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Abstract. We study the large time behavior of a class of diffusive predator–prey systems posed on the whole
Euclidean space. By studying a family of similar problems with all possible spatial translations, we first
prove the asymptotic persistence of the prey for the spatially heterogeneous case under certain assumptions
on the coefficients. Then, applying this persistence theorem, we prove the convergence of the solution to
the unique positive equilibrium for the spatially homogeneous case, under certain restrictions on the space
dimension and the predation coefficient.

1. Introduction

In this paper, we are concerned with the large time behavior of a class of diffusive
predator–prey systems posed on the whole space RN that takes the following form{

∂t u − D�u = u [g(x, u) − �(x, u)v] , t > 0, x ∈ R
N ,

∂tv − �v = r(x)v [1 − δ(x)v/u] , t > 0, x ∈ R
N .

(1.1)

Here u = u(t, x) and v = v(t, x) denote, respectively, the densities of the prey and
the predator at time t > 0 and spatial location x ∈ R

N . In the first equation of system
(1.1), the function g denotes the intrinsic growth rate of the prey while the function
u�(x, u) denotes the functional response of the predation. In the second equation of
system (1.1), r and δ are given nonnegative, continuous and bounded functions such
that r denotes the growth rate and u/δ denotes the carrying capacity of the predator.
Finally, D > 0 denotes the normalized diffusion coefficient of the prey.
The above class of systems contains as special cases the so-called Leslie–Gower and

Holling–Tanner diffusive models that correspond to the following specific functions:

g(x, u) = λ(x) − α(x)u, �(x, u) = β(x),

g(x, u) = λ(x) − α(x)u, �(x, u) = β(x)

1 + γ (x)u
,
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where the functions λ, α, β and γ are nonnegative continuous and bounded on R
N .

The aim of this work is to prove that the prey component of solutions of (1.1) does
not asymptotically quench as time becomes large. This will allow us to provide a
sufficient condition to ensure that the solution converges to some equilibrium solution
for some specific homogeneous functions.
In this paper, we setR+ := [0,∞). We also introduce for any uniformly continuous

and bounded function f : RN → R the hull of f , denoted byH( f ), defined by

H( f ) = cl
({

σy f, y ∈ R
N
})

with σy f (·) = f (· + y),

where the closure (denoted by cl) is taken with respect to the topology of Cloc
(
R

N
)
.

In other words, one has

f̂ ∈ H( f ) ⇔ ∃{yn} ⊂ R
N such that f̂ (x) = lim

n→∞ f (x + yn) in Cloc(R
N ).

Hereafter, for each p ≥ 1, the set W 1,2;p
loc

(
(0,∞) × R

N
)
is consisted of functions

ϕ = ϕ(t, x) defined on (0,∞) × R
N such that

ϕ, ∂tϕ, ∂xi ϕ and ∂2xi ,x j ϕ belong to L p
loc

(
(0,∞) × R

N
)

for all indices i = 1, . . . , N and j = 1, . . . , N . Also, the set W 2;p
loc

(
R

N
)
consists of

functions ϕ = ϕ(x) defined on R
N such that

ϕ, ∂xi ϕ and ∂2xi ,x j ϕ belong to L p
loc

(
R

N
)

for all indices i = 1, . . . , N and j = 1, . . . , N .
In order to state our main results, let us firstly introduce the general assumptions

which we shall use in this work. Our main set of assumptions reads as follows.

ASSUMPTION 1.1. The function g :RN × R+ → R is continuous and satisfies

(i) there exists some constant M > 0 such that g(x, u) ≤ 0 for all x ∈ R
N and

u ≥ M;
(ii) the set g

(
R

N × [0, M]) is bounded and g is uniformly continuous on R
N ×

[0, M];
(iii) there exists a constant γ > 0 such that

λ1

(
−D� − ĝ(x);RN

)
≤ −γ, ∀ĝ ∈ H (g(·, 0)) .

Here, if we set L = D�+ ĝ(x), λ1
(−L;RN

)
denotes the generalized principal

eigenvalue of the elliptic operator L, that is defined by

λ1(−L;RN )

= sup
{
λ ∈ R : ∃ φ ∈ W 2;N

loc (RN ) such that φ > 0, (L + λ) φ ≤ 0 in RN
}

.
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REMARK 1.1. Here we have used the notion of generalized principal eigenvalue
for which we refer the reader to [4] (see also [5] and the references therein). Since the
operator L arising in the above assumption is self-adjoint, this principal eigenvalue
can also be formulated using the usual Rayleigh quotient as follows:

λ1(−L;RN ) = inf
φ∈H1(RN )\{0}

∫
RN

(
D|∇φ|2 + ĝ(x)φ2

)
dx∫

RN φ2dx
.

ASSUMPTION 1.2. The function � : RN × R+ → R is continuous and satisfies

(i) the set �
(
R

N × R+
) ⊂ [0,∞);

(ii) the set �
(
R

N × [0, M]) is bounded and � is uniformly continuous on R
N ×

[0, M].
ASSUMPTION 1.3. The functions r, δ : RN → R+ are uniformly continuous and

bounded and they satisfy

(i) there exists δ0 > 0 such that δ(x) ≥ δ0 for all x ∈ R
N ;

(ii) any function r̂ ∈ H(r) satisfies r̂(x) > 0 almost everywhere for x ∈ R
N .

Our first result is concerned with the asymptotic positivity of the u-component. To
state our result, we consider the set S of all solutions defined by

S =
{
(u, v) ∈ X × X : 0 < u ≤ M, 0 ≤ v ≤ M/δ0, (u, v) satisfies (1.1)

}
,

wherein we have set

X := C
(
R+ × R

N
)

∩
⋂
p≥1

W 1,2;p
loc

(
(0,∞) × R

N
)

.

Before going to our first result, note that when system (1.1) is supplemented with
some initial data (u0, v0) ∈ C(RN ) × C(RN ) such that

0 < inf
RN

u0 ≤ u0(x) ≤ M, 0 ≤ v0(x) ≤ M/δ0, ∀x ∈ R
N , (1.2)

then it has (at least) a globally defined solution (u, v) ∈ X × X such that u > 0
and v ≥ 0. Moreover, although the parabolic comparison principle does not apply to
this system of equations, it separately applies to each component of that problem and
ensures that the following properties hold true

0 < u(t, x) ≤ M, 0 ≤ v(t, x) < M/δ0, ∀t > 0, x ∈ R
N .

The first inequality is ensured by the positivity of � (see Assumption 1.2(i)) and
Assumption 1.1(i). The upper bound for v follows from the upper bound for u and the
uniform lower bound for the function δ as stated in Assumption 1.3. As a consequence,
S is non-empty.

We are now able to state our first main result as follows.
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THEOREM 1.4. (Asymptotic persistence of the prey) Let assumptions 1.1–1.3 be
satisfied. Then there exists a positive constant ε small enough such that for all x ∈ R

N

and all (u, v) ∈ S one has

lim inf
t→∞ u(t, x) ≥ ε.

The proof of this result is based on uniform persistence theory, for which we refer
the reader to the paper of Hale and Waltman [9], the paper of Magal and Zhao [11]
and the monograph of Smith and Thieme [16]. However, the usual theory does not
directly apply to the problem we consider in this work. On the one hand, we are not
able to fully characterize the set of initial data ensuring the existence of a solution of
(1.1). On the other hand, the weak regularity we assume in this work does not ensure
the uniqueness of the solutions. As a consequence, it is difficult to associate a strongly
continuous semigroup on a complete metric space to system (1.1). Moreover, since the
value of ε > 0 appearing in Theorem 1.4 holds for any x ∈ R

N , the natural solution
set S for problem (1.1) defined above is not sufficiently large to prove the above
persistence result. To overcome this difficulty, we shall also act by space translation
on the solutions. However, our system is not invariant under space translations, since
the problem we consider is spatially heterogeneous. To resolve this issue, we consider
the set of solutions for a family of problems (see (P� ) below) in the form of (1.1)
taking into account all possible spatial translations.
Based on Theorem 1.4, we shall investigate the large time behavior of the problem

(1.1) with the specific homogeneous functions

g(x, u) = 1 − u, �(x, u) ≡ k > 0, r(x) ≡ r > 0, δ(x) ≡ 1. (1.3)

Our next aim is to show that when v0 �≡ 0 the solution (u, v) of (1.1) with initial data
(u0, v0) satisfying (1.2) converges locally uniformly as t → ∞ to the unique positive
equilibrium point (u∗, v∗) defined by

(
u∗, v∗) = 1

k + 1
(1, 1) .

Observe also that (u, v)(t, x) → (1, 0) as t → ∞ locally uniformly with respect to
x ∈ R

N , when v0 ≡ 0. Such a property is usually referred to the so-called “air trigger
effect.” We refer to Aronson and Weinberger [3] for the derivation of such a property
for scalar reaction–diffusion equation of monostable type.
The question of converging to the positive equilibrium point has already been solved

in [7] in the casewhere the parameter k satisfies k ∈ (0, 1). Indeed, in that case it is easy
to obtain that the u-component stays uniformly far away from the singular boundary
u = 0. This crucial property allows the author to use a sandwiching technique by
constructing a suitable decreasing sequence of invariant rectangles. In that setting,
namely 0 < k < 1, since v ≤ 1 the function u satisfies

∂t u − D�u ≥ u (1 − k − u) , t > 0, x ∈ R
N ,
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and, since 1 − k > 0, this prevents the u-component to be too close to u = 0. Of
course, when k ≥ 1 such a simple argument can no longer be used.
In this paper, we first prove that the u-component cannot quench for all time for

arbitrary parameter k > 0. Then we develop some refined arguments in order to prove
that (u, v) is asymptotically constant. More precisely, we obtain the following result.

THEOREM 1.5. Let (u, v) ∈ S be any solution of (1.1) with (1.3) such that v > 0
on R+ × R

N . Then one has

lim
t→∞ (u, v) (t, x) = (

u∗, v∗)
locally uniformly for x ∈ R

N , if one of the following conditions is satisfied

(i) The dimension N is arbitrary and k ∈ (0, 1];
(ii) The dimension N = 2 and k ∈ (0, 1/s0) where s0 ∈ (1/5, 1/4) is the unique

solution of the polynomial equation 32s3 + 16s2 − s − 1 = 0.

The proof of this theorem is given in Sect. 4 below. Note that the sandwiching
technique in [7] for k ∈ (0, 1) can be extended to the case k = 1, but cannot be further
extended to k > 1. Here, for k > 1, we develop another technique based on energy
arguments using the Lyapunov function proposed by Du and Hsu in [6] in which the
global stability of (u∗, v∗) for a similar system posed on a bounded spatial domain
was studied.
The rest of this paper is organized as follows. In the next section, we shall provide

some preliminary estimates which will be used later. Then Sect. 3 is devoted to the
proof of Theorem 1.4. Finally, the proof of Theorem 1.5 is given in Sect. 4.

2. Preliminary estimates

In this section, we shall recall and derive some important estimates for the solutions
of system (1.1). For this reason, instead of only dealing with the solution of the initial
value problem (1.1), we will state our estimates for a larger class of solutions.

2.1. Harnack inequalities and maximum principle

Let� ⊂ R×R
N be a bounded open set such that (0, 0) ∈ �. For R > 0, we denote

by QR the parabolic cylinder defined by

QR = (−R2, 0) × BR, with BR = {x ∈ R
N : ‖x‖ < R}.

A function w : � → [0,∞) is said to be a Lipschitz sub- (resp. super-) solution of
the heat equation on � if w is a Lipschitz continuous function on � satisfying the
inequality ∫

�

∂twϕdtdx +
∫

�

∇w · ∇ϕdtdx ≤ 0 (resp. ≥ 0)
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for all Lipschitz continuous test functions ϕ :R × R
N → [0,∞) with suppϕ ⊂ �.

We first recall from [8,12] the following two Harnack inequalities for sub- and
super-solutions of the heat equation.

LEMMA 2.1. (Harnack inequality for Lipschitz sub-solution) For each p > 1,
0 < θ < τ < 1, there exists a constant C = C(p, θ, τ,�) > 1 such that for any
R > 0 with QR ⊂ � one has

sup
QθR

w ≤ CR− N+2
p ‖w‖L p(Qτ R)

for any positive Lipschitz sub-solution w of the heat equation on �.

LEMMA 2.2. (Harnack inequality for Lipschitz super-solution) For each R > 0
such that (−4R2, 0)× BR ⊂ �, there exist p = p(R) > 1 and M = M(R) > 1 such
that

‖w‖L p((−4R2,−3R2)×BR) ≤ M inf
QR

w

for any positive Lipschitz super-solution w of the heat equation on �.

We continue this section by recalling a strong maximum principle for Sobolev
super-solution of a parabolic equation (cf. [8]).

LEMMA 2.3. Let T > 0 be given and p > N + 2. Let u ∈ W 1,2;p
loc

(
(0, T ) × R

N
)

be a function such that

∂t u − �u ≥ 0 a.e. in (0, T ) × R
N .

If u(0, ·) ≥ 0 then either u(t, ·) ≡ 0 or u(t, x) > 0 for all t > 0 and x ∈ R
N .

2.2. A family of problems and basic estimates

As explained in the introduction, the proof of Theorem 1.4 requires the introduction
of a suitable family of problems related to (1.1) in order to take into account spatial
translations. To that aim, let us recall that the functions g(x, u) and �(x, u) are both
uniformly continuous and bounded from R

N × [0, M] into R (see Assumptions 1.1
and 1.2). Next we set

K = cl
({(

g(· + y, ·),�(· + y, ·), σyr, σyδ
)
, y ∈ R

N
})

, (2.1)

where the closure is taken for the topology on Cloc
(
R

N × [0, M])2 × Cloc
(
R

N
)2
.

Because of the uniform continuity assumption, let us further observe that the set K is
uniformly equi-continuous. Moreover, from the definition of the set K, one also has
the following boundedness property:

|g∗(x, u)| ≤ sup
y∈RN , v∈[0,M]

|g(y, v)|, ∀(x, u) ∈ R
N × [0, M],

0 ≤ �∗(y, v) ≤ sup
y∈RN , v∈[0,M]

�(y, v), ∀(x, u) ∈ R
N × [0, M],

r∗(x) ≤ r := sup
x∈RN

r(x), 0 < δ0 ≤ δ∗(x) ≤ δ := sup
x∈RN

δ(x), ∀x ∈ R
N ,
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for any (g∗,�∗, r∗, δ∗) ∈ K. Therefore, K is compact with respect to the topology

on Cloc
(
R

N × [0, M])2 × Cloc
(
R

N
)2
.

Next, for each � = (g∗,�∗, r∗, δ∗) ∈ K we consider the problem{
∂t u − D�u = u

[
g∗(x, u) − �∗(x, u)v

]
, t > 0, x ∈ R

N ,

∂tv − �v = r∗(x)v (1 − δ∗(x)v/u) , t > 0, x ∈ R
N .

(P� )

Similarly as in the introduction, for each � ∈ K, we consider the set of solutions of
(P�) defined by

S� = {(u, v) ∈ X × X : 0 < u ≤ M, 0 ≤ v ≤ M/δ0, (u, v) satisfying (P�)} ,

and we consider the set S defined by

S =
⋃

�∈K
S�. (2.2)

Here let us observe that if (u, v) ∈ S then, for each x0 ∈ R
N , the function (ũ, ṽ) (t, x)

:= (u, v) (t, x + x0) belongs to S.
In the following, we shall derive some basic uniform estimates for the solution set

S. Our first estimate reads as follows.

LEMMA 2.4. Let 0 < θ < τ < 1 be given. Set r = sup{r(x), x ∈ R
N }. For each

R > 0, there exists a constant CR such that for all (u, v) ∈ S one has

sup
x∈QθR

e−r tv(t + h, x) ≤ CR

(∫∫
(−τ R2,0)×Bτ R

e−2r tv2(s + h, y)dsdy

)1/2

(2.3)

for any h > R2.

Proof. Since u > 0, the function v is a classical solution of the following differential
inequality

∂tv − �v − rv ≤ 0, t > 0, x ∈ R
N .

Let R > 0 be given. For a fixed value h > R2, we consider the function wh(t, x) :=
e−r tv(t + h, x) that satisfies the inequality

∂tw
h − �wh ≤ 0, t > −h, x ∈ R

N .

Then, applying Lemma 2.1 on � = QR with p = 2, there exists some constant
C = C(R, θ, τ ) such that (2.3) is satisfied. �

Our second result deals with estimates for the u-component as follows.

LEMMA 2.5. For each R > 0, there exist some constants M > 1 and p > 1 such
that for all (u, v) ∈ S one has∫∫

(−4R2,−3R2)×BR

u p(t + h, x)dtdx ≤ M

[
inf

(t,x)∈QR
u(t + h, x)

]p

.

for any h > 4R2.
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Proof. Since (u, v) ∈ S, the function u satisfies

∂t u − D�u ≥ −k̂u,

for some constant k̂ > 0 such that for any (g∗,�∗, r∗, δ∗) ∈ K

g∗(x, u) − �∗(x, u)v ≥ −k̂, ∀x ∈ R
N , (u, v) ∈ S.

One may apply Lemma 2.2 to the smooth function wh(t, x) := ek̂t u(t + h, x) and the
lemma follows. �

Before going to the proof of our main result, we need to derive some further local
estimates.

LEMMA 2.6. For each R > 0 and T > 0, there exists a constant K = K (R, T ) >

0 such that for all � = (g∗,�∗, r∗, δ∗) ∈ K and (u, v) ∈ S� one has

∫ T

0

∫
BR

|∇v(t, x)|2 dxdt ≤ K , (2.4)

∫ T

0

∫
BR

r∗(x)δ∗(x)v
2

u
(t, x)dxdt ≤ K . (2.5)

Proof. Let R > 0 and T > 0 be given. Consider the function ϕ ∈ C∞ (
R

N
)
defined

by

ϕ(x) =
{
exp

(
− 1

(R+1)2−|x |2
)

, if x ∈ BR+1,

0, elsewhere,

and let us observe that∇ϕ/
√

ϕ ∈ L2 (BR+1). Now, fix (u, v) ∈ S� . Then multiplying
the v-equation by ϕv and integrating over BR+1 yields

d

dt

∫
BR+1

ϕ
v2

2
dx +

∫
BR+1

ϕ |∇v|2 dx = −
∫
BR+1

√
ϕ∇v ·

(
v∇ϕ√

ϕ

)
dx

+
∫
BR+1

r∗(x)ϕv2dx −
∫
BR+1

r∗(x)δ∗(x)ϕ v3

u
dx .

However, one has∫
BR+1

√
ϕ∇v ·

(
−v∇ϕ√

ϕ

)
dx ≤ 1

2

∫
BR+1

ϕ|∇v|2dx + ‖v‖2∞
2

∫
BR+1

|∇ϕ|2
ϕ

dx;

and this ensures that

d

dt

∫
BR+1

ϕ
v2

2
dx + 1

2

∫
BR+1

ϕ|∇v|2dx ≤ ‖v‖2∞
∫
BR+1

[
1

2

|∇ϕ|2
ϕ

+ r∗(x)ϕ
]
dx .

As a consequence, since v ≤ M/δ0 and r∗(x) ≤ r , there exists a positive constant
K1 = K1(R, T ) such that
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∫ T

0

∫
BR+1

ϕ|∇v|2dx ≤ K1(R, T ),

and (2.4) follows.
To prove (2.5), let us multiply the v-equation by ϕ and integrate over BR+1. This

yields
d

dt

∫
BR+1

ϕvdx +
∫
BR+1

ϕr∗(x)δ∗(x)v
2

u
dx

= −
∫
BR+1

∇ϕ · ∇vdx +
∫
BR+1

r∗(x)ϕvdx .

(2.6)

However, one gets

−
∫
BR+1

∇ϕ · ∇vdx ≤ 1

2

∫
BR+1

∣∣∣∣∇ϕ√
ϕ

∣∣∣∣
2

dx + 1

2

∫
BR+1

ϕ|∇v|2dx;

and we infer from the above computations that

−
∫ T

0

∫
BR+1

∇ϕ · ∇vdxdt ≤ 2K1(R, T ).

Finally, integrating (2.6) over (0, T ), there exists a constant K2 = K2(R, T ) > 0 such
that ∫ T

0

∫
BR+1

r∗(x)δ∗(x)ϕ v2

u
dxdt ≤ K2,

and estimates (2.5) follows. �

As a consequence of the above lemma, one obtains that the set S is relatively
compact for some suitable local topology. To that aim, let us recall that for each p ≥ 1
and α > 0 such that α < 2 − N+2

p then, for each ∈ [−∞,∞), the embedding

W 1,2;p
loc ((a,∞) × BR) ↪→ C

α
2 ,α

loc

(
(a,∞) × R

N
)
is compact.

We are able to state the compactness with respect to time translation action of the
set S . To that aim let us introduce the time translation operator of S . For each h ≥ 0
and (u, v) ∈ S we denote by τh · (u, v) the function defined by

τh · (u, v)(t, x) = (u, v) (t + h, x), ∀t ≥ −h, x ∈ R
N .

Then our next result reads as follows.

PROPOSITION2.7. For each p ≥ 1, the setS is bounded inW 1,2;p
loc

(
(0,∞) × R

N
)

× L∞ (
(0,∞) × R

N
)
and relatively compact with respect to the topology of

C
α
2 ,α

loc

(
(0,∞) × R

N
)

× L2
loc

(
R+ × R

N
)

for anyα ∈ (0, 2).Moreover, let {hn}n≥0 ⊂ R+ beagiven sequence such that hn → ∞
and let {Un}n≥0 be a sequence of functionswithUn ∈ τhnS for all n ≥ 0. Then {Un}n≥0

is relatively compact with respect to the topology of C
α
2 ,α

loc

(
R × R

N
)×L2

loc

(
R × R

N
)

for any α ∈ (0, 2).
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Proof. The proof of this compactness result follows fromusual parabolic regularity for
theu-component,while the compactness for thev-component follows fromLemma2.6
and Simon compactness theorem (see [15]). Indeed, fix a smooth and compactly sup-
ported function ϕ ∈ D ([0,∞) × R

N
)
. One has, for any � = (g∗,�∗, r∗, δ∗) ∈ K

and any (u, v) ∈ S� ,

∂t (ϕv) = ϕ∂tv + v∂tϕ = (ϕ�v) +
(

ϕr∗(x)v − ϕr∗(x)δ∗(x)v
2

u
+ v∂tϕ

)
. (2.7)

However, because of Lemma 2.6, the first term in the right-hand side of (2.7) is
bounded in the dual space

(
H1

(
(0,∞) × R

N
))′

, while the second term is bounded
in L1

(
(0,∞) × R

N
)
. Hence, for each ϕ ∈ D([0,∞) × R

N ), ϕv is bounded in

L∞((0,∞)×R
N ) and ∂t (ϕv) is bounded in L1((0,∞)×R

N )+(
H1

(
(0,∞) × R

N
))′

.
Therefore, Simon compactness theorem applies and ensures that

{
ϕv, (u, v) ∈ S}

is
relatively compact in L1

loc

(
R+ × R

N
)
and thus in L2

loc

(
R+ × R

N
)
. This completes

the proof of the first statement of the proposition. The second statement follows from
the same arguments and the proposition is proved. �

With the above estimates and the local compactness property, we are now in position
to prove Theorem 1.4 in the next section.

3. Proof of Theorem 1.4

In this section, we aim at proving Theorem 1.4. To reach this goal, we will make
use of the following crucial lemma.

Lemma 3.1 (Weak persistence of S). There exists ε > 0 such that for all (u, v) ∈ S
one has

lim sup
t→∞

u(t, x) ≥ ε

for all x ∈ R
N .

Proof. In order to prove this lemma, we shall argue by contradiction by assuming that
for each n ≥ 1 there exist xn ∈ R

N , �n ∈ K and Un = (un, vn) ∈ S�n and tn ≥ 0
such that

lim
n→∞ tn = ∞ and un (tn + t, xn) ≤ 1

n
, ∀n ≥ 1, ∀t ≥ 0. (3.1)

Now, consider the sequence of maps (un, vn) defined on [−tn,∞) × R
N by

(
un, vn

)
(t, x) := (un, vn) (t + tn, x + xn) , ∀n ≥ 1.

Note also that (3.1) re-writes as

un(t, 0) ≤ 1

n
, ∀t ≥ 0, n ≥ 1. (3.2)
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We now divide the proof of Lemma 3.1 into three steps. We will first investigate the
behavior of the sequence {un}n≥1 as n → ∞. Then we will derive some uniform con-
vergence for the sequence {vn}n≥1 to finally reach a contradiction and thus complete
the proof of the lemma.

First step In this first step, we will prove that for each R > 0 and h > 0 one has

lim
n→∞ sup

(t,x)∈[−h,∞)×BR

un(t, x) = 0. (3.3)

To that aim let us first observe that due to Proposition 2.7 up to a subsequence there
exists a pair of functions (u∞, v∞) : R × R

N → [0, M] × [0, M/δ0] such that

un → u∞ in Cloc

(
R × R

N
)
and weakly in W 1,2;p

loc

(
R × R

N
)
for all p ∈ [1,∞);

vn → v∞ strongly in L2
loc

(
R × R

N
)
and weakly* in L∞

loc

(
R × R

N
)
.

Let us write �n = (
g∗
n ,�

∗
n, r

∗
n , δ∗

n

)
. In addition, possibly along a subsequence, one

assume that the uniformly bounded sequence of function g∗
n (x, un) − �∗

n (x, un) vn

converges weakly* in L∞
loc

(
R × R

N
)
toward some bounded function K (t, x).

Now note that the function un satisfies the following equation on (−tn,∞) × R
N

∂t u
n − D�un = un

(
g∗
n

(
x, un

) − �∗
n

(
x, un

)
vn

)
,

so that passing to the limit n → ∞ and using the above convergence property ensure
that the function pair (u∞, v∞) satisfies the following equation:

∂t u
∞ − D�u∞ = u∞K (t, x), a.e. (t, x) ∈ R × R

N .

Moreover, (3.2) ensures that u∞(t, 0) = 0 for all t ≥ 0. Since u∞ ≤ M and v∞ ≤
M/δ0 and K is bounded, the function u∞ satisfies the differential inequality

∂t u
∞ − D�u∞ ≥ −k̂u∞, a.e. (t, x) ∈ R × R

N ,

for some constant k̂ > 0 such that K ≥ −k̂. Finally, since u∞ is nonnegative and
belongs toW 1,2;p

loc

(
R × R

N
)
for any large p andu∞(t, 0) = 0 for all t ≥ 0,Lemma2.3

ensures that u∞(t, x) = 0 for all (t, x) ∈ R × R
N .

Due to the above arguments, in order to prove (3.3) we shall argue by contradiction
by assuming that there exists a sequence τn → ∞ such that

lim sup
n→∞

sup
x∈BR

un (τn, x) > 0. (3.4)

Now we replace the sequence of function (un, vn) by (ũn, ṽn) := (un, vn) (· + τn, ·).
Note that (3.2) re-writes as

ũn(t, 0) = un(t + τn, 0) ≤ 1

n
, ∀t ≥ −τn, n ≥ 1.
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Hence using the same arguments as above with (ũn, ṽn) instead of (un, vn) leads us
to a contradiction of (3.4) and this proves (3.3).

Second step We shall now investigate the behavior of the sequence {vn}n≥1 and we
shall prove that for each R > 0 one has:

lim
n→∞ sup

(t,x)∈[0,∞)×BR

vn(t, x) = 0. (3.5)

We first show that v∞ ≡ 0. To that aim observe that vn satisfies the equation

un∂tv
n − un�vn = r∗

n (x)vnun − r∗
n (x)δ∗

n(x)
(
vn

)2
.

Up to a subsequence one may assume that(
g∗
n ,�

∗
n, r

∗
n , δ∗

n

)
(x) → (g∗,�∗, r∗, δ∗)(x) locally uniformly,

for some function r∗ ∈ H(r) and δ∗ ∈ H(δ). Recall that due to Assumption 1.3(ii),
r∗ > 0 a.e.

Let T > 0 be given and ϕ ∈ D ((−T, T ) × BT ). Then multiplying the above
equation by ϕ and integrating over R × R

N yields for any large enough n:

−
∫∫

R×RN
∂tϕu

nvn −
∫∫

R×RN
ϕ∂t u

nvndxdt

+
∫∫

R×RN
∇ϕ · un∇vn +

∫∫
R×RN

ϕ∇un · ∇vndxdt

=
∫∫

R×RN
ϕr∗

n (x)vnundxdt −
∫∫

R×RN
r∗
n (x)δ∗

n(x)ϕ
(
vn

)2 dxdt. (3.6)

However, since ∇vn is bounded in L2 ((−T, T ) × BT ), one may assume, possibly
along a subsequence, that

∇vn → ∇v∞ weakly in L2 ((−T, T ) × BT ) .

Furthermore, due to the first step, since un is bounded inW 1,2;p ((−T, T ) × BT ) one
may assume, possibly along a subsequence, that

∇un → ∇u∞ = 0 uniformly on [−T, T ] × BT ,

∂t u
n → ∂t u

∞ = 0 weakly in L2 ((−T, T ) × BT ) .

Hence passing to the limit n → ∞ in (3.6) it yields:∫∫
R×RN

r∗(x)δ∗(x)ϕ
(
v∞)2 = 0.

Since this true for arbitrary test function ϕ ∈ D(R × R
N ) and since r∗ > 0 a.e. and

δ∗ ≥ δ0 > 0, we obtain that v∞ = 0.
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Now, using the uniform convergence of un as stated in (3.3) and the above arguments
one can obtain the stronger convergence property:

lim
n→∞ sup

h≥0
‖vn(h + ., .)‖L2(QR) = 0

for each R > 0. As a consequence of the above uniform converge with respect to
the local L2-norm, one can apply the Harnack inequality as stated in Lemma 2.4 to
conclude that for each R > 0 one has

lim
n→∞ sup

h≥0
sup

(t,x)∈QR

vn(t + h, x) = 0,

from which (3.5) follows.

Third step From (3.3) and (3.5), we shall reach a contradiction. For that purpose, we
consider for each R > 0 and each continuous and bounded function ρ defined in R

N

the principal Laplace Dirichlet eigenvalue λR[ρ] on the ball BR defined by⎧⎪⎪⎨
⎪⎪⎩

ϕ ∈ C
(
BR

) ∩ C2(BR),

− (D� + ρ(x)) ϕ = λRϕ in BR,

ϕ = 0 on ∂BR and ϕ > 0 in BR .

(3.7)

Recalling from the result of Agmon in [1] (see also [4,5]) that one has

lim
R→∞ λR[ρ] = λ1(−D� − ρ(x);RN ).

Due to Assumption 1.1(iii), choose R > 0 large enough so that λR[g∗(·, 0)] < 0 (see
Assumption 1.1(ii)). Now observe that

lim
n→∞ λR

[
g∗
n(·, 0)

] = λR
[
g∗(·, 0)] < −γ /2.

Then fix n0 ≥ 0 large enough such that

λR
[
g∗
n(·, 0)

]
< −γ /4, ∀n ≥ n0.

Now let η > 0 small enough be given such that

γ /4 > 2η, (3.8)

and choose ε > 0 small enough such that

g∗
n(x, u) ≥ g∗

n(x, 0) − η, ∀u ∈ [0, ε], ∀n ≥ n0.

(Here recall that the set K is uniformly equi-continuous). Next because of (3.3) and
(3.5), let us fix n ≥ n0 large enough such that

g∗
n

(
x, un

) − �∗
n(x, u

n)vn ≥ g∗
n(x, 0) − 2η for all (t, x) ∈ [0,∞) × BR .
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Hence, recalling that n is fixed, the function un satisfies

∂t u
n − D�un ≥ [

g∗
n(x, 0) − 2η

]
un, t > 0, x ∈ BR .

For notational simplicity, we write λR = λR
[
g∗
n(·, 0)

]
< 0. Let ϕR be the correspond-

ing principal eigenfunction normalized by ‖ϕR‖∞ = 1 of the eigenvalue problem
(3.7).
Consider now the function u(t, x) := e(−2η−λR)tϕR(x) on [0,∞)×BR that satisfies{

∂t u − D�u = [
g∗
n(x, 0) − 2η

]
u, for t > 0, x ∈ BR;

u = 0 on [0,∞) × ∂BR .

Then, choosing κ > 0 small enough such that κ ≤ minBR
un(0, ·), one obtains from

the comparison principle that

κu(t, x) ≤ un(t, x) ∀t > 0, x ∈ BR .

However, due to the choice of η in (3.8), one has −2η − λR > 0. Thus one obtains
that limt→∞ un(t, 0) = ∞, a contradiction with un ≤ M . This completes the proof
of Lemma 3.1. �

We are now able to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Let us argue by contradiction by assuming that there exist a
sequence (un, vn) ∈ S and xn ∈ R

N such that for all n ≥ 1 one has

lim inf
t→∞ un (t, xn) ≤ 1

n
.

Using Lemma 3.1, there exist a sequence tn → ∞ and a sequence ln ≥ 0 such that
for all n large one has

un(tn, xn) = ε

2
, un(t, xn) ≤ ε

2
, ∀t ∈ [tn, tn + ln], un(tn + ln, xn) = 1

n
.

Consider the sequence of functions (un, vn) defined by(
un, vn

)
(t, x) = τtn · σxn (un, vn) (t, x) = (un, vn) (t + tn, xn + x) ,

that is a solution on (−tn,∞) of the problem (P� ) with � = �n defined by

�n = (
g(· + xn, ·),�(· + xn, ·), σxn r, σxnδ

)
.

Since tn → ∞, possibly along a subsequence, one has

(
un, vn

) → (
u∞, v∞)

in Cloc

(
R × R

N
)

× L2
loc

(
R × R

N
)

,

�n → �∞ := (
g∗,�∗, r∗, δ∗) ∈ K locally uniformly,

ln → l := lim inf
n→∞ ln,
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and wherein the function (u∞, v∞) ∈ X × L∞ (
R × R

N
)
satisfies

(∂t − D�) u∞ = u∞ (
g∗ (

x, u∞) − �∗ (
x, u∞)

v∞)
,

u∞(0, 0) = ε

2
and u∞(t, 0) ≤ ε

2
∀t ∈ [0, l).

Let us further observe that l = ∞. Indeed, if l < ∞, then the function u∞ satisfies
in addition u∞(l, 0) = 0. Note that latter condition contradicts u∞(0, 0) > 0 and the
comparison principle as stated in Lemma 2.3.

As a consequence of the above construction, u∞ > 0 on R × R
N and satisfies

u∞(t, 0) ≤ ε

2
, ∀t ≥ 0,

while the function pair (u∞, v∞) (for positive time) belongs to S�∞ . This contradicts
Lemma 3.1 and completes the proof of Theorem 1.4. �

4. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. To that aim, consider (u, v) ∈ S, a solution
of (1.1) with (1.3), with v > 0. Note that M = δ0 = 1 so that we have

0 < u < 1 and 0 < v < 1.

Take a sequence tn → ∞ and assume, up to the extraction of a subsequence, that

τtn .(u, v)(t, x) = (u, v)(t + tn, x) → (u∞, v∞)(t, x)

locally uniformly for (t, x) ∈ R × R
N .

To prove Theorem 1.5, it is sufficient to prove that

(u∞, v∞) (t, x) ≡ (
u∗, v∗) :=

(
1

1 + k
,

1

1 + k

)
. (4.1)

Let us firstly observe that, due to Theorem 1.4, one has, for all (t, x) ∈ R × R
N ,

u∞(t, x) ≥ ε for some given ε > 0. Then we claim that the following holds true.

CLAIM 4.1. One has

v∞(t, x) ≥ ε, ∀(t, x) ∈ R × R
N .

Proof. Let θ ∈ (0, 1/2) be given. Fix R > 0 large enough such that, for each contin-
uous positive function w0, the solution w = w(t, x) of the problem{

∂tw − �w = w
(
1 − w

(1−θ)ε

)
, t > 0, x ∈ BR,

w(0, ·) = w0, and w(t, x) = 0, t > 0, x ∈ ∂BR,



770 A. Ducrot and J.- S. Guo J. Evol. Equ.

satisfies
lim
t→∞ w(t, 0) ≥ (1 − 2θ) ε.

Now fix h ∈ R
N and observe that, due to Theorem 1.4, there exists t0 > 0 large

enough such that
u(t, h + x) ≥ (1 − θ)ε, ∀t ≥ t0, x ∈ BR .

Hence the function vh(t, x) := v(t, h + x) satisfies

∂tv
h − �vh ≥ rvh

(
1 − vh

(1 − θ)ε

)
, t > t0, x ∈ BR .

Since vh > 0, one obtains from the comparison principal that

lim inf
t→∞ vh(t, 0) = lim inf

t→∞ v(t, h) ≥ (1 − 2θ)ε.

Hence we have proved that for each θ > 0 small enough, and each h ∈ R
N , one has

lim inf
t→∞ v(t, h) ≥ (1 − 2θ)ε.

Letting θ → 0, Claim 4.1 follows. �

From this claim, we obtain that there exists η > 0 small enough such that

(u∞, v∞) (t, x) ∈ P := [ε, 1 − η]2 , ∀(t, x) ∈ R × R
N , (4.2)

while (u∞, v∞) is a bounded entire solution of (1.1) with (1.3). In addition, because of
parabolic estimates, this function pair is C∞ on R×R

N and has bounded derivatives
of any order.
From now on, we split our arguments into two parts. We first complete the proof

of Theorem 1.5(i) using a sandwiching argument and then we go to the proof of
Theorem 1.5(ii) by developing Lyapunov like arguments.

Proof of Theorem 1.5(i). Here we prove Theorem 1.5(i). Since the result is already
known for k ∈ (0, 1) we shall only focus on the proof of the case k = 1. To that aim
we fix k = 1 and we set

umin = inf
R×RN

u∞, umax = sup
R×RN

u∞, vmin = inf
R×RN

v∞ and vmax = sup
R×RN

v∞

Here recall that (u∞, v∞) (t, x) ∈ P for all (t, x) ∈ R × R
N so that

ε ≤ umin, vmin and umax, vmax < 1.

Next observe that

(∂t − �)v∞ = rv∞
(
1 − v∞

u∞

)
≥ rv∞

(
1 − v∞

umin

)
on R × R

N ,
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so that one deduces that v∞ ≥ umin on R × R
N . A similar argument also provides

v∞ ≤ umax on R × R
N . This re-writes as

umin ≤ vmin and vmax ≤ umax (4.3)

Now from the u-equation one gets

(∂t − D�)u∞ ≤ u∞(1 − u∞ − vmin) on R × R
N .

Hence one gets

u∞ ≤ 1 − vmin on R × R
N and umax ≤ 1 − vmin. (4.4)

Now also observe that

(∂t − D�)u∞ ≥ u∞(1 − u∞ − vmax) on R × R
N .

This yields u∞ ≥ 1 − vmax on R × R
N and umin + vmax ≥ 1. Hence we infer from

(4.3) and (4.4) that

1 ≥ umin + umax ≥ 1 ⇒ umin + umax = 1.

Next, due to (4.4), one has vmin ≤ 1−umax = umin, and since umin ≤ vmin (see (4.3)),
one concludes that vmin = umin. On the other hand, coupling umin ≥ 1 − vmax and
vmax ≤ umax, yields umax = vmax.
As a consequence, take a sequence (tn, xn) ∈ R → R

N such that v(tn, xn) → vmin

and let us show that (un, vn)(t, x) := (u, v)(t+ tn, x+xn) converge locally uniformly
up to a subsequence to (umin, vmin). To that aim observe that the limit function (up to
a subsequence) denoted by (U, V )(t, x) satisfies V (0, 0) = infR×RN V = vmin and
the function W := V − vmin ≥ 0 is a entire solution of

(∂t − �)W − r (W + vmin)

[
1 − W + vmin

U

]
= 0 with W ≥ 0 and W (0, 0) = 0

Hence, since umin = vmin, we obtain

(∂t − �)W − r (W + vmin)W/vmin ≥ 0 with W ≥ 0 and W (0, 0) = 0.

This implies that W ≡ 0, namely V ≡ vmin. Hence, we deduce from the above
W -equation that U ≡ vmin. Finally, form the U -equation, we get

1 − 2vmin = 0, i.e., vmin = 1

2
.

Therefore, since vmax = 1−vmin and umax = 1−vmin one obtains that vmin = vmax =
1/2 and umax = umin = 1/2. �
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Now, we assume that N = 2. In order to prove (4.1), let ρ :R → R+ be a C∞
compactly supported function such that

ρ(−z) = ρ(z), ∀z ∈ R,

ρ(z) = 1 if z ∈ [0, 1], ρ(z) = 0 if |z| ≥ 2.

Then set the function π :R2 → R+ defined by π = ρ⊗2, that is

π(x) = ρ(x1)ρ(x2) for x = (x1, x2) ∈ R
2.

Consider also the function V : (0,∞)2 → R+ defined by

V (u, v) =
∫ u

u∗
ξ2 − (u∗)2

ξ2
dξ + c

∫ v

v∗
η − v∗

η
dη,

where c > 0 is a parameter that will be specified later. This function has been proposed
by Du and Hsu in [6], as a suitable Lyapunov function, to prove the global stability
of the unique positive equilibrium for the reaction–diffusion system (1.1) with (1.3)
posed on a bounded domain with Neumann boundary conditions. Here we make use
of the function V to prove (4.1) for the case N = 2.

Before going to this argument, let us first give some preparation computations. First,
note that the function V defined above can be re-written as follows:{

V (u, v) = V1(u) + cV2(v),

with V1(u) = (u − u∗)2/u, V2(v) = v∗G (v/v∗) and G(x) = x − ln x − 1.

Hence V ≥ 0 on the set P , if we choose η > 0 in (4.2) sufficiently small. Moreover,
there exists κ ∈ (0, 1) small enough such that

κ
(
|u − u∗|2 + |v − v∗|2

)
≤ V (u, v) ≤ κ−1

(
|u − u∗|2 + |v − v∗|2

)
, ∀(u, v) ∈ P.

Now define the vector field F : P → R
2 by

F(u, v) := (u(1 − u − kv), rv(1 − v/u)).

Then we have

CLAIM 4.2. If k ≤ s−1
0 (see Theorem 1.5(ii) for the definition of s0), then there

exist two constants c > 0 and α > 0 such that

∇V (u, v) · F(u, v) ≤ −αV (u, v) ∀(u, v) ∈ P.

Moreover, V ′′
1 ≥ 0 and V ′′

2 ≥ 0 on [ε, 1 − η].

The proof of this computational claim follows from the arguments and computations
developed byDu andHsu in [6] in proving their global stability result (see [6, Theorem
2.2]).
We are now able to complete the proof of Theorem 1.5(ii) as follows.
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Proof of Theorem 1.5(ii). To that aim let us consider for each R > 0 the function
t �→ ER(t) defined by

ER(t) =
∫
R2

π
( x

R

)
V (u∞, v∞) (t, x)dx .

We compute the time derivative of ER as follows:

d

dt
ER(t) =

∫
R2

π
( x

R

)
∇V (u∞, v∞) · (∂t u∞, ∂tv∞)dx

=
∫
R2

π
( x

R

) [
V ′
1 (u∞) D�u∞ + cV ′

2 (v∞) �v∞
]
dx

+
∫
R2

π
( x

R

)
∇V (u∞, v∞) · F (u∞, v∞) dx .

Hence, using Claim 4.2, one obtains that

d

dt
ER(t) ≤ −αER(t) + I 1R(t) + I 2R(t), ∀t ∈ R,

where

I 1R(t) := D
∫
R2

π
( x

R

)
V ′
1 (u∞) �u∞dx,

I 2R(t) := c
∫
R2

π
( x

R

)
V ′
2 (v∞)�v∞dx .

Now observe that for all t ∈ R one gets

I 1R(t) = −D

R

∫
R2

∇π
( x

R

)
· ∇ (V1 (u∞)) dx − D

∫
R2

π
( x

R

)
V ′′
1 (u∞) |∇u∞|2 dx

= D

R2

∫
R2

�π
( x

R

)
V1 (u∞) dx −

∫
R2

π
( x

R

)
V ′′
1 (u∞) |∇u∞|2 dx .

As a consequence of the boundedness of u∞ and recalling that V ′′
1 ≥ 0, one obtains

I 1R(t) ≤ K1 for all t ∈ R

for some positive constant K1 independent of R > 0. Using the same computation
arguments, one also obtains that there exists some constant K2 > 0 independent of
R > 0 such that

I 2R(t) ≤ K2 for all t ∈ R.

Thus, setting K = K1 + K2, one deduces that

d

dt
ER(t) ≤ −αER(t) + K , ∀ t ∈ R.

The above differential inequality implies that

ER(t) ≤ K

α
, ∀ t ∈ R, R > 0,
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and, by letting R → ∞, it ensures that there exists some positive constant, still denoted
by K , such that∫

R2

∣∣u∞(t, x) − u∗∣∣2 dx +
∫
R2

∣∣v∞(t, x) − v∗∣∣2 dx ≤ K , ∀ t ∈ R.

Finally, using the above integrability property the function E(t) := limR→∞ ER(t)
is well defined and turns out to be a bounded and decreasing energy functional along
the entire solution (u∞, v∞). More precisely, one has

d

dt
E(t) + D

∫
R2

V ′′
1 (u∞) |∇u∞|2 dx + c

∫
R2

V ′′
2 (v∞) |∇v∞|2 dx ≤ −αE(t).

Standard argument allows us to conclude that (u∞, v∞) (t, x) ≡ (u∗, v∗). This con-
cludes the proof of (4.1) and thus the proof of Theorem 1.5(ii). �
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