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Higher-order nonlinear Schrodinger equations with singular data

NAKAO HAYASHI, PAVEL 1. NAUMKIN AND TAKAYOSHI OGAWA

Abstract. We consider the Cauchy problem for the higher-order nonlinear Schrodinger equation

k
idpu— o (=02) w=2rluPu, (t.x) €[0,TI xR,
u(0,x) =ug(x), x eR,

where k, p € N, k > 2, 1 € C. We prove local existence of solutions for the case of singular initial data
uq (x) including the Dirac delta function.

1. Introduction

We consider the Cauchy problem for the higher-order nonlinear Schrédinger equa-
tions
v — 3 (~92) u = Al u, (1,x) €10, T] x R,

(1.1)
u(0,x) =up(x), x € R,

where k, p € N, k > 2, A € C. We are interested in the case of singular initial
data ug (x) including the Dirac delta function. When £ = 1, then (1.1) converts the
well-known nonlinear Schrodinger equation. Equation (1.1) with k = 2 appears in the
description of deep water waves [3], in the study of the influence of the higher-order
dispersion on the propagation of intense laser beams in a bulk medium with Kerr
nonlinearity [8,9] and also for the motion of a vortex filament in an incompressible
fluid [5]. We consider the problem with the data which are not in L2. In the case of
k = 1, namely for

{iB,u+%Au:k|u|2pu, (t,x) € [0, T] x R", 12)

u0,x) =upx), x € R",

there are some works in which (1.2) was considered with the data which are not in
L2. In [15], local well-posedness was studied of (1.2) with cubic nonlinearity p =
1,n = 1 and initial data ug € L9, 1 < g < 2. Local well-posedness with a critical
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nonlinearity p = % for n = 1,2 was shown in [13] in the homogeneous Sobolev
00, 00,8
spacesup e H  NH ,0<a <75 < B <n, where

0 0,
H = {w €Sl oo = |11 ]| 2 < oo} :

Global existence of small solutions of (1.2) with ImA < 0 was also obtained in [13].
004 00,1
We note that L! and H ~ are scaling invariant for (1.2) whenn = 1 and H is

scaling invariant when n = 2. Therefore function spaces used in [15], [13] are related
to the scaling invariant spaces. The initial value problems for systems of nonlinear
Schrodinger equations including the system

idu + 5 Au = v,
i0;u + %Av = uz,

were considered in [12,14] for the space dimension n = 2 in function spaces related
to invariant spaces by the similar ideas as those in [13, 15], respectively. Furthermore
in [14], the case of L! data is treated for the above system for n = 1 by using the
method of [15]. In the previous works [12—15], proofs depend on the gauge-invariant
nonlinearities and the property of Schrédinger evolution group which was represented
by the formula

FUs (=) [ul?P u =t~ 7 FMVFV | FMU, (=) u)®? FMU, (—1) u,

where U (1) = ¢2'A and M = eI, Higher-order dispersive equations do not
have this property. On the other hand, the kernel e~ tor (— 02 )kl for k > 1 has a space
decay property, which comes from the dispersivity. The order of space decay of the
kernel becomes large when k becomes large, and it will be used to obtain the desired
result below. This property differs from the usual Schrodinger evolution group.

There are a lot of works concerning quadratic nonlinear Schrodinger equations (1.2)
with |u| u replaced by u?forn=1,2in papers [2,11] forn = 1,and [1,11] forn =2
on time local well-posedness and ill-posedness for H® with negative s. Time local
well-posedness for H® fors > —1ifn = lands > —1if n = 2, and ill-posedness for
s <—lifn=1ands < —1if n = 2 were shown in [1,2], respectively. In paper [7],
time local ill-posedness was improved in the scale invariant Besov space B, }, SH™!
for2 <o <ooifn=1and H! forn = 2.

If we take the scaled function u, (1) = ,u%u (,qut, ,ux) with u > 0, then u, (7)

satisfies equations (1.1) with the scaled initial data ug , (x) = u% ug (ux) . Therefore
equation (1.1) with p = 2k is called L? critical, since HMOM ||L2 = |luolly2 , and (1.1)
with p = k is called L' or FL critical since Mo,u”U = |luo|ly1 or ||.7-'u0,,l ||L°° =
| Fuollgqo -

We now introduce notation and function spacesused in this paper. We denote
the Lebesgue space by L? = {¢ € S'; [|¢p[lL» < 0o}, where the norm [|¢lp, =
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1
(f |p (x)|pdx)5 for1 < p < oo and @l = sup,cg |9 (x)|. The homogeneous
Sobolev space is defined by

oa,l

0 = {w €Sl o = 1617 371, < oo},

where F or - denotes the Fourier transform and F~! denotes its inverse one. Since

o, (§) = F/MPuo(ux)e ’xédx—w % (%)

by a direct computation, we find

2
|11 3§M0u”L2—M /‘ (3:110) ( )

_ (% 5+ 2a _ o
=u |(3etio) )| 1y dy = || 161 gtio |5 »

|2(¥ dé

STt

3
o2
ifo = % — ; Hence H can be considered as a scaling invariant space. We now

define the function space X* used in this paper as

X% = {(P €S lplxe = ||</>||Io{a,1 + 1@l < 00}-

Note that X* includes the Dirac delta function § since its Fourier transform is equal
to 1. Also we note that if « = % and k = p, then X“ is a scaling invariant space. Let
C(I; B) be the space of continuous functions from an interval I to a Banach space B.
Different positive constants might be denoted by the same letter C.

To state our result, we define the space

Yr = {U(-HveC(0.T]:X*): vy, < oo}
with a norm

Iolly, = sup llg Dlxe = sup [IE[* 9P @)+ sup 1@ Dllpee
t€l0,7T] t€l0,T] tel0,7T]

where ¢ = FU (=) v, U (t) = e*"tﬁ(*af')k. We also define the closed ball Y7 , =
{v eYr; llvlly, < ,0} . We introduce the operator 7 = x-+itd, (—Bf)k_l =U@)xU
(—t) , which commutes with the linear part i 9, — ﬁ (—Bf)k of equation (1.1).

We prove the following result.

THEOREM 1.1. Assume that ug € X% with0 < a < % and

4k — 14+ 2« 4k — 1 4+ 2«

dk—1 P23 2 (1.3)
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Then there exists a time T such that the higher-order nonlinear Schrodinger equation
(1.1) has a unique solution u € Yr. Moreover the following estimates are true

j _2j+3-2a
olum| =T ol (1.4)
forO0 <t <T,0<j<k—1and
odu o) Cr A R ug) 1.5)
u(t =Ct - -1 luollxe .
et ( LS(—R.R) — 01X

forO <t <T,k<j<2k—2,R>0.

REMARK 1.1. Estimate (1.4) describes a global smoothing property of solutions
and estimate (1.5) is concerned with a local smoothing property.

REMARK 1.2. We can see that our proof is also valid for fractional powers p such

that p > k — 1. Consider the following example k = 3, then by condition (1.3) we

have % <p< % Therefore the higher-order Schrodinger equation

1
id0u + gafu =xul*’u

is acceptable in X%, which is closely related to a scaling invariant space since X2 is
the invariant space for p = 3.

We now introduce the factorization formulas for the higher-order nonlinear
Schrodinger equation i 9;u — 21_k (—af)" u = 0. We define the free evolution group

it ( a2\
U@y =e %% = F1EF,

s it g2% .
where the multiplication factor E (t,§) = e %57 Then we write

1
- JtED / 105N g £y de = D,B
1

1
1% o
= [ @

— D.BM 12 —itS(x,&) dé = D,BMY
=DM [ 75D ) as = D,BMVY.

2k

3

: - 2%-1;
where the phase function S (x, £) = %ka—x%_1$+2‘—k§2k,M (t,x) =e ® ¥

the dilation operator Dy = 1~ % ¢ (xt~!) and the operator

1
1%

T Vi

Vo eSO g (£) dg
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and we introduce the scaling operator (B¢) (x) = ¢ (xﬁ) with the definition as

X 7T = =x|x|” %=t . If we define the new dependent variable ¢ = FU (—t) u (¢), then
we obtain

u(t) =U @) F'p=DBMVP. (1.6)

We also need the representation for the inverse evolution group FU (—t)

_ 1 it ek _jye
FU(-t)p = EFp = E/dxe” ¢ (x)
2%k—1

t ok (ke _yg)
N dxe (3= )Dz ' (x)

—1
(2k — l)t r dxx2k—2eit(ﬁ52k7x2kils)
Rz
(2k - 1)t a
V21
=V'MB'D g,

B7'D ¢

dxxzk—2enS(x,g)MB—1Dt—1¢

where Dt_l¢ = t217¢ (xt), (B‘lqb) x)=¢ (ka_l) and the operator
2%—1
2k — 1)t =
2w

Next applying the operator FU (—t) to Eq. (1.1) and using FU (—t) L = i0; FU (—1) ,
L=id — 5 (=02)" and u (1) = D,BMVG, we get

V*¢ — ei[S(x,f)qb (x) xzk—de.

19,0 = FU (—1) Lu = AFU (1) (|u|21’ u)
— AWMB~ D! <|DtBMV’<ﬁ|2p DtBMva)
— Py uB! (|BMV¢|2" BMV@)
— bV m (|MV{5|2P Mva) =ty (|va|21’ va) .
Thus we obtain the following equation
i85 = Fyr (|va|2p va) (1.7)

for the new dependent variable ¢ = FU (—t) u (¢) .
2. Preliminaries

Define the kernel

Aj ()= % / eS0Ty (ex7") dg

T
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for j =0, 1,2, ... where the phase S (x, &) = %x% —xX*-lg zl—kEZk, and the
cutoff function x (z) € C? (R)is such that x (z) = 0forz < % orz>3and x (z) =1
for % <z< % To compute the asymptotics of the kernel A ; (x) for large x, we apply
the stationary phase method (see [6], p. 163)

/eirg(rl)f () dn = eirg(no)f (10) %—nei%sgngu(no) 4o (r_%) Q.1
r18” (o)l

for r — 400, where the stationary point ng is defined by g’ (n9) = 0. We change
& = xn, and then, we get
1+
X . 2k .
Aj ) === [ eIy ) dn,

! 21
By virtue of formula (2.1) withr = x%, g (n) = =S (1, ) = — (%2 — n + %n%).
fm=n'xm,n =1, we get

xlt 2 —iZ —3k
Aj(x)=m<‘/(2k_l)x2ke 4+0<x ))

Ik j+1 3k>
=2 _if4o0 ((x) -
2k — 1

for x — oo. In particular, we have the estimates || (x)k=1=i Aj ||Loo < Cforj > 0.
In the next lemma we obtain the estimates for the operator V in the uniform norm.

LEMMA 2.1. Let0 < j < 2k — % + a, 0 < a < 1. Then the estimate
1\3kte—3—j ; _4 T
<xt2k> ((Vghp) () — "% A; (thk)¢(x)>

< Cr 3 (Nl + 175 1617 3¢ 1)

LOO

is valid for all t > 0.

Proof. We write

(VElo ©) 0 =% a; (xr¥) g ()

1
1%

= E o i1S(x.E) (@ E)—d () x (é;‘x_1> Ejdé
1
+\t/22k_n e—itS(x,§)¢ &) (1 - X (%‘x—l)) E./'d%- =1, (t,x) + I (¢, x) .

In the first integral /; (¢, x), we integrate by parts via the identity

eTHSCE — 5, <(§ — %) e—irS(xf)) (2.2)
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with Hy = (1 — it (£ —x) (%1 = x%-1)) " 10 get
1 : .
= ot [ 109 @ @) - g o) & -0 (i (5371 &) e
ek [ ¢ —xymy (ex71) €0 6)d.

Using the estimates

&
6 (&) — ¢ (1) = / ¢ () dy| < ClxI™ 1& — xI7 [1£1 09| .-

€ —x Hix (ex")el] < - f;ik_zx(!x_'jx)z

and

& =)0 (Hix (8571)87)| = 1 +zxi|§|(jé o

in the domain 0 < %x <é&E<3xor3x <&< %x < 0, we obtain

1 (&) — ¢ ()] |x]/ dg
|11 (t,x)| < Ct2* /;x 1+tx2k—2(§—x)2

+Cﬂlk/3x 1€ — x| lxl/ 1617 [IE|” 9 §)| d&
1y 1+ 12262 (£ — x)?

< Cr |51 3| 2

1

/3x 6 —xl? lx e de f3x € -2 x2 2\’
Ix 1+ 1x2k=2 (& — x)? Ly (1 +1x2%k-2 (& _x)2)2

3

Changing y = xt% and .= Sti, we get

; /“ & — x|2 x|/~ d&
1

1%
Lo 1+ x22 (& — x)?

i . 3y _ 1
SCt_JT—ﬁ |y|-’_°‘/ |C2k ;’|2d§ ;
y 1+ y* 2@ —y)

- ‘ 3 113
< Iyl”%"”/ IR
PI+y*e -1

< G T |y ()73 < o ()i
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and

t% /3)6 (& — )C)2 x2j—2°‘d§
b (1422 ¢ = x)2)?
. 3 2
Sct_%_ﬁ |y|2j—2a/ 4 (& —yrdg -
oy -
. 3 2
<otk s [T
§(Hy*e-17)

< Ct—f%”—zik |y[27=20+3 <y>—3k < Ct‘j%]_ﬁ (y>2j—2a—3(k—l)'

Thus we have

| )%(k—l)—(j—oo

<xzﬁ I (0] < B 1510 0

for all + > 0. To estimate the second integral I, we integrate by parts via the identity

e IS8 = pg, (EefitS(x,§)> 2.3)

with Hy = (1 — itg (%1 — x2=1)) " (0 get

1

Bx) = =L [0 @ g (1 (1 - (571)) &) a

1%
N2

Using the estimates

) j+1
‘HZ (1 X <§x71)> §J+1‘ = 141+ |§-| (gllfljjl + |x|2k—1)

Oy (11— x (6271)) &7+ (6) d,

and
. J
‘535 (H2 (1 X (Ex_l>> EJ)‘ = 1+1]&] (|§T2|k§_|l + |x|2k—1)

in the domain & < %x, or& > %x, x>0oré& > %x, oré < %x, x < 0, we obtain
&)/ dg
L5 (1€ + [x 2T

1 &1 |9 (&) dE
e / Lol (P 1 ey

1
|| < Ctx ||¢>I|Loo/

Hence
&)V d&
L+e]e] (161 + 1)

1
|| < Cta* ||¢||L°°/

1

TR |&[2+20 - gg ’
+Ct2% H|§| 8§¢||L2 </ (1 el (|§|2k—1 N |x|2k—1))2> .
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Hence in the case of  [x|** > 1 changing § = xy

Iyl dy
L+t x|y ()t

1

|y|2+2(j—ot) dy )2
_1\2

(L1 y] ()%

+Cr (5% 0 o 112

1 ,
b (1, )] < CH [l |x|1+ff

+Ct7 x| €1 0510 (/

1 1+. 1 }/—2 1 —2k
< Cr¥ [pllges ||+ [xrd Xt

e 2k+j+1 ~2k+j+3—a

e 1 1
< Cr ¥ gl e + O 11 g o e

ifj<2k——~|—a where y > 0 for j =0and y = 0 for j > 0. For 7 |x|** < 1 by

) Jid id .
|x|1+]/ |)2)1|( y T S Cf |y| y2k S Ct_%_ZLk
L2 x|7 |y () L+1]yl

we have }
_ i e
I (8, )] < Ct™ 5 ||pllyo + Ct ™% 3 [161“ 0z || -
Hence
J y—2k+j+1
[ (t, x)] < Ct_Zk oIy, <xt2k>
j—a —2k+j—a+3
O | |5 R <xtﬁ> 7
Lemma 2.1 is proved. 0

We introduce the norm
~ ~ N
1@lw = 1@l + 177 [[151% 0582 -
REMARK 2.1. Let 0 < j < 2k — 3 340, 0<a <l Applying the estimate
|Aj (x)| < C (x)/T17K we get from the estzmate of Lemma 2.1
(e 0| < [, s4) 900
j L\—3k—at+3+j s 1-2¢ -
O (xa) T (1@l + 07 (1617 0682 )
J L\JH—k
< crd (k) Gy 2.4)
Also by (1.6) we have for u = D;BMVQ, if o = FU (=) u

(v6/9) (=)

Jj+1-

< Cf%<xfzi> F ol 2.5)

1
= Ct 2%
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Since
2k — l)t o S )
Vi = S0 g (x) x dx
Vo
we have -
Vol = 05 |22 26)
LEMMA 2.2. Let p > 2kk—72 Then the estimate is true
e (verrve)| . <cieig™.
Proof. By (2.4) with j =0
. 1=k
V@l = € (%) 1@l
Therefore in view of (2.6) we have
~ ) 2k—1 — ~
HV* <|V§0|2p V(p> HLOO < Ctzzkl Hx2k 2 |V(ﬂ|2p+] HLI
—(k=D2p+D)
< i ||¢||2"+1/x2’<*2 <xrﬁ) dx
2p+1 2p+1
< I [ o vy < cupiy
since
/(y>—(k—1><2p—1> dy < 0o
if p > 2,{]‘—_2 This completes the proof of the lemma. 0

LEMMA 2.3. Letp > 1 + %, 0<a< % Then we have

2p+1
[1801% 7 1w ;

o < B IQI [10.1% Tu| o + Co R E 15113

forallt > 0, where o = FU (—1) u.

Proof. Applying the operator J = x + itdy (—83)]‘_1 = U (t) xU (—1), by a direct
computation we get

001 T 1l = (p + D 10:]* (162 Tu) = ploal® (1P =2 Tu) + 0.1 F
where F consists of the terms
itﬁzp_zuaxua)%k_zu, it (3yu)? <8§k_3u> , etc.
By Lemma 2.2 from [4] (see also [10]) we have

[t sclemiu) i +Clule |28

Q2.7)

L2
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f0r1<r<oo,1<ri<oo,1<qi§oo,suchthat%=%+
we get

1.1 (1 gu)|

i W [N WO ey of P o [ N 8

—2a

1 _ 1,1
q r2+q2'Then

<C

1 1,1 , g ..
where o = ﬁ+q_1' By Sobolev’s and Holder’s inequalities H(p”Lﬁ < 1o 1* @12,

L1 _a aef0,1). Hence

q
ITull 2 = C [10x]* Tuy,
i j+1 1 %ljk
By using (2.5) we find |95 u (¢, x)’ <Ct 2% <xt*ﬂ> [@llw - Hence
2p—1
lue 77 ”||qu
2p—a ) . (171;1(21;71) . ai'l—cl_lk
<Ct™ % |9lw <xfﬁ> (xfﬁ)
L'l L4
<cr g I|
Hence

a1 (1ur ) |, = co~ 8117 101" Tu]

In the same manner
.1 (P22 7a) |, = cr E 11 1ax1” Tuly

Nextconsider the term |3y |* (w2 ~?u (3,u) 92 ~2u) in || F. Define the Littlewood—
Paley decomposition. Let ¢; € Cg° (R) be such that suppgo (§) C {£ : |£] < 2},
suppy; (&) C {&:271 < || <2/} forl > T and ) )% ¢ (§) = 1 forall € € R.
Then if we represent u = Zfio u;, where u; = @ju, note that

o1 (§) = @1 (§) (-1 (6) + 91 (§) + @11 (§))

therefore, the estimate follows

H|a e (—2P 2u (Beu) 8% 2 )H < CZ H|a & (—21’ wy (3,10) aﬁ"*zu,)

L2’
Now applying estimate (2.7) we get

—2p— — 2p—1 _
o1 (7722 @0 022w ) | = € QP2 N0l 10217 822

1.2

FC g2 19219 B | . || 922

I
+ C gl 1921 | L2 191as oo

|
Lo
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By using (2.5) we find

x Ul

j+1 L _L
< i 2u (2 ) ol
q
Then we obtain

10217 (7221 @ 932

L2
k+a—2pk—1)
_2pt2kta _ 2py] AL A\

< O gyt 28 (2 )

k+a—2pk—1)

1 _ 2pte . 2k—1
<Ct% % |¢ ”2p+1 (21 ) <21t 2k>

Therefore

‘ H ENG (ﬂzﬁ_zu (0,10) af"—zu)‘

L2
1 - %) N k+a;]{2pik71)
< Com T IR Y (2 )t ()
=0
< Crd = g
L\
since changing y = (ZXt_ﬂ) ’ , we find
] | 1 | k+a—=2pk—1)
(@) pea)
=0
00 . 1 . k+a—2pk—1) 00 k+a—2pk—1)
< f <2xt_ﬁ)2 <2xt_ﬂ> odx < / <y2> - dy
0 0
f%< %,16 p>1+4( Lemma23lsproved O
3. Proof of Theorem
Let us consider the linearized version of (1.1) such that
i — & (=02) w =2l v, (1.0) €10.T] x R, o)
u(0,x) =up (x), x €R, '
where v € Y7, ,,. Note that [[|9,|* Jully2 = ||1§1* 9@ (1) |2 , so by Lemma 2.3 we

find

2p+1

[0 w2 o| |, = com B IR 10,17 Tul + o'

3.
< crFk Ryt
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forp > 1+ 43(;2‘1‘), 0<auac< % Then by the integral equation associated with (3.1)

we have

T
2p+1 _3p.p
11951 Tu|2 < luolixe + € 0l 2F / Py,
0
3
< lluolixe + Cp*H 713 Hie (3.2)
for 1 — ;—i + %(x > (. In the same way as in the derivation of (1.7) we obtain
10, FU (—t)u (1) = ae—FV* (|V¢|2p va) :

where ¢ = FU (—t) v (t) . Then by Lemma 2.2

T
—~ 2 1 _p_(=2a)
IFU (~1)u Ol < ol + C IR / R
0

= _p_(1220)
< ll@ollye + Cp?P T~ %" @r+h

for p > 55 if 1 — £ — U229 (25 4 1) > 0. Therefore

_Pp_ 120
lully, < lluolixe +Cp*PT'T1—k = @P+h

for
34+ 2« 4k — 1 4 2«
44— <p<——-.
4k —-1) 23— 2a)
We may assume that |lugllxe < %, and therefore, we find that there exists a time

T > 0 such that |[u|ly, < p. This means that the mapping S defined by u = Sv
transforms Y7 into itself. In the same way, it is shown that there exists a time T
such that ||Sv; — Svlly, < % lvi — v2lly, . Hence we have the desired result by
the contraction mapping principle. Smoothing properties of solutions (1.4) and (1.5)

come from (2.5). This completes the proof of the theorem.
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