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Abstract. This paper studies regular self-similar solutions of the following diffusion equation

ut + γ |ut | = �u in RN×]0, ∞[,

where −1 < γ < 1. The analysis is focused on radial symmetric solutions u(x, t) = t−α/2 f (η) with
α > 0 and η = ‖x‖/√t . Closed representation is obtained in terms of confluent hypergeometric functions.
Employing specific properties of these special functions, oscillatory and symptotic aspects of f are obtained.
It is demonstrated that such features are governed by increasing and unbounded sequences of exponents
α0 < α1 < · · · , as in other diffusion equations. These exponents are determined by solving a system of
transcendental equations related to specific roots of Kummer and Tricomi functions. As these cannot be
determined using dimensional analysis, it is concluded that they are anomalous. For each exponent αk ,
linear approximation when γ is close to zero is also presented. Finally, relationships with previous results
as well as an extension to other fully nonlinear parabolic equations are discussed.

1. Introduction

Several physical and mathematical aspects associated with nonlinear partial dif-
ferential equations (PDEs) often are captured from particular solutions [10,18,25].
An example of this fact is the class of self-similar solutions [3,8,23]. For parabolic
equations, the structure of such functions is closely related to several general features
such as intermediate asymptotic, large-time behavior, spatial rate decay among oth-
ers [3,11]. Since these results also are applied on more complex models by means
comparison arguments, having closed representations of these solutions for a spe-
cific equation can be useful in the development of qualitative analysis from different
approaches [10,22].
This work studies self-similar solutions of the following diffusion equation

ut + γ |ut | = �u, −1 < γ < 1, (1)

posed in R
N × R

+ with N ≥ 1. This equation was formulated in [4], to model
an elasto-plastic filtration processes throughout an irreversible medium (case 0 <
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γ < 1). Previous results for solving this framework, commonly known as “Barenblatt
equation of elasto-plastic filtration,” has been developed principally on nonnegative
solutions (see [2,3,5,20]). Our attention in (1) arises from their mathematical structure
which is related to other more complex nonlinear models. Specifically, considering
κ = (1 + γ )/(1 − γ ) and t �→ κt , Eq. (1) is written as

ut =
{
max{κ�u,�u}, when κ < 1,
min{κ�u,�u}, when κ > 1.

(2)

Hence, the theory of viscosity solutions is an applicable framework for the study, and
therefore, results for (1) could be used in the understanding of elemental features of
uniformly parabolic equations [6,9,13,17].
We analyze solutions of the form:

u(x, t) = t−α/2 f (η) with η = ‖x‖t−1/2, α > 0, (3)

and f regular, i.e., radial symmetric self-similar solutions with negative homogeneity.
The first proposal here is to construct as well as to show oscillatory and asymptotic
features of f . We describe each profile as solution of nonlinear Cauchy problem in the
classic sense. Following some ideas used in [5,20], the solution is obtained solving a
collection linear Cauchy problems. Closed expressions of f are described in terms of
confluent hypergeometric functions (caloric functions). Employed properties of these
special functions and oscillatory and asymptotic behaviors of f are presented. The
C2,1 regularity of the profile is direct consequence of the nonlinearity of the ODE.
Our first main results reads as follows.

THEOREM 1. There exists an increasing and unbounded sequence of similarity
exponents 0 < α0 < α1 < α2 < · · · such that the associated profile satisfies

f (η) ∼ ηαk−Ne−(1+(−1)kγ )η2/4 for η large, (4)

whereas for the case α 	= αk , the asymptotic behavior is given by f (η) ∼ η−α .
Moreover, for each α such that αk < α ≤ αk+1, f (η) has exactly k+1 zeros in [0,∞[
and if 0 < α ≤ α0, it holds that f (η) > 0 on [0,∞[.
There exist several descriptions for nonnegative solutions. In particular, the exis-

tenceof one-dimensional solution such thatu(x, 0) = 0 as x 	= 0 (source-like solution)
was early shown in [19] and constructed in [5] using parabolic functions, indicating
that α0 should be anomalous. For arbitrary N ≥ 1, in [20] were presented the exis-
tence and asymptotic spatial behaviors of classical nonnegative solutions (i.e., cases
0 < α ≤ α0). Additionally, in [20] it is shown that the self-similar solutions attract
all the solutions with nonnegative and continuous initial data that decay sufficiently
at infinity.
Although physical approaches have focused on nonnegative solutions, our interest

on sign change solutions is based on the similarity with other parabolic models. Par-
ticularly, for the heat equation (case γ = 0) the sequence indicated in Theorem 1 is
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explicitly described by αk = N + 2k (k = 0, 1, . . .), with f representing Kummer
functions (below). For the porous medium equation, similar results also exist. In such
case, the class conformed by compactly supported self-similar (with sign changes)
was presented in [14] where the sequence of anomalous exponents is increasing but
bounded (see also [7,15]). These results can be rewritten conveniently in an equiva-
lent form for the evolution p-Laplacian equation [16] (see [24] for further results and
details).

Results similar to Theorem 1 were developed in [6], where the main goal was
to prove the existence of solutions for (2), which are not C2,1. For v satisfying the
equation in the classic sense, the authors analyzed w = vt with positive homogeneity
and developed a complete description of the class of locally bounded self-similar
functions w. Additionally, a technique allows to relate w with w̃ = ut where w̃ has
negatively self-similar structure.We use this technique to prove that both u and ut have
self-similar structure, and therefore, there exists an explicit relationship between the
families of regular self-similar solutions of (1)with negative and positive homogeneity.
Moreover, we prove a linear correspondence between the anomalous exponents. Our
second proposal includes descriptions of specific features of the anomalous exponents,
as formulated in the following theorem:

THEOREM 2. Consider ν = (N/2) − 1 and Lν
m the (n, ν)-Laguerre polynomial.

Let αk as Theorem 1 and vk+1 the (k + 1)-th root of Lν
k+1. For each k = 0, 1, 2 . . ., it

follows that αk = αk(γ ) is regular function of γ satisfying

∂αk(0)

∂γ
= (−1)k

vν
k+1[Lν

k (vk+1)]2
evk+1

Γ (k + 2)((N/2) + k)

Γ ((N/2) + k)
(5)

with αk(0) = N + 2k the exponent in the sequence for the heat equation.

Note that the case k = 0, previously analyzed in [2], is directly recovered from
(5) by taking L0(z) = 1 and v1 = N/2. Herein, we use a similar procedure which
includes the application of the implicit function theorem (IFT), alongside a self-adjoint
representation of the linearODEs used in the description of theCauchy problem related
to f .

The present work is organized as follows. The Cauchy problem for f is constructed
in Sect. 2.1, and the procedure to solve it in Sect. 2.2. Auxiliary results related to oscil-
latory features are studied in Sect. 2.3. The construction of each f and the description
of asymptotic behaviors are developed in Sect. 3. Section 4 presents the proofs of the
main results of the investigation. Section 5 discusses some relationships with other
fully nonlinear parabolic equations, as well as previous results for (1) obtained in [6].
Finally, Sect. 6 presents the conclusions of this research.
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2. Preliminaries

2.1. Nonlinear Cauchy problem for the profiles f (η)

Consider u(x, t) = t−α/2 f (‖x‖/√t) solution of (1),with f regular function. Di-
rectly

∂u

∂t
= −t−(1+α/2)(α f + η f ′)/2 and �u = t−(1+α/2)( f ′′ + (N − 1) f ′/η), (6)

where the prime denotes differentiation with respect to η. The nonlinearity of the PDE
shall be synthesized using

σ(s) =
{−(1 − γ )/2, s > 0,

−(1 + γ )/2, s ≤ 0.
(7)

As f (0) > 0 it is conveniently normalized by f (0) = 1, whereas f ′(0) = 0 it
is imposed for regularity of u(x, t) at x = 0, the profile f satisfies the following
nonlinear Cauchy problems

⎧⎪⎨
⎪⎩

f ′′ + N−1
η

f ′ = σ(α f + η f ′) · [α f + η f ′], η > 0,

f (0) = 1,
f ′(0) = 0.

(8)

The existence and uniqueness results follow from the Lipschitz regularity of the ex-
pression in the right side in the ODE (8). The solution f shall be described by means a
collection of solutions of linear second-order ODEs that each of them can be expressed
as Kummer equation [see (12) and (14)].
On the other hand, from (6) we notice that ut also has similarity structure. In this

case the profile is given by

F(η) = (η f ′(η) + α f (η))/2. (9)

Using η f ′′ = −(N − 1) f ′ + ησ(F)F can be proved that F ′ = (α + 2 − N ) f ′ +
ησ(F)F . Differentiating the later expression follows

F ′′ + N − 1

η
F ′ = σ(F)[(α + 1)F + ηF ′]. (10)

Representation for F is derived from recurrence relations of caloric functions. The
initial conditions for F are considered as F(0) = α/2 and F ′(0) = 0.

2.2. Outline of the construction of the self-similar solutions

Bymeans Sturm’s oscillatory results can be proved that for each nonnegative integer
n there exists α∗ such that if α ≥ α∗ then F has at least n zeros.
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Considering that F has exactly n zeros, namely 0 < η1 < η2 < · · · < ηn , the
profile f is defined by

f (η) =

⎧⎪⎨
⎪⎩

f1(η), 0 ≤ η ≤ η1,
...

fn+1(η), ηn ≤ η,

(11)

with fm(η) satisfying (m = 1, 2, . . . , n + 1)
⎧⎪⎨
⎪⎩

f ′′
m + N−1

η
f ′
m = − (1+(−1)mγ )

2 (α fm + η f ′
m), ηm−1 < η < ηm,

fm(ηm−1) = fm−1(ηm−1),

f ′
m(ηm−1) = f ′

m−1(ηm−1).

(12)

Here, η0 = 0 and ηn+1 = ∞. For each m = 1, 2, . . . , n + 1, fm is constructed
considering

s = − (1 + (−1)mγ )

4
η2, gm(s) = fm(η). (13)

From these substitutions, the ODE in (12) becomes

sg′′
m + ((N/2) − s)g′

m − (α/2)gm = 0, (14)

which corresponds to Kummer-type second-order ODE with parameters a = α/2
and b = N/2. Thus, each fm(η) is linear combination of confluent hypergeometric
functions, specifically Kummer and Tricomi functions (see [1] Section 13).

Using the initial condition in (8), it follows that f1(η) is described through the
Kummer function with the following series representation

M(α/2, N/2; s) = 1 +
∞∑
k=1

(α/2)k
(N/2)k

sk

k! . (15)

Here, (λ)k denotes the Pochhammer symbol

(λ)0 = 1, (λ)k = Γ (λ + k)

Γ (k)
= λ(λ + 1)(λ + 2) · · · (λ + k − 1). (16)

From recurrence relations of this special function [see (30)], for the existence of η1 it
is necessary that

α > (N − 2)+ = max{N − 2, 0}. (17)

This relation is related to necessary and sufficiently condition for the existence of real
(and positive) zeros of the Kummer function (below). This condition is related to the
asymptotic feature shown in [20] which establishes α0 → (N − 2)+ when γ → −1
(see Theorem 3.2 in such article).
Finally, considering (17)we have that f (η) = f1(η) forα ≤ (N−2)+ and therefore

their description is obtained using (15).
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2.3. Auxiliary results on oscillatory behaviors

Let η1 < η2 < · · · < ηn be the n positive roots of the equation η f ′ + α f = 0.

LEMMA 1. The function f (η) changes sign exactly once in ]ηm−1, ηm[.
Proof. Assume that f (η) has two zeros, namely zm−1 and zm . As f ′(zm−1) · f ′(zm) <

0, we obtain a contradiction with the assumption that ηm−1 < ηm are consecutive.
Now, assume that f (η) does not change sign in ]η1, η2[. Knowing that f (η1) > 0, we
continue working under the assumption f (η) > 0 in ]η1, η2[ and therefore f ′(η) < 0
in such interval (from F(η;α) < 0 in ]η1, η2[).
Directly from the definition of F and the form of the ODE for f in the branch

]η1, η2[, we get
(
e(1+γ )η2/4F

)′ = (α − (N − 2))e(1+γ )η2/4 f ′. Integrating the later

relation over [η1, η2] and using F(η1) = F(η2) = 0, we get
∫ η2

η1

(α − (N − 2))e(1+γ )η2/4 f ′dη = 0

Under the assumption that f ′(η) < 0 in ]η1, η2[ and knowing α > (N − 2)+, a
contradiction is obtained. Thus, the function f (η) changes sign exactly once in the
interval ]η1, η2[. Finally, as
Sign(η f ′

m + α fm) = (−1)m+1 when ηm−1 < η < ηm, m = 1, 2, . . . , n, (18)

following the previous arguments, we obtain the result in each branch ]ηm−1, ηm[. �

LEMMA 2. Let zm−1 < zm be two consecutive zeros of f (η). The function F(η)

changes sign exactly once in ]zm−1, zm[.
Proof. As F(zm−1) · F(zm) < 0, F(η) has at least one zero over ]zm−1, zm[. If we
assume that it has two zeros, we obtain a contradiction with Lemma 1. �

From the explicit representation of each fm [see (28)] and using the implicit func-
tion theorem (IFT), it follows that ηm depends on α. Thus, it is possible to define a
continuous function hm(α) = fm(ηm). The following result is a direct consequence
of Lemma 1.

LEMMA 3. The functions hm(α) do not change signs.

Proof. From Lemma 1 f (η) follows f (ηm) · f (ηm+1) < 0. As F is more oscillatory
than f , the result is obtained from f (η1) > 0. �

Through the above result, we have

Sign( f (ηm)) = (−1)m+1 for each m = 1, 2, . . . , n (19)

Let us complete this section with the following result which will be used later to
characterize the decay rate of f (η) for large η.
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LEMMA 4. The function f (η) does not change sign in ]ηn,∞[ .
Proof. From (18), the sign of F(η) is determined by the parity of n. Let us consider the
case n is odd, i.e., α f +η f ′ < 0 in ]ηn,∞[ and from (19) we have f (ηn) > 0. On the
other hand, by means Lemma 2 we know that f cannot change sign more than once
in ]ηn,∞[. Hence, the proof is obtained by contradiction arguments assuming that
there exists η∗ ∈ [ηn,∞[ such that f (η∗) = 0 . From Lemma 1, we have f (η) < 0
in ]η∗,∞[. As f (η) → 0 when η → ∞, there exists η∗ > η∗ such that f ′(η∗) = 0
and f ′(η) > 0 when η > η∗.
Using f ′′(η;α) → 0 when η → ∞ and the ODE in (8) for η > η∗, we get F → 0

as η → ∞. Similar to the proof of Lemma 1, if f ′(η) > 0 in ]ηn,∞[ and knowing that
α > N − 2, we have (α + 1) f ′ > (N − 1) f ′, i.e., F ′ > −(1 + γ )ηF/2. Integrating
[η∗, η[ and considering F(η∗) = α f (η∗) < 0 follow

−F(η) > −α f (η∗)e−(1+γ )(η∗)2/4e(1+γ )η2/4,

and therefore, F is unbounded, obtaining a contradiction. Finally, if we assume α f +
η f ′ > 0 over ]ηn,∞[, taking F̃(η) = −F(η), we obtain similar contradictions. �

To finish this subsection, we comment that through Lemmas 1 and 4, we get the
following separation relation

η1 < z1 < η2 < z2 < η3 < · · · < ηm−1 < zm−1 < ηm, (20)

where z1 < z2 < · · · < zm−1 are the first m − 1 roots of f . This feature shall be used
to obtain the oscillatory results of f .

3. Construction of f : closed representations and asymptotic behaviors

Given α > (N − 2)+ fixed, throughout this section we assume that F(η) has
exactly n positive zeros, namely η1 < η2 < · · · < ηn . We also consider f satisfying
the Cauchy problem (8) for this selected α. In the next presentation, we consider the
following notations

a = α/2, b = N/2, λm = −(1 + (−1)mγ ), sm = λm(ηm−1)
2/4. (21)

Here, M(a, b; s), U (a, b; s) are used to denote the Kummer and Tricomi confluent
hypergeometric functions and Wm to denote the Wronskian

W{M(a, b; s),U (a, b; s)} = −Γ (b)s−bes/Γ (a), (22)

at sm . We also studied the behavior of f (η) for η large using the asymptotic represen-
tations of the Kummer and Tricomi functions given by
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M(a, b; z) = Γ (b)

Γ (b − a)
(−z)−a

[
N∑

k=0

(a)k(a − b + 1)k
k!(−z)k

+ O(|s|−N )

]
(z < 0),

(23a)

U (a, b; z) = z−a

[
N∑

k=0

(a)k(a − b + 1)k
k!(−z)−k

+ O(|s|−N )

]
. (23b)

The representation in (23a) is not valid for b − a = −l with l = 0, 1, 2, . . .. In such
case, the behavior is obtained by applying the Kummer transformation M(a, b; z) =
e−zM(b − a, b;−z) leaving

M(a, b; z) = e−z
l∑

k=0

(b − a)k

(b)k

(−z)k

k! . (24)

In the study of Gaussian-type decay, it used the following confluent hypergeometric
functions [see formula (10.09) in [21]]

V (a, b; z) = Γ (a)

Γ (b)
e(b−a)iπ M(a, b; z) − Γ (a)

Γ (b − a)
ebiπU (a, b; z), (25)

where V (a, b; z) is also introduced as follows [see (10.03) in [21]]

V (a, b; z) = ezU (b − a, b;−z). (26)

Thus, the asymptotic representation of V (a, b; z) is given by [see formula (10.02) in
[21]]

V (a, b; z) = ez(−z)a−b

[
N∑

k=0

(b − a)k(1 − a)k

k!zk + O(z−N )

]
(z < 0). (27)

SeeChapter 13 in [1] andChapter 9 in [21] for further details for these special functions.

3.1. Closed representations

Let 2 ≤ m ≤ n. From (14) we have1

fm(η) = Am(α)M(a, b; λmη2/4) + Bm(α)U (a, b; λmη2/4). (28)

Using fm(ηm−1) = fm−1(ηm−1), f ′
m(ηm−1) = f ′

m−1(ηm−1), and Fk(ηk) = 0, follows

Am(α) = fm−1(ηm−1)

smWm

(
smU

′(a, b; sm) + aU (a, b; sm)
)
,

Bm(α) = − fm−1(ηm−1)

smWm

(
smM

′(a, b; sm) + aM(a, b; sm)
)
,

(29)

1 For m = 1 we get A1(α) = 1 and B1(α) = 0.
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From the recurrence relations (see formulae 13.4.11 and 13.4.23 in [1])

aM(a, b; s) + sM ′(a, b; s) = aM(a + 1, b; s),
aU (a, b; s) + sU ′(a, b; s) = a(1 + a − b)U (a + 1, b; s), (30)

the constants in (29) are expressed as

Am(α) = a
fm−1(ηm−1)

smWm
(1 + a − b)U (a + 1, b; sm), (31a)

Bm(α) = −a
fm−1(ηm−1)

smWm
M(a + 1, b; sm). (31b)

On the other hand, each ηm is determined by means

Am(α)M(a + 1, b; λmη2/4) = −Bm(α)(1 + a − b)U (a + 1, b; λmη2/4).

From (31), the later relation becomes

U (a+1, b; sm)M(a+1, b; λmη2/4) = U (a+1, b; λmη2/4)M(a+1, b; sm). (32)

3.2. Asymptotic representations

From (11), the asymptotic behavior of f is studied from

fn+1(η) = An+1(α)M(a, b; s) + Bn+1(α)U (a, b; s), (33)

with s = λn+1η
2/4 and An+1(α), Bn+1(α) described in (31).

Firstly, for η large and α = N + 2l (with l = 0, 1, 2, . . .), if B2(α) 	= 0, An+1(α)

M(a, b; s) is recessive, whereas Bn+1(α)U (a, b; s) is dominant. Thus, in such case
we have that

fn+1(η) ∼ B(α)U (a, b; s)
∼ −Γ (a)

Γ (b)
(−sn+1)

b−1 fn(ηn)M(a + 1, b; sn+1)(−s)−a + O(|s|−(1+a))

(34)
For the case α 	= N + 2l, from (25) we write

fn+1(η) = Cn+1(α)M(a, b; s) − Bn+1(α)
Γ (b − a)

Γ (a)
e−bπ i V (a, b; s), (35)

with

Cn+1(α) = An+1(α) + Γ (b − a)

Γ (b)
e−aiπ Bn+1(α). (36)

From (31), the later relation becomes

Cn+1(α) = a
Γ (b − a)

Γ (a)

fn(ηn)

Wn+1sn+1
e−biπV (a + 1, b, sn+1). (37)

Wenotice thatV (a, b; s) is recessive andM(a, b; s) is dominant forη large.Hence, the
change in the asymptotic behavior of fn+1(η) is related to the conditionCn+1(α) = 0.
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Using Lemma 3, we get ( fn(ηn))2 > 0 and therefore the condition Cn+1(α) = 0 is
reduced as

U (b − a − 1, b; (1 − (−1)nγ )η2n/4) = 0, (38)

where V (a, b; s) = esU (b − a, b;−s). On the other hand, when Cn+1(α) = 0,
fn+1(η) takes the form

fn+1(η) = −Bn+1(α)
Γ (b − a)

Γ (a)
e−bπ i V (a, b; s)

= aΓ (b − a)

Γ (b)
(−sn+1)

b−1 fn(ηn)M(b − a − 1, b;−sn+1)V (a, b; s).
(39)

Knowing that U (b − a, b;−s) > 0 for −s large [see (23b)] and (−1)n+1 fn(ηn) > 0
(see Lemma 3), fn+1(η) has the sign of

(−1)n+1Γ (b − a) · M(b − a − 1, b;−sn+1). (40)

Finally, from (23) and (27) the asymptotic behaviors for η large are described by

fn+1(η) ∼ [C̃n+1(α) + O(η−2)]η−α, (41a)

fn+1(η) ∼ [Dn+1(α) + O(η−2)]ηα−Ne−(1−(−1)nγ )η2/4, (41b)

where the first representation is obtained when Cn+1(α) 	= 0, while the second one
for Cn+1(α) = 0. Here, C̃n+1(α) = ((1 − (−1)nγ )/4)−α/2Cn+1(α) and

Dn+1(α) = αΓ (b − a)

2Γ (b)
(−λn+1)

b−a(−sn+1)
b−1 fn(ηn)M(b − a − 1, b;−sn+1).

(42)
We notice that the sign of Dn+1(α) is determined from (40).

4. Proofs of Theorems

Proof Theorem 1. Fixing k ≥ 1, we assume the existence of exponents α0 < · · · <

αk−1. The profile associated with αk−1 is defined through (11) with n = k, and its
asymptotic behavior is given in (41b) fromCk(αk−1) = 0. From the behavior indicated
in (23) and applying Lemmas 3, 4, we get the existence of α∗ > αk−1, the largest
value for which f has exactly one zero on ]ηk,∞[, namely zk . The existence of such
exponent follows from Sturm’s comparison arguments. Using Lemma 1, let ηk+1 > zk
be the largest zero of F defined in (9) [see relation (20)]. For each αk−1 < α < α∗,
the profile f is defined in (11) with n = k + 1 where fk+1 is described in (35). From
Lemma 4, we get (Ck+1(α))2 > 0 and therefore the asymptotic representation is given
in (41a). Using continuity arguments followsCk+1(α

∗) = 0, obtaining the asymptotic
Gaussian-type representation (41b). Taking αk = α∗ and knowing the existence of
α0, the proof is obtained from induction procedure. �
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Proof Theorem 2. Let α0 < · · · < αk−1 be the anomalous exponents indicated in
Theorem 1. Consider α > αk−1 such that F has exactly k + 1 roots, namely η1 <

· · · < ηk+1. For i = 1, . . . , k + 1, let Gi (η1, . . . , ηk+1, α, γ ) = ηi f ′
i + α fi and

Gk+2(η1, . . . , ηk+1, α, γ ) = ηk+1( f ′
k+1/ fk+1 − f ′

k+2/ fk+2). Consider G : Rk+3 →
R
k+2 given by G = (G1, . . . ,Gk+2). The regularity of each fi implies that G ∈ C1.

We study features of αk employing arguments of implicit function from the system
Gi = 0. Using the equationsG1 = · · · = Gk+1 = 0, we get η1, . . . , ηk+1 as functions
of γ . On the other hand, from the last equation in the system, we get

∂αk

∂γ
= − (∂/∂γ )Gk+2

(∂/∂α)Gk+2
. (43)

Each term in the right side is obtained from (12). Let Pm(η) = ηN−1eλmη2/4 and
ϕm = Pm f ′

m/ fm defined in ]ηm−1, ηm[\{zm−1}. We use λm = (1 + (−1)mγ ) and
zm−1 to denote the unique root of fm in ]ηm−1, ηm[ (see Lemma 1). Using the self-
adjoint representation of each (12), we get

ϕ′
m = −(α/2)λm Pm − ϕ2

m/Pm .

Considering φm = (∂/∂α)ϕm and taking the derivative with respect to α in the later
equation, we get

( f 2mφm)′ = −λm Pm f 2m/2. (44)

As the limit f 2mφm at η → zm−1 is well defined, Eq. (44) can be integrated over
[ηm−1, ηm] obtaining2

[ f 2mφm](ηm) − [ f 2mφm](ηm−1) = −(λm/2)
∫ ηm

ηm−1

Pm(w) f 2m(w)dw. (45)

Taking γ → 0 and considering linear combination of each (45) (m = k + 1, . . . , 1),
we have

f 2(ηk+1)φk+1(ηk+1) = f 21 (0)φ1(0) − (1/2)
∫ ηk+1

0
P(w) f 2(w)dw

with P(η) = ηN−1eη2/4 and f (w) = M(αk(0)/2, N/2,−η2/4). From the initial
condition in (8), it follows that φm(0) = 0, and using the Kummer transformation, we
obtain

φk+1(ηk+1) = − 1

2 f 2(ηk+1)

∫ ηk+1

0
wN−1e−w2/4[M(−k, N/2, w2/4)]2dw (46)

where (N − αk(0))/2 = −k. On the other hand, knowing that f 2k+2φk+2 → 0 as
η → ∞, the integration of (45) over [ηk+1,∞[ becomes

−[ f 2k+2φk+2](ηk+1) = −(λk+2/2)
∫ ∞

ηk+1

Pk+2(w) f 2k+2(w)dw.

2 Here, [ f 2mφm ](ηm ) denotes f 2m (ηm )φm (ηm ), similar as [ f 2mφm ](ηm−1).
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Considering γ → 0 in the later equation and combined with (46), we obtain the
following relation

φk+1(ηk+1) − φk+2(ηk+1) = − 1

2 f 2(ηk+1)

∫ ∞

0
wN−1ew2/4 f 2(w)dw. (47)

Let ν = (N/2) − 1 and Lν
m the (n, ν)-Laguerre polynomial. Using the Kummer

transformation and the relation M(−k, N/2, x) = k!Lν
k (x)/(N/2)k , from (47), it

follows
∂Gk+2

∂α
= −2N−1 η2−N

k+1 e
η2k+1/4

2(Lν
k (η

2
k+1/4))

2

∫ ∞

0
zνe−z(Lν

k (z))
2dz

Denoting by vk+1 = η2k+1/4 the (k + 1)-th root of Lν
k+1 [see recurrence relation (30)]

and using the formula 7.414. 3 in [12], the first relation can be obtained

∂Gk+2

∂α
= − v−ν

k+1e
vk+1

[Lν
k (vk+1)]2

Γ ((N/2) + k))

k! . (48)

For the calculation of the numerator in (43), the auxiliary variables zi = −λiη
2/4 and

ϕi (zi ) = fi (η) were used, where η f ′
i / fi = 2ziϕ′

i/ϕi .
Directly (∂/∂γ )(ziϕ′

i/ϕi ) = (ziϕ′
i/ϕi )

′(∂/∂γ )zi . As (∂/∂)zi = (−1)i (−η2/4), from
the ODE (14) and taking γ → 0, we have

∂Gk+2

∂γ
= 4(−1)k(k + 1)((N/2) + k). (49)

Considering (48) and (49) into (43) follows the relation given in (5). �

We comment that the integral relation used in (48) is valid for ν > 0, i.e., for N ≥ 3.
The cases N = 1, 2 are derived directly from the representations of L0(z), L1(z) and
Γ (z).

5. Applications and brief extensions

Close results from Theorem 1 were developed in [6] for positively homogeneous
functions

w(x, t) = (−t)β/2G(‖x‖/√−t), t < 0, β > 0, (50)

with w = vt , and v solution of (2). The authors show the existence of a unbounded
sequence of similarity exponents β for which (50) is locally bounded. Employing the
procedure presented in Sect. 3, we notice that representation for each profile G is
obtained in terms of confluent hypergeometric. Moreover, from recurrence formulae
indicated in (30), it follows that v also has self-similar structure with profile g for
which G(η) = (1/2)(η̃g′ − (β + 2)g), with η = ‖x‖/√−t and g(0) = 1.
Considering Appell transform arguments presented in Section 4 in [6], the later

feature is synthesized as follows

αk = βk+1 + N − 2. (51)
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Thus, profiles for counterexample to C2,1 regularity are described by

g(η) =
{

M(−1 − β/2, N/2, (1 − γ )η2/4), when η ≤ η1,

λ̃U (−1 − β/2, N/2, (1 + γ )η2/4), when η ≥ η1,
(52)

where λ̃ = λ/(a(1 + a − b)) with a = −1 − (β/2) and b = N/2. The values of β1

and η1 are obtained from

M(b − (a + 1), b, z) = 0, (53a)

U (b − (a + 1), b, λz) = 0, (53b)

with a = α0/2, b = N/2 and λ = (1+ γ )/(1− γ ). From the results presented in [2]
and using (51), it follows

β1

2
= 1 + 2(N/2)N/2

Γ (N/2)eN/2 γ + o(γ ), (54)

for γ < 0 sufficiently close to zero. Moreover, it is possible to show that α0 has a
change of concavity at γ = 0, and therefore, from (54) a upper estimation of the
Hölder exponents for the parabolic regularity of v can be obtained.
A remarkable fact of the previous analysis is the relationship between similarity

solutions and some general aspects for solutions of parabolic equations. In this sense,
we comment that our attention in (1) is related to their simple mathematical structure
associated with HJB-type equation of the form

ut = F(D2u), in RN×]0,∞[, (55)

with F(·) elliptic operator defined on matrix space and D2u the Hessian matrix of u
respect to x (see [9] for further details in general models described in terms of HJB
equations).
A special class of Eq. (55) is defined considering the following matrix operators

M−
λ,�(M) = inf

A∈Aλ,�

tr(AM), M+
λ,�(M) = sup

A∈Aλ,�

tr(AM), (56)

where Aλ,� denotes the set of symmetric matrix with eigenvalues belong in [λ,�].
These extremal operators are useful for the qualitative analysis of equations (55) with
F satisfying

M−
λ,�(M) ≤ F(M) ≤ M+

λ,�(M). (57)

Through comparison arguments, preliminaries features for equations (55) can be ob-
tained from results on PDE with diffusion term defined by means (56).
Some features treated in the current work can be extended for these extremal diffu-

sion equations. In such cases, radial self-similar solutions are described by f satisfying
similar Cauchy problem as (8). Such solutions can be useful to construct sub- and su-
perviscosity solutions.
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6. Conclusions

The Barenblatt equation of elasto-plastic filtration was analytically investigated.
From the nonlinearity of this equation, several results treated here can be applied on
other equations with more complex structure.
The proposed procedure is based on the connection between linear Cauchy prob-

lems, which allows constructing radial symmetric self-similar solutions in terms of
confluent hypergeometric functions. The arguments in the proofs were mostly devel-
oped using the properties of these special functions.
The analysis was developed for−1 < γ < 1, knowing that the results for the linear

heat equation are obtained when γ → 0. Oscillatory and asymptotic features of f
are qualitatively similar in the full parametric range. Nevertheless, differences in the
behaviors of the anomalous exponents relative to the sign exist, as can be observed in
the sign of the derivative calculated in Theorem 2.

Although physical approaches for this equations had been derived in the past, such as
descriptions of the features of nonnegative solutions, this article studied the complete
family of self-similar solutions with the form (3), obtaining a full description for
the self-similar solutions of the second kind, as well as elemental properties for the
anomalous exponents.
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