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Global well-posedness and blow-up solutions of the Cauchy problem
for a time-fractional superdiffusion equation

QUANGUO ZHANG AND YANING LI

Abstract. We study the following time-fractional nonlinear superdiffusion equation
ng’quuzlulp, xeRN, >0,

u(0,x) = ug(x), u;(0,x) =uj(x), x e RV,

where | <a <2, p > 1,ug,u; € L9 RN) (g > 1) and g DY u denotes the Caputo fractional derivative
of order «. The critical exponents of this problem are determined when u; = 0 and u $ 0, respectively.

1. Introduction

Fractional differential equations are very useful to describe the phenomena of
anomalous diffusion, Hamiltonian chaos, dynamical systems with chaotic dynamical
behavior, etc. see [16,21,27] and the references therein. In recent years, the time-
fractional diffusion equation has received extensive attentions and mathematical treat-
ments have produced many results, see [4,6,7,17-20,23,28,31-33,35-37] and the
references therein. For example, in [31], the existence and properties of solutions for a
time-fractional equation in a bounded domain were considered by applying the eigen-
function expansions. In [6], the quasilinear abstract time fractional evolution equations
were studied in continuous interpolation spaces. Zacher [36] established maximal reg-
ularity results of type L? for abstract parabolic Volterra equations including problems
with inhomogeneous boundary data by using the purely operator theories. In [17],
the authors gave an L, (L ,)-theory for the semilinear time-fractional equations in R4
with variable coefficients by classical tools in PDE theories such as the Marcinkiewicz
interpolation theorem, the Calderon—Zygmund theorem and perturbation arguments.

This paper is concerned with the blow-up and global existence of solutions to the
Cauchy problem for a nonlinear time-fractional superdiffusion equation

ng‘u—Auz |ul?, x eRN, t>0,
(1.1)

u(0, x) = ug(x), u0,x)=u;(x), x e RV,
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where | <a <2, p > 1,up,u; € LYRY) (g > 1) and

2

d
C no
Diu=—
0= 9:2°

1% u(t, x) — u; (0, x)t — u(0, x)),
0[,27“ denotes the left Riemann—Liouville fractional integral of order 2 — «.

Our interest in studying problem (1.1) comes from its application as a model for
physical systems exhibiting anomalous diffusion. In many complex systems, diffusion
processes usually no longer follow Gaussian statistics, and thus, Fick’s second law
fails to describe the related transport behavior. In classical diffusion, the linear time
dependence of the mean squared displacement can be observed, which describes how
fast particles diffuse, whereas, in anomalous diffusion, the mean squared displacement
of a diffusive particle usually behaves like const-* as t — oo. The diffusion process is
called subdiffusion process for 0 < o < 1, and superdiffusion process for 1 < o < 2,
see, e.g., [12,22].

For the semilinear heat equation

(1.2)

u,—Au:|u|P’lu, xeRY, >0,
u(0, x) = up(x), x € RV,

it is well known that the number p = 1+ % is the critical exponent of this problem. If
l<p<l+ % and ug > 0, then any nontrivial solution of (1.2) blows up in a finite
time, while if p > 1 + % and the initial value uq is small enough in L9 (RY) where
e = w, then the solution of (1.2) exists globally. We refer to [30] for details on
these results.

For the semilinear wave equation

(1.3)

Uy —Au=ul?, xeRY, t>0,
u(0, x) = up(x), u(0,x)=ui(x), x € RV,

the critical exponent is p.(N), which is the positive root of (N — 1)p? — (N + 1)p —
2=0.If1 < p < p:(N), then global solutions of (1.3) do not exist, provided
that ug, u; have compact support and satisfy a certain positivity condition, while if
p > pc(N), then solutions with small initial values exist for all time, see Yordanov
and the references therein. A slightly less sharp result under much weaker assumptions
was obtained by Kato [15]. Kato proved thatif 1 < p < %—ﬂ, then problem (1.3)
admits no global solution.

When u; = 0, we can rewrite (1.1) as
u _ 1
ar  T(—1
u(0,x) =up(x), x € RVN.

t
/ (t — )% 2[Au+ |ulP (s, x)]ds, x eRY, t>0,
0 (1.4)

Recently, this problem has received the attention of many authors, see, e.g.,[1,8,10,11,
13,14,24]. For the linear version of this problem, these articles consider the existence,
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uniqueness, asymptotic behavior of the solution and the properties of fundamental
solution. For the nonlinear version of this problem, Hirato and Miao [14] obtained the

p > 1 + max{c, %}. Miao and Yang [24] proved the global existence of self-similar
solutions for (1.4) with small initial data in a subset of the critical Besov space. In [1],
De Almeida and Ferreira showed the global existence of solutions for (1.4) with small
initial data in the critical Morrey space. Let 1 < s < w, w=N-— -2

ulls.,, denote the norm of Morrey space M, ,(RY). They obtained that if
S y sp ! y

N—u N-—u 1p—1 s 1 (p—1Ds
- < <—<-—and —— < g < 00,
s q o p qg « s—1

then there exist ¢ > 0 and §(¢) such that when ||ug|s,,, < 8, problem (1.4) has a mild

solution u € Hq = {u € BC((0, 00), M; ,(RV)) | tPu € BC((0, 00), My, (RM))},
(N—p)

p et 2qﬂ

Recently, there are many papers that considered the existence and nonexistence of

the global solutions to semilinear time-fractional subdiffusion equations and semilin-
ear diffusion equations with nonlinear memory.

In [9], Fino and Kirane considered the following heat equation with nonlinear mem-
ory

where 8 =

u,+(—A)gu=f0t(t—s)_7’|u|”_luds, xeRN, >0, (15)
u(0,x) = up(x), x e RV, .

where p > 1,0 < 8 <2,0 <y < landug € CO(RN). They generalized the
results of [5] to the case of the fractional differential equation. Using the test function
method [25], they obtained the blow-up results of (1.5) and then determined the Fujita
critical exponent of this problem.

Zhang and Sun [38] considered the following time-fractional subdiffusion equation

ng‘u — Au = |u|”_1u, xeRY >0,
(1.6)
u(0, x) = up(x), x € RV,

where 0 < « < 1, p > 1, and proved that the Fujita critical exponent of (1.6) also
is 1 + % The major difference between problem (1.6) and (1.2) is that the positive
solution of (1.6) can exist globally when p = 1 + %

Motivated by the aforementioned results, in this paper, we study problem (1.1) and
determine the critical exponents of (1.1). In particular, for ug, u; € LY(RV)(g >
max{~5* Npe 1y), we will show that the following results.

GO Ifl<p=<l+
up in finite t1me

@) Ifp > 1+ m, then the solution of (1.4) exists globally when [[uol| 1.4c (r)
N(p=1)
.

m and ug > 0, ug # 0, then all solutions of (1.4) blow

is sufficiently small, where g, =
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gy fN >1,1 <p <1+ M%,"‘_z and ug,u; > 0, u; # 0, then any solution

of (1.1) blows up in finite time. If N = 1 and ug, #; > 0, then any nontrivial
solution of (1.1) blows up in finite time for every p > 1.

(v) N >2,p>1+ 2 and |lug|lrac, llu1ll;q. are sufficiently small, where
ge = M and g, = %’;J&, then the solution of (1.1) exists globally.

Equation (1.1) interpolates the heat equation and the wave equation. For the case
uy1 = 0, the critical exponent 1 + otN—E+2a — 14+ % as o — 1, which is the Fujita
critical exponent of problem (1.2). As ¢« — 2, the critical exponents 1 + wa+2a
and 1 + - %J_r} which is an exponent that appears in a paper by Kato
[15]. Comparlng with the classical results of the heat equation (1.2) and the wave
equation (1.3), the conclusions of problem (1.4) are analogous to the results of (1.2),
but the difference between the time-fractional equation (1.1) with u; # 0 and the
wave equation (1.3) is very apparent.

In [5], Cazenave, Dickstein and Weissler proved that for (1.5) with 8 = 2, the Fujita
critical exponent is not the one which would be predicted from the scaling properties
of the equation. For (1.1) with u#; # 0, we can also find the critical exponent by the
scaling properties of the equation. But for (1.4), we cannot obtain the critical exponent

by the scaling properties of (1.4). In fact, if u(z, x) is a solution of (1.1) with initial

tend to

2a
values uo(x) and u(x), then, for every A > 0, A7~Tu(A%t, A%x) is also a solution of
2a 2a
(1.1) with initial values A 7~Tug(A%x) and )tﬁﬂul()t“x). Since

a 20 _aN
||)»”_'MO()\Q')||Lq(]RN) =Ar-l a ||u0||Lq(]RN)’ (L.7)

2p—2

12772, 0 R 18
ut(A)llpgmny =4 7 @ Nuillpawny (1.8)

it follows that the invariant Lebesgue norms in L (RY) for (1.7) and (1.8) are given
by gc = N (p D and g e = %, respectively. Note that g, > 1 if and only if
p>1+N,andqc l—l—N
is the critical exponent of (1.4) and 1+ %5 is the cr1t1cal exponent of (1.1) with

uy #0. Our results show that 1 + is not the critical exponent of (1.1) withu; =0
and 1 + N 5 is really the critical exponent of (1.1) with u; # 0.

This paper is organized as follows: In Sect. 2, some preliminaries are presented.
In Sect. 3, we give some abstract results that are used to derive our main results in
the next sections. Section 4 is devoted to the local existence and uniqueness of mild
solutions of problem (1.1). In Sect. 5, we show the blow-up and global existence of
the solutions to problem (1.1).

2. Preliminaries

In this section, we present some results about the fractional derivatives and the
fractional integrals that will be used in the next sections (see [16,27]).
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For T > 0, a, B € (0, 2], the Riemann—Liouville fractional integrals are defined
by

1 tu(s) 1 T u(s)

1%u = d &
Ot T Ty Jo (=)

s

T ) oo

The operators o/ and ;I are bounded on L ((0, T')) for 1 < p < +00. Moreover,
Il f = oIf P fand 18,00 f = 5P it £ e L'((0, T)). In addition, if
feLP((0,T)), g € L0, T)) and p,g > 1, 5 + 7 = L, then

T T
/0 oltaf~gdt=fo [ dpgdr.

For o € (1,2] and T > 0, the Caputo fractional derivatives satisfy that if g €
AC2([0, TY), then ng‘g and ,CD%g a.e. exist on [0, T'] and

>, -
§Df'g = T50l7 “[8(s) —8'O)s — g(O)] = o [7 """
CDa _ d_2 12701[ (t) — /(T)t —g(T)] = IZfoz ”
t Tg—dtth 8 8 8 =r 8-

Assuming that f € C'([0, T]), § D f € L'(0,T), g € AC*([0, T]) and g(T) =
g'(T) = 0, we have the following formula of integration by parts

T T
/0 6 Df f - gdi =/0 (f@) = [ (O — f(0)) { DF gdr. 2.0
The Mittag—Leffler function is defined for complex z € C as
o0 k
Eap(@) =Y = a.pcC, Re(@) >0, Eu() = Eai().
’ I'(ak + B) ’

k=0

It is an entire function and satisfies

oIF (1" T Eqa (M) = tEq (M) fora e C, 1 < <2, 22)
(2 Eg g1 (M%) = Eq(M%) fora € C, 1 <a <2, (23)
oIF T Eq(t®) = 1 Eq o (1) fora € C, 1 <o <2, (24)

d
a[t"‘—lEo,,a(m“)] =1 2Eqq (M%), AeC, 1>0, 1 <a <2,(25)

ol Eq (%) = tEy 2 (M1). (2.6)

Let0 < o < 2, & > 0 and let i be a real number such that % < @ < min{r, Ta}.
Then the function Ey g(z) has the integral representation [27]

Eq 5(2)

1 1=
/ xR © e G (e ), 2.7
yenw  §—2

20
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where y (e, u) = {re'*|r > e} U{re *|r > e} U {ee'?| — u <0 < pu}, gé denotes
the principal branch of & a ,and G~ (e, ) denotes the domain lying on the left side of
the contour y (e, ). Moreover,

al 1 1 1
Evp(2)=—)_ TF—anZ O (W) , 2.8)

k=1
with |z| = oo, u < |arg(z)| < m, and N € N. In particular,
Ey(z) = Ey1(2) = : 1—i—O : Eyo(2) = : 1+0 :
all) = Lq,1(Z) = T —a)z 2 sy Lo,al\l) = F(—Ol)zz 3 s

with |z] — oo and u < |arg(z)| < 7.
We also need to calculate the Caputo fractional derivative of the following function.
Forgiven T > Oandn > 1,let p(t) = (1 — %)", t < T.Then

rn+1) __ t\" ¢
C no o
Dip(t)= —— T %(1-= L1 <T,
¢ Do) Fn+1—a) ( T) -

(see, e.g., [16]).
For simplicity, in this paper, we use C to denote a positive constant which may vary
from line to line, but it is not essential for the analysis of the problem.

3. Some abstract results

Let X be a Banach space with norm || - ||. In this section, we suppose that A satisfies
the following:

(i) A: D(A) C X — X is adensely defined and closed operator.

(i) There exist C > 0and 0 € (0, 7 (1 — %)) such that

So={AeClA#0, 0 <|argh| <7} C p(A)

and (M — A7 < 57, & € Sp.

Similar to [20], we define the following two operators.

DEFINITION 3.1. Leta € (1, 2). Forevery up € X, we define the operators Py (¢)
and S, (1) as

1
Py(ug = %/ EqOut*)YA + A) " uoda, ¢ > 0, and Py (O)ug = ug, 3.1)
r

0 (3.2)

1
Se(t)ug = —/ Egq oMYA + A lugdr, t >0, and Su(0)ug = u—,
2mwi Jr I'w)

s

where I" € {y (e, ¢) C p(—A) | e > 0, 7"‘<¢<7‘r—9}.

REMARK 3.2. By (2.8) and using Cauchy’s integral theorem, we know that P, (t)
and S, (¢) are well defined and independent of ¢ and €. The operator P, (¢) corresponds
to the resolvent family of [29].
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Next we give some properties of the operators P, (¢) and S, (¢). Some of these
properties have been obtained in [2] and [29]. For the convenience of proving our
main results and the completeness of the paper, here we give all the properties.

LEMMA 3.3. The operators P, (t) and S, (t) have the following properties.

(i) Foreveryug € X andt > 0, we have

I
Py (Do = —— VAT + A ugdi, e (”—a 7 — 9) Le>0,
2mi v (e, ) 2

Py(t)ug € C([0,400), X) and Py(t)ug € D(A). Moreover, there exists a
constant C > 0 such that

[l

1P @uoll = Clluoll,  |APx(Duoll = C—3

(3.3)

Ifuo & D(A), then Po(t)ug & D*(A).
(i1) Foreveryug € X andt > 0, we have

Se(ug = 1'% 1* " Py (1)ug
tl—(x

Ao -1 o
= - e AT+ A updh, pel—,r—0), >0,
2mi A 2
}/(E,u)
Su(Dug € C([0, +00), X) and So(tH)ug € D(A%). Moreover, there exists a
constant C > 0 such that fort > 0,

lluol lluol
, 1A% Sy (Dugll < €

ISa (ol = Clluoll [14Sa (ol = €= S

(34)

Ifuo & D(A), then Sy (t)ug & D(A).
(iil) Ifuo € X, then for every t > 0, we have P, (t)ug = —A[Olf_lPa(t)uo] and

.,

@[01, T (Py(uo — ug)] = —APy(t)ug.
Moreover, lim;_, o+ t P, (t)ug = 0 for every ug € X.

@iv) Forug € X andt > 0, we know ng‘[OItl Py (Hug] = _A[olrl Py (t)ug] and
there exists a constant C > 0 such that

1ALo 1! Po(t)uolll < lluoll- (3.5

tOl*]

Proof. The proof of (i) and (ii) is similar to that of Theorem 3.2-3.5 in [20], so we
omit it.
(iii) By the dominated convergence theorem, we obtain that for ug € X,
a—1

2mi

PL(Hug = / AMEq.o (1“0 (M + A) " lugda
r
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tafl

=—— / Eq.o (V) AWM + A) " lugdi, 1 > 0. (3.6)
27‘[[ r

Consequently, lim,_, o+ P, (t)ug = 0forug € D(A) and there exists a constant C > 0
such that

C
I Py (o]l < TIIMOII, 1> 0. (3.7

From this and a density argument, we see that lim, _, g+ ¢ P, (t)ug = O forevery ug € X.
Next we prove P (f)ug = —A[OI,“_IP,X (t)up] for ug € X and t > 0 by using the
approximate method. If ug € D(A), it follows from (2.4) that

Al I Py (t)ug) = 018" Py () Aug

1
=57 1 VEy o (1) AGT + A) " lugda
r
1
=7 1%V Eg o (1% Vuod
r
1
-3 1IN o (1 V)M + A) " Lugd
r
la_l
=0 / Eqo (M)A 4+ A ugdr = —PL(Dug.  (3.8)
r

For ug € X, we choose 1, € D(A) such that ug , — uo in X. Then (3.7) implies
that for every § > 0, P, (t)ug,, — P ()ug in C([8, 00), X) as n — oo. In addition,
in terms of ||OIt“71Pa(t)uo|| < CT* ugll, we deduce that OI,‘)“lPa(t)uo,n —
Olf‘_l P, (t)ug in C([0, T], X) as n — oo. Hence, from the closeness of A, we know
(3.8) also holds for ug € X.

Finally, we prove %[oltz_a(ﬂx (Hug — ug)] = —APy(t)ug for every ug € X and
t > 0 by using the approximate method. Indeed, using (3.6) and (2.5), we know that
ta—2
P (t)ug = — 5 /FEa,a_l(t“A)A(u + A lugdr, t >0, ug € X.

So, for ug € D(A), applying (2.3) and Fubini’s theorem, we obtain
2—a p/ 1 o —1
ol 7P, (tug = ~37 Eq(At*)(M + A) Aupdr = —APy(t)up, t > 0.
L Jr

In other words, ng‘ Py(Hug = —AP,(t)ug fort > 0 and ug € D(A).
In the general case, we can find {u¢ ,} C D(A) such that up, — uo in X. Denote
up = Py(t)up . Note that

C
0 thun = —Auy and |u,llx < Clluonllx.

Then, for every T > 0, u,, — Py (t)ug in C([0, T'], X) as n — o0. Since
2—a

12701 <
o7l = 55—

lunllLoe0,1),x), t €10, T,
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we conclude that o /7 u, — (I3 ™% Py(t)ug in C([0, T1, X). In addition, it follows
from (3.3) that

> C

II@[OI,2 *(Py(Ouon — uo)ll = II§ D unll < t—alluo,nll, t>0.

Hence, for every § > 0, there exists w € C([§, 00), X) such that gD;"un — w in
C([8,00), X)asn — o0.

Observing that o[>~ (Po()utg,n — 0,n) = 17~ (Po(t)ug — o) in C([0, T], X)
as n — oo and

a5

§ Dfun = 51017 (Pa(Dyuo.n — uo )] = —Auy, 1 € [5,00).

we get
d2 2—a
w(r) = @[01, (Po(Duo — up)l, t €[4, 00).

It follows from the closeness of A that w(t) = —AP,(t)ug for t € [, 00). In other

2
words, g?[ol,z*“(Pa(t)uo —ug)] = —APy(t)ug for t € [§, 0o). Then, by the arbi-

trariness of §, we get %[oltz_a(Pa(t)uo —ug)] = —AP,(t)ug fort > 0.
(iv)Forug € X, > 0and u € (&, 7 — 0), we deduce from (2.6) that

1
ol Py (t)uo = —/ 1Eq2(®) (W + A) ' upd
27‘[[ r

1
= T2 (24T + A) " lupdr.
27 y(e, )

This implies o' Py (f)ug € D(A) and

1 1
Aly L Py (t)ug] = 5 e 2 dr — —/ T2 + A) M updr.
i Jy (e, ) 27 Jy (e, 1)

Then there exists a constant C > 0 such that ||A[01tl Py(Duolll < Ct'=¥|lug|| for
t >0andug € X.
If ug € D(A), using (3.8), we have

§D0I} Py (tyuo = oI PL(Dug = —o 17 AlgI* ™" Py (t)uo]
= — Al Py(t)uo), t > 0.

An argument similar to the one used in (iii) shows that the above equality also holds
for ug € X. This completes the proof. U

REMARK 3.4. (i) Estimates (3.3) and (3.7) are firstly proved in [29]. Most of
the results of (i) and (ii) in Lemma 3.3 are obtained in [2] and [29] by using the
properties of the solution operators.
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@i1) In [2] and [29], for ug € D(A) and t > 0, the assertion that gD;” Py(Hug =
—AP,(t)ug was obtained by a generation theorem of the analytic solution
operator. In this paper, we prove that this assertion remains true for every up € X
and ¢ > 0 by using the approximate method.

The following Lemma further illustrates the regular properties of Sy (¢), which are
crucial to prove our main results. This Lemma can be obtained by the maximal L”
regularity of time fractional differential equations in [2]. Here, we give a direct proof.

LEMMA 35. Let T > 0 and w = fol(t — 9IS, (t — ) f(s)ds. If f €
L9((0,T),X),q > 1, thenw € C([0, T], X) and

t 1—T
ol %w = / / Py (s) f(r)dsdr.
0 JO

1
Furthermore, if g(a — 1) > 1, then w € C**~'74 ([0, T1, X).

Proof. Since « > 1, we deduce from the dominated convergence theorem that w €
C([0, T], X). By Lemma 3.3(ii), for ug € X and ¢t > 0, we know

t
0LF (1 S (Dug) = oIF (01" Pu(t)uo) = o1, Po(t)ug = / Po(s)uods.
0

Then, Fubini’s theorem implies

1

' s
oI = /0 - s)‘*“/o (s — )% Su(s — 1) f(x)drds

_ 1 t ot - .
_r(z—a)/o /r(l_s) (s = 1) Sa(s — 1) f(r)dsdr

12 -1
- r(zl—a)/o /o (t =5 = D)7 1S, () f()dsde

-7
=/t/ Py (s) f(t)dsdr.
0 JO

1
Next we prove w € Cl’a_1_3([0, T1, X) if g(o — 1) > 1. First, we derive w is

differentiable on [0, T']. Indeed, observing that w(0) = 0 and there exists a constant
C > 0 such that

[
t

c [ a—1 a—1-1
=< [ G=97 N f@)lds =€ e
0
for t > 0, we know w’(0) = 0. From Lemma 3.3(ii), we get

d 1
5[t‘)‘—lsa(t)uo] == o OAT + Al ugdr, t > 0.
vié o

This implies that for # > 0, L[t~ S, (t)ug] € D(A) and

=<

d a—1 C
— 77 Se (H)uol = 7 lluoll (3.9)

dt

g luoll. | AL Suuol
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for some constant C > 0.
By (2.7) and using the fact that 01,2“_2E0, (AtY) = tza_zEa,za_l (AtY), we have

1
01272 Py (tug = o / 122 Eyng 1 (M)W 4+ A) " ugd
r

1
= — T + A ugdr.
2mi v (e )
Then
2002 1 M l—a 1 At o —1

Alol; Py(Hug]l = — A Yupdh — — e AT + A) Tugdr

27i ” 2mi "

y(e5) v(e.§)

o2 d .

= ——ug— — [t Su(t t > 0. 3.10
ra_ D" g Sa®uol, 1> (3.10)

Thus, it follows from (3.9) that there exists a constant C > 0 such that for uy € X
andt > 0,

Consequently, the dominated convergence theorem yields that if f € L1((0,T), X),
q > ﬁ,thenfort >0

(3.11)

—[A(olz“ 2P, (t)uo)]H

d e '
- /O AT a0 f671ds + | F(—f(s)ds

This implies that there exists a constant C > 0 such that
g—1

g ga—g-1
T < | fllLaqo,7),x)
(3.12)

1
||—|| < C/ (t =92 f(s)ds < C (T
and then lim,_, o+ %—lf = 0 = w'(0). Therefore, w is differentiable on [0, T].

_1=1

Finally, we prove w'(¢) € c“ 7([0,T], X). Forh > Oandt +h < T, using

(3.9), (3.10) and (3.11), we have

AL L2 Pa ) £ (5) — o172 Pa () £ ()]l
< Cmin{(t —)* 2, (t = )* R FGIl. s €0,1)

for some constant C > (. Hence
t
|| /0 (AT 12% 2 Put) £ ()] — AloI2 2 Py(t) £ (5)1ds

t
<c / min{(t — %2, (t — $)* A} £ () ds
0

q q=1

! ) 1 h T T
B B S P
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q q—1

400 ) 1 h q—T Tq
<C /0 min {IZ—W, 13_*0‘} dt I fllzao,7),%)

=1
= C|l fllaqo.m).x)h" 4.

On the other hand, by Holder’s inequality, we can easily see that |, é %’{&f; )2 f(s)ds €
1
c* '74([0, T], X) and

t+h t+h
|| / LI Py(t) f()1ds | < C / (t — %2 £ llds
t t

1

-1
= ClfllLaco.1),0h" "4

1
for some constant C > 0. Thus, w € C"*~'74 ([0, T1, X) if f € L4((0, T), X) and
gla—1)>1. O

4. Local existence

In this section, we give the local existence and uniqueness of the mild solution for
problem (1.1).

Let X = LY(RV), 1 < g < 0o0,and A = —A withdomain D(A) = {u € X | Au €
X}. Then, 0 (A) = [0, +00) and the operator A satisfies the assumptions of Sect. 3
(see, e.g., [3,26]). Hence, we can define the operators Py (¢) and S, (¢) on L4 (RN).

REMARK 4.1. Formally, for ug € X,

P = [ Kott.x = o)y, Suouo = [ Ralt.x = yuo)dy,
where
Ko(t,x) = F N E (—1"1€1%), Kolt,x) = F N (Eqo(—1"1€1), t >0, x € RV,

.Z~1 denotes the inverse Fourier transform (see [1, 14]).

REMARK 4.2. Recently, Kim et al. [17] proved that there exists a function
p(t, x) such that p(z, -) is integrable in RY and .Z (p(z, -)) (&) = Eqo(—1%|€|%). Then
Ko (t, x) = p(t, x) and Ko (t, x) = t'79 177 p(z, x).

The following results give the L? — L9 estimates of the operators P, () and Sy (¢),
and the regular properties of Sy (¢) in Lebesgue space.

LEMMA 4.3. The operators P,(t) and S, (t) have the following properties.

i If1 <P§6]S-i-OO,p<—i—oo,and%=l—l < %, then there exists a

Pq
constant C > 0 such that fort > 0,

_aN
| P (D)uoll Laqmry < Ct™ 2 [luoll Lo qyys 4.1)
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aN

||—[P Ouolll La@yy < Ct=' 75 [luoll Lo @w), (4.2)
RNy = (RN)
d -
it LSa (Duolll g any < C1¥7> 5 lluoll Lo e 4.3)
_aN
loZ Pa(®uoll Lageyy < €t~ uoll Logn)- 4.4)
(i) For1 < p <q < +ooand p < +0o0o, zf% = % —é < %, then there exists a
constant C > 0 such that
_aN
1 Sa(utoll Loy < Ct™ 2 |luoll Loy, > 0. 4.5
RY) RY)

(iii) Let T > 0 and w = fot(t — )2 ls,(r — s) f(s)ds. Suppose 1 < p < 400,
1 <q < +ooandr > p satisfy

If f € L1((0,T), LP(RN)), then w € C([0, T1, L"(RN)). In addition, if
r € [p, +o<] satisfies 1/p — 1/r < 2/N and there is y € [0, 1) such that
sup;eo,7) IV N f Dl Lpyy < +00, then w € C((0, T, L"(RY)) and w €
C([0, T, L"(RN)) provided y < o — TN(; - b
Proof. (i) Using the Gagliardo—Nirenberg inequality, we know that there exists a
constant C > 0 such that

P (Dol vy < ClAPo (0l v, | P (z)uonL,,(RN),
||—[Pa(r>uo]||Lq(R~) < C||A—[Pa(z>uo]||L,, RN)H o [Paa)uo]n”(m),

||5[r“*18a<r>uo]||wm) sana[r“*‘sa(wuo]n;p(RN)n 1" Sa @uolll) Gy

||0111Pa(f)M0||Lq(RN) = C”A[()ItlP(X(t)MO]HLp(RN)”OI Py (f)’/‘()”L,,(RN),

where a € [0, 1) andqi = (— — —) +1=¢_ Therefore, by (3.3), (3.4),(3.9) and (3.5),
we know

C _Na
| Poe (B)utoll Lo my < o ”u()”Lp(]RN)”MO”Lp(RN) = Ct™ 7 |luoll Lr rr)»

and (4.2), (4.3) and (4.4) hold.

(i1) The proof is similar to that of (i); hence, it will be omitted.

(iii) To prove the first part of (iii), without loss of generality, we can assume 1 < g <
+00, and we may assume that f € L9((0, T), W>P(R")) by using a regularizing
sequence. As a result, we obtain f € L9((0,T), L™ (R")). Hence, the dominated
convergence theorem yields w € C([0, T], L" (RMY). Tt follows from (4.5) that

Il ey < / (t =9 G £ yds
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gq—1
< C(/t(t _ s)[“‘l—%(%‘rl)]ﬁds
0

) ||f||Lq((0,T),LI’(RN))
< CDISNaqo.).Lr@®Ny)-

J. Evol. Equ.

Thus, a approximate argument leads to w € C([0, T], L™ (RM)) if f e L91((0,T),
LP(RN)).

Finally, we prove the other assertions of (iii). Assume thatsup, ¢ 7y 1 || f ()l Lo &™)
< +o00. Thenfort > 0,h > 0andt+ h < T, we deduce from (4.5) that

t+h
||/ (t+h—$)Se(t +h—s)f(s)ds
t

The rest proof is divided into three cases.
Case1.1—a+%(%—}) > 0.
Note that

aN

Lr@®N) = Ct—Vh”‘*T(zl’ l).

Then, using (4.3), (4.5) and taking /& small, we obtain that there exists a constant C > 0
such that

t
[ / [(t+h =) St +h—9)f(s) = (t =) St — ) f(5)]ds]
0

L7 (RN)
t aN (11 1=h aN (11
< C/ (r— s)a_T(F_F)_ls_yds + C/ (t — s)a_T(ﬁ_F)_zs_ydsh
t—h 0
< Cth"‘_%(%_%).

Case2.1—cx+%(%—})=0.

Since limy,_, o+ 2™ fot*h(t —5)"Ls77ds = 0 for every m > 0, we get

t
I / [(t+h— )" Se(t +h—s5)f(s) — (t —)* ' Se(t —5) f(s)]ds
0

< Ch'=m¢v

L (RN)
for some constant C > 0 when % is small enough.

Case 3. 1 —cx+%(% - }) < 0.
Using (4.3), we have

t
I / [(t+h—5)*'Set+h—5)f(s) = (t —)* ' Se(t — ) f(s)]ds|
0

t aN (1 1
< Ch/ (t — s)"“T(T?)‘Zs—Vds <CtVh
0

L"(RN)
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for some constant C > 0.
To summarize what we have proved, we see that w € C((0, T'], L" (RM)).
In addition, if y < a — %(l — 1y then it is easy to check that there exists a

P r
constant C > 0 such that
_aN(1_1)_
lw Ol @y < Ct* 2 (3-4) v
This implies lim,_, o+ w() = 0in L"(RY). Thus, w € C([0, T, L" (RV)). O

REMARK 4.4. Estimates (4.1) and (4.5) are obtained in [1,14] by applying mul-
tiplier estimates.

According to Definition 5.1 in [20], we give the definition of the mild solution of
(1.1).

DEFINITION 4.5. Let p > 1,1 < « < 2, T > 0 and ug,u; € LI(R"N)
for some ¢ € (1,4+00). We call that u is a mild solution of problem (1.1) if
u € C([0, T], L4(RN)) and satisfies

t
u = Py(t)uo + ol Py (t)uy +/ (t — )" 1Sy (t — 5)|u|Pds.
0

For problem (1.1), we have the following local existence results.

THEOREM 4.6. Let 1 < a < 2 and g, = w Letug,u; € L1(RN), ag. <
q < 4o00. Then there exists T > 0 such that problem (1.1) has a mild solution u in
C([0, T], L1®N)NC((0, T, L" (RN)) and SUP;e(0.7) thr lu(@)lLrwyy < 00, where
Br = %(% - %) andr € (g, +00] satisfies é — % < % This solution is unique in
the class

Na(1_ 1
ue L0, T), LP/@RN)) | sup 12 (i M)||u||L,,q(RN) <oof.
te(0,7T)

. . 1 1 2
Furthermore, if r satisfies pqg <r < +ooand 7T < N then u can be extended to

a maximal interval [0, T*) such thatu € C([0, T*), LY(RN)) N C((0, T*), L"(RN))
and either T* = 400 or T* < +o00 and |[u(t)|| ,rgny — +00ast — T,

Proof. For given T > 0, let

Epgr = {u € L0, T), LY ®RY) | lullg,, ; < 00}, llullE,, s

sup tﬂpq”“(t)”LM(RN),
te(0,7)

where 8,4 = % (ql — pl—q). Then, E,, 7 isaBanach space. Choose M > ||ug Lo mvy+
T|lu1llLqny and let Bk denote the closed ball in E ), 7 with center 0 and radius K.
We define the operator G on E 7 as

t t
Gu)(1) = Pa(t)uo+f Pa(s)ulds+/ (t — )" St — 5)|u(s)|Pds, u € Epgr.
0 0
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It follows from (4.1), (4.4) and (4.5) that there exists a constant C > 0 such that for
u € Bgandtr € (0,7),

tPra 1G @)l Lrawry < Cluolla@wny + Tllurll pa@wny)

t
+ Ctﬁf’q/ (t — ) Pra=Nus)|? ds
0

LP4(RN)
< ClluollLawny + TllutllLa@wny)

+ CKPtPra fl(t — 5)* Pra=lsPPrads

0

< C(lluollparny + Tlluill e wyy)

+ CKPT* PPra /1(1 — §)* Pra= 1 PPrads

0

< CM+CKPTY PPra, (4.6)

The factthatg > ag. > g. guarantees thata — 8,4 > 0, pB,y < landa— pB,, > 0.
So, all the integrals above are convergent. Choose K > 0 and T > 0 so that

CM + CKPTY PPra < K, 4.7
Hence, G maps By into itself. Note that

Hael? = 017 oy < CUIL Gy + 107 Dl = vl oy,

for some constant C > 0 independent of u and v. Similar calculations show that G
is a strict contraction on Bk if T is chosen small enough. Therefore, G possesses a
unique fixed point # in Bg.

Note that sup,¢( 1) 1PBra |||u| || La@nNy < +0o. Then we deduce from Lemma
4.3(iii) and pB,y < o that

t
/ (t — )% 1Sy (r — s)|u|Pds € C([0, T], LY RN)).
0

Thus u € C([0, T1, L4 (RN)).
Since r > ¢ satisfies 1/g — 1/r < 2/N, using (4.1), (4.4), (4.5) and the fact that
PBpg < 1 < a, we have

lﬂ'||u(l)||Lr(RN) = C(lluollpawny + Tllutllpa@wny)
o / I TTO e
< Cllluollawny + TllutllLa@wny)
+ Cthr /Ot(t — 5)* Pt PPragds

< Clluollpawny + TllutllLo@ny)
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1
+ CT* PPra f (1 — )@ Pr=ls=PPrads < +o0. (4.8)
0

In addition, observe thatu € E; 7 and Lemma4.3(iii) imply u € C((0, T'], L" (RN)).
Consequently, u € E,7 N C((0, T], L" (RY)).

Next we prove the uniqueness of the solution. Letu, v € C([0, T], L? (RN NNEpg 1
be the mild solutions of (1.1) for some 7' > 0. Suppose u, v € Bg'. Then, we can take
T’ < T small enough such that (4.7) holds with K replaced by K’. Thus, u(t) = v(t)
fort € [0,T']. When T’ <t < T, we have

() = vl pr @y = C/ (t =) e “Hlus) = v($) oy ds

for some constant C > 0 independent of u and v. Hence, Gronwall’s inequality yields
u(t) =v() forr € [T, T].
Finally, we prove that the existence of maximal time provided r satisfies pg <r <

+o00 and l - % < N—pa We proceed by considering two cases.
Casel pqg <r <+ooand——; < NLpa'
Set

=sup{T > 0| u € E,7 NC((0, T], L"(RY)) is a mild solution}.

Assume T < +o00 and there exists M > 0 such that sup,c 7+ tPr lu @l Lr ww)
M. We claim that there exists M 1 > 0 such that

IA

sup tPra lu (@l Lpg vy < M, and sup [lu(®llLe@wyy < +00. 4.9)
1e(0,T%) 1€(0,T*)

In fact, if r = pg, we have

lu(@llpg@wyy = CluollLawny + llutll Lawny)

/ (t =) )] g ey ds

=< Clluollpawny + lutllpawyy)

aN(p—1

ol
q / (1 =) s PPrads < 400.
0

+ C(THY™

Then the claims are proved.
For the case of pg < r < +00, since g — % <
we can take n € N large enough such that

_ L

1
q p

N —

2
< N—paand

Q=
_
=2l

2
N’

1

i Byip—1 2 1
Lo (M) < et 2 4P

p r rq N

Set x = ("r—q)% andg) =r, qx = qi1x =q1x*', k=2,3,...,n+ 1. Observing
that y < 1 and

o< P _ 1 _ k11<£_i>5 11(£_L>
9k qk+1 X" \r rx X" \r rx
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1 2
:Q——<—, k=1,2,...,n,
pqg pg N
1 1 1 1 1 1 2
—_———<—_——— =< — k=1,2,...,n+1,

9 q g9 q g r Npa

we know that if sup,¢ g 7+ P |lu ()| Lo ®N) < 00, then there exists a constant
C > 0 such that

1Pt |u(0) | Lo vy

< Clluollpawyy + CT* lutll g @y

ﬁ t Q_M(P
+Cl qk+1/(t—S) 2 tar q1\+1 ”u(s)”qu(RN)
0

< Clluoll gy + CT*|lurll g mr)
t

+ CtPas / (t —s)
0

< C(lluoll pawny + T urll Lawyy)

_aNep 1 y_
( qk+1) lsfl’lquds

aN(p—1) _eN(p__1_
4 /(1 ) 7 (g qk+1) s PPads < +o0.

Thus, the assumption that sup, ¢ 7+) 1P |u(r) Il - ryy < M1 implies

sup P74 [[u ()| Lo vy < +00,
1€(0,T*)
and then sup, ¢ g 7+ lu(?)|l 4wy < +00. Therefore, the claims are proved.
Next we verify that lim,_, 7+~ u(¢) exists in L"(RN) N LP4(RY). Indeed, for TT* <
t < v < T*, by the proof of Lemma 4.3(iii) and using (4.1), (4.2), there exists a
m € (0, 1] such that

lu(®) —u()llpr@yy < C(@ =D luollpawny + llutllpawny) + CM{(t — 0™,
(4.10)

lu(®) — u() prany < C(T = 1) (luollLa@yy + lutlla@wyy) + CM? (t - H",
.11

Therefore, lim,_, 7« u(z) exists in L” (RY)NLP4(RN). Denote ur+ = lim,_, 7+ u(r)
and define u(T™*) = upx.
Forh > 0and é§ > 0, let

Eps={ueC(T* T* +h], L"RY) N LPIRN)) | u(T*) = uz+, d(u, ur~) < 8},
where

du,ur+) = max u(t) —ur«|;rmyvy+  max u(t) —ur+ Ny-
(oupe) = max () —ure g+ max e = urelgs)
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It follows from (4.9) and Lemma 4.3(iii) that u € C((0, T*], LP4(@RN) N L"(RN)).
Then we can define the operator K on Eh,a as

t T*
K)() = Py(t)uo +/ P, (s)uids +/ (t — )18, (r — D) |u(v)|Pdr
0 0
t
(t — )18, (t — D)|v(1)|PdT, v € Ejs.
T*

Using Lemmas 4.3, (4.10) and (4.11), we can easily see that K (v) € C([T*, T* +
k], L"(RN) N LP4(RY)) and K (v)(T*) = ug+. Forv € Ej 5 and t € [T*, T* + h],
it follows from the same arguments as above that

K (v)(#) — urs|pr@yy < Ct — T*)(““O”Lq(RN) + ||u1||Lq(RN)) + CMf(l‘ — T*)ﬂl
aNp-1)

+ C(llurs |l @y, + 8P (¢ — T 4.12)

for some positive constant C. Moreover, (4.12) also holds if r is replaced by pg. So
we can choose & small enough such that d(u, ur=) < 6.

On the other hand, for every w, v € Eh,(s, there exists a positive constant C such
that

(p)

- -1
||KU) - KU”L’(RN) < C/ (t - T)o[ (”w”p L™ (RN)

+ IIUIIPr(RN))IIw vl @yydt

aN(p=1)

< C(lur=|lpr +8)P~1he= max w— v ,
(her+llor ey +9) te[T* T*+h] . lere)
and

N(p—=1)

IKw — KvllLpa@ny < Clug+llppe gy + 8P~ h* lw = vll L gw)-

eI T o)
Thus, choosing & small enough so that

o Clur e, + 9P <

(4.13)
we know G is a strict contraction on E 1.8 So the contraction mapping principle implies
G has a fixed point v € Eh,(g.

Define

Cllurs|lprgyy + 8P~ Lo

i) = u(t), t€[0, 7],
“W=Vow), terr T +hl.

Since v(T*) = G(T*)) = u(T*), one can verify easily that & € E, 74y N
C((0, T* + h], L"(RM)) and

t t
u(t) = Py(HHug + / Py(S)urds + [ (t — r)o‘_lSa(t — O)a(r)|Pdr.
0 0
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Because u € Eq 1+, we know u € C([0, T* + h], LY (R™)) by Lemma 4.3(iii).
Thus, (¢) is a mild solution of (1.1), which contradicts the definition of T*.
2

Case 2. r—+ooand—<N—pa

The assumption that 1 7= NLW implies that we can choose m € (%, +00) such

- 1_ 1
that m > pg anda—ﬁ

< NL In this case, we also set
po
*=sup{T >0|ueE7+NC0,T], L’(RN)) is a mild solution}.

Assume T < +00, and there exists M; > 0 such that sup, ¢ 7+ 1P |u(r) lorwyvy <
M. We can also prove that (4.9) holds. Indeed, for T < T*, u € C([0, T], L4(RN))
because u is the mild solution of (1.1). In addition, for ¢ € [T, T*), we conclude that
there exists a positive constant C such that

t
lu @l La@yy < CluollLe @y + ||u1IILq(RN))+C[0 (t—S)“’IIIM(S)IIZ,,q(RN)ds
<C+Cf (t—5)%" 1IIM(S)IILOO(]RN)IILt(S)IILq(RN)Gls
<c+cf t—s)*"ls ds+C/ (t = $)* M)l o @y yds

<C+ C/_ 126(5) Il o v ds.
T

Then it follows from Gronwall’s inequality that sup, c(F. T lu@llLa@myy < +oo.
Therefore, [[u(?) | g vy is bounded on (0, 7).

Noting that
p—1
()Nl g @yy < IIu(t)IILOO(RN)IIu(t)IIU(RN),
(@)l L@y < ||u(t)IILOO’;’RN)|Iu(t)||Lq(RN),
~ _a(p=DN ~
we get u()|lppgny < Mit™ 20 = Myt~Fra and ||u(0)| pagny < Ct=Pi for

some constants M and C. Thus, we get the desired conclusion.

In this case, we can also obtain lim,_, 7+~ u(f) exists in L°(RY) N LP4RY) by
an argument similar to the proof used in Case 1. Furthermore, an argument similar to
one in Case 1 leads to a contradiction. Then we get the desired conclusion. 0

REMARK 4.7. If p > 1 + LN, the assumption ¢ > «q, in Theorem 4.6 can

be weakened to ¢ > aoj\I,VJrz and ¢ > ¢.. In fact, the assumption ¢ > ao‘l\llvf2
. . N

implies Wl\é‘)fg{m > 1, where (aNp — 2¢)+ = max{0, oeNp — 2q}. In view of
q aNg 1 N N
5 < @GN then there exists § € (p, pq] such that & 5~ 5 < "é—q < oé—q
that is, 0 < “ZN(; - é) < ;. By a fixed-point argument in Eg 7, we know if

ug,u; € L4 (RN ), then there exists 7 > 0 such that G has a unique fixed point
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u € E; r.Since pf; < o — %(g - %) andu € Ej; 7, it follows from Lemma 4.3(iii)

that u € C([0, T], L4(RN)) N C((0, T], L4(RY)). Thus, problem (1.1) has a unique
mild solution u in Ej 7.

5. Blow-up and Global existence

In this section, we prove the blow-up and global existence of mild solutions of (1.1).
In order to prove the blow-up results by applying the test function method, we firstly
give the definition of weak solution of (1.1).

DEFINITION 5.1. Let1 <a <2,q > land T > 0. For ug, u; € L} (RV), we
callu € LP((0, T), L? (RM)) is a weak solution of (1.1) if

loc

T T
f / [ulP@ 4 (uo + tur) € D¢@ldedx = f f u(—Ap)drdx + u € D% pdrdx
RN Jo RN Jo

for every ¢ € C,%jtz(RN x [0, T]) and ¢; € ij?(RN x [0, T]) with supp,o cc RV

and ¢(x, T) =0, ¢;(x, T) = 0, where

CoT@®N X [0.T) = (£ .0 | fi fy freois fio frr € CRY % [0, T]), i = 1,2,.... N},
CEORN X [0, T = {f .0 | f. fus frx; € CRY x [0,T]), i =1,2,..., N).

Moreover, if T > 0 can be arbitrarily chosen, then we call u is a global weak solution
of (1.1).

The following Lemma gives the relation between weak solutions and mild solutions
of (1.1). This Lemma is crucial to prove our blow-up results by using the test function
method.

LEMMA 5.2. Let T > 0 and ug,u; € LIRY), ¢ > max{ag., 1}. Ifu €
c(o, ], L4 (RN)) is a mild solution obtained by Theorem 4.6, then u is also a weak
solution of (1.1).

Proof. Assume that u € C([0, T], LY (RM)) is the mild solution of (1.1). Then
t
u—uyg—uit = Py(t)ug — ug — uyt +f Py(s)urds
0
t
+/ (t — )18, (1t — T)|u(x)|Pdr.
0

Observing sup,¢ (o, 1) tPra lu@llLrawyy < 400 and pBp; < 1, we know u €
LP((0,T), LP4(RN)). Then, it follows from Lemma 3.5 that the following equal-
ity holds in L (R")
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0F} (= ug — 1) = 017~ (Pu(O)uo — uo) + oI} *lo1 P (D1 — u11]

t -7
+/ f Py (s)|u(7)|Pdsdr.
0 JO

Thus, for every ¢ € C)%”tz(RN x [0, T]) and ¢; € Cf:?(RN x [0, T1) with supp.ep CC
RN, o(x, T) = 0and ¢;(x, T) = 0, we have

/ ol (u —up —ui)grdx = I + b,
RN
where

I = / 012~ (Py (D)o — o) dx + / 012 oI Po(ity — utlgrd,

I —/ / / Py (8)|u(t)|Pdsdrosdx.
RN

Next we calculate the derivatives of I; and I, and find the values of fo dr ' dt and
fOT %’tz dr. For ¢ > 0, it is easy to check that

dr; d P, 1w
Frle dt[ ol (Py(H)up — up)le,dx + 1, (Po (D)o — ug)@sdx

+ / OI7 ™ (Py(t)uy — u1))gdx + / 01,2*‘)‘(01}Pa(r)u1—umgondx,

d12 / // P(S)lu(T”pde”p”der/ /P(f—f)lu(r)l”drwzdx
RN

=1+ 14, 5.1

where I3 and I4 denote the first and second integrals of (5.1), respectively.
To evaluate integrals of dl 4 and d12 on [0, T'], we proceed as follows.

First, we calculate the 1ntegral fo dl‘ dr. Note that if ug € D(A), then by Lemma
3.3 (i), for t > 0, we have

d
a[olf—m% (Do — uo)] = —o I~ (7' Sy (1) Aug) = — Al Py(ugl.  (5.2)

So, by an argument similar to the proof of Lemma 3.3 (iii) and using Lemma 3.3 (iv),
we know (5.2) remains true for ug € L(RN). Hence, fort > 0 and u € L4(RN), we
obtain

— = —/ ol (P (t)uo) Agydx +/ 02 (Py (1Yo — uo) gy dx
RN RN

+ /I;N(oltz_a(Pa(l)ul —uy))gdx + A‘RN ()Itz_w(ol,1 Py ()uy — uit) g dx.
(5.3)
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Integrating (5.3) from O to 7 and using (5.2), one get

/ ﬂ t_/ / P, (t)u0A<pdxdl+/ / (Py(Hug —MO); D7 pdxdt
0

+/ / oltha(t)ulAq)a’xdt—i-/ / (oI} Py (tyuy — u11)E D%pdxdt.
0 RN 0 RN
54

Next we evaluate the integral fOT %zdt. It follows from (5.1) and Lemma 3.5 that

/Igdt //(ol “w)gpdxdt = // w(t)o Yodxdt, 5.5)

where w(t) = [3(t — 1) S (t — D)lu(r)|Pd.

For convenience, denote f(¢) = |u(z)|”. Then f € L'([0, T], L1(R")). We use a
approximate argument to get the value of fOT I4dt. In fact, if f € L (0, T7), D(A)),
then

/ Lydt = / / f(t)pdxdt +/ / / (t — )" TAS(r — s) f(s)dspdxdt
RN
—/ f f()epdxdt + / / / (t — s)o‘*lSa (t —s)f(s)dsApdxdt.
0 JRN 0o JrN Jo

(5.6)

In the general case, we can choose f;, € L1((0, T), D(A)) such that fan — fin
L'((0,T), L4(RN)) as n — oo. Taking n — oo, we know equality (5.6) also holds
for f € L'([0, T], L1(RN)).

Combining (5.5) and (5.6), we get

dr
/—2dt //w(t) D¢ pdxdt — // |u|? pdxdt
0

+/ f /(t—s)“_lSa(t—s)|u(s)|pdsA(pdxdt. (5.7)
0 RN Jo

As a result, we deduce from (5.4) and (5.7) that

T g T 41 d1
2—a 1 2

= I —ug — urt)prdxdt = — 4+ —=dt
/ dt _/I:RNO o —uitpdx /0 dr dt

/ / (Py()up + o1, Pa(t)ul)Agodxdt—I—/ / (u —uy — ult) DY Todxdt

—/ f |u|1’<pdxdz+/ /N/ (t — ) 1 Se(t — ) |u|PdTr Apdxdt
R
T
/ / uAgodxdt—f-/ / (w—ug—uit); DTgodxdt / /N lu|P pdxdt.
0 JR

In other words, u is a weak solution of (1.1). This completes the proof. 0
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We say the solution u of problem (1.1) blows up in a finite time 7T if
111}1 (2, )l poomry = +00.

First, we give a blow-up result of problem (1.1).

THEOREM 5.3. Let ug, u; € L1(RY), ¢ > max{%, 1} If
1
/ up(x)x (x)dx > 3r-1 and / ur(x)x(x)dx =0,
RN RN

where x(x) = ([gn e N2 gy LoV N*HP then any mild solution of (1.1)
blows up in a finite time.

Proof. Take ¢ € C§°(RY) such that 0 < ¥/ (x) < 1 and

I, [x[ =<1

Vo= {0, x| > 2.

Let ¥,(x) = ¥(3), n = 1,2,... and ¢r € C%([0, T]) with ¢7(T) = 0,
¢p(T) = 0 and ¢r > 0. Assume u € C([0, T, L9(@RN)) is a mild solution of
(1.1). Since g > %, we get from Theorem 4.6 that u € C((0, T], L ([RN))
and sup, (. 7) t%l|u(t)|lLoo(RN) < 4o00. This implies u € L?((0, T), L®(RN)).
It follows from Lemma 5.2 that u is also a weak solution of (1.1). Then, taking
o(x,1) = x () (x)er(t) as a test function in the definition of weak solution, we
have

T T
A{Nf uPXwngontdx—{—/RN/ (uo + tur) x ¥ fD%(pTdtdx
0

/N/ —A(xYa)lordtdx +uy iy DTwrdtdx (5.8)
R

A simple calculation shows that

N |x[? |x|? )

+ +
VNZH+1x2 N2+ Ix2 (N2 4 x2)3
Hence, |[Ax| < 3x. Note that A(x¥y,) = (Ax)¥, +2Vx - Vi, + (Avy) x. Then by
(5.8), letting n — oo and using the dominated convergence theorem, we have

ax=(-

T
[, |t xer + o+ winx € Dggriava
RN JO

T
s/Nf Glulxer + lux C Dior|)dxd. (59)
R 0

Denote f(¢) = fRN lulxdx. Since u € C([0,T], L1(RY)), we know f €
C([0, T']). It follows from Jensen’s inequality and (5.9) that

T T T
f (f? =3 )prdt + / (Bo + Bit); Dfgrdr < / fIf Dorldr,  (5.10)
0 0 0
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where By = [gv toxdx and By = [pyuixdx > 0. Take o7 = 12V (t) where
1} € C§°((0, T)) and 1} > 0. Then we deduce from (5.10) that

T T T
A M?UW—3ﬂ¢dn=A Up—3fh#¢UMt§j;(f—Bo—BﬂﬂML

where we have used the fact that ,CD‘}‘ 17 &(r) = 1/~f(t). This implies
ol (fP =3f)4+ Bo+ Bit < f(1), t € [0, T]. (5.11)

Noting that
1
377 < By = [ woxdx < [ woleds = £0)
RN RN

1
and using the continuity of f, we know that there exists #; > 0 such that f(¢) > 3r-T
fort € [0, #1]. Set

— supls € [0, T]| £&) > 37T, 1 € [0, s1}.

Then 0 < * < T. Suppose that t* < T. By the definition of *, one gets f(¢) >

1
37T fort € [0, ¢*]. Thus, fP(t) > 3f(t) for t € [0, t*]. Consequently, it follows
from (5.11) that

1
f(t) = Bo+ Bit = By > 3771, t € [0,1*].

In particular, f(t*) > 3#. By the continuity of f, we obtain a contradiction. Thus
= T and then f(¢) > By fort € [0, T] by (5.11).
Taking ¢r(t) = (1 — %)k (k > max{2, %}) in (5.10), we know there exists a
constant C > 0 such that for every ¢ > 0,

T T "
f (f? = 3f)prdt + CBoT' ™ + CB\T*® < e/ fPordt + C(e)T' 7T,
0 0

where we have used fo F DFo1(t) = % T!=%. Choose & small enough such that

By > (m)l’—l . Then f(t) > By > (m)l’—' fort € [0, T]. Thus By < CTO[_IiDTal
for some constant C > 0. Assuming that u exists globally, we get By = 0 by taking

1
T — oo, which contradicts By > 37-I. Consequently, Theorem 4.6 guarantees that

u blows up in a finite time. O
Next we give the main results of this paper. For u; = 0, we have the following
results.

THEOREM 5.4. Letug € L9(RY), ¢ > max{™2%, 1} and ug # 0, u; = 0.
W If1 < p < 1+m, and ug > 0 or ug € L™RN) for some m €

[1 ), then any mild solution of (1.1) blows up in a finite time.

’ otN+2 20
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@) Ifp> 1+ m and ||ugl| 7.gc (RN) IS sufficiently small, where g, = N(pzfl),

then the mild solution of (1.1) exists globally.
Proof. (i) Let ® € C(‘)’O(RN) such that ®(x) = 1 for |x| < 1, ®(x) = 0 for |x| > 2
and0 < d(x) < 1.
o 2p
Inthecaseof p < 1 + m, for T > 0, we define ¢7(x) = (CD(T’fx))Pil

and take o7 (1) = (1 — )k, k > max{2, %}. Assume that # is a mild solution of
(1.1). Then, by Lemma 5.2, we have

/ / lul”¢ror + uopr: DYerdxdt
&Y Jo

T
= [ [ u-0ner +usr (€ Dgordsar. (5.12)
R 0
By a simple calculation, we get
2p(p+1) a2 _a
2¢ ) ("”—1) (T Ex)) T 02 (T 5 )

2[] —a _a ptl _o .
S T @I ) P By (T 50), i = 1,2, N
p—

Observing that |®| < 1 and ® € C{° (RNM), one see that

a _2 1
|A¢T| < CT_a((D(T_fx))p—l — CT—a¢71:
for some positive constant C independent of 7'. Since k > p and

'k—+1 t
D oLy (<,

C nao
D ()= —
(Pror®) = r Ty T

]
it follows that there exists a constant C > 0 such that |¢ ¢ DSer| < CT%¢} . Com-

bining the above estimates and observing 0 < ¢7r < 1 and 0 < g7 < 1, we derive

1 1

[(—2dr)er + ¢7(EDSr)| < CT¢7 oF (5.13)

for some positive constant C independent of 7. Thus, using Holder’s inequality, we
deduce from (5.12) and (5.13) that

T T 1 1
f / ul?éror + wodr (€ DEr)ldxds < CT f f ulpL ot dxds
RN JO RN JO
1

a -1 T P
< CT‘“+(1+2N)”p(/ / |u|”¢rgordxdt>p. (5.14)
RN Jo

In other words,

T aN o
/ / lul? prordxdt + CTl—“/ upprdx < CT'HE ~971, (5.15)
RN JO RN
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Note thatif ug € L™ (RY) then 71| [,y uodrdx| < CT =+ "5 by Holder's
inequality, and if ug > O then /RN ug¢prdx > 0. Thus, the second term of the left
hand of (5.15) is either nonnegative or convergent to 0 as T — 4-o00. Suppose that u
exists globally. Then observing 1 + %+ — % < 0 and taking T — oo, we deduce

P
from (5.15) that

+00
/ / lu(t, x)|Pdxdt = 0.
0 RN

This implies # = 0 which contradicts ug £ 0.
For the caseof p = 1+ m, suppose that u is a global weak solution of (1.1).
Then it follows from (5.15) that fo Jrn lulPdxdt < +oo. In this case, we define
o 2p
dr.1(x) = (@(LT 5x))77,0 < L < T, and take ¢(t, x) = ¢ (X)o7 (1) as a test
function. Note that there exists a constant C > 0 independent of T and L such that
1

|(=A¢r.)er + ¢1.0.(f Dier)| < CL*T™ a¢r L‘/’TX{TzL t<px<2rd L)

+CT_a¢T,L(0]Ew

where x denotes the characteristic function of the set {x | T L1

(18 L-1<|x|<2T5 L1}
< |x| <2T2L~1}. Then

T
/ / |u|p¢T,L<Pdedt+CT1_°‘/ uopr,rdx
rY Jo RN

T 1
SCL2(/O /7 eor$ |u|dedr> +CT - 1/ / ¢r.rdxdt
T2<L|x|<2T2

1
=CL2</T/ |u|”dxdt)p +CL_N/ [@(x)]%dx. (5.16)
0o JTi<rx|<27? Ix|<2

Thus, letting T — +o00, we deduce from (5.16) that

+oo 2p
/ / lu|Pdxdt < CL_N/ [ (x)] 7 dx,
0 RN lx|<2

which implies # = 0 by taking L — +o00. This contradicts again the assumption that
ug # 0.

Hence, by Theorem 4.6, we know u blows up in a finite time.

(ii) We construct the global solution of (1.1) by the contraction mapping principle.

Since p > 1 + vaﬁ, we know
N(p—-1
_aNp=D (5.17)
2(pa —p+1)
In terms of (5.17) and (p;;)N < 2‘()‘;\.;(171741_)1), we can choose r > p > 1 4 —aNfg_za
and r < pq. such that
o I  aN o
S (5.18)

< — < .
p—1 p 2r p—1
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et N/1 1 N
p=""(=— o) =22 (5.19)
2 \ge r p— 1 2
Using (5.18) and (5.19), one verifies that
aN(p—1)
0<pB <1, a=2—+(p—1)ﬂ. (5.20)
r

Note that (5.19) and (5.20) imply 0 < qi — 1 < 2 Then, it follows from (4.1) that
for ug € L (RN),
sup 18 || Po (D) uol| 1wy = 1 < +oc. (5.21)
>0
Let
Y = {u e L{5.((0,00), L' RY)) | [lully < oo},

where |lu|ly = sup,.o tﬁ”l/i(t)”Lr(RN). For u € Y, we define
t
W(u)(t) = Py(t)uo +/ (t — )" 'Sy (t — 5)|u(s)|Pds.
0
Set Byy = {u €Y | |lully < M}, where M > 0 is to be chosen sufficiently small. By
Holder’s inequality, Lemmas 4.3(ii) and (5.20), there exists a constant C > 0 such
that for any u, v € Byy and t > 0,
¢ aN(p_1
_l—eN(p_1
PV @) = V@) @y) < Crﬁ/ (=g ey, as

L7 RN)
<Ct’3/ (t — )% 1-=

1
< CMP*‘zﬂ*Pﬁ*%W/ 1—1)"
0

(”u”Lr(RN) + ”v”Lr(RN))”u - U”Lr(]RN)ds

ntN(p

Bl =pB gty — vy
<CMP u—vly.

Thus, if we choose M small enough such that cmpPl < % then |V (u) — VY ()]y <
Tl —vlly.
On the other hand, since

aN

aN (p__1)_
B Ol @y < n+cwzﬂf (s T Bty
+CMP,t €[0,+00),

W maps B, into itself if n and M are chosen small enough. Therefore, W is a strict
contraction. Then the contraction mapping principle implies W has a fixed point u €
By, that is, (1.1) has a mild solution u € By;.

We now have to show u € C([0, 0o), L4(RN)) N C((0, 00), L>®(RN)), where u is
the solution just constructed.
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First, we prove that for 7 > 0 small enough, the solutionu € C([0, T'], LY (RN DI
C((0, T1, L>®(RN)). In fact, the above proof shows that u is the unique solution in

Bur = {u € LS.((0, ), L"RY)) | sup tPllu(@)llr@wy < M}
0<t<T

Since ug € LI(RN) N L9 (RN) and r > ¢, we know ug € L4 (RN) for every
q € (qc, q) and g < r. Observe that the assumption p > 1 + m implies
p > 1+ ~ and g. > aot]\/]\/ f2 Then, using Theorem 4.6 and Remark 4.7, we know that
(1.1)hasa umque solution iz € C({0, T] LI@RN)YNLI@RN) N C(0, T], L®°@RN))
if T is small enough, and sup,_, .1 ¢ ,, ||M([)||LDC(RN) < +o00. Note that ¢ > ¢, and
there exists a constant C > 0 such that

q eN (1 _1) q
Pha@) @y < rﬂnu(t)uLOO(RN)||u<r>||Lq(RN) e &=y iy

for t € (0, T). It follows that we can take T small enough such that sup,_,_7 t*
lu(@)|l vy < M. Thus, by uniqueness, u = u for ¢ € [0, T]. Consequently, u €
C((0, T1, L°@®RN)) nc((o, T1, LYRN) N LI(RN)).

Finally, we prove u € C([T, o0), LY(RY) N L>®(RN)). Indeed, fort > T, we have

t
u— Py(Dug = / (t — )% 1 Se(r — 5)|u|Pds
0

T t

2/ (t—s)“_lSa(t—s)|u|”ds+/ (t — )%V S(t — 5)|u|Pds
0 T

=I5+ Ig.

Sinceu € C([0, T1, L4(RN))NC((0, T], L>°(RV)) and sup,_, 7 + % (@) | oo v
< 00, we obtain Is € C([T, 00), L®(RN)) N C([T, 00), L1(RN)) by an argument
similar to the proof of Lemma 4.3(iii).

For given Ty > T, |ul? € L®((T, Ty), L7 (RY)). Because r > Y2=1 we can
N (g 1 p_ 1 2

7 Nep_ 1 i p_1 1.2 -
choosem > r such that 5 =) < 1.Observing0 < 7 7 < r~@m < y-anargu

ment similar to the one used in Lemma 4.3(iii) shows that Is € C([T, T1], L™ (RN) N
L4 (RM)). By the arbitrariness of Tj, we know I € C([T, o0), L™ (RN) N L4(RN)).
Note that the term Py (-)ug € C([T,o0), L™(RN) N LZ(RN)). Consequently, u €
C(IT. 00), L™ (RN)) N C([0, 00), LI (RN)).

Let x = ';’; Observe that y > 1 and

N p 1 .
— — — — | <1,i=12,....
2 \ryi-l rxt

Repeating the above arguments, we deduce that if u € C([7, 00), L (RM)) then
u € C([T, 00), L"*' (RN)). After finite steps, we get

p 2

r)(i N
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Then u € C((0, 00), L>°(RM)). Therefore, u € C([0, +00), L1(RN)) N C((0, 00),
L% (RN)). This completes the proof. O

For u; # 0, we have the following results.

THEOREM 55. Let N > 2, g. = w and G. = %’;—_11)) Assume that

ug, U] € Lq(RN)forsomeq > max{%, 1} anduy >0, u; # 0.
G Ifl<p<l1+ a]%,—“_z, and uy > 0 or ug € L"™RN) for some m € [1
then any mild solution of (1.1) blows up in a finite time.
) Ifp > 1+ al%,“_z, and |\uoll pae wny and ||luill ac wny are sufficiently small, then
the mild solution of (1.1) exists globally.

’CtN 2)

Proof. (i) By an argument similar to the proof of Theorem 5.4(i), we get

T T 1
[, [ wrerer+ ot wnor € pgenarar < cr= [ "o ofaxar
RN Jo RN JO

< cret(i+ (/ f |u|p¢T<pdedt> . (5.22)

Note that if ug > 0, then it follows from (5.22) that
alN
Tz_“/ urdx < CT'T2 791, (5.23)
RN
and if ug € L™ (RV) then

aN o
T2 /N wirdx < CT' T+ 4 CT“”‘/ uo|prdx
R RN

aN(m 1
< T 4 olmer Y (5.24)
by Holder’s inequality. In addition, in terms of 1 < p < 1+ - ]%,"‘_2 and m < %,
we know % -1 - % < 0 and %ﬁ'r’;l) < 1. Thus, if the solution of (1.1)

exists globally, then taking 7 — oo, we obtain u; = 0 by (5.23) and (5.24), which
contradicts u; # 0.

(i1) We also construct the global solution of (1.1) by the contraction mapping prin-
ciple.

In this case, since p > 1 + M%,O‘_Z > 1+ M\,fﬁ, we know (5.17) also holds. In
view of

20 2—aN 4+ (a@N —=2)2 + 16a(a — 1)
> 1 1 s
ey Aa—1)
we have
Np-1) aN(p—1) X

2p2—p)+ ~ 2pQa—pa+p— Dy
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(p—DN aN(p—1) (p—DN aN(p—1
Note that 5 < 2pa—piD and < 2pCa—patp-DL So we can choose
r > p and r < pq. such that (5.18) and
o aN
—a < +1—a < — (5.25)
p—1 p—1 2r

hold. It follows from (5.25) and (5.18) that 0 < L — 1 < % and0 < + — 1 < %
qc r qc r

Hence, if ug € L% (RV) and u; € L% (RV), then (4.1) and (4.4) imply

sup P (| Py (0o | pr @y + oL Pa et | r mnvy) = 1 < +00.
>0

The rest proof is similar to that of Theorem 5.4(ii), so we omit it. O

REMARK 5.6. The condition p > 1+ 1%10:2 in Theorem 5.5(ii) is required just

for guaranteeing ¢, > 1 and sup,. tP ||OI,l Po(uillprwyy < Clluill gz gy,- Hence,

if one can prove that estimate (4.4) remains true for u; € L' (R"), then the conclusion
of Theorem 5.5(ii) will also be true for p = 1+ w%,—"i2 Note that A is the infinitesimal
generator of the heat semigroup on L' (RV). Thus, the spectral angle of —A on L' (RV)
is less than or equal to some 6y € [0, %). So the assumption (ii) in Sect. 3 holds when
« is close to 1. Consequently, for u € L'(RM), (4.4) holds at least when « is close
to 1. Therefore, the conclusion of Theorem 5.5(ii) is true for p = 1+ ]%,"‘_2 at least
when « is close to 1.

REMARK 5.7. From (5.23), we know any nontrivial mild solution of (1.1) blows
up in a finite time if N = 1 and uq, u; > 0.
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