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Abstract. We study the following time-fractional nonlinear superdiffusion equation

⎧
⎨

⎩

C
0 Dα

t u − �u = |u|p, x ∈ R
N , t > 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
N ,

where 1 < α < 2, p > 1, u0, u1 ∈ Lq (RN ) (q > 1) and C
0 Dα

t u denotes the Caputo fractional derivative
of order α. The critical exponents of this problem are determined when u1 ≡ 0 and u1 �≡ 0, respectively.

1. Introduction

Fractional differential equations are very useful to describe the phenomena of
anomalous diffusion, Hamiltonian chaos, dynamical systems with chaotic dynamical
behavior, etc. see [16,21,27] and the references therein. In recent years, the time-
fractional diffusion equation has received extensive attentions and mathematical treat-
ments have produced many results, see [4,6,7,17–20,23,28,31–33,35–37] and the
references therein. For example, in [31], the existence and properties of solutions for a
time-fractional equation in a bounded domain were considered by applying the eigen-
function expansions. In [6], the quasilinear abstract time fractional evolution equations
were studied in continuous interpolation spaces. Zacher [36] established maximal reg-
ularity results of type L p for abstract parabolic Volterra equations including problems
with inhomogeneous boundary data by using the purely operator theories. In [17],
the authors gave an Lq(L p)-theory for the semilinear time-fractional equations in Rd

with variable coefficients by classical tools in PDE theories such as theMarcinkiewicz
interpolation theorem, the Calderon–Zygmund theorem and perturbation arguments.
This paper is concerned with the blow-up and global existence of solutions to the

Cauchy problem for a nonlinear time-fractional superdiffusion equation

{C
0 D

α
t u − �u = |u|p, x ∈ R

N , t > 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
N ,

(1.1)
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where 1 < α < 2, p > 1, u0, u1 ∈ Lq(RN ) (q > 1) and

C
0 D

α
t u = ∂2

∂t2
0 I

2−α
t (u(t, x) − ut (0, x)t − u(0, x)),

0 I
2−α
t denotes the left Riemann–Liouville fractional integral of order 2 − α.
Our interest in studying problem (1.1) comes from its application as a model for

physical systems exhibiting anomalous diffusion. In many complex systems, diffusion
processes usually no longer follow Gaussian statistics, and thus, Fick’s second law
fails to describe the related transport behavior. In classical diffusion, the linear time
dependence of the mean squared displacement can be observed, which describes how
fast particles diffuse, whereas, in anomalous diffusion, themean squared displacement
of a diffusive particle usually behaves like const·tα as t → ∞. The diffusion process is
called subdiffusion process for 0 < α < 1, and superdiffusion process for 1 < α < 2,
see, e.g., [12,22].
For the semilinear heat equation

{
ut − �u = |u|p−1u, x ∈ R

N , t > 0,
u(0, x) = u0(x), x ∈ R

N ,
(1.2)

it is well known that the number p = 1+ 2
N is the critical exponent of this problem. If

1 < p ≤ 1 + 2
N and u0 ≥ 0, then any nontrivial solution of (1.2) blows up in a finite

time, while if p > 1 + 2
N and the initial value u0 is small enough in Lqc(RN ) where

qc = N (p−1)
2 , then the solution of (1.2) exists globally. We refer to [30] for details on

these results.
For the semilinear wave equation

{
utt − �u = |u|p, x ∈ R

N , t > 0,
u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R

N ,
(1.3)

the critical exponent is pc(N ), which is the positive root of (N − 1)p2 − (N + 1)p −
2 = 0. If 1 < p ≤ pc(N ), then global solutions of (1.3) do not exist, provided
that u0, u1 have compact support and satisfy a certain positivity condition, while if
p > pc(N ), then solutions with small initial values exist for all time, see Yordanov
and the references therein. A slightly less sharp result under muchweaker assumptions
was obtained by Kato [15]. Kato proved that if 1 < p ≤ N+1

N−1 , then problem (1.3)
admits no global solution.
When u1 ≡ 0, we can rewrite (1.1) as
⎧
⎪⎨

⎪⎩

∂u

∂t
= 1

�(α − 1)

∫ t

0
(t − s)α−2[�u + |u|p(s, x)]ds, x ∈ R

N , t > 0,

u(0, x) = u0(x), x ∈ R
N .

(1.4)

Recently, this problemhas received the attention ofmany authors, see, e.g., [1,8,10,11,
13,14,24]. For the linear version of this problem, these articles consider the existence,
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uniqueness, asymptotic behavior of the solution and the properties of fundamental
solution. For the nonlinear version of this problem, Hirato and Miao [14] obtained the

global existence of solutions for (1.4) with small initial data in L
(p−1)N

2 (RN ) when
p > 1 + max{α, 2

N }. Miao and Yang [24] proved the global existence of self-similar
solutions for (1.4) with small initial data in a subset of the critical Besov space. In [1],
De Almeida and Ferreira showed the global existence of solutions for (1.4) with small
initial data in the critical Morrey space. Let 1 < s <

N (p−1)
2 , μ = N − 2s

p−1 , and let

‖u‖s,μ denote the norm of Morrey space Ms,μ(RN ). They obtained that if

N − μ

s
− N − μ

q
< 2, 1 − 1

α

p − 1

p
<

s

q
<

1

α
and

(p − 1)s

s − 1
< q < ∞,

then there exist ε > 0 and δ(ε) such that when ‖u0‖s,μ ≤ δ, problem (1.4) has a mild
solution u ∈ Hq = {u ∈ BC((0,∞), Ms,μ(RN )) | tβu ∈ BC((0,∞), Mq,μ(RN ))},
where β = α

p−1 − α(N−μ)
2q .

Recently, there are many papers that considered the existence and nonexistence of
the global solutions to semilinear time-fractional subdiffusion equations and semilin-
ear diffusion equations with nonlinear memory.
In [9], Fino and Kirane considered the following heat equation with nonlinear mem-

ory
⎧
⎨

⎩

ut + (−�)
β
2 u = ∫ t

0 (t − s)−γ |u|p−1uds, x ∈ R
N , t > 0,

u(0, x) = u0(x), x ∈ R
N ,

(1.5)

where p > 1, 0 < β ≤ 2, 0 ≤ γ < 1 and u0 ∈ C0(R
N ). They generalized the

results of [5] to the case of the fractional differential equation. Using the test function
method [25], they obtained the blow-up results of (1.5) and then determined the Fujita
critical exponent of this problem.
Zhang and Sun [38] considered the following time-fractional subdiffusion equation

{C
0 D

α
t u − �u = |u|p−1u, x ∈ R

N , t > 0,

u(0, x) = u0(x), x ∈ R
N ,

(1.6)

where 0 < α < 1, p > 1, and proved that the Fujita critical exponent of (1.6) also
is 1 + 2

N . The major difference between problem (1.6) and (1.2) is that the positive
solution of (1.6) can exist globally when p = 1 + 2

N .
Motivated by the aforementioned results, in this paper, we study problem (1.1) and

determine the critical exponents of (1.1). In particular, for u0, u1 ∈ Lq(RN )(q >

max{ Npα
2 , 1}), we will show that the following results.

(i) If 1 < p ≤ 1 + 2α
αN+2−2α and u0 ≥ 0, u0 �≡ 0, then all solutions of (1.4) blow

up in finite time.
(ii) If p > 1+ 2α

αN+2−2α , then the solution of (1.4) exists globally when ‖u0‖Lqc (RN )

is sufficiently small, where qc = N (p−1)
2 .
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(iii) If N > 1, 1 < p < 1 + 2α
αN−2 and u0, u1 ≥ 0, u1 �≡ 0, then any solution

of (1.1) blows up in finite time. If N = 1 and u0, u1 ≥ 0, then any nontrivial
solution of (1.1) blows up in finite time for every p > 1.

(iv) If N ≥ 2, p > 1 + 2α
αN−2 and ‖u0‖Lqc , ‖u1‖Lq̃c are sufficiently small, where

qc = N (p−1)
2 and q̃c = αN (p−1)

2(α+p−1) , then the solution of (1.1) exists globally.

Equation (1.1) interpolates the heat equation and the wave equation. For the case
u1 ≡ 0, the critical exponent 1 + 2α

αN+2−2α → 1 + 2
N as α → 1, which is the Fujita

critical exponent of problem (1.2). As α → 2, the critical exponents 1 + 2α
αN+2−2α

and 1 + 2α
αN−2 tend to N+1

N−1 , which is an exponent that appears in a paper by Kato
[15]. Comparing with the classical results of the heat equation (1.2) and the wave
equation (1.3), the conclusions of problem (1.4) are analogous to the results of (1.2),
but the difference between the time-fractional equation (1.1) with u1 �≡ 0 and the
wave equation (1.3) is very apparent.

In [5], Cazenave, Dickstein andWeissler proved that for (1.5) with β = 2, the Fujita
critical exponent is not the one which would be predicted from the scaling properties
of the equation. For (1.1) with u1 �≡ 0, we can also find the critical exponent by the
scaling properties of the equation. But for (1.4), we cannot obtain the critical exponent
by the scaling properties of (1.4). In fact, if u(t, x) is a solution of (1.1) with initial

values u0(x) and u1(x), then, for every λ > 0, λ
2α
p−1 u(λ2t, λαx) is also a solution of

(1.1) with initial values λ
2α
p−1 u0(λαx) and λ

2α
p−1+2u1(λαx). Since

‖λ 2α
p−1 u0(λ

α·)‖Lq (RN ) = λ
2α
p−1− αN

q ‖u0‖Lq (RN ), (1.7)

‖λ 2α
p−1+2u1(λ

α·)‖Lq (RN ) = λ
2α+2p−2

p−1 − αN
q ‖u1‖Lq (RN ), (1.8)

it follows that the invariant Lebesgue norms in Lq(RN ) for (1.7) and (1.8) are given
by qc = N (p−1)

2 and q̃c = αN (p−1)
2(α+p−1) , respectively. Note that qc > 1 if and only if

p > 1 + 2
N , and q̃c > 1 if and only if p > 1 + 2α

αN−2 . Thus, one predicts 1 + 2
N

is the critical exponent of (1.4) and 1 + 2α
αN−2 is the critical exponent of (1.1) with

u1 �≡ 0. Our results show that 1+ 2
N is not the critical exponent of (1.1) with u1 ≡ 0

and 1 + 2α
αN−2 is really the critical exponent of (1.1) with u1 �≡ 0.

This paper is organized as follows: In Sect. 2, some preliminaries are presented.
In Sect. 3, we give some abstract results that are used to derive our main results in
the next sections. Section 4 is devoted to the local existence and uniqueness of mild
solutions of problem (1.1). In Sect. 5, we show the blow-up and global existence of
the solutions to problem (1.1).

2. Preliminaries

In this section, we present some results about the fractional derivatives and the
fractional integrals that will be used in the next sections (see [16,27]).
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For T > 0, α, β ∈ (0, 2], the Riemann–Liouville fractional integrals are defined
by

0 I
α
t u = 1

�(α)

∫ t

0

u(s)

(t − s)1−α
ds, t I

α
T u = 1

�(α)

∫ T

t

u(s)

(s − t)1−α
ds.

The operators 0 I α
t and t I α

T are bounded on L p((0, T )) for 1 ≤ p ≤ +∞. Moreover,

0 I
α
t 0 I

β
t f = 0 I

α+β
t f and t I

α
T t I

β
T f = t I

α+β
T f if f ∈ L1((0, T )). In addition, if

f ∈ L p((0, T )), g ∈ Lq((0, T )) and p, q ≥ 1, 1
p + 1

q = 1, then

∫ T

0
0 I

α
t f · gdt =

∫ T

0
f · t I α

T gdt.

For α ∈ (1, 2] and T > 0, the Caputo fractional derivatives satisfy that if g ∈
AC2([0, T ]), then C

0 D
α
t g and C

t D
α
T g a.e. exist on [0, T ] and

C
0 D

α
t g = d2

dt2 0
I 2−α
t [g(s) − g′(0)s − g(0)] = 0 I

2−α
t g′′,

C
t D

α
T g = d2

dt2 t
I 2−α
T [g(t) − g′(T )t − g(T )] = t I

2−α
T g′′.

Assuming that f ∈ C1([0, T ]), C0 Dα
t f ∈ L1(0, T ), g ∈ AC2([0, T ]) and g(T ) =

g′(T ) = 0, we have the following formula of integration by parts

∫ T

0

C
0 D

α
t f · gdt =

∫ T

0
( f (t) − f ′(0)t − f (0)) C

t D
α
T gdt. (2.1)

The Mittag–Leffler function is defined for complex z ∈ C as

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, α, β ∈ C, Re(α) > 0, Eα(z) = Eα,1(z).

It is an entire function and satisfies

0 I
2−α
t (tα−1Eα,α(λtα)) = t Eα,2(λt

α) for λ ∈ C, 1 < α < 2, (2.2)

0 I
2−α
t (tα−2Eα,α−1(λt

α)) = Eα(λtα) for λ ∈ C, 1 < α < 2, (2.3)

0 I
α−1
t Eα(λtα)) = tα−1Eα,α(λtα) for λ ∈ C, 1 < α < 2, (2.4)

d

dt
[tα−1Eα,α(λtα)] = tα−2Eα,α−1(λt

α), λ ∈ C, t > 0, 1 < α < 2, (2.5)

0 I
1
t Eα(λtα) = t Eα,2(λt

α). (2.6)

Let 0 < α < 2, ε > 0 and let μ be a real number such that πα
2 < μ < min{π, πα}.

Then the function Eα,β(z) has the integral representation [27]

Eα,β(z) = 1

2απ i

∫

γ (ε,μ)

exp(ζ
1
α )ζ

1−β
α

ζ − z
dζ, z ∈ G−(ε, μ), (2.7)
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where γ (ε, μ) = {reiμ|r ≥ ε} ∪ {re−iμ|r ≥ ε} ∪ {εeiθ | − μ ≤ θ ≤ μ}, ξ
1
α denotes

the principal branch of ξ
1
α , and G−(ε, μ) denotes the domain lying on the left side of

the contour γ (ε, μ). Moreover,

Eα,β(z) = −
N∑

k=1

1

�(β − αk)

1

zk
+ O

(
1

zN+1

)

, (2.8)

with |z| → ∞, μ ≤ | arg(z)| ≤ π, and N ∈ N. In particular,

Eα(z) = Eα,1(z) = − 1

�(1 − α)

1

z
+ O

(
1

z2

)

, Eα,α(z) = − 1

�(−α)

1

z2
+ O

(
1

z3

)

,

with |z| → ∞ and μ ≤ | arg(z)| ≤ π.

We also need to calculate the Caputo fractional derivative of the following function.
For given T > 0 and n > 1, let ϕ(t) = (1 − t

T )n, t ≤ T . Then

C
t D

α
Tϕ(t) = �(n + 1)

�(n + 1 − α)
T−α

(

1 − t

T

)n−α

, t ≤ T,

(see, e.g., [16]).
For simplicity, in this paper, we use C to denote a positive constant which may vary

from line to line, but it is not essential for the analysis of the problem.

3. Some abstract results

Let X be a Banach space with norm ‖ ·‖. In this section, we suppose that A satisfies
the following:

(i) A : D(A) ⊂ X → X is a densely defined and closed operator.
(ii) There exist C > 0 and θ ∈ (0, π(1 − α

2 )) such that

Sθ = {λ ∈ C | λ �= 0, θ ≤ |argλ| ≤ π} ⊂ ρ(A)

and ‖(λI − A)−1‖ ≤ C
|λ| , λ ∈ Sθ .

Similar to [20], we define the following two operators.

DEFINITION 3.1. Let α ∈ (1, 2). For every u0 ∈ X,we define the operators Pα(t)
and Sα(t) as

Pα(t)u0 = 1

2π i

∫

�

Eα(λtα)(λI + A)−1u0dλ, t > 0, and Pα(0)u0 = u0, (3.1)

Sα(t)u0 = 1

2π i

∫

�

Eα,α(λtα)(λI + A)−1u0dλ, t > 0, and Sα(0)u0 = u0
�(α)

, (3.2)

where � ∈ {γ (ε, ϕ) ⊆ ρ(−A) | ε > 0, πα
2 < ϕ < π − θ}.

REMARK 3.2. By (2.8) and using Cauchy’s integral theorem, we know that Pα(t)
and Sα(t) are well defined and independent of ϕ and ε. The operator Pα(t) corresponds
to the resolvent family of [29].
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Next we give some properties of the operators Pα(t) and Sα(t). Some of these
properties have been obtained in [2] and [29]. For the convenience of proving our
main results and the completeness of the paper, here we give all the properties.

LEMMA 3.3. The operators Pα(t) and Sα(t) have the following properties.

(i) For every u0 ∈ X and t > 0, we have

Pα(t)u0 = 1

2π i

∫

γ (ε, μ
α )

eλtλα−1(λα I + A)−1u0dλ, μ ∈
(πα

2
, π − θ

)
, ε > 0,

Pα(t)u0 ∈ C([0,+∞), X) and Pα(t)u0 ∈ D(A). Moreover, there exists a
constant C > 0 such that

‖Pα(t)u0‖ ≤ C‖u0‖, ‖APα(t)u0‖ ≤ C
‖u0‖
tα

. (3.3)

If u0 �∈ D(A), then Pα(t)u0 �∈ D2(A).

(ii) For every u0 ∈ X and t > 0, we have

Sα(t)u0 = t1−α
0 I

α−1
t Pα(t)u0

= t1−α

2π i

∫

γ (ε, μ
α )

eλt (λα I + A)−1u0dλ, μ ∈
(πα

2
, π − θ

)
, ε > 0,

Sα(t)u0 ∈ C([0,+∞), X) and Sα(t)u0 ∈ D(A2). Moreover, there exists a
constant C > 0 such that for t > 0,

‖Sα(t)u0‖ ≤ C‖u0‖, ‖ASα(t)u0‖ ≤ C
‖u0‖
tα

, ‖A2Sα(t)u0‖ ≤ C
‖u0‖
t2α

. (3.4)

If u0 �∈ D(A), then Sα(t)u0 �∈ D(A3).
(iii) If u0 ∈ X, then for every t > 0, we have P ′

α(t)u0 = −A[0 I α−1
t Pα(t)u0] and

d2

dt2
[0 I 2−α

t (Pα(t)u0 − u0)] = −APα(t)u0.

Moreover, limt→0+ t P ′
α(t)u0 = 0 for every u0 ∈ X.

(iv) For u0 ∈ X and t > 0, we know C
0 D

α
t [0 I 1t Pα(t)u0] = −A[0 I 1t Pα(t)u0] and

there exists a constant C > 0 such that

‖A[0 I 1t Pα(t)u0]‖ ≤ C

tα−1 ‖u0‖. (3.5)

Proof. The proof of (i) and (ii) is similar to that of Theorem 3.2–3.5 in [20], so we
omit it.
(iii) By the dominated convergence theorem, we obtain that for u0 ∈ X,

P ′
α(t)u0 = tα−1

2π i

∫

�

λEα,α(tαλ)(λI + A)−1u0dλ
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= − tα−1

2π i

∫

�

Eα,α(tαλ)A(λI + A)−1u0dλ, t > 0. (3.6)

Consequently, limt→0+ P ′
α(t)u0 = 0 for u0 ∈ D(A) and there exists a constantC > 0

such that

‖P ′
α(t)u0‖ ≤ C

t
‖u0‖, t > 0. (3.7)

From this and a density argument, we see that limt→0+ t P ′
α(t)u0 = 0 for every u0 ∈ X.

Next we prove P ′
α(t)u0 = −A[0 I α−1

t Pα(t)u0] for u0 ∈ X and t > 0 by using the
approximate method. If u0 ∈ D(A), it follows from (2.4) that

A[0 I α−1
t Pα(t)u0] = 0 I

α−1
t Pα(t)Au0

= 1

2π i

∫

�

tα−1Eα,α(tαλ)A(λI + A)−1u0dλ

= 1

2π i

∫

�

tα−1Eα,α(tαλ)u0dλ

− 1

2π i

∫

�

tα−1λEα,α(tαλ)(λI + A)−1u0dλ

= − tα−1

2π i

∫

�

Eα,α(tαλ)λ(λI + A)−1u0dλ = −P ′
α(t)u0. (3.8)

For u0 ∈ X, we choose u0,n ∈ D(A) such that u0,n → u0 in X . Then (3.7) implies
that for every δ > 0, P ′

α(t)u0,n → P ′
α(t)u0 in C([δ,∞), X) as n → ∞. In addition,

in terms of ‖0 I α−1
t Pα(t)u0‖ ≤ CT α−1‖u0‖, we deduce that 0 I

α−1
t Pα(t)u0,n →

0 I
α−1
t Pα(t)u0 in C([0, T ], X) as n → ∞. Hence, from the closeness of A, we know

(3.8) also holds for u0 ∈ X.

Finally, we prove d2

dt2
[0 I 2−α

t (Pα(t)u0 − u0)] = −APα(t)u0 for every u0 ∈ X and
t > 0 by using the approximate method. Indeed, using (3.6) and (2.5), we know that

P ′′
α (t)u0 = − tα−2

2π i

∫

�

Eα,α−1(t
αλ)A(λI + A)−1u0dλ, t > 0, u0 ∈ X.

So, for u0 ∈ D(A), applying (2.3) and Fubini’s theorem, we obtain

0 I
2−α
t P ′′

α (t)u0 = − 1

2π i

∫

�

Eα(λtα)(λI + A)−1Au0dλ = −APα(t)u0, t > 0.

In other words, C0 D
α
t Pα(t)u0 = −APα(t)u0 for t > 0 and u0 ∈ D(A).

In the general case, we can find {u0,n} ⊂ D(A) such that u0,n → u0 in X . Denote
un = Pα(t)u0,n . Note that

C
0 D

α
t un = −Aun and ‖un‖X ≤ C‖u0,n‖X .

Then, for every T > 0, un → Pα(t)u0 in C([0, T ], X) as n → ∞. Since

‖0 I 2−α
t un‖ ≤ T 2−α

�(3 − α)
‖un‖L∞((0,T ),X), t ∈ [0, T ],
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we conclude that 0 I
2−α
t un → 0 I

2−α
t Pα(t)u0 in C([0, T ], X). In addition, it follows

from (3.3) that

‖ d2

dt2
[0 I 2−α

t (Pα(t)u0,n − u0,n)]‖ = ‖C0 Dα
t un‖ ≤ C

tα
‖u0,n‖, t > 0.

Hence, for every δ > 0, there exists w ∈ C([δ,∞), X) such that C0 D
α
t un → w in

C([δ,∞), X) as n → ∞.
Observing that 0 I

2−α
t (Pα(t)u0,n − u0,n) → 0 I

2−α
t (Pα(t)u0 − u0) in C([0, T ], X)

as n → ∞ and

C
0 D

α
t un = d2

dt2
[0 I 2−α

t (Pα(t)u0,n − u0,n)] = −Aun, t ∈ [δ,∞),

we get

w(t) = d2

dt2
[0 I 2−α

t (Pα(t)u0 − u0)], t ∈ [δ,∞).

It follows from the closeness of A that w(t) = −APα(t)u0 for t ∈ [δ,∞). In other
words, d2

dt2
[0 I 2−α

t (Pα(t)u0 − u0)] = −APα(t)u0 for t ∈ [δ,∞). Then, by the arbi-

trariness of δ, we get d2

dt2
[0 I 2−α

t (Pα(t)u0 − u0)] = −APα(t)u0 for t > 0.
(iv)For u0 ∈ X , t > 0 and μ ∈ (πα

2 , π − θ), we deduce from (2.6) that

0 I
1
t Pα(t)u0 = 1

2π i

∫

�

t Eα,2(λt
α)(λI + A)−1u0dλ

= 1

2π i

∫

γ (ε, μ
α )

eτ tτα−2(τα I + A)−1u0dτ.

This implies 0 I 1t Pα(t)u0 ∈ D(A) and

A[0 I 1t Pα(t)u0] = 1

2π i

∫

γ (ε, μ
α )

eτ tτα−2dτ − 1

2π i

∫

γ (ε, μ
α )

eτ tτ 2α−2(τα I + A)−1u0dτ.

Then there exists a constant C > 0 such that ‖A[0 I 1t Pα(t)u0]‖ ≤ Ct1−α‖u0‖ for
t > 0 and u0 ∈ X .
If u0 ∈ D(A), using (3.8), we have

C
0 D

α
t 0 I

1
t Pα(t)u0 = 0 I

2−α
t P ′

α(t)u0 = −0 I
2−α
t A[0 I α−1

t Pα(t)u0]
= −A[0 I 1t Pα(t)u0], t > 0.

An argument similar to the one used in (iii) shows that the above equality also holds
for u0 ∈ X . This completes the proof. �

REMARK 3.4. (i) Estimates (3.3) and (3.7) are firstly proved in [29]. Most of
the results of (i) and (ii) in Lemma 3.3 are obtained in [2] and [29] by using the
properties of the solution operators.
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(ii) In [2] and [29], for u0 ∈ D(A) and t ≥ 0, the assertion that C0 D
α
t Pα(t)u0 =

−APα(t)u0 was obtained by a generation theorem of the analytic solution
operator. In this paper,we prove that this assertion remains true for every u0 ∈ X
and t > 0 by using the approximate method.

The following Lemma further illustrates the regular properties of Sα(t), which are
crucial to prove our main results. This Lemma can be obtained by the maximal L p

regularity of time fractional differential equations in [2]. Here, we give a direct proof.

LEMMA 3.5. Let T > 0 and w = ∫ t
0 (t − s)α−1Sα(t − s) f (s)ds. If f ∈

Lq((0, T ), X), q ≥ 1, then w ∈ C([0, T ], X) and

0 I
2−α
t w =

∫ t

0

∫ t−τ

0
Pα(s) f (τ )dsdτ.

Furthermore, if q(α − 1) > 1, then w ∈ C1,α−1− 1
q ([0, T ], X).

Proof. Since α > 1, we deduce from the dominated convergence theorem that w ∈
C([0, T ], X). By Lemma 3.3(ii), for u0 ∈ X and t > 0, we know

0 I
2−α
t (tα−1Sα(t)u0) = 0 I

2−α
t (0 I

α−1
t Pα(t)u0) = 0 I

1
t Pα(t)u0 =

∫ t

0
Pα(s)u0ds.

Then, Fubini’s theorem implies

0 I
2−α
t w = 1

�(2 − α)

∫ t

0
(t − s)1−α

∫ s

0
(s − τ)α−1Sα(s − τ) f (τ )dτds

= 1

�(2 − α)

∫ t

0

∫ t

τ

(t − s)1−α(s − τ)α−1Sα(s − τ) f (τ )dsdτ

= 1

�(2 − α)

∫ t

0

∫ t−τ

0
(t − s − τ)1−αsα−1Sα(s) f (τ )dsdτ

=
∫ t

0

∫ t−τ

0
Pα(s) f (τ )dsdτ.

Next we prove w ∈ C1,α−1− 1
q ([0, T ], X) if q(α − 1) > 1. First, we derive w is

differentiable on [0, T ]. Indeed, observing that w(0) = 0 and there exists a constant
C > 0 such that

∥
∥
∥
∥
w(t)

t

∥
∥
∥
∥ ≤ C

t

∫ t

0
(t − s)α−1‖ f (s)‖ds ≤ Ctα−1− 1

q

for t > 0, we know w′(0) = 0. From Lemma 3.3(ii), we get

d

dt
[tα−1Sα(t)u0] = 1

2π i

∫

γ (ε, μ
α )

eλtλ(λα I + A)−1u0dλ, t > 0.

This implies that for t > 0, d
dt [tα−1Sα(t)u0] ∈ D(A) and

∥
∥
∥
∥
d

dt
[tα−1Sα(t)u0]

∥
∥
∥
∥ ≤ C

t2−α
‖u0‖,

∥
∥
∥
∥A

d

dt
[tα−1Sα(t)u0]

∥
∥
∥
∥ ≤ C

t2
‖u0‖ (3.9)
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for some constant C > 0.
By (2.7) and using the fact that 0 I

2α−2
t Eα(λtα) = t2α−2Eα,2α−1(λtα), we have

0 I
2α−2
t Pα(t)u0 = 1

2π i

∫

�

t2α−2Eα,2α−1(λt
α)(λI + A)−1u0dλ

= 1

2π i

∫

γ (ε, μ
α )

etτ τ 1−α(τα I + A)−1u0dτ.

Then

A[0 I 2α−2
t Pα(t)u0] = 1

2π i

∫

γ (ε, μ
α )

eλtλ1−αu0dλ − 1

2π i

∫

γ (ε, μ
α )

eλtλ(λα I + A)−1u0dλ

= tα−2

�(α − 1)
u0 − d

dt
[tα−1Sα(t)u0], t > 0. (3.10)

Thus, it follows from (3.9) that there exists a constant C > 0 such that for u0 ∈ X
and t > 0, ∥

∥
∥
∥
d

dt
[A(0 I

2α−2
t Pα(t)u0)]

∥
∥
∥
∥ ≤ C

t3−α
‖u0‖. (3.11)

Consequently, the dominated convergence theorem yields that if f ∈ Lq((0, T ), X),
q > 1

α−1 , then for t > 0

dw

dt
= −

∫ t

0
A[0 I 2α−2

t−s Pα(t) f (s)]ds +
∫ t

0

(t − s)α−2

�(α − 1)
f (s)ds.

This implies that there exists a constant C > 0 such that

‖dw
dt

‖ ≤ C
∫ t

0
(t − s)α−2‖ f (s)‖ds ≤ C

(
q − 1

qα − q − 1

) q−1
q

T
qα−q−1

q ‖ f ‖Lq ((0,T ),X),

(3.12)
and then limt→0+ dw

dt = 0 = w′(0). Therefore, w is differentiable on [0, T ].
Finally, we prove w′(t) ∈ Cα−1− 1

q ([0, T ], X). For h > 0 and t + h ≤ T , using
(3.9), (3.10) and (3.11), we have

‖A[0 I 2α−2
t+h−s Pα(t) f (s) − 0 I

2α−2
t−s Pα(t) f (s)]‖

≤ C min{(t − s)α−2, (t − s)α−3h}‖ f (s)‖, s ∈ (0, t)

for some constant C > 0. Hence

∥
∥

∫ t

0
[A[0 I 2α−2

t+h−s Pα(t) f (s)] − A[0 I 2α−2
t−s Pα(t) f (s)]ds∥∥

≤ C
∫ t

0
min{(t − s)α−2, (t − s)α−3h}‖ f (s)‖ds

≤ C

( ∫ t

0

(

min

{
1

(t − s)2−α
,

h

(t − s)3−α

}) q
q−1

dτ

) q−1
q ‖ f ‖Lq ((0,T ),X)
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≤ C

( ∫ +∞

0

(

min
{ 1

τ 2−α
,

h

τ 3−α

}) q
q−1

dτ

) q−1
q ‖ f ‖Lq ((0,T ),X)

= C‖ f ‖Lq ((0,T ),X)h
α−1− 1

q .

On the other hand, byHölder’s inequality,we can easily see that
∫ t
0

(t−s)α−2

�(α−1) f (s)ds ∈
Cα−1− 1

q ([0, T ], X) and

∥
∥

∫ t+h

t
A[0 I 2α−2

t+h−s Pα(t) f (s)]ds∥∥ ≤ C
∫ t+h

t
(t − s)α−2‖ f (s)‖ds

= C‖ f ‖Lq ((0,T ),X)h
α−1− 1

q

for some constant C > 0. Thus, w ∈ C1,α−1− 1
q ([0, T ], X) if f ∈ Lq((0, T ), X) and

q(α − 1) > 1. �

4. Local existence

In this section, we give the local existence and uniqueness of the mild solution for
problem (1.1).
Let X = Lq(RN ), 1 < q < ∞, and A = −�with domain D(A) = {u ∈ X | �u ∈

X}. Then, σ(A) = [0,+∞) and the operator A satisfies the assumptions of Sect. 3
(see, e.g., [3,26]). Hence, we can define the operators Pα(t) and Sα(t) on Lq(RN ).

REMARK 4.1. Formally, for u0 ∈ X,

Pα(t)u0 =
∫

RN
Kα(t, x − y)u0(y)dy, Sα(t)u0 =

∫

RN
K̃α(t, x − y)u0(y)dy,

where

Kα(t, x) = F−1(Eα(−tα|ξ |2)), K̃α(t, x) = F−1(Eα,α(−tα|ξ |2)), t > 0, x ∈ R
N ,

F−1 denotes the inverse Fourier transform (see [1,14]).

REMARK 4.2. Recently, Kim et al. [17] proved that there exists a function
p(t, x) such that p(t, ·) is integrable in RN andF (p(t, ·))(ξ) = Eα(−tα|ξ |2). Then
Kα(t, x) = p(t, x) and K̃α(t, x) = t1−α

0 I
α−1
t p(t, x).

The following results give the L p − Lq estimates of the operators Pα(t) and Sα(t),
and the regular properties of Sα(t) in Lebesgue space.

LEMMA 4.3. The operators Pα(t) and Sα(t) have the following properties.

(i) If 1 < p ≤ q ≤ +∞, p < +∞, and 1
r = 1

p − 1
q < 2

N , then there exists a
constant C > 0 such that for t > 0,

‖Pα(t)u0‖Lq (RN ) ≤ Ct−
αN
2r ‖u0‖L p(RN ), (4.1)
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‖ d

dt
[Pα(t)u0]‖Lq (RN ) ≤ Ct−1− αN

2r ‖u0‖L p(RN ), (4.2)

‖ d

dt
[tα−1Sα(t)u0]‖Lq (RN ) ≤ Ctα−2− αN

2r ‖u0‖L p(RN ), (4.3)

‖0 I 1t Pα(t)u0‖Lq (RN ) ≤ Ct−
αN
2r +1‖u0‖L p(RN ). (4.4)

(ii) For 1 < p ≤ q ≤ +∞ and p < +∞, if 1
r = 1

p − 1
q < 4

N , then there exists a
constant C > 0 such that

‖Sα(t)u0‖Lq (RN ) ≤ Ct−
αN
2r ‖u0‖L p(RN ), t > 0. (4.5)

(iii) Let T > 0 and w = ∫ t
0 (t − s)α−1Sα(t − s) f (s)ds. Suppose 1 < p < +∞,

1 < q ≤ +∞ and r ≥ p satisfy

1

p
− 1

r
<

2

N

(

1 − 1

αq

)

.

If f ∈ Lq((0, T ), L p(RN )), then w ∈ C([0, T ], Lr (RN )). In addition, if
r ∈ [p,+∞] satisfies 1/p − 1/r < 2/N and there is γ ∈ [0, 1) such that
supt∈(0,T ) t

γ ‖ f (t)‖L p(RN ) < +∞, then w ∈ C((0, T ], Lr (RN )) and w ∈
C([0, T ], Lr (RN )) provided γ < α − αN

2 ( 1p − 1
r ).

Proof. (i) Using the Gagliardo–Nirenberg inequality, we know that there exists a
constant C > 0 such that

‖Pα(t)u0‖Lq (RN ) ≤ C‖APα(t)u0‖aL p(RN )
‖Pα(t)u0‖1−a

L p(RN )
,

‖ d

dt
[Pα(t)u0]‖Lq (RN ) ≤ C‖A d

dt
[Pα(t)u0]‖aL p(RN )

‖ d

dt
[Pα(t)u0]‖1−a

L p(RN )
,

‖ d

dt
[tα−1Sα(t)u0]‖Lq (RN ) ≤ C‖A d

dt
[tα−1Sα(t)u0]‖aL p(RN )

‖ d

dt
[tα−1Sα(t)u0]‖1−a

L p(RN )
,

‖0 I 1t Pα(t)u0‖Lq (RN ) ≤ C‖A[0 I 1t Pα(t)u0]‖aL p(RN )
‖0 I 1t Pα(t)u0‖1−a

L p(RN )
,

where a ∈ [0, 1) and 1
q = a( 1p − 2

N )+ 1−a
p . Therefore, by (3.3), (3.4), (3.9) and (3.5),

we know

‖Pα(t)u0‖Lq (RN ) ≤ C

taα
‖u0‖aL p(RN )

‖u0‖1−a
L p(RN )

= Ct−
Nα
2r ‖u0‖L p(RN ),

and (4.2), (4.3) and (4.4) hold.
(ii) The proof is similar to that of (i); hence, it will be omitted.
(iii) To prove the first part of (iii), without loss of generality, we can assume 1 < q <

+∞, and we may assume that f ∈ Lq((0, T ),W 2,p(RN )) by using a regularizing
sequence. As a result, we obtain f ∈ Lq((0, T ), Lr (RN )). Hence, the dominated
convergence theorem yields w ∈ C([0, T ], Lr (RN )). It follows from (4.5) that

‖w‖Lr (RN ) ≤ C
∫ t

0
(t − s)α−1− αN

2

(
1
p − 1

r

)

‖ f (s)‖L p(RN )ds
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≤ C

( ∫ t

0
(t − s)

[
α−1− αN

2

(
1
p − 1

r

)]
q

q−1 ds

) q−1
q ‖ f ‖Lq ((0,T ),L p(RN ))

≤ C(T )‖ f ‖Lq ((0,T ),L p(RN )).

Thus, a approximate argument leads to w ∈ C([0, T ], Lr (RN )) if f ∈ Lq((0, T ),

L p(RN )).
Finally,weprove theother assertions of (iii).Assume that supt∈(0,T ) t

γ ‖ f (t)‖L p(RN )

< +∞. Then for t > 0, h > 0 and t + h ≤ T , we deduce from (4.5) that

∥
∥

∫ t+h

t
(t + h − s)α−1Sα(t + h − s) f (s)ds

∥
∥
Lr (RN )

≤ Ct−γ hα− αN
2

(
1
p − 1

r

)

.

The rest proof is divided into three cases.
Case 1. 1 − α + αN

2 ( 1p − 1
r ) > 0.

Note that

lim
h→0+ h1−α+ αN

2

(
1
p − 1

r

) ∫ t−h

0
(t − s)α− αN

2

(
1
p − 1

r

)
−2s−γ ds

=
(

αN

2

( 1

p
− 1

r

)
+ 1 − α

)−1

t−γ .

Then, using (4.3), (4.5) and taking h small, we obtain that there exists a constantC > 0
such that

∥
∥

∫ t

0
[(t + h − s)α−1Sα(t + h − s) f (s) − (t − s)α−1Sα(t − s) f (s)]ds∥∥Lr (RN )

≤ C
∫ t

t−h
(t − s)α− αN

2

(
1
p − 1

r

)
−1s−γ ds + C

∫ t−h

0
(t − s)α− αN

2

(
1
p − 1

r

)
−2s−γ dsh

≤ Ct−γ hα− αN
2

(
1
p − 1

r

)

.

Case 2. 1 − α + αN
2 ( 1p − 1

r ) = 0.

Since limh→0+ hm
∫ t−h
0 (t − s)−1s−γ ds = 0 for every m > 0, we get

∥
∥

∫ t

0
[(t + h − s)α−1Sα(t + h − s) f (s) − (t − s)α−1Sα(t − s) f (s)]ds∥∥Lr (RN )

≤ Ch1−mt−γ

for some constant C > 0 when h is small enough.
Case 3. 1 − α + αN

2 ( 1p − 1
r ) < 0.

Using (4.3), we have

∥
∥

∫ t

0
[(t + h − s)α−1Sα(t + h − s) f (s) − (t − s)α−1Sα(t − s) f (s)]ds∥∥Lr (RN )

≤ Ch
∫ t

0
(t − s)α− αN

2

(
1
p − 1

r

)
−2s−γ ds ≤ Ct−γ h
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for some constant C > 0.
To summarize what we have proved, we see that w ∈ C((0, T ], Lr (RN )).

In addition, if γ < α − αN
2 ( 1p − 1

r ), then it is easy to check that there exists a
constant C > 0 such that

‖w(t)‖Lr (RN ) ≤ Ct
α− αN

2

(
1
p − 1

r

)
−γ

.

This implies limt→0+ w(t) = 0 in Lr (RN ). Thus, w ∈ C([0, T ], Lr (RN )). �

REMARK 4.4. Estimates (4.1) and (4.5) are obtained in [1,14] by applying mul-
tiplier estimates.

According to Definition 5.1 in [20], we give the definition of the mild solution of
(1.1).

DEFINITION 4.5. Let p > 1, 1 < α < 2, T > 0 and u0, u1 ∈ Lq(RN )

for some q ∈ (1,+∞). We call that u is a mild solution of problem (1.1) if
u ∈ C([0, T ], Lq(RN )) and satisfies

u = Pα(t)u0 + 0 I
1
t Pα(t)u1 +

∫ t

0
(t − s)α−1Sα(t − s)|u|pds.

For problem (1.1), we have the following local existence results.

THEOREM 4.6. Let 1 < α < 2 and qc = N (p−1)
2 . Let u0, u1 ∈ Lq(RN ), αqc <

q < +∞. Then there exists T > 0 such that problem (1.1) has a mild solution u in
C([0, T ], Lq(RN ))∩C((0, T ], Lr (RN )) and supt∈(0,T ) t

βr ‖u(t)‖Lr (RN ) < ∞,where

βr = αN
2 ( 1q − 1

r ) and r ∈ (q,+∞] satisfies 1
q − 1

r < 2
N . This solution is unique in

the class
{

u ∈ L∞
loc((0, T ), L pq(RN )) | sup

t∈(0,T )

t
Nα
2

(
1
q − 1

pq

)

‖u‖L pq (RN ) < ∞
}

.

Furthermore, if r satisfies pq ≤ r ≤ +∞ and 1
q − 1

r < 2
Npα , then u can be extended to

a maximal interval [0, T ∗) such that u ∈ C([0, T ∗), Lq(RN )) ∩C((0, T ∗), Lr (RN ))

and either T ∗ = +∞ or T ∗ < +∞ and ‖u(t)‖Lr (RN ) → +∞ as t → T ∗−.

Proof. For given T > 0, let

Epq,T = {u ∈ L∞
loc((0, T ), L pq(RN )) | ‖u‖Epq,T < ∞}, ‖u‖Epq,T

= sup
t∈(0,T )

tβpq‖u(t)‖L pq (RN ),

whereβpq = αN
2 ( 1q − 1

pq ).Then, Epq,T is aBanach space. ChooseM > ‖u0‖Lq (RN )+
T ‖u1‖Lq (RN ) and let BK denote the closed ball in Epq,T with center 0 and radius K .
We define the operator G on Epq,T as

G(u)(t) = Pα(t)u0 +
∫ t

0
Pα(s)u1ds +

∫ t

0
(t − s)α−1Sα(t − s)|u(s)|pds, u ∈ Epq,T .
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It follows from (4.1), (4.4) and (4.5) that there exists a constant C > 0 such that for
u ∈ BK and t ∈ (0, T ),

tβpq‖G(u)(t)‖L pq (RN ) ≤ C(‖u0‖Lq (RN ) + T ‖u1‖Lq (RN ))

+ Ctβpq

∫ t

0
(t − s)α−βpq−1‖u(s)‖p

L pq (RN )
ds

≤ C(‖u0‖Lq (RN ) + T ‖u1‖Lq (RN ))

+ CK ptβpq

∫ t

0
(t − s)α−βpq−1s−pβpqds

≤ C(‖u0‖Lq (RN ) + T ‖u1‖Lq (RN ))

+ CK pT α−pβpq

∫ 1

0
(1 − s)α−βpq−1s−pβpqds

≤ CM + CK pT α−pβpq . (4.6)

The fact that q > αqc > qc guarantees that α−βpq > 0, pβpq < 1 andα− pβpq > 0.
So, all the integrals above are convergent. Choose K > 0 and T > 0 so that

CM + CK pT α−pβpq ≤ K . (4.7)

Hence, G maps BK into itself. Note that

‖|u|p − |v|p‖Lq (RN ) ≤ C(‖u‖p−1
L pq (RN )

+ ‖v‖p−1
L pq (RN )

)‖u − v‖L pq (RN )

for some constant C > 0 independent of u and v. Similar calculations show that G
is a strict contraction on BK if T is chosen small enough. Therefore, G possesses a
unique fixed point u in BK .
Note that supt∈(0,T ) t

pβpq‖|u|p‖Lq (RN ) < +∞. Then we deduce from Lemma
4.3(iii) and pβpq < α that

∫ t

0
(t − s)α−1Sα(t − s)|u|pds ∈ C([0, T ], Lq(RN )).

Thus u ∈ C([0, T ], Lq(RN )).

Since r > q satisfies 1/q − 1/r < 2/N , using (4.1), (4.4), (4.5) and the fact that
pβpq < 1 < α, we have

tβr ‖u(t)‖Lr (RN ) ≤ C(‖u0‖Lq (RN ) + T ‖u1‖Lq (RN ))

+ Ctβr
∫ t

0
(t − s)α−βr−1‖u(s)‖p

L pq (RN )
ds

≤ C(‖u0‖Lq (RN ) + T ‖u1‖Lq (RN ))

+ Ctβr
∫ t

0
(t − s)α−βr−1s−pβpqds

≤ C(‖u0‖Lq (RN ) + T ‖u1‖Lq (RN ))
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+ CT α−pβpq

∫ 1

0
(1 − s)α−βr−1s−pβpqds < +∞. (4.8)

In addition, observe that u ∈ Epq,T andLemma4.3(iii) imply u ∈ C((0, T ], Lr (RN )).

Consequently, u ∈ Er,T ∩ C((0, T ], Lr (RN )).
Nextweprove the uniqueness of the solution. Letu, v ∈ C([0, T ], Lq(RN ))∩Epq,T

be the mild solutions of (1.1) for some T > 0. Suppose u, v ∈ BK ′ . Then, we can take
T ′ < T small enough such that (4.7) holds with K replaced by K ′. Thus, u(t) = v(t)
for t ∈ [0, T ′]. When T ′ ≤ t ≤ T, we have

‖u(t) − v(t)‖L pq (RN ) ≤ C
∫ t

T ′
(t − s)α− αN (p−1)

2pq −1‖u(s) − v(s)‖L pq (RN )ds

for some constant C > 0 independent of u and v. Hence, Gronwall’s inequality yields
u(t) = v(t) for t ∈ [T ′, T ].
Finally, we prove that the existence of maximal time provided r satisfies pq ≤ r ≤

+∞ and 1
q − 1

r < 2
Npα . We proceed by considering two cases.

Case 1. pq ≤ r < +∞ and 1
q − 1

r < 2
Npα .

Set

T ∗ = sup{T > 0 | u ∈ Er,T ∩ C((0, T ], Lr (RN )) is a mild solution}.
Assume T ∗ < +∞ and there exists M1 > 0 such that supt∈(0,T ∗) t

βr ‖u(t)‖Lr (RN ) ≤
M1. We claim that there exists M̃1 > 0 such that

sup
t∈(0,T ∗)

tβpq‖u(t)‖L pq (RN ) < M̃1 and sup
t∈(0,T ∗)

‖u(t)‖Lq (RN ) < +∞. (4.9)

In fact, if r = pq, we have

‖u(t)‖Lq (RN ) ≤ C(‖u0‖Lq (RN ) + ‖u1‖Lq (RN ))

+ C
∫ t

0
(t − s)α−1‖u(s)‖p

L pq (RN )
ds

≤ C(‖u0‖Lq (RN ) + ‖u1‖Lq (RN ))

+ C(T ∗)α− αN (p−1)
2q

∫ 1

0
(1 − s)α−1s−pβpqds < +∞.

Then the claims are proved.
For the case of pq < r < +∞, since p

r − 1
r < 2

N ,
1
q − 1

r < 2
Npα and 1

q − 1
pq < 2

N ,
we can take n ∈ N large enough such that

r

p
< r

( pq

r

) 1
n

< r,

( pq
r

) 1
n p − 1

pq
<

2

N
and

p

r
− 1

r
( pq

r

) 1
n

<
2

N
.

Set χ = (
pq
r )

1
n and q1 = r, qk = qk−1χ = q1χk−1, k = 2, 3, . . . , n + 1. Observing

that χ < 1 and

0 <
p

qk
− 1

qk+1
= 1

χk−1

(
p

r
− 1

rχ

)

≤ 1

χn−1

(
p

r
− 1

rχ

)
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= χp

pq
− 1

pq
<

2

N
, k = 1, 2, . . . , n,

1

q
− 1

qk
≤ 1

q
− 1

q1
= 1

q
− 1

r
<

2

Npα
, k = 1, 2, . . . , n + 1,

we know that if supt∈(0,T ∗) t
βqk ‖u(t)‖Lqk (RN ) < +∞, then there exists a constant

C > 0 such that

tβqk+1 ‖u(t)‖Lqk+1 (RN )

≤ C‖u0‖Lq (RN ) + CT ∗‖u1‖Lq (RN )

+ Ctβqk+1

∫ t

0
(t − s)

α− αN
2 (

p
qk

− 1
qk+1

)−1‖u(s)‖p
Lqk (RN )

ds

≤ C‖u0‖Lq (RN ) + CT ∗‖u1‖Lq (RN )

+ Ctβqk+1

∫ t

0
(t − s)

α− αN
2 (

p
qk

− 1
qk+1

)−1
s−pβqk ds

≤ C(‖u0‖Lq (RN ) + T ∗‖u1‖Lq (RN ))

+ Ctα− αN (p−1)
2q

∫ 1

0
(1 − s)

α− αN
2 (

p
qk

− 1
qk+1

)−1
s−pβqk ds < +∞.

Thus, the assumption that supt∈(0,T ∗) t
βr ‖u(t)‖Lr (RN ) ≤ M1 implies

sup
t∈(0,T ∗)

tβpq‖u(t)‖L pq (RN ) < +∞,

and then supt∈(0,T ∗) ‖u(t)‖Lq (RN ) < +∞. Therefore, the claims are proved.

Next we verify that limt→T ∗− u(t) exists in Lr (RN ) ∩ L pq(RN ). Indeed, for T ∗
2 <

t < τ < T ∗, by the proof of Lemma 4.3(iii) and using (4.1), (4.2), there exists a
m̃ ∈ (0, 1] such that

‖u(t) − u(τ )‖Lr (RN ) ≤ C(τ − t)(‖u0‖Lq (RN ) + ‖u1‖Lq (RN )) + CM p
1 (τ − t)m̃,

(4.10)

‖u(t) − u(τ )‖L pq (RN ) ≤ C(τ − t)(‖u0‖Lq (RN ) + ‖u1‖Lq (RN )) + CM̃ p
1 (τ − t)m̃ .

(4.11)

Therefore, limt→T ∗− u(t) exists in Lr (RN )∩L pq(RN ).Denote uT ∗ = limt→T ∗− u(t)
and define u(T ∗) = uT ∗ .
For h > 0 and δ > 0, let

Ẽh,δ = {u ∈ C([T ∗, T ∗ + h], Lr (RN ) ∩ L pq(RN )) | u(T ∗) = uT ∗ , d(u, uT ∗) ≤ δ},
where

d(u, uT ∗) = max
t∈[T ∗,T ∗+h] ‖u(t) − uT ∗‖Lr (RN ) + max

t∈[T ∗,T ∗+h] ‖u(t) − uT ∗‖L pq (RN ).
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It follows from (4.9) and Lemma 4.3(iii) that u ∈ C((0, T ∗], L pq(RN ) ∩ Lr (RN )).
Then we can define the operator K on Ẽh,δ as

K (v)(t) = Pα(t)u0 +
∫ t

0
Pα(s)u1ds +

∫ T ∗

0
(t − τ)α−1Sα(t − τ)|u(τ )|pdτ

+
∫ t

T ∗
(t − τ)α−1Sα(t − τ)|v(τ)|pdτ, v ∈ Ẽh,δ.

Using Lemmas 4.3, (4.10) and (4.11), we can easily see that K (v) ∈ C([T ∗, T ∗ +
h], Lr (RN ) ∩ L pq(RN )) and K (v)(T ∗) = uT ∗ . For v ∈ Ẽh,δ and t ∈ [T ∗, T ∗ + h],
it follows from the same arguments as above that

‖K (v)(t) − uT ∗‖Lr (RN ) ≤ C(t − T ∗)(‖u0‖Lq (RN ) + ‖u1‖Lq (RN )) + CM p
1 (t − T ∗)m̃

+ C(‖uT ∗‖Lr (RN ) + δ)p(t − T ∗)α− αN (p−1)
2r (4.12)

for some positive constant C . Moreover, (4.12) also holds if r is replaced by pq. So
we can choose h small enough such that d(u, uT ∗) ≤ δ.

On the other hand, for every w, v ∈ Ẽh,δ , there exists a positive constant C such
that

‖Kw − Kv‖Lr (RN ) ≤ C
∫ t

T ∗
(t − τ)α− αN (p−1)

2r −1(‖w‖p−1
Lr (RN )

+ ‖v‖p−1
Lr (RN )

)‖w − v‖Lr (RN )dτ

≤ C(‖uT ∗‖Lr (RN ) + δ)p−1hα− αN (p−1)
2r max

t∈[T ∗,T ∗+h] ‖w − v‖Lr (RN ),

and

‖Kw − Kv‖L pq (RN ) ≤ C(‖uT ∗‖L pq (RN ) + δ)p−1hα− αN (p−1)
2pq max

t∈[T ∗,T ∗+h] ‖w − v‖L pq (RN ).

Thus, choosing h small enough so that

C(‖uT ∗‖Lr (RN ) + δ)p−1hα− αN (p−1)
2r + C(‖uT ∗‖L pq (RN ) + δ)p−1hα− αN (p−1)

2pq ≤ 1

2
,

(4.13)
we knowG is a strict contraction on Ẽh,δ .So the contractionmapping principle implies
G has a fixed point v ∈ Ẽh,δ.

Define

ũ(t) =
{
u(t), t ∈ [0, T ∗],
v(t), t ∈ [T ∗, T ∗ + h].

Since v(T ∗) = G(v(T ∗)) = u(T ∗), one can verify easily that ũ ∈ Er,T ∗+h ∩
C((0, T ∗ + h], Lr (RN )) and

ũ(t) = Pα(t)u0 +
∫ t

0
Pα(s)u1ds +

∫ t

0
(t − τ)α−1Sα(t − τ)|ũ(τ )|pdτ.
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Because u ∈ Epq,T ∗+h , we know u ∈ C([0, T ∗ + h], Lq(RN )) by Lemma 4.3(iii).
Thus, ũ(t) is a mild solution of (1.1), which contradicts the definition of T ∗.

Case 2. r = +∞ and 1
q < 2

Npα .

The assumption that 1
q < 2

Npα implies that we can choose m̄ ∈ (
Np
2 ,+∞) such

that m̄ > pq and 1
q − 1

m̄ < 2
Npα . In this case, we also set

T ∗ = sup{T > 0 | u ∈ Er,T ∩ C((0, T ], Lr (RN )) is a mild solution}.

Assume T ∗ < +∞, and there exists M1 > 0 such that supt∈(0,T ∗) t
βr ‖u(t)‖Lr (RN ) ≤

M1. We can also prove that (4.9) holds. Indeed, for T̃ < T ∗, u ∈ C([0, T̃ ], Lq(RN ))

because u is the mild solution of (1.1). In addition, for t ∈ [T̃ , T ∗), we conclude that
there exists a positive constant C such that

‖u(t)‖Lq (RN ) ≤ C(‖u0‖Lq (RN ) + ‖u1‖Lq (RN )) + C
∫ t

0
(t − s)α−1‖u(s)‖p

L pq (RN )
ds

≤ C + C
∫ t

0
(t − s)α−1‖u(s)‖p−1

L∞(RN )
‖u(s)‖Lq (RN )ds

≤ C+C
∫ T̃

0
(t − s)α−1s− αN (p−1)

2q ds+C
∫ t

T̃
(t − s)α−1‖u(s)‖Lq (RN )ds

≤ C + C
∫ t

T̃
‖u(s)‖Lq (RN )ds.

Then it follows from Gronwall’s inequality that supt∈(T̃ ,T ∗) ‖u(t)‖Lq (RN ) < +∞.
Therefore, ‖u(t)‖Lq (RN ) is bounded on (0, T ∗).
Noting that

‖u(t)‖L pq (RN ) ≤ ‖u(t)‖
p−1
p

L∞(RN )
‖u(t)‖

1
p

Lq (RN )
,

‖u(t)‖Lm̄ (RN ) ≤ ‖u(t)‖1−
q
m̄

L∞(RN )
‖u(t)‖

q
m̄
Lq (RN )

,

we get ‖u(t)‖L pq (RN ) ≤ M̃1t
− α(p−1)N

2pq = M̃1t−βpq and ‖u(t)‖Lm̄ (RN ) ≤ Ct−βm̄ for

some constants M̃ and C . Thus, we get the desired conclusion.
In this case, we can also obtain limt→T ∗− u(t) exists in L∞(RN ) ∩ L pq(RN ) by

an argument similar to the proof used in Case 1. Furthermore, an argument similar to
one in Case 1 leads to a contradiction. Then we get the desired conclusion. �

REMARK 4.7. If p ≥ 1 + 2
αN , the assumption q > αqc in Theorem 4.6 can

be weakened to q >
αNp

αN+2 and q > qc. In fact, the assumption q >
αNp

αN+2

implies αNq
(αNp−2q)+ > 1, where (αNp − 2q)+ = max{0, αNp − 2q}. In view of

q
p <

αNq
(αNp−2q)+ , then there exists q̃ ∈ (p, pq] such that αN

2q − 1
p < αN

2q̃ < αN
2q ,

that is, 0 < αN
2 ( 1q − 1

q̃ ) < 1
p . By a fixed-point argument in Eq̃,T , we know if

u0, u1 ∈ Lq(RN ), then there exists T > 0 such that G has a unique fixed point
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u ∈ Eq̃,T . Since pβq̃ < α− αN
2 (

p
q̃ − 1

q ) and u ∈ Eq̃,T , it follows from Lemma 4.3(iii)

that u ∈ C([0, T ], Lq(RN )) ∩ C((0, T ], Lq̃(RN )). Thus, problem (1.1) has a unique
mild solution u in Eq̃,T .

5. Blow-up and Global existence

In this section, we prove the blow-up and global existence of mild solutions of (1.1).
In order to prove the blow-up results by applying the test function method, we firstly
give the definition of weak solution of (1.1).

DEFINITION 5.1. Let 1 < α < 2, q ≥ 1 and T > 0. For u0, u1 ∈ Lq
loc(R

N ), we
call u ∈ L p((0, T ), L p

loc(R
N )) is a weak solution of (1.1) if

∫

RN

∫ T

0
[|u|pϕ + (u0 + tu1)

C
t D

α
Tϕ]dtdx =

∫

RN

∫ T

0
u(−�ϕ)dtdx + u C

t D
α
Tϕdtdx

for every ϕ ∈ C2,2
x,t (R

N × [0, T ]) and ϕt ∈ C2,0
x,t (R

N × [0, T ]) with suppxϕ ⊂⊂ R
N

and ϕ(x, T ) = 0, ϕt (x, T ) = 0, where

C2,2
x,t (R

N × [0, T ]) = { f (x, t) | f, fxi , fxi xi , ft , ft t ∈ C(RN × [0, T ]), i = 1, 2, . . . , N },
C2,0
x,t (R

N × [0, T ]) = { f (x, t) | f, fxi , fxi xi ∈ C(RN × [0, T ]), i = 1, 2, . . . , N }.

Moreover, if T > 0 can be arbitrarily chosen, then we call u is a global weak solution
of (1.1).

The following Lemma gives the relation between weak solutions and mild solutions
of (1.1). This Lemma is crucial to prove our blow-up results by using the test function
method.

LEMMA 5.2. Let T > 0 and u0, u1 ∈ Lq(RN ), q > max{αqc, 1}. If u ∈
C([0, T ], Lq(RN )) is a mild solution obtained by Theorem 4.6, then u is also a weak
solution of (1.1).

Proof. Assume that u ∈ C([0, T ], Lq(RN )) is the mild solution of (1.1). Then

u − u0 − u1t = Pα(t)u0 − u0 − u1t +
∫ t

0
Pα(s)u1ds

+
∫ t

0
(t − τ)α−1Sα(t − τ)|u(τ )|pdτ.

Observing supt∈(0,T ) t
βpq‖u(t)‖L pq (RN ) < +∞ and pβpq < 1, we know u ∈

L p((0, T ), L pq(RN )). Then, it follows from Lemma 3.5 that the following equal-
ity holds in Lq(RN )
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0 I
2−α
t (u − u0 − u1t) = 0 I

2−α
t (Pα(t)u0 − u0) + 0 I

2−α
t [0 I 1t Pα(t)u1 − u1t]

+
∫ t

0

∫ t−τ

0
Pα(s)|u(τ )|pdsdτ.

Thus, for every ϕ ∈ C2,2
x,t (R

N ×[0, T ]) and ϕt ∈ C2,0
x,t (R

N ×[0, T ])with suppxϕ ⊂⊂
R

N , ϕ(x, T ) = 0 and ϕt (x, T ) = 0, we have
∫

RN
0 I

2−α
t (u − u0 − u1t)ϕtdx = I1 + I2,

where

I1 =
∫

RN
0 I

2−α
t (Pα(t)u0 − u0)ϕtdx +

∫

RN
0 I

2−α
t [0 I 1t Pα(t)u1 − u1t]ϕtdx,

I2 =
∫

RN

∫ t

0

∫ t−τ

0
Pα(s)|u(τ )|pdsdτϕtdx .

Next we calculate the derivatives of I1 and I2 and find the values of
∫ T
0

dI1
dt dt and∫ T

0
dI2
dt dt . For t > 0, it is easy to check that

dI1
dt

=
∫

RN

d

dt
[0 I 2−α

t (Pα(t)u0 − u0)]ϕtdx +
∫

RN
0 I

2−α
t (Pα(t)u0 − u0)ϕt tdx

+
∫

RN
(0 I

2−α
t (Pα(t)u1 − u1))ϕtdx +

∫

RN
0 I

2−α
t (0 I

1
t Pα(t)u1 − u1t)ϕt tdx,

dI2
dt

=
∫

RN

∫ t

0

∫ t−τ

0
Pα(s)|u(τ )|pdsdτϕt tdx +

∫

RN

∫ t

0
Pα(t − τ)|u(τ )|pdτϕtdx

= I3 + I4, (5.1)

where I3 and I4 denote the first and second integrals of (5.1), respectively.
To evaluate integrals of dI1

dt and dI2
dt on [0, T ], we proceed as follows.

First, we calculate the integral
∫ T
0

dI1
dt dt . Note that if u0 ∈ D(A), then by Lemma

3.3 (ii), for t > 0, we have

d

dt
[0 I 2−α

t (Pα(t)u0 − u0)] = −0 I
2−α
t (tα−1Sα(t)Au0) = −A[0 I 1t Pα(t)u0]. (5.2)

So, by an argument similar to the proof of Lemma 3.3 (iii) and using Lemma 3.3 (iv),
we know (5.2) remains true for u0 ∈ Lq(RN ). Hence, for t > 0 and u ∈ Lq(RN ), we
obtain

dI1
dt

= −
∫

RN
0 I

1
t (Pα(t)u0)Aϕtdx +

∫

RN
0 I

2−α
t (Pα(t)u0 − u0)ϕt tdx

+
∫

RN
(0 I

2−α
t (Pα(t)u1 − u1))ϕtdx +

∫

RN
0 I

2−α
t (0 I

1
t Pα(t)u1 − u1t)ϕt t dx .

(5.3)
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Integrating (5.3) from 0 to T and using (5.2), one get

∫ T

0

d I1
dt

dt =
∫ T

0

∫

RN
Pα(t)u0Aϕdxdt +

∫ T

0

∫

RN
(Pα(t)u0 − u0)

C
t D

α
T ϕdxdt

+
∫ T

0

∫

RN
0 I

1
t Pα(t)u1Aϕdxdt +

∫ T

0

∫

RN
(0 I

1
t Pα(t)u1 − u1t)

C
t D

α
T ϕdxdt.

(5.4)

Next we evaluate the integral
∫ T
0

dI2
dt dt . It follows from (5.1) and Lemma 3.5 that

∫ T

0
I3dt =

∫ T

0

∫

RN
(0 I

2−α
t w)ϕt t dxdt =

∫ T

0

∫

RN
w(t)C0 D

α
t ϕdxdt, (5.5)

where w(t) = ∫ t
0 (t − τ)α−1Sα(t − τ)|u(τ )|pdτ.

For convenience, denote f (t) = |u(t)|p. Then f ∈ L1([0, T ], Lq(RN )). We use a
approximate argument to get the value of

∫ T
0 I4dt . In fact, if f ∈ L1((0, T ), D(A)),

then

∫ T

0
I4dt = −

∫ T

0

∫

RN
f (t)ϕdxdt +

∫ T

0

∫

RN

∫ t

0
(t − s)α−1ASα(t − s) f (s)dsϕdxdt

= −
∫ T

0

∫

RN
f (t)ϕdxdt +

∫ T

0

∫

RN

∫ t

0
(t − s)α−1Sα(t − s) f (s)ds Aϕdxdt.

(5.6)

In the general case, we can choose fn ∈ L1((0, T ), D(A)) such that fn → f in
L1((0, T ), Lq(RN )) as n → ∞. Taking n → ∞, we know equality (5.6) also holds
for f ∈ L1([0, T ], Lq(RN )).

Combining (5.5) and (5.6), we get

∫ T

0

d I2
dt

dt =
∫ T

0

∫

RN
w(t) C

0 D
α
t ϕdxdt −

∫ T

0

∫

RN
|u|pϕdxdt

+
∫ T

0

∫

RN

∫ t

0
(t − s)α−1Sα(t − s)|u(s)|pds Aϕdxdt. (5.7)

As a result, we deduce from (5.4) and (5.7) that

0 =
∫ T

0

d

dt

∫

RN
0 I

2−α
t (u − u0 − u1t)ϕt dxdt =

∫ T

0

dI1
dt

+ dI2
dt

dt

=
∫ T

0

∫

RN
(Pα(t)u0 + 0 I

1
t Pα(t)u1)Aϕdxdt +

∫ T

0

∫

RN
(u − u0 − u1t)

C
t Dα

T ϕdxdt

−
∫ T

0

∫

RN
|u|pϕdxdt +

∫ T

0

∫

RN

∫ t

0
(t − τ)α−1Sα(t − τ)|u|pdτ Aϕdxdt

= −
∫ T

0

∫

RN
u�ϕdxdt +

∫ T

0

∫

RN
(u − u0 − u1t)

C
t Dα

T ϕdxdt −
∫ T

0

∫

RN
|u|pϕdxdt.

In other words, u is a weak solution of (1.1). This completes the proof. �
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We say the solution u of problem (1.1) blows up in a finite time T if

lim
t→T− ‖u(t, ·)‖L∞(RN ) = +∞.

First, we give a blow-up result of problem (1.1).

THEOREM 5.3. Let u0, u1 ∈ Lq(RN ), q > max{ Npα
2 , 1}. If

∫

RN
u0(x)χ(x)dx > 3

1
p−1 and

∫

RN
u1(x)χ(x)dx ≥ 0,

where χ(x) = (
∫

RN e−
√

N2+|x |2dx)−1e−
√

N2+|x |2 , then any mild solution of (1.1)
blows up in a finite time.

Proof. Take ψ ∈ C∞
0 (RN ) such that 0 ≤ ψ(x) ≤ 1 and

ψ(x) =
{
1, |x | ≤ 1,
0, |x | ≥ 2.

Let ψn(x) = ψ( xn ), n = 1, 2, . . . and ϕT ∈ C2([0, T ]) with ϕT (T ) = 0,
ϕ′
T (T ) = 0 and ϕT ≥ 0. Assume u ∈ C([0, T ], Lq(RN )) is a mild solution of

(1.1). Since q >
Npα
2 , we get from Theorem 4.6 that u ∈ C((0, T ], L∞(RN ))

and supt∈(0,T ) t
Nα
2q ‖u(t)‖L∞(RN ) < +∞. This implies u ∈ L p((0, T ), L∞(RN )).

It follows from Lemma 5.2 that u is also a weak solution of (1.1). Then, taking
ϕ(x, t) = χ(x)ψn(x)ϕT (t) as a test function in the definition of weak solution, we
have

∫

RN

∫ T

0
u pχψnϕT dtdx +

∫

RN

∫ T

0
(u0 + tu1)χψn

C
t D

α
TϕT dtdx

=
∫

RN

∫ T

0
u[−�(χψn)]ϕT dtdx + uχψn

C
t D

α
TϕT dtdx . (5.8)

A simple calculation shows that

�χ =
(

− N
√
N 2 + |x |2 + |x |2

N 2 + |x |2 + |x |2
(N 2 + |x |2) 3

2

)
χ.

Hence, |�χ | ≤ 3χ. Note that �(χψn) = (�χ)ψn + 2∇χ · ∇ψn + (�ψn)χ . Then by
(5.8), letting n → ∞ and using the dominated convergence theorem, we have

∫

RN

∫ T

0
[|u|pχϕT + (u0 + u1t)χ

C
t D

α
TϕT ]dxdt

≤
∫

RN

∫ T

0
(3|u|χϕT + |uχ C

t D
α
TϕT |)dxdt. (5.9)

Denote f (t) = ∫

RN |u|χdx . Since u ∈ C([0, T ], Lq(RN )), we know f ∈
C([0, T ]). It follows from Jensen’s inequality and (5.9) that

∫ T

0
( f p − 3 f )ϕT dt +

∫ T

0
(B0 + B1t)

C
t D

α
TϕT dt ≤

∫ T

0
f |Ct Dα

TϕT |dt, (5.10)
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where B0 = ∫

RN u0χdx and B1 = ∫

RN u1χdx ≥ 0. Take ϕT = t I α
T ψ̃(t) where

ψ̃ ∈ C∞
0 ((0, T )) and ψ̃ ≥ 0. Then we deduce from (5.10) that

∫ T

0
0 I

α
t ( f p − 3 f )ψ̃dt =

∫ T

0
( f p − 3 f )t I

α
T ψ̃(t)dt ≤

∫ T

0
( f − B0 − B1t)ψ̃dt,

where we have used the fact that Ct D
α
T t I α

T ψ̃(t) = ψ̃(t). This implies

0 I
α
t ( f p − 3 f ) + B0 + B1t ≤ f (t), t ∈ [0, T ]. (5.11)

Noting that

3
1

p−1 < B0 =
∫

RN
u0χdx ≤

∫

RN
|u0|χdx = f (0)

and using the continuity of f , we know that there exists t1 > 0 such that f (t) > 3
1

p−1

for t ∈ [0, t1]. Set

t∗ = sup{s ∈ [0, T ] | f (t) > 3
1

p−1 , t ∈ [0, s]}.
Then 0 < t∗ ≤ T . Suppose that t∗ < T . By the definition of t∗, one gets f (t) ≥

3
1

p−1 for t ∈ [0, t∗]. Thus, f p(t) ≥ 3 f (t) for t ∈ [0, t∗]. Consequently, it follows
from (5.11) that

f (t) ≥ B0 + B1t ≥ B0 > 3
1

p−1 , t ∈ [0, t∗].

In particular, f (t∗) > 3
1

p−1 . By the continuity of f , we obtain a contradiction. Thus
t∗ = T and then f (t) ≥ B0 for t ∈ [0, T ] by (5.11).
Taking ϕT (t) = (1 − t

T )k (k ≥ max{2, pα
p−1 }) in (5.10), we know there exists a

constant C > 0 such that for every ε > 0,

∫ T

0
( f p − 3 f )ϕT dt + CB0T

1−α + CB1T
2−α ≤ ε

∫ T

0
f pϕT dt + C(ε)T 1− pα

p−1 ,

wherewe have used
∫ T
0

C
t D

α
Tϕ1(t) = �(k+1)

�(k+2−α)
T 1−α . Choose ε small enough such that

B0 > ( 3
1−ε

)
1

p−1 . Then f (t) ≥ B0 > ( 3
1−ε

)
1

p−1 for t ∈ [0, T ]. Thus B0 ≤ CT α− pα
p−1

for some constant C > 0. Assuming that u exists globally, we get B0 = 0 by taking

T → ∞, which contradicts B0 > 3
1

p−1 . Consequently, Theorem 4.6 guarantees that
u blows up in a finite time. �

Next we give the main results of this paper. For u1 ≡ 0, we have the following
results.

THEOREM 5.4. Let u0 ∈ Lq(RN ), q > max{ Npα
2 , 1} and u0 �≡ 0, u1 ≡ 0.

(i) If 1 < p ≤ 1 + 2α
αN+2−2α , and u0 ≥ 0 or u0 ∈ Lm(RN ) for some m ∈

[1, αN
αN+2−2α ), then any mild solution of (1.1) blows up in a finite time.
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(ii) If p > 1+ 2α
αN+2−2α and ‖u0‖Lqc (RN ) is sufficiently small, where qc = N (p−1)

2 ,
then the mild solution of (1.1) exists globally.

Proof. (i) Let � ∈ C∞
0 (RN ) such that �(x) = 1 for |x | ≤ 1, �(x) = 0 for |x | > 2

and 0 ≤ �(x) ≤ 1.

In the case of p < 1 + 2α
αN+2−2α , for T > 0, we define φT (x) = (�(T− α

2 x))
2p
p−1

and take ϕT (t) = (1 − t
T )k, k ≥ max{2, pα

p−1 }. Assume that u is a mild solution of
(1.1). Then, by Lemma 5.2, we have

∫

RN

∫ T

0
|u|pφTϕT + u0φT

C
t D

α
TϕT dxdt

=
∫

RN

∫ T

0
u(−�φT )ϕT + uφT (Ct D

α
TϕT )dxdt. (5.12)

By a simple calculation, we get

∂2

∂x2i
φT (x) =2p(p + 1)

(p − 1)2
T−α(�(T− α

2 x))
2

p−1 �2
xi (T

− α
2 x)

+ 2p

p − 1
T−α(�(T− α

2 x))
p+1
p−1 �xi xi (T

− α
2 x), i = 1, 2, . . . , N .

Observing that |�| ≤ 1 and � ∈ C∞
0 (RN ), one see that

|�φT | ≤ CT−α(�(T− α
2 x))

2
p−1 = CT−αφ

1
p
T

for some positive constant C independent of T . Since k ≥ pα
p−1 and

C
t D

α
TϕT (t) = �(k + 1)

�(k + 1 − α)
T−α(1 − t

T
)k−α, t ≤ T,

it follows that there exists a constant C > 0 such that |Ct Dα
TϕT | ≤ CT−αϕ

1
p
T . Com-

bining the above estimates and observing 0 ≤ φT ≤ 1 and 0 ≤ ϕT ≤ 1, we derive

|(−�φT )ϕT + φT (Ct D
α
TϕT )| ≤ CT−αφ

1
p
T ϕ

1
p
T (5.13)

for some positive constant C independent of T . Thus, using Hölder’s inequality, we
deduce from (5.12) and (5.13) that

∫

RN

∫ T

0
[|u|pφTϕT + u0φT (Ct D

α
TϕT )]dxdt ≤ CT−α

∫

RN

∫ T

0
|u|φ

1
p
T ϕ

1
p
T dxdt

≤ CT−α+(1+ αN
2 )

p−1
p

(∫

RN

∫ T

0
|u|pφTϕT dxdt

) 1
p

. (5.14)

In other words,
∫

RN

∫ T

0
|u|pφTϕT dxdt + CT 1−α

∫

RN
u0φT dx ≤ CT 1+ αN

2 − pα
p−1 . (5.15)
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Note that if u0 ∈ Lm(RN ) then T 1−α| ∫
RN u0φT dx | ≤ CT 1−α+ αN (m−1)

2m byHölder’s
inequality, and if u0 ≥ 0 then

∫

RN u0φT dx ≥ 0. Thus, the second term of the left
hand of (5.15) is either nonnegative or convergent to 0 as T → +∞. Suppose that u
exists globally. Then observing 1 + αN

2 − pα
p−1 < 0 and taking T → ∞, we deduce

from (5.15) that
∫ +∞

0

∫

RN
|u(t, x)|pdxdt = 0.

This implies u ≡ 0 which contradicts u0 �≡ 0.
For the case of p = 1+ 2α

αN+2−2α , suppose that u is a global weak solution of (1.1).

Then it follows from (5.15) that
∫ +∞
0

∫

RN |u|pdxdt < +∞. In this case, we define

φT,L(x) = (�(LT− α
2 x))

2p
p−1 , 0 < L < T , and take ϕ(t, x) = φT,L(x)ϕT (t) as a test

function. Note that there exists a constant C > 0 independent of T and L such that

|(−�φT,L)ϕT + φT,L(Ct D
α
TϕT )| ≤ CL2T−αφ

1
p
T,Lϕ

1
p
T χ{T α

2 L−1≤|x |≤2T
α
2 L−1}

+CT−αφT,Lϕ
1
p
T ,

where χ{T α
2 L−1≤|x |≤2T

α
2 L−1} denotes the characteristic function of the set {x | T α

2 L−1

≤ |x | ≤ 2T
α
2 L−1}. Then

∫

RN

∫ T

0
|u|pφT,LϕT dxdt + CT 1−α

∫

RN
u0φT,Ldx

≤ CL2
( ∫ T

0

∫

T
α
2 ≤L|x |≤2T

α
2

|u|pdxdt
) 1

p + CT− pα
p−1

∫

RN

∫ T

0
φT,Ldxdt

= CL2
(∫ T

0

∫

T
α
2 ≤L|x |≤2T

α
2

|u|pdxdt
) 1

p + CL−N
∫

|x |≤2
[�(x)] 2p

p−1 dx . (5.16)

Thus, letting T → +∞, we deduce from (5.16) that
∫ +∞

0

∫

RN
|u|pdxdt ≤ CL−N

∫

|x |≤2
[�(x)] 2p

p−1 dx,

which implies u ≡ 0 by taking L → +∞. This contradicts again the assumption that
u0 �≡ 0.
Hence, by Theorem 4.6, we know u blows up in a finite time.
(ii) We construct the global solution of (1.1) by the contraction mapping principle.
Since p > 1 + 2α

αN+2−2α , we know

αN (p − 1)

2(pα − p + 1)
> 1. (5.17)

In terms of (5.17) and (p−1)N
2p <

αN (p−1)
2(pα−p+1) , we can choose r > p > 1 + 2α

αN+2−2α
and r < pqc such that

α

p − 1
− 1

p
<

αN

2r
<

α

p − 1
. (5.18)
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Let

β = αN

2

(
1

qc
− 1

r

)

= α

p − 1
− αN

2r
. (5.19)

Using (5.18) and (5.19), one verifies that

0 < pβ < 1, α = αN (p − 1)

2r
+ (p − 1)β. (5.20)

Note that (5.19) and (5.20) imply 0 < 1
qc

− 1
r < 2

N . Then, it follows from (4.1) that

for u0 ∈ Lqc(RN ),
sup
t>0

tβ‖Pα(t)u0‖Lr (RN ) = η < +∞. (5.21)

Let

Y = {u ∈ L∞
loc((0,∞), Lr (RN )) | ‖u‖Y < ∞},

where ‖u‖Y = supt>0 t
β‖u(t)‖Lr (RN ). For u ∈ Y, we define

�(u)(t) = Pα(t)u0 +
∫ t

0
(t − s)α−1Sα(t − s)|u(s)|pds.

Set BM = {u ∈ Y | ‖u‖Y ≤ M}, where M > 0 is to be chosen sufficiently small. By
Hölder’s inequality, Lemmas 4.3(ii) and (5.20), there exists a constant C > 0 such
that for any u, v ∈ BM and t ≥ 0,

tβ‖�(u) − �(v)‖Lr (RN ) ≤ Ctβ
∫ t

0
(t − s)

α−1− αN
2

(
p
r − 1

r

)

‖|u|p − |v|p‖
L

r
p (RN )

ds

≤ Ctβ
∫ t

0
(t − s)α−1− αN (p−1)

2r (‖u‖p−1
Lr (RN )

+ ‖v‖p−1
Lr (RN )

)‖u − v‖Lr (RN )ds

≤ CM p−1tβ−pβ− αN (p−1)
2r +α

∫ 1

0
(1 − τ)−

αN (p−1)
2r +α−1τ−pβdτ‖u − v‖Y

≤ CM p−1‖u − v‖Y .

Thus, if we choose M small enough such that CM p−1 < 1
2 , then ‖�(u)−�(v)‖Y ≤

1
2‖u − v‖Y .

On the other hand, since

tβ‖�(u)(t)‖Lr (RN ) ≤ η + CM ptβ
∫ t

0
(t − s)

− αN
2

(
p
r − 1

r

)
−1+α

s−pβds ≤ η

+ CM p, t ∈ [0,+∞),

� maps Bm into itself if η and M are chosen small enough. Therefore, � is a strict
contraction. Then the contraction mapping principle implies � has a fixed point u ∈
BM , that is, (1.1) has a mild solution u ∈ BM .
We now have to show u ∈ C([0,∞), Lq(RN )) ∩C((0,∞), L∞(RN )), where u is

the solution just constructed.



Vol. 19 (2019) Global well-posedness and blow-up for a time... 299

First, we prove that for T > 0 small enough, the solution u ∈ C([0, T ], Lq(RN ))∩
C((0, T ], L∞(RN )). In fact, the above proof shows that u is the unique solution in

BM,T =
{

u ∈ L∞
loc((0, T ), Lr (RN )) | sup

0<t<T
tβ‖u(t)‖Lr (RN ) ≤ M

}

.

Since u0 ∈ Lq(RN ) ∩ Lqc(RN ) and r > qc, we know u0 ∈ Lq̃(RN ) for every
q̃ ∈ (qc, q) and q̃ < r . Observe that the assumption p > 1 + 2α

αN+2−2α implies

p > 1+ 2
αN and qc >

αNp
αN+2 . Then, using Theorem 4.6 and Remark 4.7, we know that

(1.1) has a unique solution ũ ∈ C([0, T ], Lq(RN ) ∩ Lq̃(RN )) ∩C((0, T ], L∞(RN ))

if T is small enough, and sup0<t<T t
αN
2q ‖ũ(t)‖L∞(RN ) < +∞. Note that q̃ > qc and

there exists a constant C > 0 such that

tβ‖ũ(t)‖Lr (RN ) ≤ tβ‖ũ(t)‖1−
q̃
r

L∞(RN )
‖ũ(t)‖

q̃
r

Lq̃ (RN )
≤ Ct

αN
2

(
1
qc

− 1
q̃

)

‖ũ(t)‖
q̃
r

Lq̃ (RN )

for t ∈ (0, T ). It follows that we can take T small enough such that sup0<t<T tβ

‖ũ(t)‖Lr (RN ) ≤ M. Thus, by uniqueness, u ≡ ũ for t ∈ [0, T ]. Consequently, u ∈
C((0, T ], L∞(RN )) ∩ C([0, T ], Lq(RN ) ∩ Lq̃(RN )).

Finally, we prove u ∈ C([T,∞), Lq(RN )∩ L∞(RN )). Indeed, for t > T, we have

u − Pα(t)u0 =
∫ t

0
(t − s)α−1Sα(t − s)|u|pds

=
∫ T

0
(t − s)α−1Sα(t − s)|u|pds +

∫ t

T
(t − s)α−1Sα(t − s)|u|pds

= I5 + I6.

Since u ∈ C([0, T ], Lq̃(RN ))∩C((0, T ], L∞(RN )) and sup0<t<T t
αN
2q ‖u(t)‖L∞(RN )

< ∞, we obtain I5 ∈ C([T,∞), L∞(RN )) ∩ C([T,∞), Lq̃(RN )) by an argument
similar to the proof of Lemma 4.3(iii).

For given T1 > T, |u|p ∈ L∞((T, T1), L
r
p (RN )). Because r >

N (p−1)
2 , we can

choose m̃ > r such that N
2 (

p
r − 1

m̃ ) < 1. Observing 0 <
p
r − 1

q̃ <
p
r − 1

m̃ < 2
N , an argu-

ment similar to the one used in Lemma 4.3(iii) shows that I6 ∈ C([T, T1], Lm̃(RN ) ∩
Lq̃(RN )). By the arbitrariness of T1, we know I6 ∈ C([T,∞), Lm̃(RN ) ∩ Lq̃(RN )).
Note that the term Pα(·)u0 ∈ C([T,∞), Lm̃(RN ) ∩ Lq̃(RN )). Consequently, u ∈
C([T,∞), Lm̃(RN )) ∩ C([0,∞), Lq̃(RN )).

Let χ = m̃
r . Observe that χ > 1 and

N

2

(
p

rχ i−1 − 1

rχ i

)

< 1, i = 1, 2, . . . .

Repeating the above arguments, we deduce that if u ∈ C([T,∞), Lrχ i−1
(RN )) then

u ∈ C([T,∞), Lrχ i
(RN )). After finite steps, we get

p

rχ i
<

2

N
.
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Then u ∈ C((0,∞), L∞(RN )). Therefore, u ∈ C([0,+∞), Lq(RN )) ∩ C((0,∞),

L∞(RN )). This completes the proof. �

For u1 �≡ 0, we have the following results.

THEOREM 5.5. Let N ≥ 2, qc = N (p−1)
2 and q̃c = αN (p−1)

2(α+p−1) . Assume that

u0, u1 ∈ Lq(RN ) for some q > max{ Npα
2 , 1} and u1 ≥ 0, u1 �≡ 0.

(i) If 1 < p < 1 + 2α
αN−2 , and u0 ≥ 0 or u0 ∈ Lm(RN ) for some m ∈ [1, αN

αN−2 ),
then any mild solution of (1.1) blows up in a finite time.

(ii) If p > 1+ 2α
αN−2 , and ‖u0‖Lqc (RN ) and ‖u1‖Lq̃c (RN ) are sufficiently small, then

the mild solution of (1.1) exists globally.

Proof. (i) By an argument similar to the proof of Theorem 5.4(i), we get

∫

RN

∫ T

0
|u|pφTϕT + (u0 + u1t)φT (Ct D

α
TϕT )dxdt ≤ CT−α

∫

RN

∫ T

0
|u|φ

1
p
T ϕ

1
p
T dxdt

≤ CT−α+
(
1+ αN

2

)
p−1
p

( ∫

RN

∫ T

0
|u|pφTϕT dxdt

) 1
p

. (5.22)

Note that if u0 ≥ 0, then it follows from (5.22) that

T 2−α

∫

RN
u1φT dx ≤ CT 1+ αN

2 − pα
p−1 , (5.23)

and if u0 ∈ Lm(RN ) then

T 2−α

∫

RN
u1φT dx ≤ CT 1+ αN

2 + pα
p−1 + CT 1−α

∫

RN
|u0|φT dx

≤ CT 1+ αN
2 + pα

p−1 + CT 1−α+ αN (m−1)
2m (5.24)

by Hölder’s inequality. In addition, in terms of 1 < p < 1 + 2α
αN−2 and m < αN

αN−2 ,

we know αN
2 − 1 − α

p−1 < 0 and αN (m−1)
2m < 1. Thus, if the solution of (1.1)

exists globally, then taking T → ∞, we obtain u1 ≡ 0 by (5.23) and (5.24), which
contradicts u1 �≡ 0.

(ii) We also construct the global solution of (1.1) by the contraction mapping prin-
ciple.
In this case, since p ≥ 1 + 2α

αN−2 > 1 + 2α
αN+2−2α , we know (5.17) also holds. In

view of

p ≥ 1 + 2α

αN − 2
> 1 + 2 − αN + √

(αN − 2)2 + 16α(α − 1)

4(α − 1)
,

we have
N (p − 1)

2p(2 − p)+
≥ αN (p − 1)

2p(2α − pα + p − 1)+
> 1.
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Note that (p−1)N
2p <

αN (p−1)
2(pα−p+1) and (p−1)N

2p <
αN (p−1)

2p(2α−pα+p−1)+ . So we can choose
r > p and r < pqc such that (5.18) and

α

p − 1
− α <

α

p − 1
+ 1 − α <

αN

2r
(5.25)

hold. It follows from (5.25) and (5.18) that 0 < 1
qc

− 1
r < 2

N and 0 < 1
q̃c

− 1
r < 2

N .

Hence, if u0 ∈ Lqc (RN ) and u1 ∈ Lq̃c (RN ), then (4.1) and (4.4) imply

sup
t>0

tβ(‖Pα(t)u0‖Lr (RN ) + ‖0 I 1t Pα(t)u1‖Lr (RN )) = η < +∞.

The rest proof is similar to that of Theorem 5.4(ii), so we omit it. �

REMARK 5.6. The condition p > 1 + 2α
αN−2 in Theorem 5.5(ii) is required just

for guaranteeing q̃c > 1 and supt>0 t
β‖0 I 1t Pα(t)u1‖Lr (RN ) ≤ C‖u1‖Lq̃c (RN ). Hence,

if one can prove that estimate (4.4) remains true for u1 ∈ L1(RN ), then the conclusion
of Theorem 5.5(ii) will also be true for p = 1+ 2α

αN−2 . Note that� is the infinitesimal
generator of the heat semigroup on L1(RN ). Thus, the spectral angle of−� on L1(RN )

is less than or equal to some θ0 ∈ [0, π
2 ). So the assumption (ii) in Sect. 3 holds when

α is close to 1. Consequently, for u1 ∈ L1(RN ), (4.4) holds at least when α is close
to 1. Therefore, the conclusion of Theorem 5.5(ii) is true for p = 1 + 2α

αN−2 at least
when α is close to 1.

REMARK 5.7. From (5.23), we know any nontrivial mild solution of (1.1) blows
up in a finite time if N = 1 and u0, u1 ≥ 0.
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