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Abstract. We study functions of bounded variation with values in a Banach or in a metric space. In finite
dimensions, there are three well-known topologies; we argue that in infinite dimensions there is a natural
fourth topology. We provide some insight into the structure of these four topologies. In particular, we
study the meaning of convergence, duality and regularity for these topologies and provide some useful
compactness criteria, also related to the classical Aubin–Lions theorem. After this we study the Borel σ -
algebras induced by these topologies, and we provide some results about probability measures on the space
of functions of bounded variation, which can be used to study stochastic processes of bounded variation.

1. Introduction

Functions of bounded variation have a broad range of applications, includingmateri-
als science, chemistry, image processing, ormore generally, models that involve jumps
and intervals of differentiability or even quiescence. There are even some applications
to random processes, e.g. [19,25], which was in fact one of the motivations behind
the current work, see [29]. Many properties of functions of bounded variation and
their corresponding topologies can be found in the standard works [17,34] and [3]. In
this paper, we study functions of bounded variation BV(0, T ; Z) mapping an interval
(0, T ) to an infinite-dimensional codomain,1 see, for example, [1,10,22,30,31]. In the
general setting, we take Z to be a metric space; some stronger results will require the
case where Z = X∗, the Banach dual of a Banach space X .

The aim is to provide a systematic study of topological and measurability proper-
ties of the space of functions of bounded variation mapping to an infinite-dimensional
codomain. For completeness, we also provide an overview of properties of functions
of bounded variation themselves; most of those results are either straightforward gen-
eralisations of the finite-dimensional case, as, for example, outlined in [3], or are
otherwise known from the literature, see, for example, [1]. However, we are not aware
of a comparable overview in the literature that would fit our purpose.
In finite dimensions, three topologies are commonly used: the norm, strict and

weak-* topologies. What is commonly called the weak-* topology is actually slightly
stronger thanwhat should be the called theweak-* topology from a functional-analytic

1For functions of bounded variations on an infinite-dimensional domain, see, e.g. [2,4,5,13].
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perspective. Since the bounded norm balls are known to be compact in the stronger
topology, this distinction is rarely made. However, we shall see that this is no longer
true for functions mapping to an infinite-dimensional codomain. This is a subtle dif-
ference between the finite- and the infinite-dimensional settings. Therefore, in infinite
dimensions one needs to distinguish between the (functional analytic) weak-* topol-
ogy and what we coin the hybrid topology, which coincides with what is usually called
the weak-* topology in finite dimensions.

Since the norm topology is too strong for many practical purposes, we focus on the
weak-*, hybrid and strict topologies. In particular, we:

• Prove criteria for convergence;
• Prove compactness criteria, from which we also derive a generalised Aubin–
Lions result;

• Characterise the dual space of the space BV(0, T ; Z) equippedwith the different
topologies;

• Study several topological properties like separability, metrisability on subsets,
Sousliness, perfect normality and complete regularity.

The study of Borel σ -algebras and measures on the space of functions of bounded
variation seems to be relatively untrodden ground in the literature, despite its relevance.
This relevance liesmostly in the application toBanach ormetric-space-valued stochas-
tic jump processes. Most standard tools in the theory of stochastic processes require
a Polish space; therefore, one commonly works with the space of càdlàg functions
equipped with the Skorokhod (J1-) topology. A natural question is then whether such
tools are still available when working on the functions of bounded variation. Unfortu-
nately, none of the mentioned topologies are Polish: the strong topology is metrisable
but not separable, the strict topology is metrisable but not complete, and the hybrid and
weak-∗ topologies are not metrisable. Therefore, the standard tools mentioned above
may no longer work in those topologies. Although theweak-∗ topology is probably too
weak for many practical purposes, the hybrid topology turns out to be strong enough
to be useful but weak and regular enough to be tractable. In particular, it turns out that
the hybrid topology is perfectly normal and completely regular, which is sufficient to
establish:

• A generalised Portmanteau Theorem;
• A generalised forward Prokhorov Theorem;
• That tightness plus convergence of finite-dimensional distributions imply con-
vergence of the path measures.

This implies that the space of functions of bounded variation equipped with the hybrid
topology can be a suitable alternative to the càdlàg functions with the Skorokhod
topology, which is commonly used in the study of stochastic processes.
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1.1. Overview

The structure of the article is as follows: InSect. 2,weoutline the settingof this paper.
We provide the definitions of variation and prove a number of fundamental results
such as the existence of càdlàg-representatives, equivalence of the various notions of
variation and the existence of time derivatives. In Sect. 3, we study the properties of the
three topologies that we have introduced above and provide a number of convergence,
duality, regularity and compactness theorems for each of them. In Sect. 4, we derive
a number of measure-theoretic results. Most notably, we first show a number of facts
about the σ -algebras corresponding to the strong, strict and hybrid topologies and then
provide generalised versions of the Portmanteau theorem, Prokhorov’s theorem, and
a criteria for convergence of measures. For completeness, in “Appendix” we recall
the notions of Banach-valued measures, integrals against Banach-valued measures,
regularisation and topologies on Banach-valued measures.

2. Set-up

We first define various notions of variation and the space of functions of bounded
variation.Next, we show a number of continuity properties of BV-functions that follow
from purely metric considerations; in particular, we recall [18, p.109] that every BV-
function is continuous up to countably many points and that the càdlàg representative
can be used to calculate the variation. After this, we show that all concepts of variation
coincide. Finally, we introduce the time derivative of a function of bounded variation
and present a number of its properties.

2.1. Notions of variation

Let (Z , d) be a metric space. There are many different notions of variation; we
shall see in Sect. 2.3 that these generally coincide. Most of these notions can easily
be defined in a metric space, but some notions require a Banach predual space. To
define those notions, we will use the embedding of the metric space Z in the Banach
space Lip0(Z)∗ as we will explain below; the resulting notions are consistent with an
alternative generalisation of Ambrosio [1].

2.1.1. Pointwise variation

The first, classical notion of variation is the pointwise variation (see, for example,
[9,16]), defined for a (pointwise defined) function f : (0, T )→ Z as

pvar( f ) := sup
0<t0<t1<···<tn<T

n∑

i=1
d
(
f (ti−1), f (ti )

)
, (2.1)

where the supremum runs over all finite partitions of the interval (0, T ). The pointwise
variation is often used to define functions of bounded variation in fields where one is
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interested in the values at every single timepoint, like the field of energetic solutions
for rate-independent systems and in non-smooth mechanics (see [26] and [28, Ch. 1]),
which is closely connected to our theory for the Banach-valued case.

2.1.2. Essential pointwise variation

The pointwise defined functions of bounded pointwise variation have some mathe-
matical drawbacks, for example: one cannot define weak derivatives. Therefore, one
usually works on functions in L1

(
0, T ; Z). If Z is a Banach space, the meaning of this

space is clear; otherwise, the L1(0, T ; Z) is a metric space defined as follows over
equivalence classes of measurable functions f ∈ M(0, T ; Z), where M(0, T ; Z)

are the measurable functions from (0, T ) to Z . More precisely, define the metric
ρL1( f, g) := ∫ T

0 d
(
f (t), g(t)

)
dt for two functions f, g ∈ M(0, T ; Z). We write

f ∼ g if f = g a.e., that is, if ρL1( f, g) = 0. Fix a point z0 ∈ Z . This point will
play the role of the zero element in a Banach space; all results that we present are
trivially invariant under the choice of this point. One then defines the metric space
L1(0, T ; Z) := { f ∈M(0, T ; Z) : ρL1(z0, f ) <∞}/ ∼, which is complete when-
ever Z is complete. For a function f ∈ L1

(
0, T ; Z)

, we can now define the essential
pointwise variation,

epvar( f ) := inf
g∼ f

pvar(g). (2.2)

We recall in this context that the definitions of pvar(g) and epvar( f ) do not rely
on L1(0, T ; Z)-regularity [11]. However, every function g with bounded pointwise
variation is almost everywhere continuous, i.e. measurable, and bounded and hence
lies in L1(0, T ; Z). The space of functions of bounded variation is defined accordingly:

BV(0, T ; Z) :=
{
f ∈ L1(0, T ; Z) : epvar( f ) <∞

}
.

If Z is a Banach space, then the natural norm on this space is simply ‖ f ‖BV :=
‖ f ‖L1 + epvar( f ). If Z is a pure metric space, then defining a metric ρBV is a non-
trivial task since epvar( f − g) is not well defined. This will require the embedding
into the space of Lipschitz functions, as explained below.

2.1.3. Variation

The third and fourth notions can only be defined whenever Z = X∗ is a dual
Banach space, since it involves integrating against test functions. In what follows,
we consider the space C0(0, T ; X) of continuous functions (0, T ) → X , vanishing
in 0 and T , with its corresponding dual space rca(0, T ; X∗) of regular X∗-valued
measures, see Definition A.1 in “Appendix A.1”). To shorten notation we write, for
f ∈ L1(0, T ; X∗) or μ ∈ rca(0, T ; X∗) and φ ∈ C0(0, T ; X),
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〈〈φ, f 〉〉 :=
∫ T

0
〈φ(t), f (t)〉 dt or 〈〈φ,μ〉〉 :=

∫ T

0
〈φ(t), μ(dt)〉 , (2.3)

where 〈·, ·〉 is the duality pairing between the Banach space X and its Banach dual X∗
(see “Appendix A.2”). It is now possible to introduce two integral-based variations for
f ∈ L1(0, T ; X∗):

var( f ) := sup
φ∈C1

0 (0,T ;X):
‖φ‖∞≤1

−〈〈φ̇, f 〉〉, (2.4)

and

varw( f ) := sup
φ∈C1

b (0,T ;X):
‖φ‖∞≤1

〈φ(T ), f (T−)〉 − 〈φ(0), f (0+)〉 − 〈〈φ̇, f 〉〉, (2.5)

provided the right limit f (0+) at 0 and the left limit f (T−) at T exist; otherwise, we
set the value to +∞. Naturally, (2.5) is just an extension of (2.4) which includes the
boundary; we shall see in Sect. 2.3 that this extension does not change the value.

2.1.4. Embedding into Lipschitz functions

Following, for example, [1], one can note that in the Banach-valued case, every
predual element x ∈ X induces aLipschitz functional x∗ �→ 〈x, x∗〉 forwhich 〈x, 0〉 =
0.Motivated by this observation, the predual space is replaced by the (potentiallymuch
larger class of) Lipschitz functions,

Lip0(Z) :=
{
ξ : Z → R for which ‖ξ‖Lip(Z) <∞ and ξ(z0) = 0

}
,

equipped with the Lipschitz constant as norm:

‖ξ‖Lip(Z) := sup
z1,z2∈Z :
z1 �=z2

|ξ(z2)− ξ(z1)|
d(z2, z1)

.

This Lipschitz norm is basically the global metric slope of ξ , see [6, Defn. 1.2.4],
and is sometimes also known as the Cheeger derivative. To mimic the notation for the
Banach case while emphasising the one-sided linearity, we write

〈ξ, z] := ξ(z) for ξ ∈ Lip0(Z) and z ∈ Z , and

〈〈φ, f ]] :=
∫ T

0
〈φ(t), f (t)] dt for φ ∈ C0

(
0, T ;Lip0(Z)

)
and f ∈ L1(0, T ; Z).

We now introduce the canonical embedding
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δ· : Z → Lip0(Z)∗, z �→ δz with

Lip0(Z)〈ξ, δz〉Lip0(Z)∗ := 〈ξ, z] = ξ(z) ∀ξ ∈ Lip0(Z). (2.6)

Any function f ∈ BV(0, T ; Z) can then be associated with a Banach space-valued
function δ f (t) = δ f (t). However, the space Lip0(Z) should be interpreted as a general-
isation of the dual of Z rather than the predual; this leads to some differences between
the Banach and the metric cases. For example, we can only define a measure-valued
derivative δ̇ f that takes values in Lip0(Z)∗ rather than in Z . Moreover, if Z = X∗
happens to be dual Banach space and we use the embedding, it is not immediately
clear whether the notions of variation in X∗ coincide with the notions in Lip0(X

∗)∗.
In Theorem 2.10, we prove that in the metric setting epvar( f ) = epvar

(
δ f

)
; we then

find in Corollary 2.11 that for Z = X∗ all notions of variations coincide. This shows
that the following metric on the space BV(0, T ; Z),

ρBV( f, g) := ρL1( f, g)+ epvar
(
δ f − δg

)
, (2.7)

generalises the distance induced by the norm

‖ f ‖BV := ‖ f ‖L1(0,T ;X∗) + epvar( f )

on BV(0, T ; X∗).
2.2. Continuity-related properties of BV-functions

In this section, we work with pointwise variation and so we can work with functions
taking values in a metric space. A crucial fact will be the existence of right and left
limits, whichwill lead to a proof of Theorem2.10. The first step is to show the existence
of such limits for pointwise defined functions.

PROPOSITION 2.1. (Existence of right and left limits, [18, Sect. 2.5.16]) Let Z
be a complete metric space and g : (0, T ) → Z satisfy pvar(g) < ∞. Then g is
continuous up to a countable subset of (0, T ) and g has left- and right-sided limits:

g(t−) := lim
s→t
s<t

g(s) ≡ lim
s↗t

g(s), and g(t+) := lim
s→t
s>t

g(s) ≡ lim
s↘t

g(s)

for all t ∈ (0, T ), and one-sided limits at the end points.

Proof. Let us write

pvar(g; (0, t]) := sup
0<t0<t1<···<tn≤t

n∑

i=1
d
(
g(ti−1), g(ti )). (2.8)

This is a monotonely increasing function of t and bounded above by pvar(g) so it has
at most countably many jumps. Let t be a continuity point of pvar(g; (0, t]). Then we
find

lim
τ→t

d (g(t), g(τ )) ≤ lim
τ→t

∣∣pvar(g; (0, t])− pvar(g; (0, τ ])∣∣ = 0 .
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Let t ∈ [0, T ). If there were a monotone sequence tn ↘ t such that g(tn) did not
converge, then the sequence cannot be Cauchy, i.e. for some ε > 0 one can pass
to a subsequence such that d

(
g(tn), g(tn+1)

) ≥ ε for all n. This would imply that
pvar(g) = ∞, which is a contradiction. Similarly, we prove existence of left limits on
(0, T ]. �

Using this fact, we can now prove that the right and left limits of a BV-equivalence
class are well defined.

PROPOSITION2.2. (Uniqueness of right and left limits)Let Z be a completemetric
space and f ∈ BV(0, T ; Z). Then the left and right limits of f are independent from
the chosen representative and thus uniquely defined.

Proof. Take two representatives g1, g2 of f , i.e. g1(t) = g2(t) almost everywhere,
and pvar(g1), pvar(g2) < ∞. By Proposition 2.1, there exists a countable set I ⊂ N

such that g1|[0,T ]\I and g2|[0,T ]\I are continuous and thus g1(t) = g2(t) for all t �∈ I .
Using the triangle inequality, we infer that

pvar(d(g1, g2)) = pvar
(‖δg1 − δg2‖

)

≤ pvar
(
δg1

)+ pvar
(
δg2

) = pvar(g1)+ pvar(g2) .

Therefore, the left and right limits of d(g1, g2) = 0 exist in all t ∈ (0, T ) with
one-sided limits at the end points. Hence, g1(t−) = g2(t−) for all t ∈ (0, T ] and
g1(t+) = g2(t+) for all t ∈ [0, T ). �

Note that the last proposition can be proved without the δ-formalism, but applying
the δ-duality shortens the proof due to the fact that pvar is a norm in the dual Banach
space setting. By Proposition 2.2, we can construct a càdlàg version of a BV-function.
We prove here that this version is in fact a minimiser for essential pointwise variation.
Later on in Corollary 2.20 we prove that the càdlàg version can be related to the
derivative.

PROPOSITION 2.3. Let Z be a complete metric space and f ∈ BV(0, T ; Z).
Define fcadlag(t) := f (t+). Then fcadlag = f a.e. and epvar( f ) = pvar

(
fcadlag

)
.

Proof. First note that fcadlag(t) = f (t) wherever f is continuous and by Proposi-
tion 2.1 the discontinuity points are a countable set and thus of measure 0, which
proves the first statement. Because of this, one has epvar( f ) ≤ pvar

(
fcadlag

)
. Sup-

pose the inequality to be strict, then there exists an a g = f a.e. such that pvar(g) <

pvar
(
fcadlag

)
. By Proposition 2.2 fcadlag ≡ gcadlag and so pvar(g) < pvar

(
gcadlag

)
,

thus there exists an ε > 0 and a finite partition 0 < t0 < t1 < · · · < tn < tn+1 = T
such that

pvar(g)+ ε ≤
n∑

i=1
d

(
gcadlag(ti−1), gcadlag(ti )

)
.
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However, we may also find si ∈ (ti , ti+1) such that

max
i=0,...,n d

(
g(si ), gcadlag(ti )

)
<

ε

3n

and thus pvar(g)+ ε ≤ pvar(g)+ 2ε
3 , which is a contradiction as pvar(g) <∞. �

We end this subsection with two results that are instrumental in proving our Com-
pactness theorem 3.21. For an open subinterval I ⊂ (0, T ) let

pvar( f ; I ) := sup
0<t0<t1<···<tn<T :

t0,tn∈I

n∑

i=1
d
(
f (ti−1), f (ti )

)
,

then the following rule for combining variation holds:

PROPOSITION 2.4. Let Z be a complete metric space, 0 < T1 < T2 and f ∈
BV(0, T2; Z), then

pvar( f ; (0, T2))
= pvar( f ; (0, T1))+ pvar( f ; (T1, T2))+ d( f (T1−), f (T1))+ d( f (T1), f (T1+)).

LEMMA 2.5. Let Z be a complete metric space, f ∈ BV(0, T ; Z), ε > 0 and
σ : (0, T ) → (0, T ) be measurable and satisfy |σ(t)− t | ≤ ε for all t ∈ (0, T ), then

∫ T

0
d( f (t), f (σ (t)+)) dt ≤ 3ε epvar( f ).

Proof. By Proposition 2.3, one may replace f (t) with fcadlag(t). Let n be the largest
integer no greater than T/ε; then, implicitly intersecting domains of integration with
(0, T ) the integral can be broken into smaller integrals:

∫ T

0
d( f (t), f (σ (t)+)) dt =

n+1∑

i=1

∫ iε

(i−1)ε
d
(
fcadlag(t), fcadlag (σ (t))

)
dt

However, for t ∈ ((i − 1)ε, iε) ∩ (0, T ) it follows that σ(t) ∈ ((i − 2)ε, (i + 1)ε) ∩
(0, T ) and so

d( f (t), f (σ (t)+)) ≤ pvar
(
fcadlag; ((i − 2)ε, (i + 1)ε) ∩ (0, T )

)
.

Thus

∫ T

0
d( f (t), f (σ (t)+)) dt ≤ ε

n+1∑

i=1
pvar

(
fcadlag; ((i − 2)ε, (i + 1)ε) ∩ (0, T )

)

and the result follows after allowing for some triple counting since pvar is subadditive
by Proposition 2.4 . �
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2.3. Equivalence of notions of variation

In this section, we compare the various notions of variations, first for the Banach
space setting, and then for the metric space setting.

2.3.1. Equivalence of notions of variation for Banach-valued functions

We now prove in two parts that all notions of variations coincide.

PROPOSITION 2.6. Let X∗ be a dual Banach space and let f ∈ BV(0, T ; X∗),
then

var( f ) = epvar( f ).

Proof. By Proposition 2.2, we can canonically identify any f ∈ BV(0, T ; X∗) with
its càdlàg version, and then by Proposition 2.3 one sees that epvar( f ) = pvar( f ). We
can choose 0 < t0 < t1 < · · · < tn < T and ξi , ζi ∈ X with ‖ξi‖X , ‖ζi‖X = 1 such
that

pvar( f ) ≤
n∑

i=1
‖ f (ti−1)− f (ti )‖ + ε

≤
n∑

i=1

{
‖ f (ti−1)− f (ti−)‖ + ‖ f (ti−)− f (ti )‖

}
+ ε

≤
n∑

i=1

{
〈ξi , f (ti−1)− f (ti−)〉

}
+

n∑

i=1

{
〈ζi , f (ti−)− f (ti )〉

}
+ 2ε.

(2.9)

We now estimate both sums separately. Since ξi ◦ f ∈ BV(0, T ;R), each term in
the first sum is bounded by the variation var(ξi ◦ f ; (ti−1, ti )) of ξi ◦ f , restricted to
the interval (ti−1, ti ). Due to this BV-regularity, we can take φi ∈ C1

c (0, T ;R) with
suppφi ⊂ (ti−1, ti ), 0 ≤ φi ≤ 1 and

〈ξi , f (ti−1)− f (ti−)〉 ≤ var(ξi ◦ f ; (ti−1, ti )) ≤
∫ ti

ti−1
φ̇i (t) 〈ξi , f (t)〉 dt + ε

n
.

Now define 
 : (0, T ) → X by 
(t) := ∑n
i=1 φi (t)ξi . Then 
 ∈ C1

c

(
0, T ; X)

with
‖
‖∞ ≤ 1 and,

n∑

i=1

{
〈ξi , f (ti−1)− f (ti−)〉

}
≤ 〈〈
̇, f 〉〉 + ε .

For some δ > 0, one has 
 |∪ni=1(ti−δ,ti+δ)≡ 0. We now exploit this flexibility to deal
with possible jumps at the ends of the intervals in the second sum of (2.9). Define
ψ ∈ C1

c (R;R) through
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ψ̇(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−4s if 0 ≤ s < 1
2

4(s − 1
2 )− 2 if 1

2 ≤ s < 1

0 if s ≥ 1

, ψ̇(s) = −ψ̇(−s) , ψ(−1) = 0 .

Since ζi ◦ f is right continuous and has left limits, we obtain that

lim
δ→0

1

δ

∫ ti+δ

ti−δ

ψ̇
( t − ti

δ

)〈ζi , f (t)〉 dt = 〈ζi , f (ti−)− f (ti )〉 .

Thus we can pick δ sufficiently small so that �(t) := ∑n
i=1 ψ

( t−ti
δ

)
ζi lies in

C1
c

(
0, T ; X)

with ‖�‖∞ ≤ 1 and supp
 ∩ supp� = ∅, and
n∑

i=1

{
〈ζi , f (ti−)− f (ti )〉

}
≤ 〈〈�̇, f 〉〉 + ε.

Continuing with (2.9), we find that

pvar( f ) ≤ 〈〈
̇+ �̇, f 〉〉 + 4ε (2.10)

where even 
+� ∈ C1
c

(
0, T ; X)

with ‖
+�‖∞ ≤ 1. Since for all ε > 0 we can
construct 
,� such that (2.10) holds, we obtain

pvar( f ) ≤ sup

∈C1

c (0,T ;X):
‖
‖∞≤1

〈〈
̇, f 〉〉 = var( f ).

For the converse, it is sufficient to establish var( f ) ≤ pvar( f ) = epvar( f ) since
we still identify f with its càdlàg representative. For n ∈ N define fn ∈ BV(0, T ; X∗)
by the piecewise constant approximation

fn(t) :=
n∑

i=1
f
(

(i−1)T
n

)
1[

(i−1)T
n , iTn

)(t)

and note that these are càdlàg by construction and satisfyρL1( fn, f )→ 0. Further

var( fn) = sup

∈C1

0 (0,T ;X):
‖
‖∞=1

n∑

i=1

∫ iT
n

(i−1)T
n

〈

̇(t), f

(
(i−1)T

n

)〉
dt

= sup

∈C1

0 (0,T ;X):
‖
‖∞=1

n∑

i=1

〈



( iT
n

)−

(

(i−1)T
n

)
, f

(
(i−1)T

n

)〉

≤
n−1∑

i=1

∥∥∥ f ( (i−1)T
n )− f ( iTn )

∥∥∥ ≤ pvar( f ).
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Since var( f ) is the supremum over functionals continuous in the L1 topology, it is
lower semicontinuous, so that:

var( f ) ≤ lim inf
n

var( fn) ≤ pvar( f ).

�

The next result can also be proved by explicit estimates in the style of the previous
proof, the proof given usesmaterial presented in the following sections and is therefore
somewhat shorter.

PROPOSITION 2.7. Let X∗ be a dual Banach space and let f ∈ BV(0, T ; X∗),
then

var( f ) = varw( f ).

Proof. Bydefinition,wefind var( f ) ≤ varw( f ). For the other direction of the equality
var( f ) = varw( f ), choose a sequence of functions ψη ∈ C1

b([0, 1);R) such that
ψη(0) = 1, ψη is non-increasing and ψη(η) = 0. For an arbitrary φ ∈ C1

b(0, T ; X),
we write φη(t) := φ(t)

(
1− ψη(t)− ψη(T − t)

)
which is now in C1

0(0, T ; X). Then

〈φ(T ), f (T−)〉 − 〈φ(0), f (0+)〉 − 〈〈φ̇, f 〉〉
= 〈φ(T ), f (T−)〉 − 〈φ(0), f (0+)〉 − 〈〈φ̇η, f 〉〉 + 〈〈φ̇η − φ̇, f 〉〉
≤ 〈φ(T ), f (T−)〉 − 〈φ(0), f (0+)〉 + var( f )− 〈〈(ψη + ψη(T − ·)

)
φ̇, f 〉〉

− 〈〈φ (
ψ̇η − ψ̇η(T − ·)

)
, f 〉〉

→ 〈φ(T ), f (T−)〉 − 〈φ(0), f (0+)〉 + var( f )−〈φ(T ), f (T−)〉+〈φ(0), f (0+)〉
= var( f )

where we used the continuity of φ and the existence of left and right limits of f
together with

∫ T
0 ψ̇η(t) dt = 1. Taking the supremum over φ ∈ C1

b(0, T ; X) proves
the claim. �

To summarise the results of Propositions 2.3, 2.6 and 2.7, we now have the equiva-
lence of all notions of variations:

COROLLARY 2.8. Let X∗ be a dual Banach space, then for all f ∈ BV(0, T ; X∗)
epvar( f ) = pvar

(
fcadlag

) = var( f ) = varw( f ).

2.3.2. Equivalence of notions of variation for metric-space-valued functions

We now investigate the relation between the variations in the metric and the Banach
setting. As explained in Sect. 2.1, the canonical embedding δ: Z → Lip0(Z)∗ plays
a crucial role. We note that the space Lip0(Z) is never empty—just consider ξ(z) :=
d(z, z0), and that the embedding is continuous and injective, due to the following
result, which is trivial to obtain but can be considered the heart of the concept of δ f .
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LEMMA 2.9. For all z1, z2 ∈ Z

∥∥δz1 − δz2

∥∥
Lip0(Z)∗ = sup

ξ∈Lip0(Z):
‖ξ‖Lip(Z)=1

〈ξ, z1] − 〈ξ, z2] = d(z1, z2). (2.11)

Proof. The inequality sup‖ξ‖Lip(Z)=1〈ξ, z1] − 〈ξ, z2] ≤ d(z1, z2) holds by definition.
Equality follows for the choice ξ(z) := d(z, z2)− d(z0, z2). �

This lemma guarantees that δ f ∈ BV
(
0, T ;Lip0(Z)∗)

)
if f ∈ BV(0, T ; Z). More

precisely, we have

THEOREM 2.10. Let Z be a complete metric space. For every g : (0, T )→ Z,

pvar(g) = pvar
(
δg

)
,

and for every f ∈ BV(0, T ; Z),

epvar( f ) = epvar
(
δ f

)
.

Proof. The first statement is a simple consequence of equation (2.11). For the second
statement, use δ f (t) = δ f (t) and continuity of the mapping δ to see that (δ f )cadlag ≡
δ( fcadlag). Together with Proposition 2.3 and the first statement, this implies that

epvar( f ) = pvar
(
fcadlag

) = pvar
(
δ( fcadlag)

) = pvar
(
(δ f )cadlag

) = epvar
(
δ f

)
.

�

Combining this result with Theorem 2.8 yields.

COROLLARY 2.11. Let X∗ be a dual Banach space. For every f ∈ BV(0, T ; X∗):

var( f ) = varw( f ) = epvar( f ) = epvar
(
δ f

) = varw
(
δ f

) = var
(
δ f

)
.

REMARK 2.12. (i) As a by-product of Corollary 2.11, it also follows that

var( f ) = sup
φ∈C1

0 (0,T ;X)

∫ T

0

〈
φ̇(t), f (t)

〉
dt

= sup
ψ∈C1

0(0,T ;Lip0(X∗))

∫ T

0

〈
ψ̇(t), f (t)

]
dt = var

(
δ f

)
,

and so the space of test functions used in defining var(·) for BV(0, T ; X∗)
can be extended from C0

(
0, T ; X)

to C0
(
0, T ;Lip0(X∗)

)
[which includes

C0
(
0, T ; X∗∗)] without changing what is meant by variation.

(ii) There is another well-established concept for the variation of a metric-space-
valued function, which was studied by Ambrosio [1] to define the space
BV(�; Z), � ⊂ R

n . For the case n = 1, his results read as follows: given
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f : (0, T ) → Z , the variation of f is defined to be the smallest measure
σ f ∈ rca(0, T ;R) such that

∀ϕ ∈ Lip0(Z), ‖ϕ‖Lip0(Z) = 1, B ⊂ (0, T ) σ f (B) ≥ |∂ϕ ◦ f |(B) ,

where |∂ϕ ◦ f |(B) is the variation/Stieltjes measure of ϕ( f ) over B, see The-
orem A.3. This definition by Ambrosio coincides with epvar( f ). Our approach
allows us to identify σ f with |δ̇ f |.

2.4. Time derivatives of BV-functions

In this section, we introduce the measure-valued time derivative of a function of
bounded variation and prove a number of properties related to this derivative. The
concept of Banach-measure-valued derivatives for BV-functions was already outlined
by Dinculeanu [15, Sect. 17], and recently used by Recupero [30] in the Hilbert space
setting to study rate-independent systems. We briefly note that there are also other
related notions of time derivatives, such as the reduced derivative [27, App. A] and
Darboux-sums [26, App. B.5]. Moreover, the Kurzweil integral

∫ T
0 φ d f can be used

to give sense to the right-hand side of (2.12) without introducing a time derivative,
see, e.g. [20,21].
First we show the existence of a measure-valued time derivative:

THEOREM2.13. (Existence of measure-valued derivatives) Let f ∈ BV(0, T ; Z).

(i) If Z = X∗ is a dual Banach space, then there exists a unique finite measure
ḟ ∈ rca

(
0, T ; X∗) with ‖ ḟ ‖TV = var( f ) and such that

−〈〈φ̇, f 〉〉 = 〈〈φ, ḟ 〉〉 for all φ ∈ C1
0(0, T ; X) . (2.12)

(ii) If Z is a complete metric space, then there exists a unique finite measure δ̇ f ∈
rca

(
0, T ;Lip0(Z)∗

)
with ‖δ̇ f ‖TV = var( f ) and such that

−〈〈φ̇, f ]] = 〈〈φ, δ̇ f 〉〉 for all φ ∈ C1
0

(
0, T ;Lip0(Z)

)
. (2.13)

REMARK 2.14. The existence of a time derivative as a Stieltjesmeasurewas already
formulated in [15, III.17.2 Theorem 1] for general Banach spaces. However, this result
does not provide an interpretation in the sense of a dual pairing with C1

0 -functions,
which makes it necessary to restrict to dual spaces.

Proof of Theorem 2.13. The map φ �→ −〈〈φ̇, f 〉〉 is clearly linear and bounded:

∣∣−〈〈φ̇, f 〉〉∣∣ ≤ ‖φ‖C0(0,T ;X)var( f ) ∀φ ∈ C1
0(0, T ; X) .

By denseness and by the Banach-valued Riesz–Markov–Kakutani theorem A.7, the
claim follows. The proof for themetric case is the same ifwe replace X byLip0(Z). �
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REMARK 2.15. A word of warning is appropriate here: even in the case Z = X∗
and for differentiable f one does not in general have δ ḟ = δ̇ f viewed as ele-

ments of rca
(
0, T ;Lip0(X∗)∗

)
. To see this, take an f ∈ W 1,1(0, T ; X∗) and a

φ ∈ C1
0

(
0, T ;C1

b(X
∗)

)
and apply two partial integrations to get (Dx∗〈φ(t), x∗]

denotes the Gâteaux derivative of φ(t) in x∗):

〈〈φ, δ̇ f 〉〉 =
∫ T

0
X∗∗

〈
Df (t)〈φ(t), f (t)], ḟ (t)〉X∗ dt, and

〈〈φ, δ ḟ 〉〉 =
∫ T

0
〈φ(t), ḟ (t)] dt.

Hence in general the two only agree when integrated against test functions that are
linear in f , that is φ ∈ C0(0, T ; X).

Inmany cases, themeasure-valued derivative can itself be identifiedwith a function.
This is captured by the following definition and result.

DEFINITION 2.16. Let Z be a metric space and let f ∈ BV(0, T ; Z). We say that
f is p-absolutely continuous, 1 ≤ p ≤ ∞, if there exists v ∈ L p(0, T ) such that

d
(
fcadlag(t), fcadlag(τ )

) ≤
∫ τ

t
v(s) ds ∀0 ≤ t ≤ τ ≤ T . (2.14)

In the next lemma, we show that p-absolutely continuity is equivalent to L p-
regularity of the derivative . This result is known in the literature for reflexive Banach
spaces (see, for instance, [6, Rem. 1.1.3]).

LEMMA 2.17. (Absolute continuity) Let Z be a complete separable metric
space. A function f ∈ BV(0, T ; Z) is p-absolutely continuous if and only if
δ̇ f ∈ L p(0, T ;Lip0(Z)∗). Let Z = X∗ be a dual Banach space. Then a function
f ∈ BV(0, T ; X∗) is p-absolutely continuous if and only if ḟ ∈ L p(0, T ; X∗). Fur-
thermore, v = |δ̇ f | is optimal in (2.14).

Proof. We first prove the Banach case. Let ḟ ∈ L p(0, T ; X∗). Then (2.14) holds for
v(t) := ‖ ḟ (t)‖X∗ . On the other hand, let (2.14) hold. As explained in “Appendix A.1”,
we may take the supremum over finite sub-intervals in the definition of the R-valued
measure | ḟ |. Therefore, we get that for every interval (a, b] ⊂ (0, T ),

| ḟ |(a, b] = sup
a<t0<...≤tn≤b

n∑

i=1

∥∥ ḟ
(
(ti−1, ti ]

)∥∥
X∗

(2.15)= sup
a<t0<...≤tn≤b

n∑

i=1

∥∥ f (ti+)− f (ti−1+)
∥∥
X∗

(2.14)≤ sup
a<t0<...≤tn≤b

n∑

i=1

∫ ti

ti−1
v(s) ds ≤

∫

(a,b]
v(s) ds.
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By the classical Nikodym theorem, there exists a measurable function w : (0, T ) →
[0, 1] such that | ḟ |(ds) = v(s)w(s) ds. By the generalised Lebesgue–Nikodym
theorem A.8, there exists u : (0, T ) → X∗ with ‖u(t)‖X∗ ≤ 1 for every t ∈ (0, T )

such that for all φ ∈ Cc(0, T ; X)

〈〈φ, ḟ 〉〉 =
∫ T

0
〈φ(t), u(t)〉 | ḟ |(dt) =

∫ T

0
〈φ(t), u(t)〉 v(t)w(t) dt .

This implies ḟ = uvw and hence
∥∥ ḟ

∥∥
L p(0,T ;X∗) ≤ ‖v‖L p(0,T ) and v = | ḟ | is optimal

in (2.14).
The general metric case now follows immediately. �

We now show how a function of bounded variation can be reconstructed from its
derivative. For this, we first need two lemmas which can be proved the same way as
in [3, Example 1.75, Proposition 3.2 and Theorem 3.27].

LEMMA 2.18. Let Z = X∗ be a dual Banach space,μ ∈ rca(0, T ; X∗), and define
g(t) := μ

(
(0, t]) for all t ∈ (0, T ). Then g ∈ BV(0, T ; X∗) and μ = ġ = ∂g, where

∂g is the Stieltjes measure from Theorem A.3.

LEMMA 2.19. Let Z = X∗ be a dual Banach space. If u, v ∈ BV(0, T ; X∗) such
that u̇ = v̇, then u ≡ v + c for some constant c ∈ X∗.

As a corollary of Lemmas 2.18, 2.19 and Theorem A.3, we obtain the following.

COROLLARY 2.20. Let X be a Banach space with dual space X∗ and let f ∈
BV(0, T ; X∗). Then the càdlàg version of Proposition 2.3 can be written as

fcadlag(t) = ḟ
(
(0, t])+ f (0+). (2.15)

Similarly, if Z is a metric space and f ∈ BV(0, T ; Z) then

δ fcadlag(t) =
(
δ f

)
cadlag(t) = δ̇ f

(
(0, t])+ δ f (0+).

We now prove a number of useful results related to the derivative: a product rule, a
mollification, an approximation result, and an integration-by-parts formula. The fol-
lowing two statements (Proposition 2.21 and Theorem 2.22) can be proved along the
same lines as [3, Prop. 3.2, Thm. 3.9], using Lemma’s A.10 and A.11 from “Appen-
dix A.3”.

PROPOSITION 2.21. Let X be a separable Banach space and f ∈ BV(0, T ; X∗).
1. For any Lipschitz function ψ : (0, T ) → R the product f ψ ∈ BV(0, T ; X∗)

and

d

dt
( f ψ) = f ψ̇ + ḟ ψ .

2. If ψη ∈ C∞c (R) is a mollifier with suppψη ⊂ [−η, η] then
d

dt
(ψη ∗ f )(t) = (

ψη ∗ ḟ
)
(t) ∀t ∈ (η, T − η) .
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THEOREM 2.22. (Approximation of BV(0, T ; X∗)-functions by smooth func-
tions.) Let X be a separable Banach space and let f ∈ L1(0, T ; X∗). Then
f ∈ BV (0, T ; X∗) if and only if there exists a sequence of functions ( fε)ε>0 with
fε ∈ C∞(0, T ; X∗) such that for all ε it holds

‖ f − fε‖L1(0,T ;X∗) < ε ,
∥∥ ḟε

∥∥
L1(0,T ;X∗) ≤ epvar( f )+ ε. (2.16)

Finally we give an integration-by-parts formula for the general metric case:

THEOREM 2.23. (Integration by parts) Let Z be a complete metric space, and
f ∈ BV(0, T ; Z) and φ ∈ W 1,∞(

0, T ;Lip0(Z)
)
(φ is identified with its Lipschitz

continuous representative). Then

〈〈φ̇, f ]] + 〈〈φ, δ̇ f 〉〉 = 〈φ(T−), f (T−)] − 〈φ(0+), f (0+)].

Proof. Let k ∈ N satisfy 1/k < T/4. Choose functions χ, ρ ∈ C2
c (R;R) such that

1[1/k,T−1/k] ≥ χ ≥ 1[2/k,T−2/k] and ρ ≥ 0 with support contained in [−1/2k, 1/2k]
and

∫
ρ(t)dt = 1. Define φk ∈ C2

c

(
0, T ;Lip0(Z)

)
by φk := (χφ) ∗ ρ. Then, since

k > 4/T ,

∣∣〈〈φ̇, f ]] + 〈〈φ, δ̇ f 〉〉 − φ(T−) ( f (T−))+ φ(0+) ( f (0+))
∣∣

≤ ∣∣〈〈φ̇, f ]] − 〈〈φ̇k, f ]] − φ(T−) ( f (T−))+ φ(0+) ( f (0+))
∣∣

+ ∣∣〈〈φ̇k, f ]] + 〈〈φk, δ̇ f 〉〉
∣∣+ ∣∣〈〈φ, δ̇ f 〉〉 − 〈〈φk, δ̇ f 〉〉

∣∣ .

Now
∣∣〈〈φ̇k, f ]] + 〈〈φk, δ̇ f 〉〉

∣∣ is 0 by the definition of ḟ since φk ∈ C2
c

(
0, T ;Lip0(Z)

)
.

Also ‖φk‖L∞(0,T ;Lip0(Z)) ≤ ‖φ‖L∞(0,T ;Lip0(Z)), and limk→∞ φk(t) = φ(t) for every
t ∈ (0, T ), so by dominated convergence

∣∣〈〈φ, δ̇ f 〉〉 − 〈〈φk, δ̇ f 〉〉
∣∣ ≤

∫ T

0
‖φ(t)− φk(t)‖Lip0(Z)

∣∣δ̇ f
∣∣ (dt) k→∞−−−→ 0.

The remaining term can be estimated by noting d
dt φk ≡ (χφ̇)∗ρ+ (χ̇φ)∗ρ, using

Lemma 2.5 and noting that if s, t ↘ 0 then φ(s) ( f (t)) → φ(0+) ( f (0+)) along
with the analogous result for T−. �

REMARK 2.24. For the case Z = X∗ we obtain a stronger integration-by-parts
result with δ̇ f replaced by ḟ .

3. Topologies on the space of functions of bounded variation

Although the space of functions of bounded variation is a Banach (or metric) space,
the norm topology is too fine for many purposes and in order to achieve convergence
and compactness results one introduces coarser topologies: the weak-* and the strict
topologies, see [3, Defn. 3.11 and 3.14]. As mentioned in introduction, in infinite
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dimensions one needs to distinguish between the (functional analytic) weak-* and
what we call the hybrid topology.
In Sect. 3.1, we define these four topologies and explain why this distinction is

relevant in infinite-dimensional spaces. We then investigate a number of important
properties of the topologies. Although the norm topology is clearly metrisable, it is
not separable and it is rarely possible to establish precompactness results; therefore,
we restrict our analysis to the weak-*, hybrid and strict topologies, subsequently in
Sects. 3.2, 3.3 and 3.4. For each of these three topologies, we will characterise con-
vergence, the dual space, discuss regularity properties, and give sufficient conditions
for compactness. Section 3.4 on the strict topology includes generalisations of [30].
Some of the results in this section hold when Z is a general metric space, but many

others require the dual Banach space structure Z = X∗. These results then also hold
in the metric setting after embedding BV(0, T ; Z) into BV

(
0, T ;Lip0(Z)∗

)
.

3.1. Definition of the topologies

We now present four distinct topologies for the space BV(0, T ; X∗), in decreasing
order of fineness. All four topologies have equivalent formulations in terms of open
(semi-)balls. To simplify presentation, we define these topologies by their correspond-
ing notions of convergence. We emphasise that the definition of vague convergence
given in Definition A.12 uses dual pairings with functions in C0(0, T ; X) and not just
Cc(0, T ; X). This is important because we are not simply dealing with probability
measures.
It should be noted that the hybrid and weak-* topologies are not necessarily first-

countable, so the topologies are defined through their convergent nets rather than
through convergent sequences, see, for example, [12, Sect. A.2].

DEFINITION 3.1. (Topologies on BV (0, T ; X∗)) Let X∗ be a dual Banach space,
and let ( fn)n be a net and f an element in BV(0, T ; X∗). We say that

fn converges to f in the norm or strong topology whenever:

fn −→−→ f :⇐⇒ fn
L1−→ f and

∥∥ ḟn − ḟ
∥∥
TV → 0, (3.1)

fn converges to f in the strict topology whenever:

fn −⇀−→strict f :⇐⇒ fn
L1−→ f and ‖ ḟn‖TV → ‖ ḟ ‖TV, (3.2)

fn converges to f in the hybrid topology whenever:

fn −⇀−→ f :⇐⇒ fn
L1−→ f and ḟn

vague−−−→ ḟ , (3.3)

fn converges to f in the weak-* topology whenever:

fn −⇀−⇀ f :⇐⇒ fn
vague−−−→ f and ḟn

vague−−−→ ḟ . (3.4)
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Observe that the strong topology is induced by the norm ‖·‖BV. The term strict
convergence is used in [3, Def. 3.14]. It is slightly stronger than the hybrid conver-
gence, see Proposition A.14, and it is clearly metrisable, see (3.11). The term weak-*
convergence is appropriate since BV(0, T ; X∗) is isometrically isomorphic to a dual
space, see [3, Rem. 3.12] and Proposition 3.6. We named the convergence (3.3) hybrid
since it is a combination of the strong convergence for the functions and weak-*
convergence for the distributional time derivatives. We have not (yet) been able to
determine whether the hybrid topology is a mixed topology in the sense of Wiweger
[35]; it certainly topologies the two-norm convergence of sequences, which was one
of Wiweger’s motivations.
For finite-dimensional X , weak-* and hybrid convergence coincide whenever the

net is uniformly bounded in the BV-norm. Therefore, the distinction between the two
is rarely made explicit. However, this is no longer true in the infinite-dimensional
setting, as the following example shows.

EXAMPLE 3.2. Suppose X = X∗ is a separable Hilbert space with orthonor-
mal basis (en)n∈N, and define the sequence of constant functions fn(t) ≡ en . This
sequence has uniformly bounded norm ‖ fn‖BV = ‖ fn‖L1(0,T ;X∗) = T , and fn −⇀−⇀ 0
but certainly not fn −⇀−→ 0. In particular, since BV(0, T ; X∗) can be identified with a
dual space, Banach–Alaoglu gives compactness of bounded BV-balls in the weak-*
topology, but not in the hybrid topology.

Using the canonical embedding δ : Z → Lip0(Z)∗ and Theorem 2.10, one can
easily generalise Definition 3.1 to the metric case:

DEFINITION 3.3. (Topologies on BV (0, T ; Z)) Let Z be a metric space and let
( fn)n be a net and f an element in BV(0, T ; Z). We say that

fn converges to f in the strong topology whenever:

fn −→−→m f :⇐⇒ fn
L1−→ f and

∥∥δ̇ fn − δ̇ f
∥∥
TV → 0, (3.5)

fn converges to f in the strict topology whenever:

fn −⇀−→strictm f :⇐⇒ fn
L1−→ f and ‖δ̇ fn‖TV → ‖δ̇ f ‖TV, (3.6)

fn converges to f in the hybrid topology whenever:

fn −⇀−→m f :⇐⇒ fn
L1−→ f and δ̇ fn

vague−−−→m δ̇ f , (3.7)

fn converges to f in the weak-* topology whenever:

fn −⇀−⇀m f :⇐⇒ δ fn
vague−−−→ δ f and δ̇ fn

vague−−−→m δ̇ f . (3.8)
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Observe that the strong topology is indeed induced by the metric (2.7). In our nota-
tion, we have included the subscript “m”, since it is not a priori clear whether these
notions coincide with the notions of Definition 3.1 if Z = X∗ is a dual Banach space.
However, we will show in Proposition 3.25 that the notions of strict convergence
indeed coincide, and similarly for the strong convergence, see Remark 3.26. In Propo-
sitions 3.5 and 3.14, we show that the metric and Banach versions of the weak-∗ and
hybrid topologies agree at least on sequences; it is still an open question whether the
topologies are the same, i.e. whether they agree on all nets.

3.2. The weak-∗ topology

Recall from (3.4) and (3.8) that fn −⇀−⇀ f whenever fn
vague−−−→ f and ḟn

vague−−−→ ḟ ,

and for the metric case fn −⇀−⇀m f whenever δ fn
vague−−−→ δ f and δ̇ fn

vague−−−→m δ̇ f .

3.2.1. Characterisation of convergence

PROPOSITION3.4. Let ( fn)n be a net and f an element inBV(0, T ; Z). If Z = X∗
is a dual Banach space, then

fn −⇀−⇀ f ⇐� fn
vague−−−→ f and sup

n
var( fn) <∞,

and equivalence holds when ( fn)n is a sequence. If Z is a complete metric space, then

the same result holds if we replace fn
vague−−−→ f by δ fn

vague−−−→ δ f .

Proof. Let X∗ be a dual Banach space and fn
vague−−−→ f a convergent net in

BV(0, T ; Z) with supn var( fn) < ∞. Now approximate an arbitrary test function
φ ∈ C0(0, T ; X) by a sequence (φk)k ⊂ C1

0(0, T ; X) such that ‖φ − φk‖∞ → 0.
Since the variation is lower semicontinuous in the vague topology, we automatically
get var( f ) ≤ supn var( fn). It then follows that

∣∣〈〈φ, ḟn〉〉 − 〈〈φ, ḟ 〉〉∣∣ ≤ ∣∣〈〈φk, ḟn − ḟ 〉〉∣∣+ ∣∣〈〈φ − φk, ḟn − ḟ 〉〉∣∣
≤ ∣∣〈〈φ̇k, fn − f 〉〉∣∣+ 2‖φ − φk‖∞ sup

n̂
var( fn̂)

−→
n

2‖φ − φk‖∞ sup
n̂

var( fn̂) −→
k

0,

which together with fn
vague−−−→ f shows that fn −⇀−⇀ f .

On the other hand, if ( fn)n is aweak-∗ convergent sequence, then supn〈〈φ, fn〉〉 <∞
and by Banach–Steinhaus it follows that supn var( fn) <∞.
The proof in themetric case is analogous once we replace f and ḟ by δ f and δ̇ f . �

We now compare the Banach-case Definition 3.1 of convergence with the metric-
case Definition 3.3.
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PROPOSITION 3.5. Let Z = X∗ be a dual Banach space. Let ( fn)n be a net and
f an element in BV(0, T ; X∗). Then

fn −⇀−⇀ f ⇐� fn −⇀−⇀m f.

Moreover, if supn epvar( fn) <∞, for example because ( fn)n is a sequence, then the
implication is in fact an equivalence.

Proof. If fn −⇀−⇀m f , then fn −⇀−⇀ f since C0(0, T ; X) ↪→ C0(0, T ;Lip0(X∗)). The
converse is Proposition 3.4. �

3.2.2. Duality

We first show that the space of functions of bounded variation can itself be
regarded as a dual space. This theorem works as in the finite-dimensional case (see
[3, Rem. 3.12]), and we include it here to provide the full details. To shorten notation,
we introduce the spaces:


 := C0(0, T ; X)× C0(0, T ; X) and


∂t :=
{
(φ̇2, φ2) : φ2 ∈ C∞c (0, T ; X)

} ⊂ 
,

both equipped with the norm ‖φ‖
 := supt∈(0,T )‖φ1(t)‖X + supt∈(0,T )‖φ2(t)‖X .
THEOREM 3.6. Let Z = X∗ be a dual Banach space. Then the Banach space(

BV(0, T ; X∗), ‖·‖BV
)
is isometrically isomorphic to

(

/
∂t

)∗
, and the weak-* con-

vergence corresponds to the convergence defined in (3.4).

Proof. Observe that for any f ∈ BV(0, T ; X∗), by Theorem 2.13 the derivative
ḟ is well defined as an object in C0(0, T ; X)∗ ∼= rca(0, T ; X∗). Define the map
T : BV(0, T ; X∗) → 
∗ by T f := ( f̂ , ḟ ), where f̂ (dt) := f (t) dt . We can then
characterise the annihilator of the closure 
∂t as (see [32, Sect. 4.6])


∂t
⊥ := {

μ ∈ 
∗ : 〈μ, φ〉 = 0 for all φ ∈ 
∂t
}

= {
μ ∈ 
∗ : 〈μ, φ〉 = 0 for all φ ∈ 
∂t

}

= Ran T . (3.9)

The first equality follows immediately from the fact that 
∂t is strongly dense in its
own closure. For the second equality, the direction ⊇ follows immediately from the
definitions of ḟ and 
∂t . For the direction ⊆, pick a μ ∈ 
∗ for which 〈μ, φ〉 =
〈μ1, φ̇2〉 + 〈μ2, φ2〉 = 0 for all φ2 ∈ C∞c (0, T ; X). If we define f (t) := μ2

(
(0, t]),

then Lemma 2.18 yields that f ∈ BV(0, T ; X∗) and 〈 f, φ̇2〉 = −〈μ2, φ2〉 = 〈μ1, φ̇2〉
for all φ2 ∈ C∞c (0, T ; X). We therefore find that μ1(dt) = f (t) dt , and hence indeed
μ ∈ Ran T , which proves equality (3.9).

Exploiting (3.9), by [32, Th. 4.9(b)] there exists a isometric isomorphism τ :(

/
∂t

)∗ → 
∂t
⊥ = Ran T . It is easily verified that ‖ f ‖BV = ‖T f ‖
∗ . Therefore,

the map τ−1 ◦ T is an isometric isomorphism between BV(0, T ; X∗) and (

/
∂t

)∗.
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Finally, the desired weak-* convergence is characterised by convergence against

/
∂t . In fact, it again suffices to test against functions in 
/
∂t because of the
(strong) density. Then by definition,

fn
∗
⇀ f :⇐⇒ (τ−1 ◦ T )( fn)

∗
⇀ (τ−1 ◦ T )( f )

:⇐⇒ 〈
( fn dx, ḟn), (ψ1, ψ2)

〉
Ran T 
/
∂t

→ 〈
( f dx, ḟ ), (ψ1, ψ2)

〉
Ran T 
/
∂t

for all (ψ1, ψ2) = (ψ1, ψ2)+ (φ̇2, φ2) ∈ 
/
∂t

⇐⇒ 〈 fn, ψ1〉+〈 ḟn, ψ2〉 → 〈 f, ψ1〉 + 〈 ḟ , ψ2〉 for all ψ1, ψ2 ∈ C0(0, T ; X)

⇐⇒ fn −⇀−⇀ f.

�

Now that we have a predual at hand, it is easy to see what the dual space for the
weak-* topology is.

COROLLARY 3.7. Let Z = X∗ be a dual Banach space. Then the dual space(
BV(0, T ; X∗),weak-∗)∗ is isomorphic to 
/
∂t .

Proof. This is a general property of weak-* topologies, see, for example, [12,
Th. V.1.3]. �

3.2.3. Regularity

Using Theorem 3.6, we can deduce many topological properties of the weak-*
topology. In general, weak-∗ topologies are not metrisable. Nevertheless, the compact
sets are metrisable under a separability assumption. For this we first state the following
simple lemma.

LEMMA 3.8. Let X be a Banach space. Then C0(0, T ; X) is separable if and only
if X is separable.

Proof. Let X be separable, with countable dense subset Q ⊂ X . Take a count-
able dense subset � ⊂ C0(0, T ). Then the countable set

{ ∑∞
i=1 ψi (t)qi : (ψi )i ⊂

�, (qi )i ⊂ Q
}
lies dense in C0(0, T ; X). On the other hand, assume that C0(0, T ; X)

has a countable dense subset �. Take a function ψ ∈ C0(0, T ) with ψ(T/2) = 1.
Then for any arbitrary x ∈ X there exists a sequence (λn)n ⊂ � such that λn → ψx .
Let πT/2 : C0(0, T ; X) → X with πT/2[φ] := φ(T/2). By continuity of this evalua-
tion map, we get that πT/2[λn] → πT/2[ψx] = x . Hence, the countable set πT/2[�]
lies dense in X . �

From this we deduce that:

PROPOSITION 3.9. Let Z = X∗ be a dual Banach space. All weak-∗ compact
sets in BV(0, T ; X∗) are metrisable if and only if X is separable.

Proof. By Lemma 3.8, the predual 
/
∂t ⊂ C0(0, T ; X)× C0(0, T ; X) from The-
orem 3.6 is separable if and only if X is separable. The claim then follows from [9,
Th. III.25]. �
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PROPOSITION 3.10. Let Z = X∗ where X is a separable Banach space. Then the
topological space

(
BV(0, T ; X∗),weak-∗) is separable.

Proof. Again by Lemma 3.8 the predual 
/
∂t ⊂ C0(0, T ; X) × C0(0, T ; X)

of BV(0, T ; X∗) is separable. By Corollary 3.7, this space 
/
∂t is also the
dual of

(
BV(0, T ; X∗),weak-∗). It then follows [9, Th. III.23] that the space(

BV(0, T ; X∗),weak-∗) is also separable. �

3.2.4. Compactness criteria

Again by Theorem 3.6 it is easy to get compactness:

COROLLARY 3.11. Let X be a Banach space, then any set of bounded BV-norm
is relatively compact in

(
BV(0, T ; X∗),weak-∗).

Proof. By Banach–Alaoglu. �

REMARK 3.12. Again after using the embedding δz : Z → Lip0(Z)∗, the same
argument applies to the case where Z is a metric space. However, the limit of a
relatively compact sequence/net in BV(0, T ; Z) might end up in the bigger space
BV

(
0, T ;Lip0(Z)∗

)
. In an abstract sense, such limit can be interpreted as a Young

measure.

3.3. The hybrid topology

Recall from (3.3) and (3.7) that fn −⇀−→ f whenever fn
L1−→ f and ḟn

vague−−−→ ḟ , and

for the metric case fn −⇀−→m f whenever fn
L1−→ f and δ̇ fn

vague−−−→m δ̇ f .

3.3.1. Characterisation of convergence

PROPOSITION 3.13. Let Z be a complete metric space, ( fn)n be a net and f an
element in BV(0, T ; Z), then

fn −⇀−→m f ⇐� fn
L1−→ f and sup

n
var( fn) <∞,

and equivalence holds when ( fn)n is a sequence.

Proof. The convergence fn
L1−→ f implies 〈〈φ, ḟn〉〉 → 〈〈φ, ḟ 〉〉 for all test functions

φ ∈ C1
0(0, T ; X) in the case Z = X∗ with X Banach, and 〈〈φ, δ̇ fn 〉〉 → 〈〈φ, δ̇ f 〉〉 for

all φ ∈ C1
0(0, T ;Lip0(Z)∗) in the general metric case. The proof is then the same as

for Proposition 3.4. �

The previous result even holds if oneweakens the condition on the variations by only
requiring that there is some n0 in the index set of the net such that supn≥n0 var( fn) <

∞.
We again compare the Banach-case Definition 3.1 of convergence with the metric-

case Definition 3.3.
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PROPOSITION 3.14. Let Z = X∗ be a dual Banach space. Let ( fn)n be a net and
f an element in BV(0, T ; X∗). Then

fn −⇀−→ f ⇐� fn −⇀−→m f.

Moreover, if supn epvar( fn) <∞, for example because ( fn)n is a sequence, then the
implication is in fact an equivalence.

Proof. The proof is the same as the proof of Proposition 3.5 if we replace fn
vague−−−→ f

by fn
L1−→ f . �

This result extends to the case where there is an n0 in the index set of the net
such that supn≥n0 epvar( fn) <∞, but we are not able to determine whether fn −⇀−→ f
implies fn −⇀−→m f for arbitrary nets and thus whether the metric version of the hybrid
topology is strictly finer than the Banach version when Z = X∗ a dual Banach space.
We write τhybrid for the topology corresponding to −⇀−→ and τhybrid,m for the topology
corresponding to −⇀−→m .

3.3.2. Duality

PROPOSITION 3.15. Let Z = X∗ be a dual Banach space. Suppose a functional
l : BV(0, T ; X∗) → R is linear and τhybrid-continuous, then

l f = � f + 〈〈φ, ḟ 〉〉

for some � ∈ L1 (0, T ; X∗)∗ and φ ∈ C0(0, T ; X). In particular, if X∗∗ has the
Radon–Nikodym property with respect to the Lebesgue measure on (0, T ), then� f =
〈〈ψ, f 〉〉 for some ψ ∈ L∞(0, T ; X∗∗).
Proof. By linearity, we only need to consider |l f | < 1. Since l is hybrid continuous,
the inverse image l−1

(
(−1, 1)) contains a hybrid open set from the subbase, centred

around 0. Hence, one can find an a ≥ 0, n ∈ N and (φi )
n
i=1 ⊂ C0 (0, T ; X) such that

{
f ∈ BV

(
0, T ; X∗) : a ‖ f ‖L1 < 1,

∣∣〈〈φi , ḟ 〉〉∣∣ < 1, i = 1, . . . , n
}
⊂ l−1

(
(−1, 1)).

Here, we rescaled a and φi such that the (semi-) balls have radii 1. Observe that all φi

may be zero; this reflects the fact that l is also L1-continuous. Similarly a could be 0
as well. Now define 
 : BV(0, T ; X∗)→ R

n by


 f = (〈〈φ1, ḟ 〉〉, . . . , 〈〈φn, ḟ 〉〉)

and set

ker(
) =
n⋂

i=1

{
f ∈ BV

(
0, T ; X∗) : 〈〈φi , ḟ 〉〉 = 0

}
.
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If a = 0, then ker(
) ⊂ ker(l) and from [32, Lemma 3.9] it follows that l f =
〈〈φ, ḟ 〉〉 where φ =∑n

i=1 αiφi ∈ C0(0, T ; X) for some numbers αi ∈ R.
If a > 0, then for f ∈ ker(
) with a ‖ f ‖L1 < 1 it holds |l f | < 1 so l|ker(
) is

L1-continuous and can be extended to an L1-continuous linear functional � on all of
BV(0, T ; X∗) with norm at most a. We then have ker(
) ⊂ ker(l − �) and so one
can now find φ as in the case a = 0.

Finally, if X∗∗ has the Radon–Nikodym property, then L1(0, T ; X∗)∗ can be iden-
tified with L∞(0, T ; X∗∗) [14, Ch. IV, Th. 1]. �

It is easy to see that �1 f + 〈〈φ1, ḟ 〉〉 = �2 f + 〈〈φ2, ḟ 〉〉 for all f ∈ BV(0, T ; X∗)
if and only if (�1 −�2) f = −〈〈φ1 − φ2, ḟ 〉〉. Thus if X∗∗ has the Radon–Nikodym
property, the hybrid dual space may be identified with

L∞
(
0, T ; X∗∗)× C0 (0, T ; X) /

{(
φ, φ̇

) : φ ∈ W 1,∞
0 (0, T ; X)

}

3.3.3. Regularity

PROPOSITION 3.16. Let Z be a complete, separable metric space. Then the space(
BV(0, T ; Z), τhybrid,m

)
is also separable and if X∗ is a dual Banach space then the

result is also true for
(
BV(0, T ; X∗), τhybrid

)
.

Proof. The proof of Proposition 3.32 applies in both cases. �

Recall that the hybrid topology is not metrisable, and not even sequential. Nonethe-
less, we shall see in Sect. 4 that it has many ‘good’ properties due to the fact that it
is perfectly normal. In order to prove this, we first show that the space is completely
regular and Souslin.

PROPOSITION 3.17. Let Z be a complete, separable metric space and X∗ a dual
Banach space, then

(
BV(0, T ; Z), τhybrid,m

)
and

(
BV(0, T ; X∗), τhybrid

)
are both

Souslin, i.e. the continuous image of a (in this case unspecified) Polish space.

Proof. For any n ∈ N define the balls:

An := { f ∈ BV(0, T ; Z) : var( f ) ≤ n} .
By Proposition 3.13 τhybrid,m restricted to An is the same as the L1 topology also
restricted to An . Moreover, the L1 subspace topology on each An is Polish. Thus
BV(0, T ; Z) =⋃

n An , which is Souslin by [8, Th. 6.6.6]. The proof for τhybrid is the
same. �

THEOREM 3.18. Let Z be a complete, separable metric space and X∗ a dual
Banach space. Then

(
BV(0, T ; Z), τhybrid,m

)
and

(
BV(0, T ; X∗), τhybrid

)
are per-

fectly normal topological spaces.

Proof. The spaces are Souslin by Proposition 3.17 and completely regular, because
the hybrid topologies are locally convex topologies. The statement then follows from
[8, Theorem 6.7.7]. �
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Although the hybrid topology is not metrisable, we do have the following simple
result.

PROPOSITION 3.19. Let Z be a complete separable metric space and X∗ a dual
Banach space. Then τhybrid,m is metrisable on its own compact subsets ofBV(0, T ; Z)

and τhybrid is metrisable on its own compact subsets of BV(0, T ; X∗).
Proof. We mainly follow the idea of [32, Th. 3.16] �

3.3.4. Compactness criteria

The next two results also hold in the case that Z = X∗ a dual Banach space provided
one.

THEOREM 3.20. Let Z be a complete metric space. If F ⊂ BV(0, T ; Z) is rel-
atively compact in

(
BV(0, T ; Z), ρL1

)
and sup f ∈F epvar( f ) < ∞, then F is (both

topologically and sequentially) relatively compact in
(
BV(0, T ; Z), τhybrid,m

)
and if

Z = X∗ a dual Banach space the compactness results also hold with respect to τhybrid.

Proof. For any net or sequence in F , there exists a ρL1 -convergent subnet or subse-
quence, respectively. Recall from Corollary 2.11 that var

(
δ f

) = epvar( f ). Hence by
Proposition 3.13, the subnet or subsequence is also hybrid convergent. �

THEOREM 3.21. Let Z be a complete metric space, and let F ⊂ BV(0, T ; Z)

satisfy

1. sup f ∈F
∫ T
0 d(z0, f (t))dt + epvar( f ) <∞,

2. For some countable and dense Q ⊂ (0, T ), there exist compact sets Kq ⊂ Z
with

⋃
f ∈F { f (q+)} ⊂ Kq for all q ∈ Q,

then F is (both topologically and sequentially) relatively τhybrid,m-compact and if
Z = X∗ is a dual Banach space, the result also holds in τhybrid.

We note that a closely related result was obtained byMainik andMielke [24] within
the classical pvar-setting of BV-Functions.

Proof. We will establish the relative compactness of F in the ρL1 topology and then
use Theorem 3.20. The L1-compactness proof is an adaptation of the standard proof of
theArzela–Ascoli compactness result [16, IV.6, Th. 7] for sets of continuous functions.
Since the ρL1 -topology is clearly metric, it is sufficient to show that every sequence
in F has a converging subsequence.

Take a sequence ( fn)n in F , identify each function with its càdlàg representative.
We divide the remaining proof into four steps.

1. Since the Kq is compact for every q ∈ Q, by a diagonal argument we can
construct a subsequence, which we will also denote ( fn)n , such that fn(q+)

converges for each q ∈ Q, and we denote these limits f̃ (q).
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2. For any t ∈ (0, T ), one can now define

f̃ (t) = lim
q∈Q,q>t,q→t

f̃ (q).

To see that this limit is well defined, pick an arbitrary t ∈ (0, T ) and suppose
the converse. Then as in the proof of Proposition 2.1 there would be an ε > 0
and a sequence (qi )i ⊂ Q converging monotonely to t from above such that
d
(
f̃ (qi ), f̃ (qi+1)

) ≥ ε. Then for any N ∈ N one could find an n0 such that
d
(
fn(qi+), f̃ (qi )

)
< ε/N for all n ≥ n0 and for all i = 1, . . . , N . This would

imply that pvar( fn) = epvar( fn) ≥ (N −2)ε, which is a contradiction for large
N .

3. Let ε > 0, k ∈ N and 0 < t0 < t1 < · · · < tk < T then by the construction of
f̃ one can find n ∈ N and qi ∈ Q satisfying 0 < q0 < q1 < · · · < qk < T and

qi > ti such that maxi d
(
f̃ (ti ), fn(qi )

)
< ε/k. Thus

epvar
(
f̃
)
= pvar

(
f̃
)
≤ sup

g∈F
epvar(g).

4. Now take an arbitrary ε > 0. Since Q is dense one can find 0 < q̃1 < · · · <

q̃N < T , all in Q such that maxi=2,...,N (q̃i − q̃i−1) < ε and q̃1, T − q̃N < ε.
Let

σ(t) := q̃11(0,̃q1](t)+
N−1∑

i=2
q̃i1(q̃i−1 ,̃qi ](t)+ q̃N1(q̃N ,T )(t).

Then, using Lemma 2.5 (the fn and f̃ are càdlàg) and the pointwise convergence
of the fn on Q

lim
n→∞

∫ T

0
d

(
fn(t), f̃ (t)

)
dt

≤ lim
n→∞

∫ T

0
d ( fn(t+), fn (σ (t)+)) dt + lim

n→∞

∫ T

0
d

(
fn (σ (t)+) , f̃ (σ (t))

)
dt

+
∫ T

0
d

(
f̃ (σ (t)) , f̃ (t)

)
dt

≤ 3ε sup
n

epvar( fn)+ lim
n→∞

N∑

i=1
(q̃i − q̃i−1) d ( fn (̃qi+) , g (q̃i ))+ 3ε epvar(g)

≤ 6ε sup
g∈F

epvar(g).

Since ε > 0 is arbitrary limn→∞ ρL1( fn, g) = 0 and hence F is indeed L1

compact.

�
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We stress that the above compactness results are stated for a metric space Z without
the embedding to the larger space Lip0(Z)∗. In particular, relative compactness of a
set F in BV(0, T ; Z) implies that the closure of F remains in BV(0, T ; Z).

As an important application of Theorem 3.21, we provide the following generali-
sation of the classical Lemma by Aubin and Lions:

THEOREM 3.22. Let 1 ≤ p < ∞. Let X∗ be the dual of a Banach space and
let Y, Z be Banach spaces such that Y ↪→ Z compactly and Z ↪→ X∗ continuously.
Denote

BVp(0, T ; Y, X∗) := {
f ∈ L p(0, T ; Y ) : ḟ ∈ rca(0, T ; X∗)} .

Then, the embedding BVp(0, T ; Y, X∗) ↪→ L p(0, T ; Z) is compact.

Proof. By a contradiction argument, we easily verify that any bounded set F ⊂
BV(0, T ; X∗) is bounded in L∞(0, T ; X∗). Hence, due toSimon [33, Sect. 8, Theorem
5] we only have to show that every bounded set F ⊂ BVp(0, T ; Y, X∗) satisfies

lim
h→0

sup
f ∈F

‖ f (h + ·)− f (·)‖L1(0,T−h;X∗) = 0 .

This can be verified as follows:

∫ T−h

0
| f (t + h)− f (t)|dt ≤

∫ T−h

0

∫ t+h

t
d| ḟ |(s) ≤ 2h

∫ T

0
d| ḟ |(s) .

�

Let us also mention that the classic result [3, Th. 3.23] coincides with Theorem 3.21
in case Z = R; it is proven via theArzela–Ascoli theorem for compactness in the space
of continuous functions, by substantially the same compact containment condition and
diagonal argument as the present theorem.More generally, if Z is locally compact, then
Condition 2 of Theorem 3.21 is redundant, since the functions are almost everywhere
in bounded Z -balls, which are automatically compact. On the other hand, Condition 2
is not necessary as the following example shows.

EXAMPLE 3.23. Suppose Z = X = X∗ is a separable Hilbert space with orthonor-
mal basis (en)n∈N0 , and define the sequence of functions

fn(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
n(t − 1

2T )+ 1
)
en t ∈ [ 1

2T − 1
n , 1

2T
]

(
n( 12T − t)+ 1

)
en t ∈ [ 1

2T, 1
2T + 1

n

]

0 otherwise.

(3.10)
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Then clearly limn→∞
∫ T
0 d(0, fn(t)) dt = 0 and the derivative also converge

vaguely to the 0-measure. For any t ∈ (0, T/2)∪ (T/2, T ), the value fn(t) lies in the
compact set {0} for n large enough, but how large n should be depends on t . Therefore,
Condition 2 cannot be satisfied even though the sequence is hybrid convergent.

3.4. The strict topology

Recall from (3.2) and (3.6) that fn −⇀−→strict f whenever both fn
L1−→ f and ‖ ḟn‖TV →

‖ ḟ ‖TV, and for the metric case fn −⇀−→strictm f whenever both fn
L1−→ f and ‖δ̇ fn‖TV →

‖δ̇ f ‖TV. The strict topology was recently also studied in [30] in the context of rate-
independent systems, where the functions take values in a Hilbert space. Below, we
will transfer some of the results from [30], to the dual Banach setting, in case the
original proofs apply also in this case.

3.4.1. Characterisation of convergence

Let Z be a metric space. By its definition, the strict topology on BV(0, T ; Z) is
metrisable by

ρstrict( f, g) := ρL1( f, g)+ ∣∣‖δ̇g‖TV − ‖δ̇ f ‖TV
∣∣. (3.11)

The following Proposition is stated for convergent sequences and may actually fail
for convergent nets, see the discussion in “Appendix A.4”. However, since the strict
topology is metrisable, it is fully characterised by its convergent sequences.

PROPOSITION 3.24. Let Z be a metric space, and let ( fn)n be a sequence and f
an element in BV(0, T ; Z). If Z = X∗ is a dual Banach space, then

fn −⇀−→strict f �⇒ fn
L1−→ f and ḟn

narrow−−−→ ḟ .

If Z is a complete metric space, then

fn −⇀−→strictm f �⇒ fn
L1−→ f and δ̇ fn

narrow−−−→ δ̇ f .

Proof. For a strictly convergent sequence fn −⇀−→strict f , we have supn≥N var( fn) < ∞.

By Proposition 3.13, we thus have in particular ḟn
vague−−−→ ḟ . Using Proposition A.14,

this implies together with ‖ ḟn‖TV → ‖ ḟ ‖TV that ḟn
narrow−−−→ ḟ . �

It turns out that if Z = X∗, then the topologies induced by −⇀−→strict and −⇀−→strictm coincide:

PROPOSITION 3.25. Let Z = X∗ be a dual Banach space. Let ( fn)n be a net and
f an element in BV(0, T ; X∗). Then

fn −⇀−→strict f ⇐⇒ fn −⇀−→strictm f.
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Proof. Observe that the L1 norm and metric are equivalent, and that Corollary 2.11
and Theorem 2.13 imply for Z = X∗ that ‖ ḟ ‖TV = epvar( f ) = epvar

(
δ f

) = ‖δ̇ f ‖TV
and similarly ‖ ḟn‖TV = ‖δ̇ fn‖TV. �

REMARK 3.26. The same argument shows that if Z = X∗, then strong topologies
induced by −→−→ and −→−→m also coincide.

REMARK 3.27. It is still an open question whether the converse of Proposition 3.24
is also true; since the converse of Proposition A.14 does not hold (see Remark A.15),
the proof of this statement seems to be more involved than in the case X = R.

We concludewith a number of properties from [30],which can be proven completely
analogue to the original statement:2

LEMMA 3.28. ( [30, Lemma 4.5]) Let Z = X∗ be a dual Banach space, and let
( fn)n be a sequence and f an element in BV(0, T ; X∗) such that fn −⇀−→strict f . Then
| ḟn|(a, b) → | ḟ |(a, b) for every a, b ∈ (0, T ) such that ḟ ({a}) = 0 = ḟ ({b}).

From this, similar results can trivially be obtained for the metric case, using the
isometry of the embedding δ : Z → Lip0(Z)∗:

LEMMA 3.29. (Generalisation of [30, Lemma 4.6]) Let Z be a complete separable
metric space, and let ( fn)n be a sequence and f an element in BV(0, T ; Z) such that
fn −⇀−→strictm f . Then, assuming càdlàg representatives, fn(t)→ f (t) for every t ∈ (0, T )

with ḟ ({t}) = 0. Moreover fn(0+)→ f (0+) and fn(T−)→ f (T−) .

LEMMA 3.30. (Generalisation of [30, Corollary 4.8]) Let Z be a complete sepa-
rable metric space, and let ( fn)n be a sequence and f an element in BV(0, T ; Z) ∩
C(0, T ; Z) such that fn −⇀−→strictm f . Then fn → f uniformly.

3.4.2. Duality

PROPOSITION 3.31. Let Z = X∗ be a dual Banach space. Suppose a functional
l : BV(0, T ; X∗) → R is linear and strictly continuous, then

l f = � f + 〈〈φ, ḟ 〉〉

for some � ∈ L1 (0, T ; X∗)∗ and φ ∈ Cb(0, T ; X). In particular, if X∗∗ has the
Radon–Nikodym property with respect to the Lebesgue measure on (0, T ), then� f =
〈〈ψ, f 〉〉 for some ψ ∈ L∞(0, T ; X∗∗).
Proof. This exactly follows the proof of Proposition 3.15. �

2We mention that that paper uses left-continuous functions, whereas we use the càdlàg functions. However,
in the proofs this distinction is not relevant.
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3.4.3. Regularity

PROPOSITION 3.32. Let Z be complete and separable (in its metric topology),
then

(
BV(0, T ; Z), strict

)
is separable.

Proof. Let f ∈ BV(0, T ; Z). For n ∈ N define the piecewise constant function
gn ∈ BV(0, T ; Z) by

gn(t) ≡ f
(

(i − 1)T

n
+

)
for t ∈

[
(i − 1)T

n
,
iT

n

)
, i = 1, . . . , n.

First note that ρL1 (gn, f ) ≤ var( f )T/n → 0 and further that

pvar( fn) =
n∑

i=1
d
(
f
(

(i−1)T
n + )

, f
( iT
n +

)) ≤ pvar
(
fcadlag

) = var( f ).

Since Z is separable one can take zin from a countable subset such that

d
(
zin, f

( iT
n +

)) ≤ 1

2n2
∀n, i ≤ n.

Define the piecewise constant function fn ∈ BV(0, T ; Z) by

fn(t) ≡ zin for t ∈
[

(i − 1)T

n
,
iT

n

)
, i = 1, . . . , n.

Then ρL1 ( fn, f ) ≤ ρL1 ( fn, gn)+ ρL1 (gn, f )→ 0 and var( fn) ≤ var( f )+ 1/n so
by the L1 lower semi-continuity of the variation var( fn)→ var( f ). �

The strict metric is not a complete metric: consider fn ∈ BV(0, 1;R), fn(t) =
1(0,1/n)(t). Then var( fn) = 1 for all n so ρstrict ( fn, fm) = |n − m| /nm. The
sequence fn is thus Cauchy for ρstrict, but ρL1( fn, 0) → 0 so it cannot converge
in the strict metric.

3.4.4. Compactness criteria

As mentioned in Remark 3.27, it is still unclear whether the strict topology is the
same as the topology characterised by the convergence

fn
L1−→ f and ḟn

narrow−−−→ ḟ , or fn
L1−→ f and δ̇ fn

narrow−−−→ δ̇ f , (3.12)

the latter being in the metric case. It is the latter topology for which we state a com-
pactness result:

PROPOSITION 3.33. Let Z be a metric space or a dual Banach space, let F ⊂
BV(0, T ; Z) be compact in the hybrid topology and suppose additionally that the set{|δ̇ f | : f ∈ F} ⊂ rca(0, T ) is tight. ThenF is compact in the topology characterised
by (3.12).

Proof. By Lemma A.13, every hybridly convergent subnet of an arbitrary net is also
convergent in the sense of (3.12). �
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4. Measures on the space of functions of bounded variation

In this section, we study probabilitymeasuresP(
BV(0, T ; Z)

)
on the space of func-

tions of bounded variation. The results of this section can be used to study of stochastic
processes with bounded variation paths. Recall that white-noise-driven processes are
never of bounded variation, but jump processes usually are.
Naturally, the definition of the space of probability measures depends on the σ -

algebra. In Sect. 4.1 we study the Borel σ -algebra generated by the topologies intro-
duced in the previous section. In Sect. 4.2 we study convergence and compactness
for sequences of probability measures, where again the space of functions of bounded
variation may be equipped with several topologies. The challenge is here that none of
these topologies is Polish. In this respect, the theories that we present are generalisa-
tions of standard tools in probability. In particular, we show a Portmanteau theorem,
a forward Prokhorov theorem, and a theorem that deduces convergence of the path
measure from convergence of the finite-dimensional distributions.
It turns out that the weak-* topology is too coarse for these results, but all three

results hold in the hybrid topology. Related topologies are used in the stochastics
literature in [7,19].

REMARK 4.1. The Skorokhod J1 topology, commonly used in the study of stochas-
tic processes, can be applied toBV(0, T ; Z) since every function can be identifiedwith
its càdlàg representative. We cannot completely characterise the relationship between
the two topologies. However, there is a sequence that converges hybridly but not J1,
namely: fn(t) := 1[ 12−

1
2n ,

1
2+

1
2n ]

(t)en , where en is the countable orthonormal basis

of a Hilbert space, as in Example 3.2.

Because measure theory is based on countable numbers of operations, many results
will require the metric topology on Z to be separable.

4.1. Measurability

First we consider possible σ -algebras. As usual, the Borel σ -algebra generated
by a topology is the smallest σ -algebra containing all open sets, the Baire σ -
algebra is the smallest σ -algebra making all continuous functions measurable. Let
πt : BV(0, T ; Z)→ Z with

πt ( f ) = f (t+) (4.1)

for t ∈ [0, T ) and note that by Proposition 2.1 this is well defined on L1-equivalence
classes. The product σ -algebra is defined to be the smallest σ-algebra making all the
πt measurable.
Most results in this section hold true for BV(0, T ; Z) with the strong, strict and

hybrid topology. The key fact that makes this work is the following:
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PROPOSITION 4.2. Let Z be a complete metric space, and let BV(0, T ; Z) be
equipped with the strong or the strict topology; alternatively, let Z also be separable,
and let BV(0, T ; Z) be equipped with the hybrid topology. Then in each of these three
cases the Baire and the Borel σ -algebras coincide.

Proof. The norm and the strict topologies are metrisable and therefore perfectly nor-
mal. If Z is separable, then by Proposition 3.18 the hybrid topology is perfectly normal.
By [8, Prop. 6.3.4] the Baire and Borel σ -algebras of a perfectly normal topological
spaces coincide. �

For brevity we will write σL1 for the Borel σ-algebra generated by the ρL1 topology
on BV(0, T ; Z).

PROPOSITION 4.3. Let Z be a complete, separable metric space, then the time-
evaluation functions π from (4.1) are measurable with respect to σL1 .

Proof. The metric topology on Z is separable so every open set can be written as a
countable union of open balls Uz,δ := {y ∈ Z : d(y, z) < δ} for z ∈ Z and δ > 0.
Hence it suffices to prove π−1t

(
Uz,δ

) ∈ σL1 for arbitrary z and δ.
Now note that

f (t+) ∈ Uz,δ ⇐⇒ lim
ε↘0

1

ε

∫ t+ε

t
d ( f (s), z) ds < δ.

Further, for fixed ε, t, z the function f �→ 1
ε

∫ t+ε

t d ( f (s), z) ds is L1-continuous and
thus σL1 measurable, so that the limit as ε ↘ 0 is also σL1 measurable. �

PROPOSITION4.4. Let Z be a complete, separablemetric space. Then the function
f �→ var( f ) is measurable with respect to σL1 on BV(0, T ; Z).

Proof. Use Proposition 4.3 and note that the variation can be written as the supremum
over rational partitions. �

From Proposition 4.4, one sees that An := { f ∈ BV(0, T ; Z) : var( f ) ≤ n} ∈ σL1 .
By Proposition 3.13, the hybrid and L1-topologies coincide on each An and thus the
associated Borel σ-algebras are equal on each An . In particular, any hybrid open set,
U , can be written as

U =
⋃

n∈N
U ∩ An =

⋃

n∈N
Vn ∩ An (4.2)

for some Vn ∈ σL1 . It then follows that:

COROLLARY 4.5. The Borel σ-algebras generated by the L1 and hybrid topolo-
gies on BV(0, T ; Z) are identical.

THEOREM 4.6. Let Z be a complete, separable metric space. Then the Borel σ-
algebras of the topological spaces (BV(0, T ; Z), τhybrid,m) and (BV(0, T ; Z), ρL1)

are both equal to the product σ-algebra.
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Proof. Using Propositions 4.3 and 4.5, it is sufficient to prove that all L1-measurable
functions are product measurable. To this end, note that

ρL1( f, g) =
∫ T

0
d
(
f (t), g(t)

)
dt =

∫ T

0
d
(
f (t+), g(t+)

)
dt

= lim
n→∞

T
n

n∑

i=1
d
(
f ( iTn +), g( iTn +)

)
,

and that for fixed n ∈ N, f ∈ BV(0, T ; Z) the map g �→ ∑n
i=1 d

(
f ( iTn +), g( iTn +)

)

is measurable in the product σ -algebra (defined above as making the evaluations πt

measurable). Since countable limits of measurable functions are measurable, the balls
{g ∈ BV(0, T ; Z) : ρL1( f, g) < ε} are therefore also measurable in the product
σ-algebra. Finally, Z and BV(0, T ; Z) are separable so that every open set can be
written as a countable union of such balls. �

4.2. Convergence and compactness theorems

We now study narrow (often also called weak or weak-*) convergence and com-
pactness in the space of Borel probability measures P(

BV(0, T ; Z)
)
on the space

BV(0, T ; Z) equipped with the strong, strict or hybrid topology. Narrow convergence
of probability measures in this space is characterised by the following Portmanteau
theorem:

PROPOSITION 4.7. (Portmanteau Theorem, [8, Th. 8.2.10]) Let Z be a metric
space, and let BV(0, T ; Z) be equipped with the strong or the strict topology; alter-
natively, let Z be a separable metric space, and let BV(0, T ; Z) be equipped with
the hybrid topology. Let (νn)n be a net and ν be an element of the Borel probability
measures P(

BV(0, T ; Z)
)
. Then the following statements are equivalent:

(i) νn ⇀ ν, that is,
∫

 dνn →

∫

 dν for all 
 ∈ Cb

(
BV(0, T ; Z)

)
,

(ii) lim supn νn(F) ≤ ν(F) for all closed sets F ⊂ BV(0, T ; Z),
(iii) lim infn νn(U) ≤ ν(U) for all open sets U ⊂ BV(0, T ; Z),
(iv) limn νn(C) ≤ ν(C) for all continuity sets C ⊂ BV(0, T ; Z), i.e. ν

(C\C̊) = 0.

Proof. This is an immediate consequence of the fact that the topologies are perfectly
normal [8, Th. 8.2.10]. The strong and strict topologies are clearly metrisable and
therefore perfectly normal. By Theorem 3.18, the hybrid topology is also perfectly
normal. �

The forward part of Prokhorov’s theorem also holds:

PROPOSITION 4.8. (Generalised Prokhorov) Let Z be a complete separable
metric space. Then a tight collection of probability measures defined on the space(
BV(0, T ; Z), τhybrid,m

)
is topologically and sequentially compact. If Z = X∗

a dual Banach space, then the result also holds for probability measures on(
BV(0, T ; X∗), τhybrid

)
.
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Proof. Both BV spaces are Souslin by Proposition 3.17 so [8, Theorem 7.4.3] shows
that the probability measures are Radonmeasures. (By Theorem 4.6, it is no restriction
to assume that they are Borel.) Hybrid compact sets are metrisable by Proposition 3.19
and so the result follows from [8, Theorem 8.6.7]. �

PROPOSITION 4.9. Let Z be a complete separable metric space, and let the space
BV(0, T ; Z) be equipped with τhybrid,m, or let Z = X∗ be a dual Banach space, and
let BV(0, T ; X∗) be equipped with τhybrid. Let (νn)n be a sequence or net and ν be
an element of the Borel probability measures P(

BV(0, T ; Z)
)
. For each t ∈ (0, T )

define the finite-dimensional distributions by πt#νn(Z) := νn
(
π−1t (Z)

)
and similarly

for ν. Assume:

(i) The sequence νn is tight;
(ii) The finite-dimensional distributions πt#νn ⇀ πt#ν converge narrowly for each

t ∈ (0, T ).

Then the sequence converges narrowly νn ⇀ ν.

Proof. By Proposition 4.8, the net (or sequence) (νn)n has a narrowly convergent sub-
net (or subsequence). Since the finite-dimensional distributions converge, any cluster
point agrees with ν on the finite-dimensional distributions. Because of Theorem 4.6,
a measure is uniquely characterised by its finite-dimensional distributions and hence
ν is the unique limit. �

Appendix A: Preliminaries on Banach-valued measures and integration

We summarise the main concepts of the theory of Banach-valued measures. For
a deeper insight into this subject, we refer the reader to the classical books [14,15]
and [16, § IV.10] and the recent monograph by Ma [23]. In what follows, we mostly
stick to the presentation in [23]. While the Bochner theory of Banach-valued func-
tions has become very popular among analysts, this seems not to be the case for
Banach-valued measures. Banach-valued measures are defined similarly to classi-
cal measures and one often can prove the intuitive analogues of classical results
from (R- or C-) measure theory. The theory of Banach-valued measures is use-
ful to understand the time derivative of a X∗-valued function of bounded varia-
tion.

A.1. Banach-valued measures

Let B denote the set of all Borel-sets of the interval (0, T ) and let X be a Banach
space. For a set function μ : B→ X , we define the set function |μ| : B→ R through
( [23, Paragraph 17-4.1])

|μ|(A) := sup
P∈Q(0,T )

∑

D∈P
‖μ(A ∩ D)‖X ∀A ∈ B . (A.1)
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where the supremum is taken over all finite families P of disjoint subsets of (0, T ).
Observe that it is not a priori clear whether it suffices to take the supremum over
intervals 0 < t1, . . . < tn < T , like in Definition 2.1 of the pointwise variation.
However, in the case where A is the full interval (0, T ) and μ ∈ rca(0, T ; X∗), we get
by Theorem A.7 that |μ|(0, T ) = ‖μ‖TV, the total variation norm defined in (A.4).

DEFINITION A.1. [15,16,23] Let X be a Banach space and B be the Borel σ-
algebra on (0, T ).

• A set function μ : B→ X is called an X -valued measure on (0, T ) if
1. It is of finite total variation, i.e. |μ|(0, T ) <∞ and
2. It is countably additive, i.e. for every disjoint union A = ⋃

j∈N Bj , where
A ∈ B and Bj ∈ B for all j ∈ N

μ(A) =
∑

j∈N
μ(Bj ) .

• An X -valued measure μ is called regular if for every A ∈ B and every ε > 0,
there exists a compact (some authors only require closed, but here closed and
compact are equivalent) set K ⊂ A and an open set G ⊃ A such that for all
A′ ∈ B with K ⊆ A′ ⊆ G it holds ‖μ(A′)− μ(A)‖X ≤ ε

2 .
• We denote

rca(0, T ; X) := {
μ : B→ X regular X -valued measure

}
,

which is a Banach space with norm μ �→ |μ| (0, T ) = ‖μ‖TV by Theorem A.7
or [16, Chapter III §7].

Wemake a fewobservations about this definition. First of all, this definition only allows
for finite measures, that is, measures of finite total variation. This is related to the fact
that the measures take values in a Banach space, where each element x ∈ X is of finite
norm (see, e.g. [16, IV.10, Cor. 2]). Secondly, we note that the countable additivity is
equivalent to μ(A j ) → μ(A) whenever A j ⊃ A j+1 for all j and

⋂
A j = A [23,

17-5.4]. Thirdly, we point out that every X -valued regular Borel measure of finite total
variation has the direct sum property of [15, Def. 10-7.1].

THEOREM A.2. Suppose μ ∈ rca (0, T ; X) then |μ| ∈ rca (0, T ;R).

Proof. That |μ| is a measure (a countably additive set function) is the content of [16,
III.4.7], however all (real-valued) Borel measures on a metric space are regular by [8,
Theorem 7.1.7]. An extensive discussion leads up to the statement of this result as [15,
Chapter 3 §15 Proposition 21]. �

For a map g : (0, T )→ X , we define the set function ∂g through the sets:

∂g
(
(a, b]) := g(b)− g(a).

The well definedness of the extension of ∂g to arbitrary measurable subsets of (0, T )

is not a priori clear. However, recalling the function t �→ pvar(g; (0, t]) from (2.8),
we find the following important theorem.
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THEOREM A.3. ([23, Ths. 17-7.4 and 17-7.9]) Let X be a Banach space and let
g : (0, T ) → X be of finite pointwise variation. Then ∂g defines a Banach-valued
measure on B if and only if g is right continuous. In this case, |∂g| = ∂tpvar(0,t](g)
and ∂g is called the Stieltjes’ measure induced by g.

A.2. Integration theory for Banach-valued measures

Let X,Y, Z be Banach spaces with a bilinear continuous mapping pXY : X×Y →
Z , B the Borel algebra on (0, T ) and let μ : B → Y be a Y -valued measure. In
this section, we introduce the Z -valued integral

∫ T
0 pXY

(
φ(t), μ(dt)

)
. Recall from

“Appendix A.1” the definition of the R-valued measure |μ|. With this we define the
space

L p
μ(0, T ; X,Y ) :=

{
φ : (0, T ) → X : ‖φ‖p

L p
μ(0,T ;X,Y )

:=
∫ T

0
‖φ(t)‖pX |μ|(dt) <∞

}
.

A B-step X -map φ : (0, T ) → X (or simple function) is of the form
∑N

j=1 α jχA j ,
where α j ∈ X and χA j is the indicator function for the set A j ∈ B. We define the
step-integral

IpXY (φ) :=
N∑

j=1
pXY

(
α j , μ(A j )

)
for φ =

N∑

j=1
α jχA j . (A.2)

This map can be extended to an integral in the following way (see [23, Sect. 21]). First,
one can show that for every φ ∈ L p

μ(0, T ; X,Y ) there exists a sequence of B-step
X -maps φn , such that ‖φn(t)‖X ↑ ‖φ(t)‖X and φn(t) → φ(t) for |μ|-almost every
t ∈ (0, T ). Then, for such approximating sequences (φn)n , one can show that the limit
limn→∞ IpXY (φn) is independent of the choice of the sequence (φn)n . This defines

the integral
∫ T
0 pXY

(
φ(t), μ(dt)

)
.

For 1 ≤ p < ∞, one can show that the set of B-step X -maps is dense in
L p

μ(0, T ; X,Y ). This in turn implies that the functions Cc(0, T ; X) are dense in
L p

μ(0, T ; X,Y ). From [23, Th. 21-2.11], we obtain that for every integrable map
φ ∈ L1

μ(0, T ; X,Y ), we have

∥∥∥∥
∫ T

0
pXY (φ, dμ)

∥∥∥∥
Z
≤ ‖pXY ‖

∫ T

0
‖φ‖X d|μ| . (A.3)

REMARK A.4. The above definition of the integral is very general. Let us mention
four possible settings here:

(A) Let Y = R, Z = X is a Banach space, and pXY (x, y) := xy. Then the theory
in [23] is the commonly used Bochner theory.

(B) The case Y = Z and X = R is a further connection to Bochner theory.
(C) Let X and Z be Banach spaces, and let Y = L(X; Z) with pXY (x, y) := y(x).
(D) Let X be a Banach space, Y = X∗ and Z = R with pXY (x, y) := 〈x, y〉. This

is the setting of the main content of this paper.
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The following generalisations of the classical Riesz–Markov–Kakutani result on
the duality between Cc(0, T ;R)∗ and rca(0, T ;R) will turn out to be very useful in
the proof of Theorem 2.13. For this we first define:

DEFINITIONA.5. Let X and Z be Banach spaces. A linearU : Cc(0, T ; X) → Z
is called dominated if there exists a regular positive Borel measure ν such that

‖U (φ)‖Z ≤
∫ T

0
‖φ(t)‖X ν(dt) ∀φ ∈ Cc(0, T ; X) .

PROPOSITION A.6. ([15, §19, Prop. 2 and Th. 3]) Let U : Cc(0, T ; X) → R be
linear. Then U is dominated if and only if ‖U‖Cc(0,T ;X)∗ <∞.

The previous result will enable us to apply the generalised Riesz–Markov–Kakutani
result to the settings (C) and (D) from Remark A.4.

THEOREM A.7. ([15, §19, Th. 2])

(i) Assume X and Z are Banach spaces, Y = L(X; Z) with pXY (x, y) := y(x).
Then there exists an isomorphism between the dominated linear operators U :
Cc(0, T ; X) → Z and rca

(
0, T ; L(X; Z)

)
, given by the equality

U (φ) =
∫ T

0
pXY (φ, dμ) .

(ii) Assume X is a Banach space, Y = X∗ and Z = R with pXY (x, y) :=
〈x, y〉. Then there exists an isomorphism between the dual Cc(0, T ; X)∗ =
C0(0, T ; X)∗ and rca(0, T ; X∗), with |μ|(0, T ) = ‖U‖Cc(0,T ;X)∗ = ‖μ‖TV,
where

‖μ‖TV := sup
φ∈C0(0,T ;X):
‖φ‖∞≤1

〈〈φ,μ〉〉. (A.4)

We finally cite the following Lebesgue–Nikodym theorem. Recall in this context,
every X∗-valued Borel measure μ of finite variation has the direct sum property of
[15].

THEOREM A.8. (General Lebesgue–Nikodym theorem, [15, §13, Th. 4]) Let μ :
B→ X∗ be ameasure of finite total variation. There exists a function u : (0, T )→ X∗
such that ‖u(t)‖X∗ = 1 for |μ|-almost every t ∈ (0, T ) and

∫ T

0
〈φ, dμ〉 =

∫ T

0
〈φ, u〉 d|μ| ∀φ ∈ Cc(0, T ; X) .

Theorem A.8 is less general than the classical Radon–Nikodym theorem as it only
postulates the existence of a density for μ with respect to |μ| instead of a density with
respect to a general real measure ν. If in the statement of Theorem A.8, we would
want to replace |μ| by a general real measure ν, the space X∗ would need to satisfy
the Radon–Nikodym property. This holds, for example, if X is reflexive or if X∗ is
separable, see [14].
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REMARK A.9. Using the Lebesgue–Nikodym theorem, we can decompose any
μ ∈ rca(0, T ; X∗) into an absolute continuous partμc, an atomic partμa and a diffuse
singular part μd (without atoms). This can be seen as follows: The measure |μ| can
be decomposed into absolute continuous, atomic and diffuse singular parts |μ| =
|μ|c + |μ|a + |μ|d , see [3] (3.26). By Theorem A.8, there exists an u : (0, T )→ X∗
such that μ = u|μ|, and thus, we can set μc = u|μ|c, μa = u|μ|a and μd = u|μ|d .
A.3. Regularisation

In this section, we recall some standard regularisation results that are needed to
prove Proposition 2.21 and Theorem 2.22.

Given μ ∈ rca(0, T ; X∗) and ψ ∈ Cc(R), we define the convolution through

ψ ∗ μ(t) :=
∫

R

ϕ(t − s) μ(ds) .

Of particular interest are measures of the form μ(dt) = f (t) dt for some f ∈
L p(0, T ; X∗). Recall the definition of L p

μ(0, T ; X,Y ) from “Appendix A.2”. We now
have the following lemma:

LEMMA A.10. Let
(
ψη

)
η>0 ⊂ Cc(R) be a Dirac-sequence and let 1 ≤ p < ∞.

For all φ ∈ L p(0, T ; X,Y, μ), we have ψη ∗ φ → φ in L p
μ(0, T ; X,Y ) as η → 0.

Proof. If
(
ψη

)
η>0 ⊂ C∞c (R) is a Dirac-sequence, one can use the denseness of

Cc(0, T ; X) in L p(0, T ; X,Y, μ) and the uniform convergence of ψη ∗ φ → φ for
φ ∈ Cc(0, T ; X). �

LEMMA A.11. Let ψ ∈ C∞c (R) be non-negative, symmetric, with support in
(−1, 1) andwith totalmass ∫

R
ψ(t) dt = 1, and define the family ofmollifiersψη(t) :=

η−1ψ(t/η). For any μ ∈ rca(0, T ; X∗) and η > 0, the functions ψη ∗ μ belong to
C∞(0, T ; X∗) and d

dt (ψη ∗ μ)(t) = (ψ̇η ∗ μ)(t). Moreover, the measures ψη ∗ μ

converge weakly-∗ to μ as η → 0 and the following estimate holds for all Borel-sets
I ⊂ (0, T ):

∫

I
|ψη ∗ μ|(t)dt ≤ |μ|(⋃t∈I (t − η, t + η)

)
,

Proof. The proof follows the lines of [3, Theorem 2.2]. �

A.4. Topologies on Banach-valued measures

In this section, we recall the most relevant topologies on the space rca(0, T ; X∗),
where X is a Banach space. Although rca(0, T ; X∗) is a Banach space with norm
‖·‖TV, its norm topology is too strong for many practical purposes. Instead, we mostly
work with the weak-* topology, which is sometimes called the vague topology. On
the other hand, motivated by the duality between Cb(0, T ; X) and the space of finite,
finitely additive regular signed Borel set functions (see [16, Th. IV.6.2] for the finite-
dimensional version), one often also works with the topology induced by duality
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with Cb(0, T ; X), which is sometimes called the narrow or weak topology. To avoid
confusion, we will avoid calling these topologies weak or weak-*, and stick to vague
and narrow instead. To be more precise, we define:

DEFINITION A.12. Let (μn)n be a net and μ an element in rca(0, T ; X∗). We say
that

μn converges to μ in the vague topology whenever:

μn
vague−−−→ μ :⇐⇒ 〈〈φ,μn〉〉 → 〈〈φ,μ〉〉 for all φ ∈ C0(0, T ; X), (A.5)

μn converges to μ in the narrow topology whenever:

μn
narrow−−−→ μ :⇐⇒ 〈〈φ,μn〉〉 → 〈〈φ,μ〉〉 for all φ ∈ Cb(0, T ; X). (A.6)

Moreover, we will say that a net ( fn)n ⊂ L1(0, T ; X∗) converges to an element
f ∈ L1(0, T ; X∗) in the vague or narrow topology whenever the measures ( fn(t) dt)n
converge to f (t) dt in the vague or narrow topology, respectively.

The vague topology is not metrisable, since it is really a weak-* topology; in particular,
it cannot be fully characterised through its convergent sequences. It should benoted that
vague convergence is often also defined as convergence against compactly supported
test functions φ ∈ Cc(0, T ; X), in which case it would be metrisable. For measures of
uniformly bounded finite total variation (e.g. probability measures), the two notions
coincide; this is not the case in the present work and we work with test functions in
C0(0, T ; X).

Clearly, the narrow topology is stronger than the vague topology. As in the case of
real-valuedmeasures, vague convergence can be strengthened by a tightness argument.

LEMMAA.13. Let (μn)n be a net andμ an element in rca(0, T ; X∗). Ifμn
vague−−−→ μ

and the net (|μn|)n ⊂ rca(0, T ) is tight, then μn
narrow−−−→ μ.

Proof. Take an arbitrary test function φ ∈ Cb(0, T ; X) and an arbitrary ε > 0. By
the tightness, there exists a compact set Kε ⊂ (0, T ) for which |μn|(Kc

ε ) ≤ ε for all
n and without loss of generality we can assume that |μ|(Kc

ε ) < ε since |μ| is regular.
Take a test function ψ ∈ C0(0, T ; X) such that φ|Kε ≡ ψ |Kε . Then

∣∣〈〈φ,μn − μ〉〉∣∣ ≤ ∣∣〈〈ψ,μn − μ〉〉∣∣+ (‖ψ‖∞ + ‖φ‖∞
)(|μn|(Kc

ε )+ |μ|(Kc
ε )

)

<
∣∣〈〈ψ,μn − μ〉〉∣∣+ 2ε

(‖ψ‖∞ + ‖φ‖∞
)→ 2ε

(‖ψ‖∞ + ‖φ‖∞
)
,

which proves the statement as ε was arbitrary. �

We can also strengthen vague convergence if one knows that the total variations
converge. The proof requires sequences; the argument breaks down for general nets
since a convergent net does not necessarily form a compact set.
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PROPOSITION A.14. Let (μn)n be a sequence andμ an element in rca(0, T ; X∗).
If μn

vague−−−→ μ and ‖μn‖TV → ‖μ‖TV, then μn
narrow−−−→ μ.

Proof. First we show by standard approximation arguments that the |μn| converge
narrowly, which implies the tightness of the variation measures. Then we exploit the
tightness to strengthen the vague convergence to the narrow convergence.
Recall from Theorem A.7 that

∥∥|μn|
∥∥
TV = ‖μn‖TV → ‖μ‖TV =

∥∥|μ|∥∥TV. (A.7)

Therefore, the variation measures |μn| are bounded and a subsequence converges
vaguely to some finite, positive measure ν ∈ rca(0, T ). Because of Theorem A.8, for
any φ ∈ C0(0, T ; X) and along the convergent subsequence,

〈〈φ,μ〉〉 ← 〈〈φ,μn〉〉 ≤
∫ T

0
‖φ(t)‖X |μn|(dt)→

∫ T

0
‖φ(t)‖X ν(dt).

Taking the supremum over test function yields the inequality,

‖μ‖TV = sup
φ∈C0(0,T ;X)

〈〈φ,μ〉〉 ≤ sup
φ∈C0(0,T ;X)

∫ T

0
‖φ(t)‖X ν(dt)

≤ sup
ψ∈C0(0,T )

∫ T

0
ψ(t) ν(dt) = ‖ν‖TV.

However, the other direction is immediately from the vague lower semi-continuity of

the total variation and so ‖ν‖TV = ‖μ‖TV. Together with (A.7) and |μn| vague−−−→ ν,
this implies that |μn| narrow−−−→ ν. Hence by the (real-valued) Prokhorov Theorem the
measures |μn| are tight, and by Lemma A.13 the measures μn convergence narrowly
to μ. �

REMARK A.15. The converse statement is, in general, wrong. To see this let X be
a separable Hilbert space with basis (en)n∈N and set μn = en L. Then

∀ f ∈ Cb(0, T ; X)

∫ T

0
〈 f, dμn〉 = 〈

∫ T

0
f dt, en〉 → 0

but ‖μn‖TV = 1 for every n.
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