 1 and μ = −1 correspond to the focusing and defocusing cases, respectively.
The case b = 0 is the well-known nonlinear Schrödinger equation which has been
studied extensively over the last three decades. In the end of the last century, it was
suggested that stable high power propagation can be achieved in a plasma by sending
a preliminary laser beam that creates a channel with a reduced electron density, and
thus reduces the nonlinearity inside the channel (see [14] and [17]). In this situation,
the beam propagation can be modeled by the inhomogeneous nonlinear Schrödinger
equation of the form

i∂t u + Δu + K (x)|u|αu = 0. (1.1)

Mathematics Subject Classification: 35G20, 35G25, 35Q55
Keywords: Inhomogeneous nonlinear Schrödinger equation, Scattering theory, Virial inequality, Decay-

ing solution.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00028-019-00481-0&domain=pdf


412 V. D. Dinh J. Evol. Equ.

The (INLS) is a particular case of (1.1) with K (x) = |x |−b. Equation (1.1) has been
attracted a lot of interest in a past several years. Bergé in [1] studied formally the
stability condition for soliton solutions of (1.1). Towers–Malomed in [24] observed
by means of variational approximation and direct simulations that a certain type of
time-dependent nonlinear medium gives rise to completely stable beams. Merle in
[19] and Raphaël–Szeftel in [21] studied (1.1) for k1 < K (x) < k2 with k1, k2 > 0.
Fibich–Wang in [11] investigated (1.1) with K (x) := K (ε|x |) where ε > 0 is small
and K ∈ C4(Rd) ∩ L∞(Rd). The case K (x) = |x |b with b > 0 is studied by many
authors (see e.g. [3,18] and [26] and references therein).

Before reviewing known results for the (INLS), we recall some facts for this equa-
tion. We first note that the (INLS) is invariant under the scaling

uλ(t, x) := λ
2−b
α u(λ2t, λx), λ > 0.

An easy computation shows

‖uλ(0)‖Ḣγ (Rd ) = λγ+ 2−b
α

− d
2 ‖u0‖Ḣγ (Rd ).

The critical Sobolev exponent is thus defined by

γc := d

2
− 2 − b

α
. (1.2)

Moreover, the (INLS) has the following conserved quantities:

M(u(t)) :=
∫
Rd

|u(t, x)|2dx = M(u0), (1.3)

E(u(t)) :=
∫
Rd

1

2
|∇u(t, x)|2 − μ

α + 2
|x |−b|u(t, x)|α+2dx = E(u0). (1.4)

The well-posedness for the (INLS) was first studied by Genoud–Stuart in [12,
Appendix] by using an argument of Cazenave [2, Chapter 3] which does not use
Strichartz estimates. More precisely, they showed that the focusing (INLS) with 0 <

b < min{2, d} is well-posed in H1(Rd):

– locally if 0 < α < α�,
– globally for any initial data if 0 < α < α�,
– globally for small initial data if α� ≤ α < α�,

where α� and α� are defined by

α� := 4 − 2b

d
, α� :=

{ 4−2b
d−2 if d ≥ 3,
∞ if d = 1, 2.

(1.5)

In the case α = α� (L2-critical), Genoud in [13] showed that the focusing (INLS)
with 0 < b < min{2, d} is globally well-posed in H1(Rd) assuming u0 ∈ H1(Rd)

and

‖u0‖L2(Rd ) < ‖Q‖L2(Rd ),
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where Q is the unique nonnegative, radially symmetric, decreasing solution of the
ground state equation

ΔQ − Q + |x |−b|Q| 4−2b
d Q = 0.

Also, Combet–Genoud in [5] established the classification of minimal mass blow-up
solutions for the focusing L2-critical (INLS).
In the case α� < α < α�, Farah in [8] showed that the focusing (INLS) with

0 < b < min{2, d} is globally well-posedness in H1(Rd) by assuming u0 ∈ H1(Rd)

and

E(u0)
γcM(u0)

1−γc < E(Q)γcM(Q)1−γc , (1.6)

‖∇u0‖γc
L2(Rd )

‖u0‖1−γc
L2(Rd )

< ‖∇Q‖γc
L2(Rd )

‖Q‖1−γc
L2(Rd )

,

where Q is the unique nonnegative, radially symmetric, decreasing solution of the
ground state equation

ΔQ − Q + |x |−b|Q|αQ = 0.

He also proved that if u0 ∈ H1(Rd) ∩ L2(Rd , |x |2dx) =: Σ satisfies (1.6) and

‖∇u0‖γc
L2(Rd )

‖u0‖1−γc
L2(Rd )

> ‖∇Q‖γc
L2(Rd )

‖Q‖1−γc
L2(Rd )

, (1.7)

then the corresponding solution blows up in finite time. Afterward, Farah–Guzman in
[9] and [10] proved that the above global solution scatters in H1(Rd) under the radial
condition of the initial data.
In [7], the author showed the existence of finite time blow-up H1-solutions for the

focusing L2-critical and L2-supercritical (INLS).
Guzman in [16] used Strichartz estimates and the contraction mapping argument to

establish the well-posedness for the (INLS) in Sobolev spaces. Precisely, he showed
that:

– if 0 < α < α� and 0 < b < min{2, d}, then the (INLS) is locally well-posed in
L2(Rd). It is then globally well-posed in L2(Rd) by the mass conservation.

– if 0 < α < α̃, 0 < b < b̃ and max{0, γc} < γ ≤ min
{ d
2 , 1

}
where

α̃ :=
{

4−2b
d−2γ if γ < d

2 ,

∞ if γ = d
2

and b̃ :=
{ d

3 if d = 1, 2, 3,
2 if d ≥ 4,

(1.8)

then the (INLS) is locally well-posed in Hγ (Rd).
– if α� < α < α̃, 0 < b < b̃ and γc < γ ≤ min

{ d
2 , 1

}
, then the (INLS) is

globally well-posed in Hγ (Rd) for small initial data.

In particular, Guzman proved the following local well-posedness in the energy space
for the (INLS).
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THEOREM 1. [16] Let d ≥ 2, 0 < b < b̃ and 0 < α < α�. Then the (INLS) is
locally well-posed in H1(Rd). Moreover, the global solutions to the defocusing (INLS)
satisfy u ∈ L p

loc(R,W 1,q(Rd)) for any Schrödinger admissible pair (p, q).

Recently, the author in [6] improved the range of b in Theorem 1 in the two and
three-dimensional spatial spaces. More precisely, he proved the following:

THEOREM 2. [6] Let

d ≥ 4, 0 < b < 2, 0 < α < α�,

or

d = 3, 0 < b < 1, 0 < α < α�,

or

d = 3, 1 ≤ b <
3

2
, 0 < α <

6 − 4b

2b − 1
,

or

d = 2, 0 < b < 1, 0 < α < α�.

Then the (INLS) is locally well-posed in H1(Rd). Moreover, the global solutions to
the defocusing (INLS) satisfy u ∈ L p

loc(R,W 1,q(Rd)) for any Schrödinger admissible
pair (p, q).

The results of Guzman [16] and Dinh [6] about the local well-posedness of (INLS)
in H1(Rd) are a bit weaker than the one of Genoud–Stuart [12]. Precisely, they do
not treat the case d = 1, and there is a restriction on the validity of b when d = 2 or
3. Note also that the author in [6] pointed out that one cannot expect a similar result
as Theorems 1 or 2 holds in the one-dimensional case by using Strichartz estimates.
Although the result showedbyGenoud–Stuart is strong, but one does not knowwhether
the global solutions to the defocusing (INLS) belong to L p

loc(R,W 1,q(Rd)) for any
Schrödinger admissible pair (p, q). This property plays an important role in proving
the energy scattering for the defocusing (INLS).
Note that the local well-posedness (which is also available for the defocusing case)

of Genoud–Stuart in [12] and the conservations of mass and energy immediately
give the global well-posedness in H1(Rd) for the defocusing (INLS). In [6], the
author used the pseudo-conformal conservation law to show the decaying property of
global solutions by assuming the initial data in Σ [see the definition before (1.7)]. In
particular, he showed that in the case α ∈ [α�, α

�), global solutions have the same
decay as solutions of the linear Schrödinger equation, that is for 2 ≤ q ≤ 2d

d−2 when
d ≥ 3 or 2 ≤ q < ∞ when d = 2 or 2 ≤ q ≤ ∞ when d = 1,

‖u(t)‖Lq (Rd ) � |t |−d
(
1
2− 1

q

)
, ∀t �= 0.
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This allows the author to prove the scattering inΣ for a certain class of the defocusing
(INLS). We refer the reader to [6] for more details.

The main purpose of this paper is to show the energy scattering for the defocusing
(INLS). Before stating our results, let us recall the two known methods to prove the
energy scattering for the nonlinear Schrödinger equation (NLS). The first one is to use
the classical Morawetz inequality to derive the decay of global solutions, and then use
it to prove the global Strichartz bound of solutions (see e.g. [15] and [20] or [2]). The
second one is to use the interaction Morawetz inequality to derive directly the global
Strichartz bound for solutions (see e.g. [4,23] and references therein). With the global
Strichartz bound at hand, the energy scattering follows easily. Note also that Visciglia
in [25] used the interaction Morawetz inequality to show the decaying property of
global solutions for the (NLS) in any dimensions. This approach is a complement
to [15] where the classical Morawetz inequality only allowed to prove the decaying
property in spatial dimensions greater than or equal to three. It is worth noticing that
the (INLS) does not enjoy the conservation of momentum which is crucial to prove
the interaction Morawetz-type inequality (see e.g. [4]). We thus do not attempt to
show the interaction Morawetz-type inequality for the defocusing (INLS). It is also
not clear to us that the techniques of [15] and [20] can be applied for the defocusing
(INLS). Fortunately, we are able to use the classical Morawetz-type inequality and an
argument of [25] to show the decaying property of global solutions for the defocusing
(INLS). More precisely, we have the following decaying property of global solutions
to the defocusing (INLS).

THEOREM 3. Let d ≥ 3, 0 < b < 2 and 0 < α < α�. Let u0 ∈ H1(Rd) and
u ∈ C(R, H1(Rd)) be the unique global solution to the defocusing (INLS). Then,

lim
t→±∞ ‖u(t)‖Lq (Rd ) = 0, (1.9)

for every q ∈ (2, 2�), where 2� := 2d
d−2 .

The proof of this result is based on the classical Morawetz-type inequality and an
argument of Visciglia in [25]. The classical Morawetz-type inequality related to the
defocusing (INLS) is derived by using the same argument of that for the classical
(NLS). This inequality is enough to prove the decaying property for global solutions
of the defocusing (INLS) by following the technique of [25]. Note that in [25], the
author used the interaction Morawetz inequality to show the decay of solutions for
the defocusing (NLS) in any dimensions. We expect that the decay (1.9) still holds in
dimensions 1 and 2. But it is not clear to us how to prove it at the moment.
Using the decaying property given in Theorem 3, we are able to show the energy

scattering for the defocusing (INLS). Due to the singularity of |x |−b, the scattering
result does not cover the full range of exponents as in Theorem 2. Our main result is
the following:

THEOREM 4. Let

d ≥ 4, 0 < b < 2, α� < α < α�,
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or

d = 3, 0 < b <
5

4
, α� < α < 3 − 2b.

Let u0 ∈ H1(Rd) and u be the unique global solution to the defocusing (INLS). Then
there exist u±

0 ∈ H1(Rd) such that

lim
t→±∞ ‖u(t) − eitΔu±

0 ‖H1(Rd ) = 0.

The proof of this result is based on a standard argument as for the nonlinear
Schrödinger equation (see e.g. [2, Chapter 7]). Because of the singularity |x |−b, one
needs to be careful in order to control the nonlinearity in terms of decaying norms
and Strichartz norms. The singularity also leads to a restriction on the ranges of b and
α compared to those in Theorem 3. We expect that the same result still holds true in
the two-dimensional case. This expectation will be possible if one can show the same
decay as in Theorem 3 in 2D.

The plan of this paper is as follows. In Sect. 2, we introduce some notations and give
some preliminary results related to our problem. We also derive classical Morawetz-
type inequalities for the defocusing (INLS) in Sect. 2. The proof of the decaying
property of Theorem 3 is given in Sect. 3. Section 4 is devoted to the proof of the
scattering result of Theorem 4.

2. Preliminaries

In the sequel, the notation A � B denotes an estimate of the form A ≤ CB for
some constant C > 0. The constant C may change from line to line.

2.1. Nonlinearity

Let F(x, z) := |x |−b f (z) with b > 0 and f (z) := |z|αz. The complex derivatives
of f are

∂z f (z) = α + 2

2
|z|α, ∂z f (z) = α

2
|z|α−2z2.

We have for z, w ∈ C,

f (z) − f (w) =
∫ 1

0

(
∂z f (w + θ(z − w))(z − w) + ∂z f (w + θ(z − w))z − w

)
dθ.

Thus,

|F(x, z) − F(x, w)| � |x |−b(|z|α + |w|α)|z − w|. (2.1)

To deal with the singularity |x |−b, we have the following remark.
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REMARK 1. [16] Let B := B(0, 1) = {x ∈ R
d : |x | < 1} and Bc := R

d\B.
Then

‖|x |−b‖Lγ (B) < ∞ if
d

γ
> b,

and

‖|x |−b‖Lγ (Bc) < ∞ if
d

γ
< b.

2.2. Strichartz estimates

Let J ⊂ R and p, q ∈ [1,∞]. We define the mixed norm

‖u‖L p
t (J,Lq

x )
:=

( ∫
J

( ∫
Rd

|u(t, x)|qdx
) p

q
) 1

p

with a usual modification when either p or q is infinity. When there is no risk of
confusion, we may write L p

t L
q
x instead of L p

t (J, Lq
x ). We also use L p

t,x when p = q.

DEFINITION 1. A pair (p, q) is said to be Schrödinger admissible, for short
(p, q) ∈ S, if

(p, q) ∈ [2,∞]2, (p, q, d) �= (2,∞, 2),
2

p
+ d

q
= d

2
.

We denote for any spacetime slab J × R
d ,

‖u‖S(L2,J ) := sup
(p,q)∈S

‖u‖L p
t (J,Lq

x )
, ‖v‖S′(L2,J ) := inf

(p,q)∈S ‖v‖
L p′
t (J,Lq′

x )
. (2.2)

We next recall well-known Strichartz estimates for the linear Schrödinger equation.
We refer the reader to [2] and [22] for more details.

PROPOSITION 1. Let u be a solution to the linear Schrödinger equation, namely

u(t) = eitΔu0 +
∫ t

0
ei(t−s)ΔF(s)ds,

for some data u0, F. Then,

‖u‖S(L2,R) � ‖u0‖L2
x
+ ‖F‖S′(L2,R). (2.3)

2.3. Classical Morawetz-type inequality

In this section, we derive classical Morawetz inequalities for the defocusing (INLS)
by following an argument of [23]. Given a smooth real-valued function a, we define
the Morawetz action by

Ma(t) := 2
∫
Rd

∇a(x) · Im (u(t, x)∇u(t, x))dx . (2.4)

By a direct computation, we have the following result.
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LEMMA 1. [23] If u is a smooth-in-time and Schwartz-in-space solution to

i∂t u + Δu = N (u),

with N (u) satisfying Im (N (u)u) = 0, then we have

d

dt
Ma(t) = −

∫
Δ2a(x)|u(t, x)|2dx + 4

d∑
j,k=1

∫
∂2jka(x)Re (∂ku(t, x)∂ j u(t, x))dx

+ 2
∫

∇a(x) · {N (u), u}p(t, x)dx,
(2.5)

where { f, g}p := Re ( f ∇g − g∇ f ) is the momentum bracket.

We refer the reader to [23, Lemma 5.3] for the proof of this result. Note that if
N (u) = F(x, u) = |x |−b|u|αu, then we have1

{N (u), u}p = − α

α + 2
∇(|x |−b|u|α+2) − 2

α + 2
∇(|x |−b)|u|α+2. (2.6)

In particular, we have the following result.

COROLLARY 1. If u is a smooth-in-time and Schwartz-in-space solution to the
defocusing (INLS), then we have

d

dt
Ma(t) = −

∫
Δ2a(x)|u(t, x)|2dx + 4

d∑
j,k=1

∫
∂2jka(x)Re (∂ku(t, x)∂ j u(t, x))dx

+ 2α

α + 2

∫
Δa(x)|x |−b|u(t, x)|α+2dx

− 4

α + 2

∫
∇a(x) · ∇(|x |−b)|u(t, x)|α+2dx . (2.7)

With the help of Corollary 1, we obtain the following classical Morawetz-type
inequalities for the defocusing (INLS).

PROPOSITION 2. Let d ≥ 3, 0 < b < 2 and u be a solution to the defocusing
(INLS) on the spacetime slab J × R

d . Then

∫
J

∫
Rd

|x |−b−1|u(t, x)|α+2dxdt < ∞. (2.8)

Proof. We consider a(x) = |x |. An easy computation shows

∂ j a(x) = x j
|x | , ∂2jka(x) = 1

|x |
(
δ jk − x j xk

|x |2
)
,

1 See “Appendix” for the proof.
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for j, k = 1, . . . , d. This implies

∇a(x) = x

|x | , Δa(x) = d − 1

|x | ,

and

−Δ2a(x) = −(d − 1)Δ
( 1

|x |
)

=
{
4π(d − 1)δ0 if d = 3,
(d−1)(d−3)

|x |3 if d ≥ 4,

where δ0 is the Dirac delta function. Since a is a convex function, it is well-known
that

d∑
j,k=1

∂2jkare(∂ku∂ j u) ≥ 0.

Therefore, applying (2.7) with a(x) = |x |, we get
d

dt
M|x |(t) ≥ 2α(d − 1) + 4b

α + 2

∫
|x |−b−1|u(t, x)|α+2dx .

Thus, ∫
J

∫
Rd

|x |−b−1|u(t, x)|α+2dxdt � sup
t∈J

|M|x |(t)|
� ‖u(t)‖L∞

t (J,L2
x )

‖∇u(t)‖L∞
t (J,L2

x )
< ∞.

The last estimate follows from the conservations of mass and energy. �

REMARK 2. The above method breaks down for d ≤ 2 since the distribution
−Δ2(|x |) is not positive anymore. In this case, one can adapt an argument ofNakanishi
in [20] to show

∫
J

∫
Rd

t2

(t2 + |x |2) 3
2

|x |−b|u(t, x)|α+2dxdt < ∞. (2.9)

However, we do not know whether the estimate (2.9) is sufficient to prove the decay
of global solutions to the defocusing (INLS).

3. Decay of global solutions

In this section,wewill give the proof of Theorem3. To do so,we follow the argument
of Visciglia in [25]. Let us start with the following result.

LEMMA 2. Let d ≥ 3, 0 < b < 2 and 0 < α < α�. Let χ ∈ C∞
0 be a cutoff

function and ψn ∈ H1
x be a sequence such that

sup
n∈N

‖ψn‖H1
x

< ∞, and ψn ⇀ ψ weakly in H1
x .
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Let vn and v ∈ C(R, H1
x ) be the corresponding solutions to the defocusing (INLS)

with initial data ψn and ψ , respectively. Then for every ε > 0, there exists T (ε) > 0
and n(ε) ∈ N such that

sup
t∈(0,T (ε))

‖χ(vn(t) − v(t))‖L2
x

≤ ε, ∀n > n(ε). (3.1)

Proof. By the conservations of mass and energy,

sup
t∈R,n∈N

{
‖vn(t)‖H1

x
, ‖v(t)‖H1

x

}
< ∞. (3.2)

By Rellich’s compactness lemma, up to a subsequence,

lim
n→∞ ‖χ(ψn − ψ)‖L2

x
= 0. (3.3)

Now let wn(t, x) := χ(x)vn(t, x) and w(t, x) := χ(x)v(t, x). It is easy to see that

i∂twn = −Δwn + 2∇χ · ∇vn + vnΔχ + χ |x |−b|vn|αvn, wn(0) = χψn,

and

i∂tw = −Δw + 2∇χ · ∇v + vΔχ + χ |x |−b|v|αv, w(0) = χψ.

Thus, by Duhamel formula,

wn(t) − w(t) = eitΔ(χ(ψn − ψ)) − i
∫ t

0
ei(t−s)Δ

(
2∇χ · ∇(vn(s) − v(s))

+ (vn(s) − v(s))Δχ
)
ds

− i
∫ t

0
ei(t−s)Δ

(
χ |x |−b(|vn(s)|αvn(s) − |v(s)|αv(s))

)
ds. (3.4)

Due to the singularity of |x |−b, we need to consider two cases:
Case 1 The support of χ does not contain the origin. In this case, the proof follows

as in [25, Lemma 1.1]. For reader’s convenience, we recall some details. Denote
J = (0, T ). Let us introduce the following Schrödinger admissible pair (p, q):

p = 8

(d − 2)α
, q = 4d

2d − (d − 2)α
.

Using Strichartz estimates, we get

‖wn − w‖L p
t (J,Lq

x )
� ‖χ(ψn − ψ)‖L2

x
+ ‖∇χ · ∇(vn − v)‖L1

t (J,L2
x )

+‖(vn − v)Δχ‖L1
t (J,L2

x )
+ ‖χ |x |−b(|vn |αvn − |v|αv)‖

L p′
t (J,Lq′

x )
.

(3.5)



Vol. 19 (2019) Energy scattering defocusing inhomogeneous NLS 421

We use (3.2), Hölder’s inequality and the Sobolev embedding H1
x ⊂ L

2d
d−2
x to get

‖wn − w‖L p
t (J,Lq

x )
� ‖χ(ψn − ψ)‖L2

x
+ |J |

+ ‖χ(vn − v)‖
L p′
t (J,Lq

x )
sup
t∈J

(
‖vn(t)‖α

L
2d
d−2
x

+ ‖v(t)‖α

L
2d
d−2
x

)

� ‖χ(ψn − ψ)‖L2
x
+ |J | + |J |1− 2

p ‖vn − v‖L p
t (J,Lq

x )
.

We learn from the above estimate and (3.3) that for every ε > 0, there exists n(ε) ∈ N

and T (ε) > 0 such that

‖wn − w‖L p
t (I (ε),Lq

x )
≤ ε, (3.6)

for all n > n(ε), where I (ε) = (0, T (ε)). By applying again Strichartz estimate and
arguing as above, we obtain

‖wn − w‖L∞
t (I (ε),L2

x )
�‖χ(ψn − ψ)‖L2

x
+ C |I (ε)|+|I (ε)|1− 2

p ‖wn − w‖L p
t (I (ε),Lq

x )
.

Combining this estimate with (3.2) and (3.6), we prove (3.1).
Case 2 The support of χ contains the origin. Without loss of generality, we assume

that supp(χ) ⊂ B, where B is the ball centered at the origin and of radius 1. Since we

are considering 0 < α < 4−2b
d−2 , there exists δ ∈

(
0, 2−b

2(d−2)

)
such that α = 4−2b

d−2 − 4δ.

Let us choose a Schrödinger admissible pair (p, q) with

p = 4

2 − (d − 2)δ
, q = 2d

(d − 2)(1 + δ)
.

In the view of (3.5), it suffices to bound ‖χ |x |−b(|vn|αvn − |v|αv)‖
L p′
t (J,Lq′

x )
. To do

this, we use Hölder’s inequality, Sobolev embedding and (3.2) to get

‖χ |x |−b(|vn|αvn − |v|αv)‖
L p′
t (J,Lq′

x )

≤ ‖|x |−b(|vn|αvn − |v|αv)‖
L p′
t (J,Lq′

x (B))

� ‖|x |−b‖Lγ
x (B)‖|vn|αvn − |v|αv‖

L p′
t (J,Lrx )

� ‖vn − v‖
L p′
t (J,Lq

x )
sup
t∈I

(
‖vn(t)‖α

L
2d
d−2
x

+ ‖v(t)‖α

L
2d
d−2
x

)

� |J | (d−2)δ
2 ‖vn − v‖L p

t (J,Lq
x )

, (3.7)

where

γ = d

(d − 2)δ + b
, r = 2d

4 − 2b + (d − 2)(1 − 3δ)
.

By Remark 1, ‖|x |−b‖Lγ
x (B) < ∞ provided d

γ
> b, and it is easy to check that

d

γ
= (d − 2)δ + b > b.

With (3.7) at hand, we argue as in Case 1 to have (3.1). �
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REMARK 3. It is not hard to check that Lemma 2 still holds true for any d ≥
1, 0 < b < min{2, d} and 0 < α < α�.

We are now able to prove the decaying property of global solutions to the defocusing
(INLS).

Proof of Theorem 3. Weonly consider the case t → +∞, the case t → −∞ is treated
similarly. We first note that by interpolating between L2

x -norm, L2�

x -norm and Lq
x with

2 < q < 2�, it suffices to prove (1.9) for q = 2 + 4
d . We next recall the following

localized Gagliardo–Nirenberg inequality

‖ϕ‖2+
4
d

L
2+ 4

d
x

≤ C
(
sup
x∈Rd

‖ϕ‖L2(Q1(x))

) 4
d ‖ϕ‖2H1

x
, (3.8)

where Qr (x) is the cubic in R
d centered at x whose edge has length r . To see (3.8),

we take a recovering of Rd with disjoint cubes Q1(x j ) and associate with a positive
partition of unity

∑
j χ j = 1. Using the usual Gagliardo–Nirenberg inequality, we

have

‖ϕ‖2+
4
d

L
2+ 4

d
x

=
∑
j

∫
χ j (x)|ϕ(x)|2+ 4

d dx =
∑
j

‖χ̃ jϕ‖2+
4
d

L
2+ 4

d
x

�
∑
j

‖χ̃ jϕ‖2
Ḣ1
x
‖χ̃ jϕ‖

4
d
L2
x

� ‖ϕ‖H1
x
sup
x∈Rd

(
‖ϕ‖

4
d
L2(Q1(x))

)
,

where the functions χ̃ j = χ
d

2d+4
j satisfy χ̃ j ∈ C∞

0 (Rd), 0 ≤ χ̃ j ≤ 1 and supp(χ̃ j ) ⊂
Q1(x j ).
Let u be the global solution to the defocusing (INLS) with initial data u0 ∈ H1

x .
The conservations of mass and energy show that

sup
t∈R

‖u(t)‖H1
x

< ∞.

Assume by the absurd that there is a sequence tn → ∞ such that

‖u(tn)‖
L
2+ 4

d
x

≥ ε0 > 0, (3.9)

for all n ∈ N. By applying (3.8) with ϕ ≡ u(tn, x), we see from (3.9) that there exists
a sequence (xn)n∈N of Rd such that

‖u(tn)‖L2(Q1(xn)) ≥ ε1 > 0, (3.10)

for all n ∈ N. We now set ψn(t, x) := u(tn, x + xn). By the conservations of mass
and energy,

sup
n∈N

‖ψn‖H1
x

< ∞.
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Thus, up to a subsequence, there exists ψ ∈ H1 such that ψn ⇀ ψ weakly in H1
x . By

Rellich’s compactness lemma, up to a subsequence, we have

lim
n→∞ ‖ψn − ψ‖L2(Q1(0)) = 0. (3.11)

We also have from (3.10) that ‖ψn‖L2(Q1(0)) ≥ ε1. Thus, (3.11) ensures that there
exists a positive real number still denoted by ε1 such that

‖ψ‖L2(Q1(0)) ≥ ε1. (3.12)

Let us now introduce vn(t, x) and v(t, x) as the solutions to

{
i∂tvn + Δvn − |x − xn|−b|vn|αvn = 0,

vn(0) = ψn,

and
{
i∂tv + Δv − |x − xn|−b|v|αv = 0,

v(0) = ψ,

Let χ be any cutoff function supported in Q2(0) such that χ ≡ 1 on Q1(0). We have
from (3.12) and a continuity argument that there exists T1 > 0 such that

inf
t∈(0,T1)

‖χv(t)‖L2
x

≥ ε1

2
.

Next, applying Lemma 2, there exists T2 > 0 and N ∈ N such that

sup
t∈(0,T2)

‖χ(vn(t) − v(t)‖L2
x

≤ ε1

4
,

for all n > N . Thus, we get for all t ∈ (0, T0) with T0 = min{T1, T2} and all n > N ,

‖χvn(t)‖L2
x

≥ ‖χv(t)‖L2
x
− ‖χ(vn(t) − v(t)‖L2

x
≥ ε1

4
.

By the choice of χ , we have for all t ∈ (0, T0) and all n > N ,

‖vn(t)‖L2(Q2(0)) ≥ ε1

4
. (3.13)

By the uniqueness of local solution to the (INLS),

vn(t, x) = u(t + tn, x + xn).

Thus, for all t ∈ (tn, tn + T0) and all n > N ,

‖u(t)‖L2(Q2(xn)) ≥ ε1

4
. (3.14)
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Moreover, as limn→∞ tn = +∞, we can suppose2 that tn+1 − tn > T0 for n > N . By
Hölder’s inequality,

‖u(t)‖Lα+2(Q2(xn)) � ‖u(t)‖L2(Q2(xn)) ≥ ε1

4
, (3.15)

for all t ∈ (tn, tn + T0) and all n > N .

The classical Morawetz inequality (2.8) combined with (3.15) imply

∞ >

∫ +∞

0

∫
Rd

|x |−b−1|u(t, x)|α+2dxdt

�
∑
n>N

∫ tn+T0

tn

∫
Q2(xn)

|u(t, x)|α+2dxdt

�
∑
n>N

(ε1

4

)α+2
T0 = ∞.

This is impossible, and the proof is complete. �

4. Scattering property

In this section, we give the proof of the scattering property given in Theorem 4. To
do this, we use Strichartz estimates and the decaying property given in Theorem 3 to
obtain a bound on global solutions. The scattering property follows easily from the
standard argument.

LEMMA 3. Let d, b and α be as in Theorem 4. Let u be a solution to the defocusing
(INLS) on a spacetime slab J × R

d and t0 ∈ J . Then there exists θ1, θ2 ∈ (0, α) and
q1, q2 ∈ (2, 2�) such that

‖u − eitΔu(t0)‖S(J ) � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1
S(J ) + ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2
S(J ) ,

where ‖u‖S(J ) := ‖ 〈∇〉 u‖S(L2,J ).

Proof. By Duhamel’s formula, the solution to the defocusing (INLS) can be written
as

u(t) = eitΔu(t0) − i
∫ t

t0
ei(t−s)Δ|x |−b|u(s)|αu(s)ds.

The Strichartz estimate (2.3) implies

‖u − eitΔu(t0)‖S(J ) � ‖|x |−b|u|αu‖S′(L2,J ) + ‖∇(|x |−b|u|αu)‖S′(L2,J ).

2 One can reduce the value of T0 and increase the value of N if necessary.
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We next bound

‖|x |−b|u|αu‖S′(L2,J ) ≤ ‖|x |−b|u|αu‖S′(L2(B),J )

+ ‖|x |−b|u|αu‖S′(L2(Bc),J ) =: A1 + A2,

‖∇(|x |−b|u|αu)‖S′(L2,J ) ≤ ‖∇(|x |−b|u|αu)‖S′(L2(B),J )

+ ‖∇(|x |−b|u|αu)‖S′(L2(Bc),J ) =: B1 + B2.

On B By Hölder’s inequality and Remark 1,

A1 ≤ ‖|x |−b|u|αu‖
L
p′1
t (J,L

q′
1
x (B))

� ‖|x |−b‖Lγ1
x (B)

‖|u|αu‖
L
p′1
t (J,L

υ1
x )

� ‖‖u‖α+1
L
q1
x

‖
L
p′1
t (J )

� ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1

L
p1
t (J,L

q1
x )

,

provided that (p1, q1) ∈ S and

1

q ′
1

= 1

γ1
+ 1

υ1
,

d

γ1
> b,

1

υ1
= α + 1

q1
, θ ∈ (0, α),

1

p′
1

= 1 + θ1

p1
.

This implies

d

γ1
= d − d(α + 2)

q1
> b, p1 = θ1 + 2 ∈ (2, α + 2). (4.1)

The first condition in (4.1) is equivalent to q1 >
d(α+2)
d−b . Let us choose

q1 = d(α + 2)

d − b
+ ε, (4.2)

for some 0 < ε � 1 to be chosen later. Since α� < α < α�, by taking ε > 0
sufficiently small, it is easy to see that q1 ∈ (2, 2�). It remains to check p1 < α + 2.
Since (p1, q1) ∈ S, we need to show

2

p1
= d

2
− d

q1
>

2

α + 2
or

d

q1
<

d(α + 2) − 4

2(α + 2)
.

It is in turn equivalent to

d(α + 2)(dα − 4 + 2b) + ε(d − b)[d(α + 2) − 4] > 0.

Since α > α� = 4−2b
d , the above inequality holds true by taking ε > 0 small enough.

We thus obtain

A1 � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1

L
p1
t (J,L

q1
x )

� ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1
S(J ) . (4.3)

We next bound

B1 ≤ ‖|x |−b∇(|u|αu)‖S′(L2(B),J ) + ‖|x |−b−1|u|αu‖S′(L2(B),J ) =: B11 + B12.
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By the fractional chain rule, we estimate

B11 ≤ ‖|x |−b∇(|u|αu)‖
L
p′1
t (J,L

q′
1
x (B))

� ‖|x |−b‖Lγ1
x (B)

‖∇(|u|αu)‖
L
p′1
t (J,L

υ1
x )

� ‖‖u‖α

L
q1
x

‖∇u‖Lq1
x

‖
L
p′1
t (J )

� ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖θ1

L
p1
t (J,L

q1
x )

‖∇u‖L p1
t (J,L

q1
x )

,

provided that (p1, q1) ∈ S and

1

q ′
1

= 1

γ1
+ 1

υ1
,

d

γ1
> b,

1

υ1
= α + 1

q1
,

1

p′
1

= 1 + θ1

q1
, θ1 ∈ (0, α).

This implies

d

γ1
= d − d(α + 2)

q1
> b, p1 = θ1 + 2 ∈ (2, α + 2).

This condition is exactly (4.1). Therefore, we choose q1 as in (4.2) and get

B11 � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖θ1

L
p1
t (J,L

q1
x )

‖∇u‖L p1
t (J,L

q1
x )

� ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1
S(J ) . (4.4)

We next bound

B12 ≤ ‖|x |−b−1|u|αu‖
L
p′1
t (J,L

q′
1
x (B))

� ‖|x |−b−1‖Lγ1
x (B)

‖|u|αu‖
L
p′1
t (J,L

υ1
x )

� ‖‖u‖α

L
q1
x

‖u‖Ln1
x

‖
L
p′1
t (J )

� ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖θ1

L
p1
t (J,L

q1
x )

‖u‖L p1
t (J,L

n1
x )

.

When d ≥ 4 We use the homogeneous Sobolev embedding ‖u‖Ln1
x

� ‖∇u‖Lq1
x
to

have

B12 � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖θ1

L
p1
t (J,L

q1
x )

‖∇u‖L p1
t (J,L

q1
x )

.

The above estimates hold true provided that (p1, q1) ∈ S and

1

q ′
1

= 1

γ1
+ 1

υ1
,

d

γ1
> b + 1,

1

υ1
= α

q1
+ 1

n1
,

1

p′
1

= 1 + θ1

p1
, θ1 ∈ (0, α),

and

q1 < d,
1

n1
= 1

q1
− 1

d
.

Note that the last condition allows us to use the homogeneous Sobolev embedding.
The above requirements imply

d

γ1
= d − d(α + 2)

q1
+ 1 > b + 1, p1 = θ1 + 2 ∈ (2, α + 2).
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This is exactly (4.1). We thus choose q1 as in (4.2). Note that by taking ε > 0 small
enough, the requirement q1 < d is satisfied if

d(α + 2)

d − b
< d or α < d − b − 2. (4.5)

Since d ≥ 4, it is easy to check that α� = 4−2b
d−2 ≤ d − b − 2. We thus get for

d ≥ 4, 0 < b < 2 and α� < α < α�,

B12 � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1
S(J ) . (4.6)

When d = 3We first note that (4.5) does not hold true. We use instead the inhomo-
geneous Sobolev embedding ‖u‖Ln1

x
� ‖ 〈∇〉 u‖Lq1

x
to have

B12 � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖θ1

L
p1
t (J,L

q1
x )

‖ 〈∇〉 u‖L p1
t (J,L

q1
x )

.

The above estimate holds true provided that (p1, q1) ∈ S and

1

q ′
1

= 1

γ1
+ 1

υ1
,

3

γ1
> b + 1,

1

υ1
= α

q1
+ 1

n1
,

1

p′
1

= 1 + θ1

p1
, θ1 ∈ (0, α),

and

3 < q1, n1 ∈ (q1,∞) or
1

n1
= τ

q1
, τ ∈ (0, 1).

Here the last condition ensures the inhomogeneous Sobolev embedding. The above
requirements imply

3

γ1
= 3 − 3(α + 1 + τ)

q1
> b − 1 or

3(α + 1 + τ)

q1
< 2 − b.

Let us choose

q1 = 3(α + 1 + τ)

2 − b
+ ε,

for some 0 < ε � 1 to be chosen later. It remains to check

q1 ∈ (3, 6), p1 ∈ (2, α + 2).

By taking ε > 0 small enough, the condition q1 ∈ (3, 6) implies

1 − b − τ < α < 3 − 2b − τ. (4.7)

Since (p1, q1) ∈ S, the condition3 p1 < α + 2 is equivalent to

3

2
− 3

q1
= 2

p1
>

2

α + 2
.

3 Note that q1 < 6 implies p1 > 2.
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The above condition is then equivalent to

3[3α2 + (1 + 2b)α + 4b − 6 + τ(3α + 2)] + ε(2 − b)(3α + 2) > 0.

By taking ε > 0 sufficiently small, the above inequality holds true provided that

3α2 + (1 + 2b)α + 4b − 6 + τ(3α + 2) > 0. (4.8)

Now, if we take τ closed to 0, (4.7) and (4.8) imply

1 − b < α < 3 − 2b, α >
−1 − 2b + √

4b2 − 44b + 73

6
.

Combining this with the assumption 4−2b
3 = α� < α < α� = 4 − 2b, we have

4 − 2b

3
< α < 3 − 2b, 0 < b <

5

4
. (4.9)

We thus obtain for d = 3 and α, b as in (4.9),

B12 � ‖u‖α−θ1

L∞
t (J,L

q1
x )

‖u‖1+θ1
S(J ) . (4.10)

On Bc By Hölder’s inequality and Remark 1,

A2 ≤ ‖|x |−b|u|αu‖
L
p′2
t (J,L

q′
2
x (Bc))

� ‖|x |−b‖Lγ2
x (Bc)

‖|u|αu‖
L
p′2
t (J,L

υ2
x )

� ‖‖u‖α+1
L
q2
x

‖
L
p′2
t (J )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2

L
p2
t (J,L

q2
x )

,

provided that (p2, q2) ∈ S and

1

q ′
2

= 1

γ2
+ 1

υ2
,

d

γ2
< b,

1

υ2
= α + 1

q2
,

1

p′
2

= 1 + θ2

p2
, θ2 ∈ (0, α).

This implies

d

γ2
= d − d(α + 2)

q2
< b, p2 = θ2 + 2 ∈ (2, α + 2). (4.11)

The first condition in (4.11) implies q2 <
d(α+2)
d−b . Let us choose

q2 = d(α + 2)

d − b
− ε, (4.12)

for some 0 < ε � 1 to be chosen later. By taking ε > 0 small enough, the assumption
α� < α < α� ensures q2 ∈ (2, 2�). It remains to check p2 < α+2. Since (p2, q2) ∈ S,
it is equivalent to

d

2
− d

q2
= 2

p2
>

2

α + 2
or

d

q2
<

d(α + 2) − 4

2(α + 2)
.



Vol. 19 (2019) Energy scattering defocusing inhomogeneous NLS 429

A direct computation shows that the above condition is equivalent to

d(α + 2)(dα − 4 + 2b) − ε(d − b)[d(α + 2) − 4] > 0.

Since α > 4−2b
d , the above inequality holds true by taking ε > 0 small enough. We

thus get

A2 � ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2

L
p2
t (J,L

q2
x )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2
S(J ) . (4.13)

We next bound

B2 ≤ ‖|x |−b∇(|u|αu)‖S′(L2(Bc),J ) + ‖|x |−b−1|u|αu‖S′(L2(Bc),J ) =: B21 + B22.

By the fractional chain rule, Hölder’s inequality and Remark 1,

B21 ≤ ‖|x |−b∇(|u|αu)‖
L
p′2
t (J,L

q′
2
x (Bc))

� ‖|x |−b‖Lγ2
x (Bc)

‖∇(|u|αu)‖
L
p′2
t (J,L

υ2
x )

� ‖‖u‖α

L
q2
x

‖∇u‖Lq2
x

‖
L
p′2
t (J )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖θ2

L
p2
t (J,L

q2
x )

‖∇u‖L p2
t (J,L

q2
x )

,

provided that (p2, q2) ∈ S and

1

q ′
2

= 1

γ2
+ 1

υ2
,

d

γ2
< b,

1

υ2
= α + 1

q2
,

1

p′
2

= 1 + θ2

p2
, θ2 ∈ (0, α).

These conditions are exactly those for A2. We thus choose q2 as in (4.12) and obtain

B21 � ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖θ2

L
p2
t (J,L

q2
x )

‖∇u‖L p2
t (J,L

q2
x )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2
S(J ) . (4.14)

It remains to treat B22. By Hölder’s inequality and Remark 1,

B22 ≤ ‖|x |−b−1|u|αu‖
L
p′2
t (J,L

q′
2
x (Bc))

� ‖|x |−b−1‖Lγ2
x (Bc)

‖|u|αu‖
L
p′2
t (J,L

υ2
x )

� ‖‖u‖α

L
q2
x

‖u‖Ln2
x

‖
L
p′2
t (J )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖θ2

L
p2
t (J,L

q2
x )

‖u‖L p2
t (J,L

n2
x )

,

provided that

1

q ′
2

= 1

γ2
+ 1

υ2
,

d

γ2
< b + 1,

1

υ2
= α

q2
+ 1

n2
,

1

p′
2

= 1 + θ2

p2
, θ2 ∈ (0, α).

(4.15)

As for B12, we separate two cases: d ≥ 4 and d = 3.
When d ≥ 4 We use the homogeneous Sobolev embedding ‖u‖Ln2

x
� ‖∇u‖Lq1

x
provided that

q2 < d,
1

n2
= 1

q2
− 1

d
.
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Thus, (4.15) implies

d

γ2
= d − d(α + 2)

q2
+ 1 < b + 1 or d − d(α + 2)

q2
< b, p2 = θ2 + 2 ∈ (2, α + 2).

This condition is exactly (4.11). We thus choose q2 as in (4.12). Note that by taking
ε > 0 small enough, this condition holds true if we have

d(α + 2)

d − b
< d or α < d − b − 2.

Since d ≥ 4, we always have 4−2b
d−2 < d − b − 2. Therefore, the last estimate holds

true for α� < α < α�. We obtain for d ≥ 4, 0 < b < 2 and α� < α < α�,

B22 � ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖θ2

L
p2
t (J,L

q2
x )

‖∇u‖L p2
t (J,L

q2
x )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2
S(J ) . (4.16)

When d = 3Weuse the inhomogeneous Sobolev embedding ‖u‖Ln2
x

� ‖ 〈∇〉 u‖Lq2
x

provided that

q2 > 3, n2 ∈ (q2,∞) or
1

n2
= τ

q2
, τ ∈ (0, 1).

Thus, (4.15) implies

3

γ2
= 3 − 3(α + 1 + τ)

q2
< b + 1 or

3(α + 1 + τ)

q2
> 2 − b.

Let us choose

q2 = 3(α + 1 + τ)

2 − b
− ε,

for some 0 < ε � 1 to be chosen later. We need to check q2 ∈ (3, 6) and p2 ∈
(2, α + 2). By taking ε > 0 sufficiently small, these conditions hold true if we have

1 − b − τ < α < 3 − 2b − τ, 3α2 + (1 + 2b)α + 4b − 6 + τ(3α + 2) > 0.

Taking τ closed to 0, we have

1 − b < α < 3 − 2b, α >
−1 − 2b + √

4b2 − 44b + 73

6
.

By the assumption 4−2b
3 < α < 4 − 2b, we see that b and α satisfy (4.9). Therefore,

we get for d = 3 and b, α as in (4.9),

B22 � ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖θ2

L
p2
t (J,L

q2
x )

‖ 〈∇〉 u‖L p2
t (J,L

q2
x )

� ‖u‖α−θ2

L∞
t (J,L

q2
x )

‖u‖1+θ2
S(J ) .

(4.17)

Collecting (4.3), (4.4), (4.6), (4.10), (4.13), (4.14), (4.16) and (4.17), we complete the
proof. �
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COROLLARY 2. Let d, b and α be as in Theorem 4. Let u0 ∈ H1(Rd) and u be
the unique global solution to the defocusing (INLS). Then

u ∈ L p
t (R,W 1,q

x ),

for any Schrödinger admissible pair (p, q).

Proof. By applying Lemma 3 with J = (T, t) and using the decaying property given
in Theorem 3, we see that there exist θ1, θ2 ∈ (0, α) such that

‖u‖S((T,t)) � ‖u(T )‖H1
x

+ ε1(T )‖u‖1+θ1
S((T,t)) + ε2(T )‖u‖1+θ2

S((T,t)),

where ε1(T ), ε2(T ) → 0 as T → +∞. By the conservations law and the continuity
argument (see e.g. [2, Lemma 7.7.4] or [22, Section 1.3]), we learn that for T large
enough,

‖u‖S((T,t)) ≤ C,

for some C > 0 independent of t . We thus get u ∈ L p
t ((T,+∞),W 1,q

x ) for any
(p, q) ∈ S. Similarly, we prove as well that u ∈ L p

t ((−∞,−T ),W 1,q
x ) for any

(p, q) ∈ S. Combining these facts and the local well-posedness given in Theorem 2,
we obtain u ∈ L p

t (R,W 1,q
x ) for any Schrödinger admissible pair (p, q). �

We are now able to prove Theorem 4. The proof is based on a standard argument
(see e.g. [2, Section 8.3] or [22, Section 3.6]).

Proof of Theorem 4. Let u be the global solution to the defocusing (INLS) with initial
data u0 ∈ H1

x . By Duhamel’s formula,

u(t) = eitΔu0 − i
∫ t

0
ei(t−s)Δ|x |−b|u(s)|αu(s)ds. (4.18)

As in the proof of Lemma 3,we see that there exists θ1, θ2 ∈ (0, α) and q1, q2 ∈ (2, 2�)

such that

‖ 〈∇〉 (|x |−b|u|αu)‖S′(L2,R) � ‖u‖α−θ1

L∞
t (R,L

q1
x )

‖u‖1+θ1
S(R) + ‖u‖α−θ2

L∞
t (R,L

q2
x )

‖u‖1+θ2
S(R) .

Thus, Theorem 3 and Corollary 2 imply

‖ 〈∇〉 (|x |−b|u|αu)‖S′(L2,R) < ∞. (4.19)

Let 0 < t1 < t2 < +∞. By Strichartz estimates and (4.19), we have

‖e−i t2Δu(t2) − e−i t1Δu(t1)‖H1
x

� ‖ 〈∇〉 (|x |−b|u|αu)‖S′(L2,(t1,t2)) → 0,

as t1, t2 → +∞. This implies that the limit

u+
0 := lim

t→+∞ e−i tΔu(t)
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exists in H1
x . Moreover,

u(t) − eitΔu+
0 = −i

∫ +∞

t
ei(t−s)Δ|x |−b|u(s)|αu(s)ds.

Applying again Strichartz estimates, we get

lim
t→+∞ ‖u(t) − eitΔu+

0 ‖H1
x

= 0.

This shows the energy scattering for positive time, the one for negative time is treated
similarly. The proof is complete. �
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Appendix

In this “Appendix”, we will give the proof of (2.6). Let N (u) = F(x, u) =
|x |−b|u|αu. We compute

∇
(
|x |−b|u|α+2

)
= ∇

(
|x |−b

)
|u|α+2 + |x |−b∇

(
|u|α+2

)

= ∇
(
|x |−b

)
|u|α+2 + (α + 2)|x |−b|u|αRe (∇uu)

= ∇
(
|x |−b

)
|u|α+2 + (α + 2)|x |−b|u|αRe (u∇u).

Similarly,

∇
(
|x |−b|u|α+2

)
= ∇

(
|x |−b|u|αuu

)
= ∇

(
|x |−b|u|αu

)
u + |x |−b|u|αu∇u,

or

∇
(
|x |−b|u|αu

)
u = ∇

(
|x |−b|u|α+2

)
− |x |−b|u|αu∇u.
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Therefore,

{N (u), u}p = Re
(
|x |−b|u|αu∇u − u∇(|x |−b|u|αu)

)

= 2Re
(
|x |−b|u|αu∇u) − ∇(|x |−b|u|α+2

)

= 2

α + 2

(
∇(|x |−b|u|α+2) − ∇(|x |−b)|u|α+2

)
− ∇

(
|x |−b|u|α+2

)

= − α

α + 2
∇

(
|x |−b|u|α+2

)
− 2

α + 2
∇

(
|x |−b

)
|u|α+2.
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