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Local well-posedness for relaxational fluid vesicle dynamics

Matthias Köhne and Daniel Lengeler

Abstract. We prove the local well-posedness of a basic model for relaxational fluid vesicle dynamics by
a contraction mapping argument. Our approach is based on the maximal L p-regularity of the model’s
linearization.

Introduction

Most biological membranes are composed of a two-layered sheet of phospholipid
molecules, a lipid bilayer, which is immersed in water. Due to hydrophobic effects,
these membranes tend to avoid open edges and form closed configurations called
vesicles. Since the ratio of membrane thickness to vesicle diameter is very small,
typically of the order 10−4, vesicles can be described as two-dimensional surfaces
embedded in three-dimensional space. Due to osmotic effects and a very low solubility
of the phospholipids, the area and enclosed volume of such a vesicle are practically
fixed. Hence, vesicle configurations are not determined by a surface tension but rather
by a bending elasticity. A basic model for such an elastic energy is given by the
Canham–Helfrich energy

F(�) = κ

2

∫
�

(H − C0)
2 dA;

see [3,6,9]. Here,� is the two-dimensional, closed surface representing themembrane,
H denotes twice itsmean curvature, κ is the bending rigidity, andC0 is the spontaneous
curvature, which is supposed to reflect a chemical asymmetry of the membrane or its
environment; both κ and C0 are assumed to be constant in the following. Usually the
lipid bilayer is in a fluid state, allowing the monolayers to freely flow laterally and to
slip over each other, while the membrane retains its transverse structure. In our basic
model, we take into account this fluiditywhile neglecting the bilayer architecture of the
membrane. More precisely, we study a single homogeneous Newtonian surface fluid
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(see [2,23]) subject to additional stresses induced by the Canham–Helfrich energy
and interacting with a homogeneous Newtonian bulk fluid. The full system reads as
follows:

ρb
Du

Dt
= div S in �\�t ,

div u = 0 in �\�t ,

Vt = u · νt , [[u]] = 0, ρ
Du

Dt
= Div T + [[S]]νt on �t ,

Div u = 0 on �t ,

u = 0 on ∂�,

u(0) = u0 in �\�0,

�t |t=0 = �0.

(1)

Here, � is a smooth bounded domain in R
3 containing a homogeneous Newtonian

fluid and a closed moving vesicle �t , νt is the outer unit normal on �t , u is the velocity
of the bulk fluid in�\�t and the velocity of the surface fluid on �t which are assumed
to coincide on �t , ρb and ρ denote the bulk and the surface mass density, respectively,
Du/Dt is the fluid particle acceleration, S = 2μb Du − π I is the Newtonian bulk
stress tensor with the constant dynamic viscosity μb of the bulk fluid, the symmetric
part Du of the gradient of u, and the bulk pressure π , Vt is the speed of normal
displacement of �t , [[u]] and [[S]] are the jump of the velocity and the bulk stress
tensor, respectively, across the membrane (subtracting the outer limit from the inner
limit), Div is the surface divergence (see below), and T = f T + eT is the surface
stress tensor which is composed of a fluid part f T and an elastic part eT induced by
the Canham–Helfrich energy. More precisely, in coordinates, we have f T i

α = f T̃ β
α ∂ i

β

with (cf. [2,16,23])

f T̃ β
α = −q δβ

α + 2μ (Du)βα = −q δβ
α + μ gβγ (vα;γ + vγ ;α − 2w kαγ )

and

eT i
α = κ

(
(H − C0)

2/2 ∂ i
α − (H − C0) kβ

α ∂ i
β − (H − C0),ανi

t

)
.

Here, q is the surface pressure acting as a Lagrange multiplier with respect to the
constraint Div u = 0, μ is the constant dynamic viscosity of the surface fluid, Du is
the surface rate-of-strain tensor, k is the second fundamental formof�t , ∂α denotes the
α-th coordinate vector field, and the semicolon denotes covariant differentiation, while
the comma indicates usual partial differentiation. Furthermore, on�t , we decomposed
the function u = v+w νt into its tangential and its normal part. Throughout the paper,
latin indices refer to Cartesian coordinates in R

3, while greek indices refer to arbitrary
coordinates on �t . In particular, we note that the surface stress tensors are instances
of hybrid tensor fields (see [2,23]) taking a tangential direction and returning a force
density that is, in general, not tangential. The surface divergences for the non-tangential
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vector field u and the hybrid tensor field T can be written as

Div u = gαβ〈∂αu, ∂β〉e,

(Div T )i = gαβT i
α;β,

where g denotes the Riemannianmetric on�t induced by the Euclideanmetric e inR
3,

and the semicolon denotes the corresponding covariant differentiation of the covectors
(T i

α)α=1,2 (for fixed i). The computations in [16] showed that

Div u = divg v − w H,

Div T = − gradg q − q Hνt + μ
(

gv + gradg(w H) + Kv − 2 divg(w k)

)
+ 2μ

(〈∇gv, k〉g − w (H2 − 2K )
)
νt

− κ
(

g H + H(H2/2 − 2K ) + C0(2K − HC0/2)

)
νt .

(2)

Here, K is the Gauss curvature, gradg , divg , ∇g , 
g denote the differential operators
(acting on tangential tensor fields) corresponding to the metric g, and, with a slight
abuse of notation, we write 〈∇gv, k〉g for the contraction of the tensor fields ∇gv and
k using g. Furthermore, we saw in [16] that both the bulk and the surface Reynolds
number usually are very small, typically of the order 10−3. Hence, neglecting the
inertial terms in (1), we arrive at the following set of equations describing purely
relaxational fluid vesicle dynamics:

div S = 0 in �\�t ,

div u = 0 in �\�t ,

Vt = u · νt , [[u]] = 0, Div f T + [[S]]νt = −Div eT on �t ,

Div u = 0 on �t ,

u = 0 on ∂�,

�t |t=0 = �0.

(3)

At first sight, one might think that there is no dynamical component left in the system.
However, this is not the case. Note that Div eT can be computed from �t alone.
Hence, we have to solve the Stokes-type system defined by the left-hand side of (3)
with−Div eT as a right-hand side for the fluid velocity u. Then, the normal partw of u
on �t tells us how the vesicle will move in the next instant. It is easy to conclude from
(3)2,4 that the area and the enclosed volume of each connected component �i

t of �t

are preserved under this flow; see [16]. Hence, the phase space N of (3) consists of the
embedded surfaces � ⊂ � of fixed area and enclosed volume. As (2)2 indicates (see
also [16]), we have −Div eT = gradL2

F�t νt , where gradL2
F�t denotes L2-gradient

of the Canham–Helfrich energy at the point �t . Hence, we note that compared to the
classical Canham–Helfrich flow, that is, the L2-gradient flow of the Canham–Helfrich
energy with prescribed enclosed volume and area, there is an additional Neumann-to-
Dirichlet-type operator involved here, mapping gradL2

F�t to w; since gradL2
F�t is
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a fourth-order operator in �t , the mapping �t �→ w can be considered as a nonlinear,
nonlocal pseudo-differential operator of third order. Furthermore, we saw in [16] that
(3) can be considered as a gradient flow with respect to a suitable Riemannian metric
on N , leading in particular to the energy identity

d

dt
F(�t ) = −2μb

∫
�\�t

|Du|2e dx − 2μ
∫

�t

|Du|2g dA. (4)

We will not make use of the gradient flow structure in the present article. However,
it turns out to be useful for the proof of asymptotic stability of local minimizers
of the Canham–Helfrich energy; this is done in [15] by using a Łojasiewicz–Simon
inequality. Finally, we showed in [16] that the equilibria � of (3) satisfy

gradL2 F� + [[π ]] + q H = 0.

This is the Helfrich equation with the pressure jump and the surface pressure acting
as Lagrange multipliers with respect to the volume and area constraints.
Not much rigorous analysis has been done on the dynamics of fluid vesicles. Con-

cerning the Canham–Helfrich flow, a partial local well-posedness result has been
shown in [20]. There exist further results [11,17,18] concerning a Helfrich-type flow
where the Lagrange parameters instead of volume and area are prescribed and which
consequently should not be related directly to fluid vesicles. In [28], local-in-time exis-
tence and uniqueness for a homogeneous Newtonian surface fluid subject to Canham–
Helfrich stresses is shown. While the bulk fluid is neglected, the authors keep the
inertial term in the equations for the surface fluid, yielding a kind of dissipative
fourth-order wave-type equation. In [4], local-in-time existence and uniqueness of
a homogeneous Newtonian bulk fluid with inertial term interacting with a compress-
ible, inviscid surface fluid without inertial term is shown, the membrane model being
rather non-standard. Since the authors work in the L2-scale, they have to deal with
solutions of higher regularity, making the analysis rather involved. Furthermore, they
work in the Lagrangian picture, leading to problems with the tangential degeneracy of
the elliptic operator arising from the elastic stresses within the membrane. By working
in an L p-scale and using theHanzawa transform instead of the Lagrangian picture, we
are able to present a simplified analysis based on the theory of maximal L p-regularity
along with localization and transformation techniques.
The present article continues our analysis of a basic model of fluid vesicle dynamics

that was started in [16], where a thorough L2-analysis of the Stokes-type system
defined by the left-hand side of (3) is performed. We will make extensive use of these
results in the present article. Furthermore, we refer the reader to [16] and the references
therein for a detailed introduction to the physics and mathematics of fluid vesicles;
in particular, we refer to [24] for a rather comprehensive treatment of the physics of
equilibrium configurations.
This paper is organized as follows. In Sect. 1, we present our main result. In order

to construct local solutions, we shall employ the standard procedure of approximating
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the nonlinear evolution by some appropriate linear evolution. To this end, in Sect. 2,
we transform our system to a fixed domain using the Hanzawa transform and extract
the linearization of the resulting system. In Sect. 3, we prove that the linearization has
the property of maximal L p-regularity. This is first done for the case of a double half-
space, to which, then, the general case is reduced by localization and transformation
techniques. Finally, in Sect. 4, we prove ourmain result, using the contractionmapping
principle.
Before we proceed, let us fix some notation. Throughout the article, let � ⊂ R

3

be a smooth bounded domain and � ⊂ � a smooth, closed surface with outer unit
normal ν. We write �i , i = 1, . . . , m, for the connected components of �, �i for the
open set enclosed by �i , and let

�0 := �\(
m⋃

i=1

�i ∪ �i ).

We denote by P� the field of orthogonal projections onto the tangent spaces of �,
while [u]� denotes the trace of the bulk field u on �; however, when there is no
danger of confusion, we will sometimes omit the brackets. Furthermore (apart from
“Appendix A”), we write e for the Euclidean metric in R

3 and g for the metric on �

induced by e. We also use the notation u ·v instead of 〈u, v〉e for u, v ∈ R
3. Moreover,

we write k, H , and K for the second fundamental form, twice the mean curvature, and
theGauss curvature of� with respect to e, respectively.With a slight abuse of notation,
we use same symbol k also to denote the Weingarten map, that is, in coordinates we
write kαβ and kβ

α . Furthermore, for any metric ẽ on an arbitrary manifold, we write
ẽ�k

i j ,∇ ẽ, gradẽ, Kẽ, etc., for the associated Christoffel symbols, differential operators,

and curvature terms, and we use the abbreviations �k
i j := e�k

i j , ∇ := ∇e, grad :=
grade, etc., for the corresponding Euclidean objects. When working in coordinates
and confusion about the underlying metric can be ruled out, we use the semicolon to
separate the indices coming fromcovariant differentiation from the original indices; for
instance, for a covector field ω, we write (∇ ẽω)i j = ωi; j . We denote by r(a) generic
tensor fields that are polynomial or analytic functions of their argumenta. Furthermore,
for tensor fields r1 and r2 we write r1 ∗r2 for any tensor field that depends in a bilinear
way on r1 and r2, and we use the abbreviations r ∗ (r1, . . . , rk) = r ∗ r1 + . . . + r ∗ rk

and rk = r ∗ . . . ∗ r (with k factors on the right-hand side). For p ∈ (1,∞), k ∈ N,
and s ∈ R+\N, we denote by Hk

p the usual Sobolev spaces and by W s
p the Sobolev–

Slobodeckij spaces. For an arbitrary smooth, d-dimensional Riemannian manifold
(M, ẽ), the norm of the latter spaces is given by

‖T ‖W s
p(M) = ‖T ‖Hk

p(M) + |(∇ ẽ)k T |W s−k
p (M)

,

where k is the largest integer smaller than s and

|(∇ ẽ)k T |p

W s−k
p (M)

:=
∫

M

∫
M

|(∇ ẽ)k T (x) − (∇ ẽ)k T (y)|p
e

dẽ(x, y)d+(s−k)p
dVẽ(x) dVẽ(y).
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In this formula dẽ is theRiemannian distance function,while dVẽ is the volume element
corresponding to ẽ. Finally, let the homogeneous spaces Ḣ k

p(M) and Ẇ s
p(M) consist

of all locally integrable tensor fields such that∇k T ∈ L p(M) and |∇k T |W s−k
p (M)

< ∞
(where k is the largest integer smaller than s), respectively.

1. Main result

We fix a smooth bounded domain � ⊂ R
3 and a smooth, closed surface � ⊂ �.

We denote by Sα , α > 0, the open set of points in � whose distance from � is less
than α. It is a well-known fact from elementary differential geometry that there exists
some γ > 0 such that the mapping

� : � × (−γ, γ ) → Sγ , (x, d) �→ x + d ν(x)

is a diffeomorphism. For functions h : � → (−κ, κ) we define

�h := { �(x, h(x)) | x ∈ � },
and we write x �→ (τ (x), d(x)) : Sγ −→ � × (−γ, γ ) for the inverse map �−1, i. e.
we denote by τ : Sγ −→ � the metric projection onto �, and by d : Sγ −→ (−γ, γ )

the signed distance from �, which are both well defined within Sγ by choice of γ > 0.
For a time-dependent closed surface �t ⊂ � and time-dependent, integrable, scalar
functions q, π defined on �t and in �, respectively, we consider the gauge conditions

∫
�i

t

q(t, · )/H dA +
∫

�i
t

π(t, · ) dx = 0 for each �i
t that is a round sphere, (5)

where �i
t denotes the open set enclosed by �i

t , and∫
�

π(t, · ) dx = 0. (6)

Note that condition (5) is a consequence of the divergence constraint on �i
t and in

�\�t , provided that �i
t is a CMC surface, i. e. provided �i

t is a round sphere. Now, we
are ready to state our main result. Let μb, μ > 0.

THEOREM 1.1. Assume that � contains no round sphere, and let p ∈ (3,∞)\{4}.
For sufficiently small ε > 0 there exists a time T > 0 such that for all height functions
h0 ∈ B̄ε(0) ⊂ W 5−4/p

p (�) there exists a solution of (3) in the time interval I := (0, T )

with initial value �h0 . This solution is given by �t = �h(t) for a height function

h ∈ H1
p(I, W 2−1/p

p (�)) ∩ L p(I, W 5−1/p
p (�))

such that ‖h‖L∞(I×�) < γ and by measurable hydrodynamic fields u, π defined in
�\�t and q defined on �t for almost all t ∈ I such that the functions

‖u(t, · )‖p
H2

p(�\�t )
, ‖P�t [u(t, · )]�t ‖p

H2
p(�t )

, ‖π(t, · )‖p
H1

p(�\�t )
, ‖q(t, · )‖p

H1
p(�t )
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are integrable in I , and such that (5) and (6) hold for almost all t; the solution is
unique in this class. Moreover, the map

B̄ε(0) ⊂ W 5−4/p
p (�) → H1

p(J, W 2−1/p
p (�)) ∩ L p(J, W 5−1/p

p (�)), h0 �→ h

is Lipschitz continuous.
Finally, if � consists only of round spheres, then a solution of (3) is given by the

constant-in-time solution with �t = �, u = 0, and suitably chosen pressure functions
π and q which are constant in each connected component of � and �, respectively;
this solution is unique in the class given in the first part of the theorem. In particular,
the problem is globally well-posed in this trivial case.

In general, when dealing with the continuous dependence part of (local) well-
posedness, the question arises which perturbations should be included in the analysis.
For macroscopic physical systems, it seems reasonable to consider those perturbations
which are accessible by thermal fluctuations; thus, in our case area and enclosed vol-
ume of each connected component �i

h0
, i = 1, . . . , m, of �h0 should be conserved.

Concerning the second part of the above theorem, note that consequently the only
admissible perturbations of a round sphere are translations of this sphere. On the other
hand, the first part of the above theorem is slightly more general in that it deals with
a larger class of perturbations. Note that the tangential part of the bulk velocity trace
on �t exhibits an increased spatial regularity, which is to be expected in view of the
appearance of the Laplace–Beltrami operator in transformed equation (8)3; cf. also
the symbolic analysis on page 1803. Also note that the case p = 4 is excluded for
notational convenience, since in this case Besov spaces would have to be introduced
for the initial data.
So far, we cannot prove (local) well-posedness of our system in the case that �

contains both round spheres and connected components that are not round spheres.
The reason for this is a technicality in the iterative construction process of the solutions
which is related to the different degrees of gauge freedom for round spheres on the
one hand and other configurations on the other hand; see, in particular, the remark
following the proof of Theorem 1.1.

The conditions (5) and (6) on π and q provide a gauge fixing; as is typical for
Stokes-type equations, the pressure functions in (3) are not uniquely determined.

DEFINITION 1.2. For fixed t ∈ Ī , we define the space Up(�t ) ⊂ H1
p(�\�t ) ×

H1
p(�t ) as follows: (π, q) ∈ Up(�t ), if and only if for all i = 1, . . . , m we have

(i) π = κi in �i , π = κ0 in �0, q = κ i on �i with κi , κ0, κ
i ∈ R

(ii) If�i
t is a round sphere with H denoting twice the mean curvature, then κi −κ0 =

κ i H .
(iii) If �i

t is not a round sphere, then κ i = 0 and κi = κ0.

It is not hard to see that

(
H1

p(�\�t ) × H1
p(�t )

)
/Up(�t ) � {

(π, q) ∈ H1
p(�\�t ) × H1

p(�t ) | (5),(6) hold}
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cf. Section 3.1 in [16]. Hence, the subspace Up(�t ) characterizes the gauge freedom
of the pressure functions. Concerning the gauge fixing condition (5), we note that a
connected component �i

t , i = 1, . . . , m, of �t is a round sphere for some t ∈ Ī if and
only if this is the case for all t ∈ Ī since its area and enclosed volume are fixed.
Assuming the reference surface (respectively, initial surface in the case h0 = 0) �

to be of class W 6−1/p
p would be sufficient as a detailed analysis of the nonlinearities

appearing in Sect. 2 shows. By Theorem 4.10.2 in [1] and the theorem in Section 7.4.4
of [27] (note that W s

p(�) = Bs
pp(�) for non-integer s; cf. [16]), the time trace

H1
p(I, W 2−1/p

p (�)) ∩ L p(I, W 5−1/p
p (�)) → W 5−4/p

p (�), h �→ h(0)

is well defined and surjective. In this sense, the regularity of h0 in the preceding
theorem is optimal. However, so far, we are not able to prove the well-posedness for
arbitrary (apart from spheres) initial surfaces � of class W 5−4/p

p . The canonical way
to do so is to approximate such an initial surface sufficiently well by some smooth
surface and then apply the preceding theorem. However, it seems that the ε in the
assertion (being related to the norm of the solution operator of the linearization with
respect to the reference surface) does not depend in a continuous way on the reference
surface in the W 5−4/p

p -topology. However, it should be possible to lower the regularity

assumption on � below W 6−1/p
p by proving such a continuity result in a sufficiently

strong topology.
Finally,we note that a similar result as Theorem1.1 result can be shown forμ = 0; in

this case, of course, the additional regularity of the tangential velocity on themembrane
is not present.

2. Linearization

In this section, we employ the classical Hanzawa transform to map the time-
dependent domains �t and�\�t to the fixed domains � and�\�, respectively. Using
this diffeomorphism, we translate the system (3) into a quasi-linear system on fixed
domains and then extract its linearization. It is crucial, however, to transform the equa-
tions in a geometrically consistent way, namely to take the geometric pullback of the
fields involved. This ensures that the tangential part of the velocity field on �t , which
is smoothed by membrane viscosity, remains tangential, and thus is smoothed in the
linearization, too.1

Recall the notation from the beginning of Sect. 1. For sufficiently regular h : � →
(−γ, γ ), we choose the real-valued function β ∈ C∞(R) to be 0 in neighborhoods of
−1 and 1, and 1 in a neighborhood of 0, and assume that |β ′| < γ/‖h‖L∞(�) on �.

1At first sight, one might want to transform the equation in such a way that the normal part of velocity on �t
remains normal. However, the construction of a suitable modification of the classical Hanzawa transform
turns out to be rather technical (see [19] for an elegant method), and, in our case, the need for this property
can be avoided by relaxing the relation u = v + w νt in the linearization; see below.
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Then, the Hanzawa transform �h : � → � is defined in the following way: While,
in �\Sγ , we let �h be the identity, we define �h in Sγ by

x �→ x + ν(τ(x)) h(τ (x)) β(d(x)/γ ).

Then we have �h(�) = �h , and it is not hard to see that �h : � → � and ϕh :=
�h |� : � → �h are diffeomorphisms; see, for instance, [14]. For a given time-
dependent height function h, we write �t := �h(t), ϕt := ϕh(t), and �t := �h(t).

Separating the tangential and the normal part of (3)3, we obtain

− gradg q + μ
(

gv + gradg(w H) + Kv − 2 divg(w k)

) + 2μb[[Du]]ν = 0,

−q H + 2μ
(〈∇gv, k〉g − w (H2 − 2K )

) − [[π ]]
= κ

(

g H + H(H2/2 − 2K ) + C0(2K − HC0/2)

)
. (7)

Note that [[Du]]ν is tangential due to the incompressibility constraint. Indeed, for
any vector X on �, we have [[(X · ∇)u]] · ν = 0. If X is tangential, we even have
[[(X · ∇)u]] = 0 since u is continuous across �. But then, choosing an orthonormal
basis ν, e1, e2 at some arbitrary point on �, from div u = 0, we deduce that

[[(ν · ∇)u]] · ν = −[[(e1 · ∇)u]] · e1 − [[(e2 · ∇)u]] · e2 = 0.

Let us now transform the system (3) to the fixed domains �\� and � and then
extract its linearization. We minimize the computations by exploiting the fact that
the system (3) on the time-dependent domains is equivalent to a system on the fixed
domains with a time-dependent Riemannian metric. The diffeomorphism �t induces
the time-dependent metric ẽ = ẽt := �∗

t e on �. We denote the restriction of ẽ to �

by g̃. Note that �t : (�, ẽt ) → (�, e) and ϕt : (�, g̃t ) → (�t , g) are isometries. Let
us denote the pullbacks of the involved fields by ũ := �∗

t u, π̃ := �∗
t π , ṽ := �∗

t v,
w̃ := �∗

t w, and q̃ := �∗
t q. By exploiting naturality of covariant differentiation under

isometries (cf. [16]), from (3), (7), u = v + w νt on �t , and ∂t h ν = (w νt ) ◦ ϕt , we
obtain

μb
ẽ ũ − gradẽ π̃ = 0 in �\�,

divẽ ũ = 0 in �\�,

μ
(

g̃ ṽ + gradg̃(w̃ Hẽ) + Kg̃ ṽ − 2 divg̃(w̃ kẽ)

)
− gradg̃ q̃ + 2μb[[Dẽũ]]νẽ = 0 on �,

2μ
(〈∇ g̃ ṽ, kẽ〉g̃ − w̃ (H2

ẽ − 2Kg̃)
) − q̃ Hẽ − [[π̃]]

−κ
(

g̃ Hẽ + Hẽ(H2

ẽ /2 − 2Kg̃) + C0(2Kg̃ − HẽC0/2)
) = 0 on �,

divg̃ ṽ − w̃ Hẽ = 0 on �,

ũ − ṽ − w̃ νẽ = 0 on �,

∂t h 〈ν, νẽ〉ẽ − w̃ = 0 on �.

(8)

Here, most of the geometric quantities have to be taken with respect to the perturbed
metrics and, hence, are indexed by ẽ and g̃, respectively. Now, we take the point of
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view of ẽ being a (small) perturbation of e. The results from “Appendix A” show (cf.
the proof of Theorem 3.13 in [16]) that (8) can be written in the form

μb
ũ − grad π̃ = N1 in �\�,

div ũ = N2 in �\�,

μ
(

g ṽ + gradg(w̃ H) + K ṽ − 2 divg(w̃ k)

)
− gradg q̃ + 2μb[[Dũ]]ν = N�

3 on �,

2μ
(〈∇g ṽ, k〉g − w̃ (H2 − 2K )

) − q̃ H − [[π̃]] − Ah = N⊥
3 on �,

divg ṽ − w̃ H = N4 on �,

ũ − ṽ − w̃ ν = N5 on �,

∂t h − w̃ = N6 on �

(9)

with

N1 = (ẽ − e) ∗ (μb∇2ũ, grad π̃) + μb r(ẽ) ∗ (
(∇2ẽ, (∇ ẽ)2) ∗ ũ + ∇ ẽ ∗ ∇ũ

)
,

N2 = r(ẽ) ∗ ∇ ẽ ∗ ũ,

N�
3 = (ẽ − e) ∗ (μ(∇g)2ṽ, gradg q̃) + μb r(ẽ) ∗ (

(ẽ − e) ∗ [∇ũ] + ∇ ẽ ∗ [ũ])
+ μ r(ẽ) ∗ (

(ẽ − e) ∗ k2, (ẽ − e) ∗ ∇k, k ∗ ∇ ẽ,∇2ẽ, (∇ ẽ)2
) ∗ [ũ]

+ μ r(ẽ) ∗ (
(ẽ − e) ∗ k,∇ ẽ

) ∗ [∇ũ]
N⊥
3 = r(ẽ) ∗ (

(ẽ − e) ∗ k,∇ ẽ
)

q̃ + μ r(ẽ) ∗ (
(ẽ − e) ∗ k,∇ ẽ

) ∗ ∇g ṽ

+ μ r(ẽ) ∗ (
(ẽ − e) ∗ k2, k ∗ ∇ ẽ, (∇ ẽ)2

) ∗ [ũ]
+ κ

(

g H + H(H2/2 − 2K ) + C0(2K − HC0/2)

) + κ Q(h),

N4 = r(ẽ) ∗ (
(ẽ − e) ∗ k,∇ ẽ

) ∗ [ũ],
N5 = r(ẽ) ∗ (ẽ − e) w̃,

N6 = r(ẽ) ∗ (ẽ − e) ∂t h,

where Ah = κ
(

2

gh + (aαβh,α);β + b h
)
is the linearization at h ≡ 0 of gradL2

F�h

with
aαβ = (H2/2 − 4K + 2HC0 − C2

0/2)g
αβ + 2(H − C0)k

αβ,

b = 2kαβ H;αβ + 
g(H2 − 2K ) + H,α H α
, + 3H4/2 − 7K H2

+ 4K 2 + 2C0K H − C2
0/2 H2 + C2

0 K ,

see [15], and κ Q(h) = ϕ∗
t (gradL2

F�t ) − Ah. We saw in [16] that in Sγ we have

ẽ − e = r(h/γ, hk,∇h) ◦ τ, (10)

where r is an analytic function of its arguments. Thus, from

ϕ∗
t (gradL2

F�t ) = κ
(

g̃ Hẽ + Hẽ(H2

ẽ /2 − 2Kg̃) + C0(2Kg̃ − HẽC0/2)
)

and the results in “Appendix A,” we infer that Q(h) is an analytic function of zero- to
third-order derivatives of k, and zero- to fourth-order derivatives of h. In Sect. 4, we
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will need the term Q(h) to lie in W 1−1/p
p (�). Since this term contains up to third-order

derivatives of k, assuming � to be of class W 6−1/p
p would in fact be sufficient.

We conclude that we have to analyze the following linear parabolic system

μb
u − grad π = f1 in �\�,

div u = f2 in �\�,

μ
(

gv + gradg(w H) + K v − 2 divg(w k)

)
− gradg q + P�[[S]]ν = f �

3 on �,

2μ
(〈∇gv, k〉g − w (H2 − 2K )

) − q H + [[S]]ν · ν − Ah = f ⊥
3 on �,

divg v − w H = f4 on �,

u − v − w ν = f5 on �,

∂t h − w = f6 on �

(11)

for suitable data f1, . . . , f6 with the additional requirements u = 0 on ∂� and h(0) =
h0 for some suitable initial value h0. Here, we dropped the tilde symbols and, as before,
S = 2μb Du − π I .

3. Linear analysis

In this section, we study the linearization (11) with fully inhomogeneous data and
establish its unique solvability in the sense of maximal regularity in an L p-setting. To
begin with, let us specify suitable function spaces for the solutions and for the data.
From (11)2,6, we obtain

∫
�i

(w + f5 · ν) dA =
∫

�i
f2 dx

for i = 1, . . . , m; combining this identity with (11)5, we obtain
∫

�i
f4/H dA = −

∫
�i

f2 dx +
∫

�i
f5 · ν dA for each �i that is a CMC surface.

(12)
Recall that the only closed, connected CMC (= constant mean curvature) surfaces
embedded in R

3 are the round spheres. Furthermore, of course, we have
∫

�

f2 dx = 0. (13)

For p ∈ (1,∞)\{4}, we define
Gp(T ) := {

( f1, . . . , f6, h0) | f1 ∈ L p(I, L p(�\�,R3)), f2 ∈ L p(I, H1
p(�\�)),

f �
3 ∈ L p(I, L p(�, T �)), f ⊥

3 ∈ L p(I, W 1−1/p
p (�)), f4 ∈ L p(I, H1

p(�)),

f5 ∈ L p(I, W 2−1/p
p (�,R3)), f6 ∈ L p(I, W 2−1/p

p (�)), h0 ∈ W 5−4/p
p (�)

}
,
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where I = (0, T ), the space of data

Fp(T ) := {
( f1, . . . , f6, h0) ∈ Gp(T ) | (12) and (13) hold for almost all t

}
,

and the space of solutions

Ep(T ) := {
(u, v, w, π, q, h) | u ∈ L p(I, H2

p(�\�, R
3) ∩ 0H1

p(�, R
3)),

v ∈ L p(I, H2
p(�, T �)), w ∈ L p(I, W 2−1/p

p (�)),

π ∈ L p(I, H1
p(�\�)), q ∈ L p(I, H1

p(�)),

h ∈ L p(I, W 5−1/p
p (�)) ∩ H1

p(I, W 2−1/p
p (�)),

such that (12) and (13) with f2 = π , f4 = q,

and f5 = 0 hold for almost all t
};

each space is endowed with the canonical norm.

THEOREM 3.1. For p ∈ [2,∞)\{4} and ( f1, . . . , f6, h0) ∈ Fp(T ), there exists
a unique solution (u, v, w, π, q, h) ∈ Ep(T ) of (11). If the functions f1, . . . , f6, and
h0 are smooth in space and time, then so is the solution (u, v, w, π, q, h).2

Proof. [Existence for Smooth Data and Uniqueness] This follows by combining the
elliptic theory proved in [16] with standard arguments from parabolic L2-theory. We
will successively eliminate the data ( f1, . . . , f6) and hence write the velocity fields
in the form u = u0 + u1 + u2, v = v0 + v1 + v2 (with strictly tangential vi ), and
w = w0 + w1 + w2. First, we eliminate f5 and f6 by choosing a smooth function u0

such that [u0]∂� = 0 and [u0]� = f5 − f6 ν and by defining v0 := 0 and w0 := − f6.
Next, we eliminate f2 and f4 by solving the stationary system

div u1 = f2 − div u0 in �\�,

Div u1 = f4 − Div u0 on �

at fixed, but arbitrary t ∈ Ī for a smooth function u1, see Theorem 3.6 in [16] with
f1 = 0 and f3 = 0, and by choosing v1, w1 such that u1 − v1 − w1ν = 0. Finally,
we solve (11) for (u2, v2, w2, π, q, h) with vanishing f2, f4, f5, and f6, with f1 and
f3 replaced by f̃1 := f1 − 2μb div Du1 and f̃3 := f3 − 2μDivDu1 − [[2μb Du1]]ν,
respectively, and with u2 − v2 − w2ν = 0. To this end, we note that this system can
be written in the form

div S = f̃1 in �\�,

div u2 = 0 in �\�,

Div f T + [[S]]ν + Ah ν = f̃3 on �,

Div u2 = 0 on �,

∂t h − w2 = 0 on �,

(14)

2 Here and in the following smoothness means C∞ up to possible jumps across � for f1, f2, π , and
first-order derivatives of u.
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where the stress tensors S and T are taken with respect to u2, π , and q. Let us multiply
(14)3 by a smooth test function ϕ : Ī × � → R

3 fulfilling the divergence constraints
(14)2,4 and vanishing on ∂�. Analogously to the computations in Section 3.1 of [16],
integration by parts then leads to the following weak formulation of our system

B(u2, ϕ) + A(h, ϕ) = F(ϕ),

∂t h − w2 = 0,
(15)

which is to hold for almost all t ∈ I . Here, we used the definitions

B(u, ϕ) := 2μb

∫
�\�

〈Du, Dϕ〉e dx + 2μ
∫

�

〈Du,Dϕ〉g dA,

A(h, ϕ) := κ

∫
�

(

gh 
gϕ

⊥ + aαβh,αϕ⊥
,β + b h ϕ⊥)

dA,

F(ϕ) :=
∫

�

〈 f̃3, ϕ〉e dA +
∫

�\�
〈 f̃1, ϕ〉e dx

with ϕ⊥ := ϕ · ν. Choosing ϕ = u2 and making use of the coercivity of the bilinear
form B, see Lemma 3.1 in [16], and the L2-theory of the Laplacian on �, it is not hard
to see that we can estimate u2 in L2(I, H1

0 (�)), v2 in L2(I, H1(�, T �)), and h in
L∞(I, H2(�))∩ H1(I, H1/2(�)) in terms of f̃3 in L2(I, L2(�)), f̃1 in L2(I, L2(�)),
and h0 in H2(�). Thus, by Galerkin’s method, see [7], we can actually construct such
a weak solution (u2, h). Next we reconstruct the pressure functions. Since, for fixed
t ∈ I , the functional ϕ �→ B(u2, ϕ) + A(h, ϕ) − F(ϕ) annihilates the space

X :=
{

u ∈ H1
0 (�, R

3) : div u = 0 in �\�, Div u = 0 on �, P�u ∈ H1(�; T �)
}
,

by Corollary 3.3 in [16] there exist functions (π, q) ∈ L2(I, Z) with

Z :=
{

( f2, f4) ∈ L2(�) × L2(�) : (12), (13) with f5 = 0 hold
}

such that

B(u2, ϕ) + A(h, ϕ) − F(ϕ) = −
∫

�\�
π div ϕ dx −

∫
�

q Div ϕ dA

for all ϕ ∈ H1
0 (�) with P�[ϕ]� ∈ H1(�; T �) and almost all t ∈ I . As announced

above, the full (weak) solution of the system is then given by (u, v, w, π, q), where
u := u0 + u1 + u2, v := v0 + v1 + v2, and w := w0 + w1 + w2. Furthermore, we
can estimate these functions in terms of the data analogously to the estimates (32)
and (37) in [16]; this proves uniqueness in Ep(T ) for p ∈ [2,∞) since then Ep(T )

embeds into the above energy spaces. It remains to prove smoothness of (u2, π, q).
To this end we take the k-th derivative of (15)1 in time for arbitrary k ∈ N and choose
ϕ = ∂k−1

t u; of course, strictly speaking this must be done on the Galerkin level. The
resulting energy estimates show that h ∈ Hk−1(I, H2(�)); since k is arbitrary, we
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have h ∈ C∞( Ī , H2(�)). Now, from Theorem 3.7 in [16] (with f5 = ∂t h), we obtain
Ah ∈ C∞( Ī , H1(�)). Thus, L2-theory for the biharmonic operator on � shows that
h ∈ C∞( Ī , H5(�)); iterating this procedure we obtain that h is smooth in space and
time. Using Theorem 3.7 in [16] once more, we see that the same is true for u2, π ,
and q. �

The proof of existence in the case of non-smooth data in Fp(T ), p > 2, is of
course much more involved. The main step is carried out in Sect. 3.1 where a maximal
regularity result is shown for the principal linearization of our system in the prototype
geometry of a double half-space. In Sect. 3.2, this result is then transferred to a bounded
domain using the basic procedure of localization and transformation once more.

3.1. Double half-space

In this subsection, we study the principal linearization of our system

η u − μb
u + grad π = f1 in R
n\�,

div u = f2 in R
n\�,

−μ
v + grad q − 2μb P�[[Du]]ν = f �
3 on �,

−[[π ]] − κ
2h = f ⊥
3 on �,

div v = f4 on �,

u − v − w ν = f5 on �

(∂t + η)h − w = f6 on �

(16)

with h(0) = h0 posed in the unbounded time interval R+ := (0,∞) and in the
prototype geometry R

n\�, where n ≥ 2 and � := R
n−1 × {0}. We employ the

splitting (x, y) ∈ R
n−1×R for the spatial variables and ν := ey . For technical reasons

related to the unbounded spatial and temporal domain of the system, we introduced an
artificial shift η > 0.Note that due to [[u]] = 0we have 2μb[[Du]]ν ·ν = 2μb[[∂yun]] =
2μb[[ f2]], which may be hidden in f ⊥

3 . For p ∈ (1,∞) we define the space of data

F
�
p := {

( f1, . . . , f6, h0) | f1 ∈ L p(R+, L p(Rn\�,Rn)), f2 ∈ L p(R+, H1
p(Rn\�)),

f �
3 ∈ L p(R+, L p(�, T �)), f ⊥

3 ∈ L p(R+, Ẇ 1−1/p
p (�)), f4 ∈ L p(R+, H1

p(�)),

f5 ∈ L p(R+, W 2−1/p
p (�,Rn)), f6 ∈ L p(R+, W 2−1/p

p (�)), h0 ∈ W 5−4/p
p (�)

}

and the space of solutions

E
�
p := {

(u, v, w, π, q, h) | u ∈ L p(R+, H2
p(Rn\�, R

n) ∩ H1
p(Rn, R

n)),

v ∈ L p(R+, H2
p(�, T �)), w ∈ L p(R+, W 2−1/p

p (�)),

π ∈ L p(R+, Ḣ1
p(Rn\�)/R), q ∈ L p(R+, Ḣ1

p(�)/R),

h ∈ L p(R+, W 5−1/p
p (�)) ∩ H1

p(R+, W 2−1/p
p (�))

};
each space is endowed with the canonical norm.



Vol. 18 (2018) Local well-posedness for relaxational fluid vesicle dynamics 1801

THEOREM 3.2. For η > 0, p ∈ (1,∞), and ( f1, . . . , f6, h0) ∈ F
�
p there exists a

unique solution (u, v, w, π, q, h) ∈ E
�
p of (16).

Proof. The proof will be carried out in two steps, where we split up the system into
a stationary problem with inhomogeneous right-hand sides and an evolution equation
with homogeneous right-hand sides.

Step 1

In this step, we will eliminate all data except for f6. To begin with, we eliminate h0

by constructing an extension

h̄ ∈ H1
p(R+, W 2−1/p

p (�)) ∩ L p(R+, W 5−1/p
p (�));

see the remark after Theorem 1.1. In order to deal with the remaining data, we study
the stationary system

η u − μb
u + grad π = f1 in R
n\�,

div u = f2 in R
n\�,

−μ
v + grad q − 2μb P�[[Du]]ν = f �
3 on �,

−[[π ]] = f ⊥
3 on �,

div v = f4 on �,

u − v − w ν = f5 on �.

Concerning this system we show that there exists a unique solution

u ∈ H2
p(Rn\�, R

n) ∩ H1
p(Rn), v ∈ H2

p(�, T �), w ∈ W 2−1/p
p (�),

π ∈ Ḣ1
p(Rn\�)/R, , q ∈ Ḣ1

p(�)/R,

provided that the data satisfy

f1 ∈ L p(R
n\�, R

n), f2 ∈ H1
p(Rn\�), f �

3 ∈ L p(�, T �),

f ⊥
3 ∈ Ẇ 1−1/p

p (�), f4 ∈ H1
p(�), f5 ∈ W 2−1/p

p (�, R
n).

To begin with, we eliminate f5 by choosing a function ū ∈ H2
p(Rn\�, R

n)∩ H1
p(Rn)

such that [ū]� = f5; for the surjectivity of the trace operator see, for instance, [26].
With f5 vanishing, we may employ the splitting u = (v,w) ∈ R

n−1 × R in the
whole space R

n . Next, we eliminate f1, f2, and f4 by making use of the results of
“Appendix B.” To this end, we first solve the whole space problem

η v̄ − μ
v̄ + grad q̄ = 0 on �,

div v̄ = f4 on �



1802 M. Köhne and D. Lengeler J. Evol. Equ.

to obtain v̄ ∈ H2
p(�, T �) and q̄ ∈ Ḣ1

p(�), and then we solve the two decoupled
half-space problems

η ū − μb
ū + grad π̄ = f1 in R
n±,

div ū = f2 in R
n±,

ū = v̄ on �

to obtain ū ∈ H2
p(Rn\�, R

n)∩ H1
p(Rn) and π̄ ∈ Ḣ1

p(Rn\�). Finally, in order to solve
the reduced problem, we employ a Fourier transformation in the tangential variables
to obtain the system

η v̂ + μb|ξ |2v̂ − μb∂
2
y v̂ + iξ π̂ = 0, ξ ∈ R

n, y �= 0,

η ŵ + μb|ξ |2ŵ − μb∂
2
y v̂ + ∂yπ̂ = 0, ξ ∈ R

n, y �= 0,

iξT v̂ + ∂yŵ = 0, ξ ∈ R
n, y �= 0,

[[v̂]] = 0, [[ŵ]] = 0 ξ ∈ R
n, y = 0

μ|ξ |2v̂ + iξ q̂ − μb[[∂y v̂]] − μbiξ [[ŵ]] = ĝτ , ξ ∈ R
n, y = 0

[[π̂]] = ĝν, ξ ∈ R
n, y = 0

iξTv̂ = 0, ξ ∈ R
n, y = 0

(17)

Here, we simplified the notation by setting g = (gτ , gν) := ( f �
3 , f ⊥

3 ). The generic
solution of the ODE system is easily seen to be given as⎡

⎢⎢⎣
v̂±(ξ, y)

ŵ±(ξ, y)

π̂±(ξ, y)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

� −iζ

±iζT ±|ζ |
0 η

√
μb

⎤
⎥⎥⎦

[
ẑ±
v (ξ)e

∓ �√
μb

y

ẑ±
w(ξ)e∓|ξ |y

]
, ξ ∈ R

n−1, y ≷ 0 (18)

with ζ := √
μb ξ , � := √

η + |ζ |2, and four functions ẑ±
v : R

n−1 → R
n−1, and

ẑ±
w : R

n−1 → R, which have to be determined together with q : R
n−1 → R based

on the transmission conditions (17)4,5,6 and the incompressibility constraint on the
membrane. With this representation of the solution, the transmission conditions be-
come

�(ẑ+
v − ẑ−

v ) − iζ(ẑ+
w − ẑ−

w) = 0, iζT(ẑ+
v + ẑ−

v ) + |ζ |(ẑ+
w + ẑ−

w) = 0
μ
μb

|ζ |2(� ẑ+
v − iζ ẑ+

w) + 1√
μb

iζ q̂ + √
μb�

2(ẑ+
v + ẑ−

v ) − √
μbiζ |ζ |(ẑ+

w + ẑ−
w) = ĝτ

2
√

μb� iζT(ẑ+
v − ẑ−

v ) + 2
√

μb|ζ |2(ẑ+
w − ẑ−

w) + η
√

μb(ẑ+
w − ẑ−

w) = ĝν,

and the incompressibility constraint on the membrane reads

iζT(� ẑ+
v − iζ ẑ+

w) = iζT(� ẑ−
v − iζ ẑ−

w) = 0.

Applying iζT · to the tangential transmission condition and using the continuity of w

across the membrane and the incompressibility condition, we obtain

− 1√
μb

|ζ |2q̂ − η
√

μb|ζ |(ẑ+
w + ẑ−

w) = iζT ĝτ ,
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which leads to

1√
μb

iζ q̂ = −η
√

μb
iζ

|ζ | (ẑ
+
w + ẑ−

w) − iζ ⊗ iζ

|ζ |2 ĝτ . (19)

For the tangential transmission condition, we then obtain

μ

μb
|ζ |2(� ẑ+

v − iζ ẑ+
w) + √

μb� 2(ẑ+
v + ẑ−

v ) − η
√

μb
iζ

|ζ | (ẑ
+
w + ẑ−

w) =
(
1 + iζ⊗iζ

|ζ |2
)

ĝτ .

Since the continuity of v across the membrane implies

μ

μb
|ζ |2(� ẑ+

v − iζ ẑ+
w) = 1

2

μ

μb
|ζ |2

(
�(ẑ+

v + ẑ−
v ) − iζ(ẑ+

w + ẑ−
w)

)
,

the tangential transmission condition may be rewritten as
(√

μb� + 1

2

μ

μb
|ζ |2

)
�(ẑ+

v + ẑ−
v ) −

(
η
√

μb

|ζ | − 1

2

μ

μb
|ζ |2

)
iζ(ẑ+

w + ẑ−
w)

=
(
1 + iζ ⊗ iζ

|ζ |2
)

ĝτ .

Furthermore, due to the continuity of v across the membrane, the normal transmission
condition simplifies to

η
√

μb(ẑ
+
w − ẑ−

w) = ĝν.

On the other hand, the continuity of w across the membrane together with the in-
compressibility constraint on the membrane, which may equivalently be written in the
form

� iζT(ẑ+
v + ẑ−

v ) = −|ζ |2(ẑ+
w + ẑ−

w),

imply
� |ζ |(ẑ+

w + ẑ−
w) = −� iζT(ẑ+

v + ẑ−
v ) = |ζ |2(ẑ+

w + ẑ−
w).

This yields (�−|ζ |)|ζ |(ẑ+
w+ẑ−

w) = 0, that is, ẑ+
w+ẑ−

w = 0 and thus iζT(ẑ+
v +ẑ−

v ) = 0.
Hence, we obtain

ẑ±
w = ±1

2

1

η
√

μb
ĝν. (20)

Combining these identities with the tangential transmission condition and the conti-
nuity of v across the membrane, we infer

(√
μb� + 1

2

μ

μb
|ζ |2

)
�(ẑ+

v + ẑ−
v ) =

(
1 + iζ ⊗ iζ

|ζ |2
)

ĝτ ,

�(ẑ+
v − ẑ−

v ) = iζ

η
√

μb
ĝν.

Adding and subtracting these two equations yield

� ẑ±
v = 1

2

(√
μb� + 1

2

μ

μb
|ζ |2

)−1 (
1 + iζ ⊗ iζ

|ζ |2
)

ĝτ ± 1

2

iζ

η
√

μb
ĝν. (21)
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Combining (20) and (21), we find

[v̂]� = � ẑ±
v − iζ ẑ±

w = 1

2

(√
μb� + 1

2

μ

μb
|ζ |2

)−1 (
1 + iζ ⊗ iζ

|ζ |2
)

ĝτ .

Now, the last symbol on the right-hand side belongs to the Helmholtz projection

H� : L p(�, T �) → L p,σ (�, T �),

the projection associated to the direct topological decomposition

L p(�, T �) = L p,σ (�, T �) ⊕ ∇ Ḣ1
p(�, T �),

where L p,σ (�, T �) ⊂ L p(�, T �) denotes the subspace of solenoidal vector fields.
Observe thatH� is bounded as follows for instance fromMikhlin’smultiplier theorem.
Based on this observation, we may write

(μb + |ζ |2)[v̂]� = 1

2

μb + |ζ |2√
μb� + 1

2
μ
μb

|ζ |2 Ĥ�gτ

and infer that [v]� ∈ H2
p(�, T �) from gτ ∈ L p(�, T �), as follows again from

Mikhlin’s multiplier theorem and the characterization of Sobolev spaces via Bessel
potentials; see, for instance, the theorem of Section 2.5.6 in [26]. Now, (19) simplifies
to

− 1√
μb

iζ q̂ = iζ ⊗ iζ

|ζ |2 ĝτ ,

which yields grad q ∈ L p(�, T �). Finally, we have

[π̂±]� = η
√

μbẑ±
w = ±1

2
ĝν,

which yields ḡ±
ν := [π±]� ∈ Ẇ 1−1/p

p (�), and since the solution constructed above
also satisfies the two decoupled Stokes systems

η u − μb
u + grad π = 0 in R
n±,

div u = 0 in R
n±,

v = ḡτ on �,

π = ḡ±
ν on �,

with ḡτ := [v]� , we obtain the desired regularity for u and π ; see “Appendix B.” Note
that the computations above imply

[ŵ]� = 1

2

|ζ |√
μb�(� + |ζ |) ĝν; (22)

in particular, the trace of the normal component of the velocity field depends only on
the right-hand side of the normal transmission condition.
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Step 2

Next, we employ a Laplace transform in the time variable and a Fourier transform
in the tangential space variables in order to compute the boundary symbol of the
reduced problem, which will then be used to derive the exact mapping properties of
the solution operator f �→ h; here, we simplified the notation by setting f := f6.
Thus, we consider the transformed system

η v̂ + μb|ξ |2v̂ − μb∂
2
y v̂ + iξ π̂ = 0, λ ∈ �θ, ξ ∈ R

n, y �= 0,

η ŵ + μb|ξ |2ŵ − μb∂
2
y ŵ + ∂yπ̂ = 0, λ ∈ �θ, ξ ∈ R

n, y �= 0,

iξTv̂ + ∂yŵ = 0, λ ∈ �θ, ξ ∈ R
n, y �= 0,

[[v̂]] = 0, [[ŵ]] = 0, λ ∈ �θ, ξ ∈ R
n, y = 0,

μ|ξ |2v̂ + iξ q̂ − μb[[∂y v̂]] − μbiξ [[ŵ]] = 0, λ ∈ �θ, ξ ∈ R
n, y = 0,

κ|ξ |4ĥ + [[π̂]] = 0, λ ∈ �θ, ξ ∈ R
n, y = 0,

iξT[v̂]y = 0, λ ∈ �θ, ξ ∈ R
n, y = 0,

λη ĥ − [ŵ]y = f̂ , λ ∈ �θ, ξ ∈ R
n, y = 0,

(23)

where we employ the abbreviation λη := λ + η and denote by

�θ := { z ∈ C : z �= 0, |arg z| < θ }

a sector in the complex planewith opening angle π
2 < θ < π . To solve the transformed

system (23), we reuse the computations made in the first step and consider the first
seven lines as an instance of problem (17) with right-hand sides ĝτ = 0 and ĝν =
− κ

μ2
b
|ζ |4ĥ. Then formula (22) yields

[ŵ]� = 1

2

|ζ |√
μb�(� + |ζ |) ĝν = −α

|ζ |
�(� + |ζ |) |ζ |4ĥ

with α := 1
2κ/μ

5/2
b > 0, and we obtain

s(λ, |ξ |)ĥ :=
(

λη + α
|ζ |

�(� + |ζ |) |ζ |4
)

ĥ = f̂ .

Obviously, the boundary symbol s has no zeros, if λ ∈ �θ with 0 ≤ θ < π . Thus,
the equation sĥ = f̂ may be uniquely solved for ĥ and problem (16) admits a unique
solution—at least in the sense of tempered distributions. To prove the regularity as-
sertions on h, a more precise analysis of the boundary symbol s is necessary. To this
end, we now consider the complex symbol

s(λ, z) = λη + m(z)n(z) with m(z) = α
�(z)

�(z) + z
, n(z) = z5

�(z)2
,
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where �(z) := √
η + z2, z ∈ �ϑ with 0 ≤ ϑ < π

2 , and λ ∈ �θ . Note that |m(z)| is
uniformly positive and bounded on �̄ϑ ; in particular, we have

|m(z)n(z)| ≥ c(ϑ) |n(z)|
for all z ∈ �ϑ and some constant c(ϑ) > 0. Moreover, note that λη ∈ �θ for λ ∈ �θ

as well as m(z) ∈ �2ϑ , n(z) ∈ �7ϑ for z ∈ �ϑ . Hence, we can easily prove by
contradiction that, assuming 0 < 9ϑ < π − θ , we have

|λη + m(z) n(z)| ≥ c(θ, ϑ) (|λη| + |m(z)n(z)|)
for all z ∈ �ϑ , λ ∈ �θ , and some constant c(θ, ϑ) > 0. These estimates imply that
for the functions

(λ, z) �→ λη/s(λ, z) =: ϕ(λ, z), (λ, z) �→ n(z)/s(λ, z) =: ψ(λ, z)

we have
ϕ ∈ H∞(�θ × �ϑ) and ψ ∈ H∞(�θ × �ϑ), (24)

provided that π/2 < θ < π and 0 < ϑ < (π − θ)/9, where we denote by H∞ the
spaces of bounded holomorphic functions. The desired regularity of h may now be
obtained as follows: First observe that the operators

∂t : 0H1
p(R+, W 2−1/p

p (�)) ⊆ X −→ X,

(−
)1/2 : L p(R+, W 3−1/p
p (�)) ⊆ X −→ X

admit bounded H∞-calculi in the space X := L p(R+, W 2−1/p
p (�)) with angles

α∞
∂t

= π
2 and α∞

(−
)1/2
= 0, that is, these operators admit functional calculi

φ �→ φ(∂t ) : H∞(�θ ) → B(X), φ �→ φ((−
)1/2) : H∞(�ϑ) → B(X)

provided that α∞
∂t

< θ < π and α∞
(−
)1/2

< ϑ < π ; see, for instance, Corollary 2.10
in [5]. Moreover, the same corollary shows that we may employ Theorem 6.1 in [10]
to obtain a joint H∞-calculus for these operators, that is, a functional calculus

φ �→ φ(∂t , (−
)1/2) : H∞(�θ × �ϑ) → B(X)

provided that α∞
∂t

< θ < π and α∞
(−
)1/2

< ϑ < π . It is shown, for instance, in [5]

that the operators φ(∂t , (−
)1/2) are Fourier–Laplace multipliers whose symbols are
given by φ(λ, |ξ |). Therefore, due to (24) and this joint H∞-calculus we infer that

(η + ∂t )h = ϕ(∂t , (−
)1/2) f

(−μb
)5/2(η − μb
)−1h = ψ(∂t , (−
)1/2) f
∈ L p(R+, W 2−1/p

p (�)),

which implies that h belongs to the asserted regularity class. This completes the proof
of Theorem 3.2. �
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3.2. Bounded domain

Let us now finish the proof of Theorem 3.1. In view of the smoothness and unique-
ness part of this theorem (which we already showed), by density it is sufficient to prove
the estimate

‖(u, v, w, π, q, h)‖Ep(T ) ≤ c‖( f1, . . . , f6, h)‖Fp(T )

for smooth data. This estimate can be reduced to the assertion of Theorem 3.2 by
the classical techniques of localization and transformation. We will only give a brief
sketch of the procedure; see also the proof of Theorem 3.6 in [16]. To begin with, we
note that in fact it is sufficient to prove the inequality

‖(u, v, w, π, q, h)‖Ep(T ) ≤ c
(‖( f1, . . . , f6, h)‖Fp(T ) + ‖∇u‖L p(I×�)

+ ‖π‖L p(I×�) + ‖q‖L p(I×�) + ‖h‖L p(I×�)

)
.

(25)

Indeed, combining this estimate with the uniqueness of solutions in Ep(T ), p ≥ 2, a
standard contradiction argument shows that

‖∇u‖L p(I×�)+‖π‖L p(I×�)+‖q‖L p(I×�)+‖h‖L p(I×�) ≤ c‖( f1, . . . , f6, h)‖Fp(T ).

Thenext step is to see thatwe can assumewithout restriction the solution to be localized
in space. Indeed, if this is not the case, we can multiply the solution by finitely many
smooth cutoff functions; each of the products then solves the system (11) where
the right-hand sides f1, . . . , f6 now contain additional expressions involving lower-
order derivatives of the solution. Combining these finitely many estimates and using
interpolation and absorption, we arrive at (25). Now, if the spatial support of our the
solution is strictly contained in �̄\�, we can use standard results from L p-theory of
the Stokes system (see for instance [8]) to prove (25). On the other hand, if the spatial
support intersects �, we have to reduce the problem to Theorem 3.2. In this case let us
assume that the solution is supported in an open cube Q R of side length R > 0 which
is centered at some point x0 ∈ �. Rotating and translating the Cartesian coordinate
system and choosing R smaller if necessary, we may assume that x0 = 0 and that
� ∩ Q R is the graph of a smooth function a : Q2

R := Q R ∩ � → (−R/2, R/2) such
that a(0) = 0 and ∇a(0) = 0. Consider the smooth diffeomorphism

�−1 : Q R → Q̃ R := �−1(Q R), (x ′, x3) �→ (x ′, x3 − a(x ′)).

This diffeomorphism induces the metric ẽ := �∗e on Q̃ R . We denote the restriction of
ẽ to Q2

R by g̃. Note that � : (Q̃ R, ẽ) → (Q R, e) and �|Q2
R

: (Q2
R, g̃) → (� ∩ Q R, g)

are isometries. Let us denote the pullbacks of the involved fields by ũ := �∗u,
π̃ := �∗π , ṽ := �∗v, w̃ := �∗w, q̃ := �∗q, h̃ := �∗h, f̃ �

3 := �∗(P� f3),
f̃ ⊥
3 := �∗( f3 · ν), f̃i = �∗ fi for i = 1, 2, 4, 5, 6, and h̃0 = �∗h0. Now, proceeding

as in Sect. 2, that is, exploiting naturality of covariant differentiation under isometries
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and using the results from “Appendix A” we see that (11) can be written in the form

−η ũ + μb
ũ − grad π̃ = f̂1 in R
3\�,

div ũ = f̂2 in R
3\�,

μ
ṽ − grad q̃ + 2μb[[Dũ]]ν = f̂ �
3 on �,

−[[π̃]] − κ
2h̃ = f̂ ⊥
3 on �,

div ṽ = f̂4 on �,

ũ − ṽ − w̃ ν = f̂5 on �,

(∂t + η)h̃ − w̃ = f̂6 on �

with

f̂1 = f̃1 + (ẽ − e) ∗ r(ẽ) ∗ (μb∇2ũ, grad π̃) − η ũ

+ μb r(ẽ) ∗ (
(∇2ẽ, (∇ ẽ)2) ∗ ũ + ∇ ẽ ∗ ∇ũ

)
,

f̂2 = f̃2 + r(ẽ) ∗ ∇ ẽ ∗ ũ,

f̂ �
3 = f̃ �

3 + (ẽ − e) ∗ r(ẽ) ∗ (μ(∇g)2ṽ, gradg q̃) + μb r(ẽ) ∗ ([∇ũ] + ∇ ẽ ∗ [ũ])
+ μ r(ẽ) ∗ (

(∇2ẽ, (∇ ẽ)2) ∗ [ũ] + ∇ ẽ ∗ [∇ũ]),
f̂ ⊥
3 = f̃ ⊥

3 + μ r(ẽ) ∗ (∇ ẽ ∗ ∇g ṽ + (∇ ẽ)2 ∗ [ũ]) + r(ẽ) ∗ ∇ ẽ q̃ + (ẽ − e) ∗ r(ẽ) ∗ ∇4h

+ terms depending linearly on up to third-order derivatives of h,

f̂4 = f̃4 + r(ẽ) ∗ ∇ ẽ ∗ [ũ],
f̂5 = f̃5 + (ẽ − e) ∗ r(ẽ) w̃,

f̂6 = f̃6 + (ẽ − e) ∗ r(ẽ) ∂t h̃ + η h.

Furthermore, it is not hard to see that

ẽ(x ′, x3) − e = r(∇a(x ′))

with an analytic function r such that r(0) = 0. Theorem 3.2 and the open mapping
theorem show that there exists a constant c > 0 such that

‖(ũ, ṽ, w̃, π̃ , q̃, h̃)‖E�
p

≤ c‖( f̂1, . . . , f̂6, h0)‖F�
p
,

where the data f̂1, . . . , f̂6 is extended to R+ by 0 and (ũ, ṽ, w̃, π̃ , q̃, h̃) denotes the
unique continuation of our solution to R+ which exists according to Theorem 3.2.
Making ‖ẽ − e‖L∞(Q̃ R)

sufficiently small (by choosing R small) for the highest order

terms in f̂1, . . . , f̂6 and using interpolation and Young’s inequality for the lower-order
terms, by absorption we obtain

‖(ũ, ṽ, w̃, π̃ , q̃, h̃)‖E�
p

≤ c
(‖( f̃1, . . . , f̃6, h̃0)‖Fp(T ) + ‖∇ũ‖L p(I×R3)

+ ‖π̃‖L p(I×R3) + ‖q̃‖L p(I×�) + ‖h̃‖L p(I×�)

)
.
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Transforming this estimate back to � and � and using once more interpolation and
absorption to deal with the lower terms arising, we arrive at (25). We omit the details.
This proves Theorem 3.1. �

4. Contraction

In this section, we finish the proof of the main result. For 1 < p < ∞ with p �= 4,
we define

E
6
p(T ) := L p(I, W 5−1/p

p (�)) ∩ H1
p(I, W 2−1/p

p (�)).

Then the following embeddings are valid.

LEMMA 4.1. For 1 < p < ∞ with p �= 4, we have

(i) E
6
p(T ) ↪→ C( Ī , W 5−4/p

p (�)) ↪→ C( Ī , C3(�)),

(ii)
{
h ∈ E

6
p(T ) | h(0) = 0

}
↪→ C( Ī , W 5−4/p

p (�)) ↪→ C( Ī , C3(�)), where the
embedding constants are independent of T .

Proof. The embedding (i) follows from Theorem 4.10.2 in Chapter III of [1] and the
theorem in Section 7.4.4 of [27]; obviously, the embedding constant remains uniformly
bounded as long as T > 0 is bounded from below. The second embedding is a
consequence of Remark 2 in Section 2.7.1 of [26] and a localization procedure; cf.
[16]. Now, (ii) follows from (i) by extending h to the negative half line by 0. �

We denote by L the linear parabolic operator defined by the left-hand side of (9),
and we consider N := (N1, . . . , N6) as a nonlinear function of (u, v, w, π, q, h). For
δ > 0 let

Cδ(T ) :=
{

(u, v, w, π, q, h) ∈ B̄δ(0) ⊂ Ep(T ) : ‖h‖L∞((0,T )×�) ≤ γ /2
}
.

Then, the function β in the construction of �h , h ∈ ∪δ>0Cδ , in the beginning of
Section 2 can be chosen to be fixed, and, in particular, the generic analytic functions
r in the nonlinearities do not depend on h. For 1 < p < ∞ let

0Ep(T ) := {
(u, v, w, π, q, h) ∈ Ep(T ) : h(0) = 0

}
.

Restricted to this space the Fréchet derivative of N allows to be estimated as follows.

LEMMA 4.2. Let δ > 0, let 1 < p < ∞ with p �= 4, and let T > 0. Then,
N ∈ Cω(Cδ(T ), Gp(T )), and for every fixed z = (u, v, w, π, q, h) ∈ Cδ(T ), we
have DN (z) ∈ L(0Ep(T ), Gp(T )) and

‖DN (z)‖L(0Ep(T ),Gp(T )) ≤ c
(‖z‖Ep(T ) + ‖h‖

C( Ī ,W 5−4/p
p (�))

)
, (26)

where the constant c > 0 is independent of T , but may depend on some upper bound
for δ.
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Proof. From (10), we see that pointwise all components of N are analytic functions
of (u, v, w, π, q, h) and its derivatives. For the analyticity, it thus suffices to prove that
each term in N : Cδ(T ) → Gp(T ) is well defined. This, however, is a rather simple
exercise using Lemma 4.1; cf. the proof of Proposition 6.2 in [21]. We present the idea
by analyzing the most complicated nonlinearity N⊥

3 , leaving the other terms to the
reader. Note that for dimensional reasons the terms in Q(h) containing fourth-order
derivatives of h must be of the form

r(h/γ, hk,∇h) ∗ ∇4h.

By Lemma 4.1(i), we have ∇h ∈ C( Ī , C2(�)) which is, of course, an algebra with
respect to pointwise multiplication. Since furthermore (∇g)4h ∈ L p(I, W 1−1/p

p (�))

and

C( Ī , C2(�)) · L p(I, W 1−1/p
p (�)) ↪→ L p(I, W 1−1/p

p (�)),

that is, pointwise multiplication is continuous in the indicated function spaces, the
terms containing fourth-order derivatives of h are well defined. The terms involving
∇g ṽ contain up to second-order derivatives of h. Since ∇2h ∈ C(I, C1(�)) which is
also an algebra, ∇gv ∈ L p(I, H1

p(�)), and

C( Ī , C1(�)) · L p(I, H1
p(�)) ↪→ L p(I, W 1−1/p

p (�)),

these terms are well defined as well. The terms involving q and [ũ] can be handled
analogously. Concerning the remaining terms in Q(h)which contain up to third-order
derivatives of h, we simply note that, by Lemma 4.1(i), ∇3h ∈ C( Ī , W 1−1/p

p (�)) and

C( Ī , W 1−1/p
p (�)) is an algebra for p > 3; the latter fact follows from the theorem in

Section 2.8.3 of [26] and a localization argument; cf. [16]. This completes the proof
of analyticity for N⊥

3 . The other nonlinearities can be handled analogously.
The estimate (26) essentially follows from the fact that N vanishes with at least

quadratic order in z = 0; recall, in particular, the definition of Q(h). The proof is
again a rather simple exercise using Lemma 4.1 (cf. the proof of Proposition 4.1 in
[22]) and, again, we present the idea by analyzing DN⊥

3 , leaving the other terms to
the reader. All estimates derived below will be uniform in T . For some fixed z =
(u, v, w, π, q, h) ∈ Cδ(T ) and z̄ = (ū, v̄, w̄, π̄ , q̄, h̄) ∈ 0Ep(T ), we have

DN⊥
3 (z)(z̄) = r̃(h/γ, hk,∇h) ∗ (∇g)4h̄ + r̃(h/γ, hk,∇h) ∗ (h̄/γ, h̄k,∇h̄) ∗ (∇g)4h

+ terms depending on up to third-order derivatives of h and h̄

+ D
(
r(ẽ) ∗ (

(ẽ − e) ∗ k,∇ ẽ
))

(h)(h̄) q + r(ẽ) ∗ (
(ẽ − e) ∗ k,∇ ẽ

)
q̄

+ D
(
μ r(ẽ) ∗ (

(ẽ − e) ∗ k,∇ ẽ
))

(h)(h̄) ∗ ∇gv

+ μ r(ẽ) ∗ (
(ẽ − e) ∗ k,∇ ẽ

) ∗ ∇g v̄

+ D
(
μ r(ẽ) ∗ (

(ẽ − e) ∗ k2, k ∗ ∇ ẽ, (∇ ẽ)2
))

(h)(h̄) ∗ [u]
+ μ r(ẽ) ∗ (

(ẽ − e) ∗ k2, k ∗ ∇ ẽ, (∇ ẽ)2
) ∗ [ū]
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with analytic functions r̃ such that r̃(0, 0, 0) = 0. By the arguments used in the proof
of analyticity, we have

‖r(h/γ, hk,∇h) ∗ (∇g)4h̄‖
L p(I,W 1−1/p

p (�))
≤ c‖h‖C( Ī ,C2(�)) ‖z̄‖Ep(T ).

Similarly, using Lemma 4.1(ii), we have

‖r(h/γ, hk,∇h) ∗ (h̄/γ, h̄k,∇ h̄) ∗ (∇g)4h‖
L p(I,W 1−1/p

p (�))

≤ c
(‖z‖Ep(T ) + ‖h‖C( Ī ,C2(�))

)‖h̄‖C( Ī ,C2(�))

≤ c
(‖z‖Ep(T ) + ‖h‖

C( Ī ,W 5−4/p
p (�))

)‖z̄‖0Ep(T ).

Again by the arguments used in the proof of analyticity, we have

‖r(ẽ) ∗ (
(ẽ − e) ∗ k,∇ ẽ

) ∗ ∇g v̄‖
L p(I,W 1−1/p

p (�))

≤ c‖h‖C(J,C3(�)) ‖z̄‖Ep(T )

≤ c‖h‖
C(J,W 5−4/p

p (�))
‖z̄‖Ep(T )

and, using Lemma 4.1(ii),

‖D
(
μ r(ẽ) ∗ (

(ẽ − e) ∗ k,∇ ẽ
))

(h)(h̄) ∗ ∇gv‖
L p(I,W 1−1/p

p (�))

≤ c
(‖z‖Ep(T ) + ‖h‖C( Ī ,C3(�))

)‖h̄‖C(I,C3(�))

≤ c
(‖z‖Ep(T ) + ‖h‖

C( Ī ,W 5−4/p
p (�))

)‖z̄‖0Ep(T ).

The terms involving q and [u] can be handled analogously. Finally, using

C( Ī , W 1−1/p
p (�)) · L p(I, W 1−1/p

p (�)) ↪→ L p(I, W 1−1/p
p (�)),

we can estimate the terms depending only on up to third-order derivatives of h and h̄
via

c‖h‖
C( Ī ,W 4−1/p

p (�))
‖h̄‖

L p(I,W 4−1/p
p (�))

≤ c‖h‖
C( Ī ,W 5−4/p

p (�))
‖z̄‖Ep(T ).

This concludes the estimate of DN⊥
3 (z). The derivatives of the other nonlinearities

can be handled analogously. �

Proof of Theorem 1.1. Following the remark after Definition 1.2, we can show that
Gp(T ) = Fp(T ) ⊕ Up(T ) with

Up(T ) :=
{

(0, f2, 0, f4, 0, 0, 0) ∈ Gp(T ) : ( f2, f4) ∈ L p(I, Up(�))
}
.

Let P : Gp(T ) → Fp(T ) denote the bounded projection along Up(T ). Furthermore,
wewrite L−1 : Fp(T ) → 0Ep(T ) for the linear solution operatorwith h(0) = 0whose
existence is guaranteed by Theorem 3.1. Since extension by 0 defines a continuous
operator Fp(T ) → Fp(1) for T < 1, we have a uniform bound

‖L−1P‖L(Gp(T ),0Ep(T )) ≤ M
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for all 0 < T ≤ 1 and some M > 0. From (26) and the inequality

‖h‖
C( Ī ,W 4−1/p

p (�))
≤ c

(‖z‖Ep(T ) + ‖h0‖W 5−4/p
p (�)

)

with a constant c independent of T , by choosing δ and ε sufficiently small, we obtain
the estimate

‖DN (z)‖L(0Ep(T ),Fp(T )) ≤ 1

2M
(27)

for all z ∈ Cδ(T ). Let z∗ = (u∗, v∗, w∗, π∗, q∗, h∗) ∈ Ep(T ) be the solution of
Lz∗ = 0, h∗(0) = h0 which exists according to Theorem 3.1; there exists a constant
c > 0 depending only on an upper bound for T such that

‖z∗‖Ep(T ) ≤ c‖h0‖W 5−4/p
p (�)

.

We choose ε so small that z∗ ∈ Cδ/2(T ). Hence, we canwrite the transformed problem
(9) in the form

z = L−1P N (z + z∗) =: K (z)

for some z ∈ C ′
δ/2(T ) := Cδ/2(T ) ∩ 0Ep(T ). Note that N (z∗) depends on gradL2

F�

and z∗. Thus, in order to have K (0) ∈ C ′
δ/4(T ), we choose both T and ε, and hence

z∗ ∈ Ep(T ), sufficiently small; the former choice has the effect that gradL2
F� is

small in L p(I, W 1−1/p
p (�)). By the contraction mapping principle, the operator K

possesses a unique fixed point z0 in C ′
δ/2(T ) if it maps this set contractively into itself.

But this now follows from (27) since we can infer

‖DK (z)‖L(0Ep(T )) ≤ 1

2

and

‖K (z)‖Ep(T ) ≤ ‖K (0)‖Ep(T ) + 1

2
‖z‖Ep(T ) ≤ δ

2

for all z ∈ C ′
δ/2(T ). Thus, for z̃ = (ũ, ṽ, w̃, π̃ , q̃, h) = z0 + z∗ we have

Lz̃ = P N (z̃) = N (z̃) + (P − I )N (z̃);
note that (P − I )N (z̃) = (0, f2, 0, f4, 0, 0, 0) for piecewise constant functions f2 and
f4. Recalling the computations in Sect. 2, we see that the pushforward u := (�t )∗ũ,
π := (�t )∗π̃ , and q := (�t )∗q̃ solves the system

div S = 0 in �\�t ,

div u = (�t )∗ f2 in �\�t ,

Div f T + [[S]]νt = −Div eT on �t ,

Div u = (�t )∗ f4 on �t ,

u = 0 on ∂�

(28)
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for almost all t ∈ I , where the stress tensors are defined with respect to u, π , and q
and �t := �h(t). At this point, we need to assume that � contains no round spheres.
Then, by definition ofUp(�), we have f4 = 0 and f2 = const in�. Now, (28)2 shows
that in fact f2 = 0.
So far we proved that (3) has a local-in-time solution which is uniquely determined

in the class of solutions whose transformation is of the form

z̃ = (ũ, ṽ, w̃, π̃ , q̃, h) = z0 + z∗

with z0 ∈ C ′
δ/2(T ). Note that the pushforward and the pullback will in general not

preserve the mean value condition (12) with f2 = π̃(t, · ) on the one hand and with
f2 = π(t, · ) and �t in place of � on the other hand; these conditions can be met,
however, by adding suitable constants. Now, let us prove unconditional uniqueness
by a standard bootstrap argument; cf. [25]. To this end, let us repeat the contrac-
tion argument with δ/2 in place of δ (leading to possibly smaller ε and T ). We
infer that in fact z0 ∈ C ′

δ/4(T ), but uniqueness still holds in C ′
δ/2(T ). Now, let

z̃′ = (ũ′, ṽ′, w̃′, π̃ ′, q̃ ′, h′) = z′
0 + z∗ with z′

0 ∈ 0Ep(T ) denote another solution of
(9) with ‖h′‖L∞((0,T )×�) ≤ κ/2; without restriction we may assume that it is defined
on the same time interval as z̃. Choosing T ′ sufficiently small we have z′

0 ∈ C ′
δ/2(T

′).
Repeating again the contraction mapping argument, this time with T ′ in place of T ,
we see that z′

0 coincides with z0 on (0, T ′); in particular, we have z′
0 ∈ C ′

δ/4(T
′). But

then we have z′
0 ∈ C ′

δ/2(T
′′) for some T ′′ slightly larger than T ′. Thus, the set of times

T ′ with z′
0 ∈ C ′

δ/2(T
′) is open. But obviously it is also closed and non-empty, so that

z′
0 ∈ C ′

δ/2(T ) and z′
0 = z0. This proves unconditional uniqueness of our solution.

Now, the proof of Lemma 4.2 shows that for fixed T > 0 and all z ∈ Cδ(T ) the norm
‖DN (z)‖L(Ep(T ),Fp(T )) is uniformly bounded. Hence, N is Lipschitz continuous in
Cδ(T ), and thus for the operator K = Kh0 we have

‖Kh0(z) − Kh′
0
(z)‖Ep(T ) ≤ L‖Kh0(z) − Kh′

0
(z)‖

W 5−4/p
p (�)

for all h0, h′
0 ∈ B̄ε(0) ⊂ W 5−4/p

p (�), all z ∈ C ′
δ/2(T ), and some constant L > 0.Now,

for such initial values h0, h′
0 let zh0 , zh′

0
∈ C ′

δ/2(T ) denote the respective fixpoints of
Kh0 and Kh′

0
. Then, we have

‖zh0 − zh′
0
‖Ep(T ) = ‖Kh0(zh0) − Kh′

0
(zh′

0
)‖Ep(T )

≤ L‖h0 − h′
0‖W 5−4/p

p (�)
+ 1

2
‖zh0 − zh′

0
‖Ep(T ).

Absorbing the second term on the right-hand side, we obtain the Lipschitz continuity
of the solution map.
Finally, let us consider the case of � being a collection of round spheres. Since the

energy cannot decrease in this case, from (4), we can show that u must vanish every-
where, π and q are constant in each connected component of � and �, respectively,
and
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κ
C0

Ri

(
2

Ri
− C0

)
+ [[π ]] + q

2

Ri
= gradL2

F + [[π ]] + q H = 0

on �i , i = 1, . . . , m, where �i is a round sphere of radius Ri ; for details see the
discussion in the end of Section 2 of [16]. Combining these m conditions with the
m + 1 conditions (12) and (13), we obtain a system of linear equations which can
easily be uniquely solved for the 2m +1 unknowns q on �i , π in �i , and π in �0. �

Suppose that each �i , i = 1, . . . , l and l ≥ 1, is a round sphere while each �i ,
i = l + 1, . . . , m and m ≥ 2, is a non-sphere and that h0 = 0. Then, in general, the
potential solution will not be constant in time and the round spheres might translate. In
this case, however, showing that f2 and f4 in the above proof vanish is not completely
obvious. If we know that at some fixed instant t in time each �i

t , i = 1, . . . , l, is a
round sphere, then by definition of Up(T ) it is not hard to see that f2 and f4 must
vanish at time t . Thus, by (28)2,4, each �i

t , i = 1, . . . , l, will remain a round sphere
for the next instant in time (in linear approximation). This situation suggests to apply
some kind of continuity or Gronwall-type argument; so far, however, we were not
able to close the required estimates. On the other hand, it is questionable if this slight
generalization of our theorem is worth the effort.

Appendix A. Covariant differentiation and curvature

Here, we recall some useful results from Appendix B in [16]. Let ei j , ẽi j be Rie-
mannian metrics on a manifold M , and let ei j , ẽi j denote their matrix inverses. For
scalar functions f , vector fields Y , and second-order tensor fields T , we have

(gradẽ f )i = (grade f )i + (ẽi j − ei j )∂ j f,

divẽ Y = dive Y + ẽ ∗ ∇eẽ ∗ Y,


ẽ f = 
e f + (ẽ − e) ∗ r(ẽ, e) ∗ (∇e)2 f + r(ẽ, e) ∗ ∇eẽ ∗ ∇ f,

DẽY = DeY + (ẽ − e) ∗ r(ẽ, e) ∗ ∇eY + r(ẽ, e) ∗ ∇eẽ ∗ Y,


ẽY = 
eY + (ẽ − e) ∗ r(ẽ, e) ∗ (∇e)2Y + r(ẽ, e) ∗ (∇e)2ẽ ∗ Y

+ r(ẽ, e) ∗ (∇eẽ)2 ∗ Y + r(ẽ, e) ∗ ∇eẽ ∗ ∇eY,

divẽ T = dive T + (ẽ − e) ∗ r(ẽ, e) ∗ ∇eT + r(ẽ, e) ∗ ∇eẽ ∗ T .

where DeY and DẽY denote the e-symmetric part of ∇eY and the ẽ-symmetric part
of ∇ ẽY , respectively. Furthermore, let � be an orientable submanifold of M of codi-
mension 1, and let νe and νẽ be equally oriented unit normal fields on � with respect
to e and ẽ, respectively. Then, we have
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νẽ = νe + (ẽ − e) ∗ r(ẽ, e),

∇ ẽνẽ = ∇eνe + r(ẽ, e) ∗ ∇eẽ,

kẽ = ke + (ẽ − e) ∗ ke + r(ẽ, e) ∗ ∇eẽ,

Hẽ = He + (ẽ − e) ∗ r(ẽ, e) ∗ ke + r(ẽ, e) ∗ ∇eẽ,

Kg̃ = det(g̃αδ(kẽ)δβ)

= det
(
gαδ(ke)δβ + (ẽ − e) ∗ r(ẽ, e) ∗ ke + r(ẽ, e) ∗ ∇eẽ

)
= Kg + r(ẽ, e) ∗ (

(ẽ − e) ∗ k2e , ke ∗ ∇ ẽ, (∇ ẽ)2
)
.

Appendix B. The Stokes system in R
n and R

n+

Let 1 < p < ∞. We consider the stationary Stokes system

η u − μ
u + grad π = f in R
n,

div u = g in R
n

for some shift η > 0 and some constant viscosityμ > 0. There exists a unique solution

u ∈ H2
p(Rn, R

n), π ∈ Ḣ1
p(Rn)/R,

provided that f ∈ L p(R
n, R

n), and g ∈ H1
p(Rn). Indeed, we may first obtain the

pressure as π = (−μ + η(−
)−1)g − div (−
)−1 f ∈ Ḣ1
p(Rn) to be left with the

equation
η u − μ
u = f − grad p in R

n,

which allows for a solution u ∈ H2
p(Rn, R

n), since this is an elliptic problem with
right-hand side f − grad π ∈ L p(R

n, R
n). Finally, uniqueness of solutions is a direct

consequence of the validity of the Helmholtz decomposition in L p(R
n, R

n).
As a direct consequence, we infer that the Stokes system

η u − μ
u + grad π = f in R
n+,

div u = gp in R
n+,

[v]� = gτ on �,

[π ]� = gν on �

in the half-space R
n+ := { (x, y) ∈ R

n−1 × R : y > 0 } also allows for a unique
solution

u ∈ H2
p(Rn+, R

n), π ∈ Ḣ1
p(Rn+)/R,

provided that f ∈ L p(R
n+, R

n), gp ∈ H1
p(Rn+), gτ ∈ W 2−1/p

p (�, R
n−1), as well as

gν ∈ Ẇ 1−1/p
p (�). We employ the usual decomposition u = (v, w) ∈ R

n−1 × R and
note that the trace operator

[ · ]� : Ḣ1
p(Rn+) −→ Ẇ 1−1/p

p (�)
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admits a bounded linear right-inverse as follows from [12,13, Theorems 2.4 and 2.7,
Corollary 1]. Now, we may first eliminate gτ and gν by constructing extensions v̄ ∈
H2

p(Rn+, R
n−1) to gτ and π̄ ∈ Ḣ1

p(Rn+) to gν and then solve the remainingproblembya
reflection argument via a Stokes problem inR

n ; more precisely, for f = ( f1, . . . , fn),
we extend f1, . . . , fn−1 and gp by an odd reflection and fn by an even reflection to
R

n .
As another consequence, we infer that the Stokes system

η u − μ
u + grad π = f in R
n+,

div u = gp in R
n+,

[v]� = gτ on �,

[w]� = gν on �

allows for a unique solution

u ∈ H2
p(Rn+, R

n), π ∈ Ḣ1
p(Rn+)/R,

too, provided that f ∈ L p(R
n+, R

n), gp ∈ H1
p(Rn+), gτ ∈ W 2−1/p

p (�, R
n−1), and

gν ∈ W 2−1/p
p (�). Indeed, we may in a first step eliminate f and gp by extending

these function to R
n and solving the corresponding Stokes system in the whole space.

The reduced problem may then be treated with the aid of a Fourier transform in the
tangential variables x ∈ R

n−1, that is, we consider the system

η v̂ + μ|ξ |2v̂ − μ∂2y v̂ + iξ π̂ = 0 ξ ∈ R
n−1, y > 0,

η ŵ + μ|ξ |2ŵ − μ∂2y ŵ + ∂yπ̂ = 0 ξ ∈ R
n−1, y > 0,

iξTv̂ + ∂yŵ = 0 ξ ∈ R
n−1, y > 0,

[v̂]� = ĝτ ξ ∈ R
n−1, y = 0,

[ŵ]� = ĝν ξ ∈ R
n−1, y = 0,

The solution again has the form (18), and a straight forward computation yields

[
ẑv(ξ)

ẑw(ξ)

]
= 1

�

((
1 − |ζ |

�

) |ζ |
�

)−1
⎡
⎣

(
1 − |ζ |

�

) |ζ |
�

− iζ⊗iζ
� 2

iζ
�

− iζT

�
1

⎤
⎦

[
ĝτ (ξ)

ĝν(ξ)

]
;

in particular, we have

ĝradx π(ξ, y) = η
√

μb iξ ẑw(ξ)e−|ξ |y

= η
iζ

�

((
1 − |ζ |

�

) |ζ |
�

)−1
(

ĝν − iζT

�
ĝτ

)
e−|ξ |y

= √
μ

�

|ζ |
iζ

|ζ | (� + |ζ |)
(

ĝν − iζT

�
ĝτ

)
|ξ |e−|ξ |y
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and

∂̂yπ(ξ, y) = −η
√

μ |ξ | ẑw(ξ)e−|ξ |y = −√
μ

�

|ζ | (� +|ζ |)
(

ĝν − iζT

�
ĝτ

)
|ξ |e−|ξ |y .

Here, the symbol |ξ |e−|ξ |y belongs to the operator AT (y), where A = (−
)1/2 and
T ( · ) denotes the corresponding semigroup. Since −
x q = AT ( · )h for the unique
solution q ∈ Ḣ2

p(Rn+) of the elliptic boundary value problem

−
q = 0 in R
n+,

∂νq = h on �

with h ∈ Ẇ 1−1/p
p (�), we infer that

AT ( · ) : Ẇ 1−1/p
p (�) → L p(R

n+)

is bounded. Combining this observation with Mikhlin’s multiplier theorem we con-
clude that π ∈ Ḣ1

p(Rn+). Then, the velocity field may be obtained as a solution of the
elliptic boundary value problem

η u − μ
u = f − grad π in R
n+,

[v]� = gτ on �,

[w]� = gν on �,

which implies u ∈ H2
p(Rn+, R

n).
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