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Abstract. This paper is devoted to the analysis of blow-up solutions for the nonlinear Schrödinger equation
with combined power-type nonlinearities

iut + �u = λ1|u|p1u + λ2|u|p2u.

When p1 = 4
N and 0 < p2 < 4

N , we prove the existence of blow-up solutions and find the sharp
threshold mass of blow-up and global existence for this equation. This is a complement to the result of
Tao et al. (Commun Partial Differ Equ 32:1281–1343, 2007). Moreover, we investigate the dynamical
properties of blow-up solutions, including L2-concentration, blow-up rates and limiting profile. When
4
N < p1 < 4

N−2 (4 < p1 < ∞ if N = 1, 2 < p1 < ∞ if N = 2), we prove that the blow-up solution

with bounded Ḣ sc -norm must concentrate at least a fixed amount of the Ḣ sc -norm and, also, its L pc -norm
must concentrate at least a fixed L pc -norm.

1. Introduction

Because of important applications in physics, nonlinear Schrödinger equations at-
tracted a great deal of attention frommathematicians in the past decades, see [1,18,19]
for a review. We recall some known results about blow-up solutions for the classical
nonlinear Schrödinger equation

iut + �u = λ|u|pu. (1.1)

Ginibre and Velo [7] established the local well-posedness of (1.1) in H1( see [1]
for a review). Glassey [8] proved the existence of blow-up solutions for the negative
energy and |x |u0 ∈ L2. Ogawa and Tsutsumi [17] proved the existence of blow-up
solutions in radial case without the restriction |x |u0 ∈ L2. Weinstein [21], Zhang [23]
obtained the sharp conditions of global existence for L2-critical and L2-supercritical
nonlinearities. Moreover, for the L2-critical nonlinearity, Weinstein [22] studied the
structure and formation of singularity of blow-up solutions with critical mass by the
concentration compact principle: the blow-up solution is close to the ground state in
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H1 up to scaling and phase parameters, and also translation in the non-radial case. Ap-
plying the variational methods, Merle and Raphaël [13] improved Weinstein’s results
and obtained the sharp decomposition of blow-up solutions with small supercritical
mass. By this sharp decomposition and spectral properties,Merle andRaphaël [12–15]
obtained a large body of breakthrough works, such as sharp blow-up rates, profiles.
Hmidi and Keraani [10] established the profile decomposition of bounded sequences
in H1 and gave a new and simple proof for some dynamical properties of blow-up
solutions in H1. These results have been generalized to other kinds of Schrödinger
equations, see [3–5,9,11,24–27].
In this paper, we will investigate blow-up solutions of the nonlinear Schrödinger

equation with combined power-type nonlinearities{
iut + �u = λ1|u|p1u + λ2|u|p2u,

u(0, x) = u0(x),
(1.2)

where u(t, x) : [0, T ∗) × R
N → C is a complex valued function and 0 < T ∗ ≤ ∞,

0 < p2 < p1 < 4
N−2 (0 < p2 < p1 ≤ ∞ if N = 1, 0 < p2 < p1 < ∞ if N = 2).

This equation arises as the leading-order model for propagation of intense laser beams
in an isotropic bulkmedium, seeSection 32.1 in [6] for a detailed explanation. Equation
(1.2) can also be considered as a simplified model resulting from the expansion of the
nonlinear Schrödinger equation with saturated nonlinearity, which is relevant in the
description of Bose superfluids at zero temperature, in the Hartree approximation, see
[18].
Tao et al. [20] undertook a comprehensive study for (1.2). More precisely, they

addressed questions related to local and global well-posedness, finite time blow-up,
and asymptotic behavior. This equation has Hamiltonian

E(u(t)) := 1

2

∫
RN

|∇u(t, x)|2dx + λ1

p1 + 2

∫
RN

|u(t, x)|p1+2dx

+ λ2

p2 + 2

∫
RN

|u(t, x)|p2+2dx . (1.3)

But there is no scaling invariance for this equation when p1 �= p2.
About the existence of blow-up solutions, they proved the following theorem.

THEOREM A. Let u0 ∈ � := {u ∈ H1, xu ∈ L2}, λ1 < 0, and 4
N < p1 ≤ 4

N−2
with N ≥ 3. Let y0 := Im

∫
r ū0∂r u0dx denote the weighted mass current and assume

y0 > 0. Then, blow-up occurs in each of the following three cases:

1) λ2 > 0, 0 < p2 < p1, and E(u0) < 0;
2) λ2 < 0, 4

N < p2 < p1, and E(u0) < 0;
3) λ2 < 0, 0 < p2 ≤ 4

N , and E(u0) + CM(u0) < 0 for some suitably large
constant C.

More precisely, in any of the above cases there exists 0 < T ∗ ≤ C
‖xu0‖2L2

y0
such

that

lim
t→T ∗ ‖∇u(t)‖L2 = ∞.
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As far as we know, when λ1 < 0, λ2 > 0, p1 = 4
N , 0 < p2 < 4

N , the existence
of blow-up solutions of (1.2) has not been proved yet. In this paper, we first prove
the existence of blow-up solutions and then give the sharp threshold mass of blow-
up and global existence in this case. Moreover, we will investigate some dynamical
properties of blow-up solutions of (1.2) with L2-critical or L2-supercritical nonlinear-
ity, including L2-concentration, Ḣ sc -concentration, L pc -concentration, blow-up rates,
and limiting profile.
To solve these problems, we mainly use the ideas from Hmidi and Keraani [10] and

Guo [9]. The dynamics of blow-up solutions for the L2-critical and L2-supercritical
nonlinear Schrödinger equation (1.1) has been discussed in Hmidi and Keraani [10]
and Guo [9], respectively. In these papers, the study of dynamics of blow-up solutions
relies heavily on the scale invariance of (1.1). Hence, the study of dynamics of blow-up
solutions for (1.2), which has no the scale invariance, is of particular interest. First,
we prove the existence of blow-up solutions and find the sharp threshold mass ‖Q‖L2

of blow-up and global existence for (1.2), where Q is the ground state solution of
(2.3). Then, in order to overcome the loss of scale invariance, we use the ground state
solution Q of (2.3) to describe the dynamical behavior of blow-up solutions to (1.2).
In the L2-supercritical case, we choose the ground states of equations (5.1) and (5.2)
to describe some concentration properties of blow-up solutions to (1.2).
This paper is organized as follows: in Sect. 2, we present some preliminaries. In

Sect. 3, we first prove the existence of blow-up solutions of (1.2) and then give the
sharp thresholdmass of blow-up and global existence. In Sect. 4,wewill consider some
dynamical properties of blow-up solutions of (1.2) with p1 = 4

N and 0 < p2 < 4
N ,

including L2-concentration, blow-up rate, and limiting profile. In Sect. 5, we will
obtain some concentration properties of blow-up solutions of (1.2) with 4

N < p1 <
4

N−2 and 0 < p2 < p1.
Notation. Throughout this paper, we use the following notation. C > 0 will stand

for a constant that may be different from line to line when it does not cause any
confusion. We often use the abbreviations Lr = Lr (RN ), Hs = Hs(RN ) in what
follows. � := {u ∈ H1, xu ∈ L2} denotes the energy space equipped with the norm
‖u‖� := ‖u‖H1 + ‖xu‖L2 . For s ∈ R, the pseudo-differential operator (−�)s is

defined by (̂−�)s f (ξ) = |ξ |2s f̂ (ξ), where ˆdenotes Fourier transform. We also use
homogeneous Sobolev space Ḣ s(RN ) = {u ∈ S ′(RN ); ∫ |ξ |2s | f̂ (ξ)|2dξ < ∞} with
its norm defined by ‖ f ‖Ḣ s = ‖(−�)s/2 f ‖L2 , where S ′(RN ) denotes the space of
tempered distribution on R

N . In particular, we use notation: sc = N
2 − 2

p1
and pc =

Np1
2 . Therefore, it follows from the Sobolev embedding that Ḣ sc (RN ) ↪→ L pc (RN ).

2. Preliminaries

Firstly, let us recall the local theory for the initial value problem (1.2) established
in [1].
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PROPOSITION 2.1. Let u0 ∈ H1, 0 < p1, p2 < 4
N−2 (0 < p1, p2 < ∞ if N = 1,

0 < p1, p2 < ∞ if N = 2). Then, there exists T = T (‖u0‖H1) such that (1.2) admits
a unique solution u ∈ C([0, T ], H1). Let [0, T ∗) be the maximal time interval on
which the solution u is well-defined, if T ∗ < ∞, then ‖u(t)‖H1 → ∞ as t ↑ T ∗.
Moreover, for all 0 ≤ t < T ∗, the solution u(t) satisfies the following conservation of
mass and energy

‖u(t)‖L2 = ‖u0‖L2 ,

E(u(t)) = E(u0),

where E(u(t)) defined by (1.3).

For more specific results concerning the Cauchy problem (1.2), we refer the reader
to [1]. In addition, by some basic calculations, we have the following result (see [1]).

LEMMA 2.2. Assume that u0 ∈ �, and the corresponding solution u of (1.2) exists
on the interval [0, T ∗). Then, for all t ∈ [0, T ∗), it follows u(t) ∈ �. Moreover, let
J (t) = ∫

RN |xu(t, x)|2dx, then

J ′(t) = −4Im
∫
RN

u(t, x)x · ∇ū(t, x)dx, (2.1)

and

J ′′(t) = 8
∫
RN

|∇u(t, x)|2dx + 4Nλ1 p1
p1 + 2

∫
RN

|u(t, x)|p1+2dx

+4Nλ2 p2
p2 + 2

∫
RN

|u(t, x)|p2+2dx . (2.2)

Finally, we recall the following useful result of Weinstein [21] relating the ground
states of (2.3) with the best constant in a Gagliardo–Nirenberg inequality.

LEMMA 2.3. [21] Let p = 4
N and Q be the ground state solution of the following

elliptic equation
− �Q + Q = |Q|p+2Q in R

N . (2.3)

It follows that the optimal constant in the Gagliardo–Nirenberg inequality

1

p + 2
‖u‖p+2

L p+2 ≤ C

2
‖u‖p

L2‖∇u‖2L2 , (2.4)

is C = ‖Q‖−p
L2 .

REMARK. When N = 1, this lemma was proved by Nagy in [16].

3. The sharp threshold mass of blow-up and global existence

By the local well-posedness theory of the nonlinear Schrödinger equation, the so-
lution of (1.2) with small initial data exists globally, and for some large initial data,
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the solution may blow up in finite time. Thus, whether there exists a sharp thresh-
old of blow-up and global existence for (1.2) is of particular interest. On the other
hand, the following problems are very important from the view-point of physics. Un-
der what conditions will the condensate become unstable to collapse (blow-up)? And
under what conditions will the condensate exist for all time (global existence)? Espe-
cially the sharp thresholds for blow-up and global existence are pursued strongly (see
[1,2,18,21,23,24] and their references).
To solve this problem for (1.2), there exists two major difficulties. One is the loss

of scale invariance for (1.2); the other is that the second-order derivative of J (t) =∫
RN |xu(t, x)|2dx is the following form:

J ′′(t) = 16E(u0) + 4Np2 − 16

p2 + 2

∫
RN

|u(t, x)|p2+2dx .

Because
∫
RN |u(t, x)|p2+2dx is a positive uncertain function,whichmaybeunbounded

with respect to time t , it is hard to choose E(u0) to ensure the existence of blow-up
solutions.
In the following theorem, by using the scaling argument and the inequality (2.4),

we obtain the existence of blow-up solutions for (1.2) and the sharp threshold mass
of blow-up and global existence for (1.2).

THEOREM 3.1. Let u0 ∈ H1, λ1 = −1, λ2 = 1, p1 = 4
N and 0 < p2 < 4

N .
Assume that Q is the ground state solution of (2.3). Then, we have the following sharp
threshold mass of blow-up and global existence.

(i) If ‖u0‖L2 < ‖Q‖L2 , then the solution of (1.2) exists globally.

(ii) If the initial data u0 = cρ
N
2 Q(ρx) satisfies |x |u0 ∈ L2, where the complex

number c satisfying |c| ≥ 1, and the real number ρ > 0, then the solution u of
(1.2) with initial data u0 blows up in finite time.

REMARK. From Remark 6.6.2 in [1], we infer that the critical value about the
initial data for global existence of (1.1) and (1.2) is the same.

Proof. (i) We deduce from (1.3) and (2.4) that

E(u0) = E(u(t)) = 1

2

∫
RN

|∇u(t, x)|2dx − 1

p1 + 2

∫
RN

|u(t, x)|p1+2dx

+ 1

p2 + 2

∫
RN

|u(t, x)|p2+2dx

≥
(
1

2
− ‖u0‖p1

L2

2‖Q‖p1
L2

)
‖∇u(t)‖2L2 .

Due to ‖u0‖L2 < ‖Q‖L2 , we have that ‖∇u(t)‖L2 is uniformly bounded for all time
t . Therefore,
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(i) follows from the conservation of mass and Proposition 2.1.
(ii) Since |x |u0 ∈ L2, J (t) = ∫

RN |xu(t, x)|2dx is well-defined, and it follows from
Lemma 2.2 that

J ′′(t) = 16E(u0) + 4Np2 − 16

p2 + 2

∫
RN

|u(t, x)|p2+2dx . (3.1)

By the definition of initial data u0(x) = cρ
N
2 Q(ρx) and the Pohoz̆aev identity for

equation (2.3), i.e., 1
2‖∇Q‖2

L2 = 1
p1+2‖Q‖p1+2

L p1+2 , we deduce that

E(u0) = |c|2ρ2

2

∫
RN

|∇Q(x)|2dx − |c|p1+2ρ2

p1 + 2

∫
RN

|Q(x)|p1+2dx

+ |c|p2+2ρ
N
2 p2

p2 + 2

∫
RN

|Q(x)|p2+2dx

= −|c|2ρ2

2
(|c|p1 − 1)‖∇Q‖2L2 + |c|p2+2ρ

N
2 p2

p2 + 2

∫
RN

|Q(x)|p2+2dx . (3.2)

Now, taking ρ such that

2|c|p2‖Q‖p2+2
L p2+2

(p2 + 2)(|c|p1 − 1)‖∇Q‖2
L2

< ρ2− N
2 p2 .

This implies E(u0) < 0. It follows from (3.1) that J ′′(t) < 16E(u0) < 0. By the
standard concave argument, the solution u of (1.2) with the initial data u0 blows up
in finite time. �

4. Dynamic of blow-up solutions in the case of L2-critical

In this section, we investigate some dynamical properties of blow-up solutions for
(1.2) with λ1 = −1, λ2 = 1, p1 = 4

N , and 0 < p2 < 4
N . These results are closed

related to the results obtained for the classical nonlinear Schrödinger equation (1.1)
with p = 4

N by Hmidi and Keraani [10]. For this aim, we firstly recall the following
refined compactness result which can be proved by using the profile decomposition
of bounded sequences in H1 and the inequality (2.4), see [10].

LEMMA 4.1. Let {un}∞n=1 be a bounded sequence in H1, such that

lim sup
n→∞

‖∇un‖L2 ≤ M, lim sup
n→∞

‖un‖L4/N+2 ≥ m > 0.

Then, there exist V ∈ H1 and {xn}∞n=1 ⊂ R
N such that, up to a subsequence,

un(· + xn) ⇀ V weakly in H1

with

‖V ‖L2 ≥
(

N

N + 2

) N
4 mN/2+1

MN/2 ‖Q‖L2 .

where Q is the ground state solution of (2.3).
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THEOREM 4.2. (L2-concentration) Let u0 ∈ H1, λ1 = −1, λ2 = 1, p1 = 4
N , and

0 < p2 < 4
N . If the solution u of (1.2) blows up in finite time T ∗ > 0. Let a(t) be a

real-valued nonnegative function defined on [0, T ∗) satisfying a(t)‖∇u(t)‖L2 → ∞
as t → T ∗. Then there exists x(t) ∈ R

N such that

lim inf
t→T ∗

∫
|x−x(t)|≤a(t)

|u(t, x)|2dx ≥
∫
RN

|Q(x)|2dx . (4.1)

where Q is the ground state solution of (2.3).

REMARK. Theorem4.2 gives the L2-concentration and rate of L2-concentration of
blow-up solutions of (1.2). Indeed, we can choose a(t) = 1

‖∇u(t)‖1−δ

L2
with 0 < δ < 1.

It is obvious that limt→T ∗ a(t) = 0 and a(t) satisfies the assumption in Theorem 4.2.
Applying Theorem 4.2, if u is a blow-up solution of (1.2) and T ∗ its blow-up time,
then for every r > 0, there exists a function x(t) ∈ R

N such that

lim inf
t→T ∗

∫
|x−x(t)|≤r

|u(t, x)|2dx ≥
∫
RN

|Q(x)|2dx .

Meanwhile, it follows from the choice ofa(t) that for any functiona(t) ≤ 1
‖∇u(t)‖1−δ

L2
,

(4.1) holds, which implies that the rate of L2-concentration of blow-up solutions of
(1.2) is 1

‖∇u(t)‖1−δ

L2
with 0 < δ < 1.

Proof. Set

ρ(t) = ‖∇Q‖L2/‖∇u(t)‖L2 and v(t, x) = ρ
N
2 (t)u(t, ρ(t)x).

Let {tn}∞n=1 be an any time sequence such that tn → T ∗, ρn := ρ(tn) and vn(x) :=
v(tn, x). Then, the sequence {vn} satisfies

‖vn‖L2 = ‖u(tn)‖L2 = ‖u0‖L2 , ‖∇vn‖L2 = ρn‖∇u(tn)‖L2 = ‖∇Q‖L2 . (4.2)

Observe that

H(vn) := 1

2

∫
RN

|∇vn(x)|2dx − 1

p1 + 2

∫
RN

|vn(x)|p1+2dx

= ρ2
n

(
1

2

∫
RN

|∇u(tn, x)|2dx − 1

p1 + 2

∫
RN

|u(tn, x)|p1+2dx

)

= ρ2
n

(
E(u0) − 1

p2 + 2

∫
RN

|u(tn, x)|p2+2dx

)
. (4.3)

Thus, applying the following Gagliardo–Nirenberg inequality

∫
RN

|u(x)|p2+2dx ≤ C‖u‖p2+2− Np2
2

L2 ‖∇u‖
Np2
2

L2 , for 0 < p2 <
4

N
,
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we deduce that

|H(vn)| ≤ ρ2
n

(
|E(u0)| + 1

p2 + 2

∫
RN

|u(tn, x)|p2+2dx

)

≤ |E(u0)|‖∇Q‖2
L2

‖∇u(tn)‖2L2

+ C
‖∇Q‖2

L2‖∇u(tn)‖
Np2
2

L2

‖∇u(tn)‖2L2

→ 0 as n → ∞, (4.4)

which implies
∫
RN |vn(x)|p1+2dx → (2/N + 1)‖∇Q‖2

L2 .

Set mp1+2 = (2/N + 1)‖∇Q‖2
L2 and M = ‖∇Q‖L2 . Then it follows from

Lemma 4.1 that there exist V ∈ H1 and {xn}∞n=1 ⊂ R
N such that, up to a subse-

quence,
vn(· + xn) = ρ

N/2
n u(tn, ρn(· + xn)) ⇀ V weakly in H1 (4.5)

with
‖V ‖L2 ≥ ‖Q‖L2 . (4.6)

Note that

a(tn)

ρn
= a(tn)‖∇u(tn)‖L2

‖∇Q‖L2
→ ∞, as n → ∞.

Then for every r > 0, there exists n0 > 0 such that for every n > n0, rρn < a(tn).
Therefore, using (4.5), we obtain

lim inf
n→∞ sup

y∈RN

∫
|x−y|≤a(tn)

|u(tn, x)|2dx ≥ lim inf
n→∞ sup

y∈RN

∫
|x−y|≤rρn

|u(tn, x)|2dx

≥ lim inf
n→∞

∫
|x−xn |≤rρn

|u(tn, x)|2dx

= lim inf
n→∞

∫
|x |≤r

ρN
n |u(tn, ρn(x + xn))|2dx

= lim inf
n→∞

∫
|x |≤r

|v(tn, x + xn)|2dx

≥ lim inf
n→∞

∫
|x |≤r

|V (x)|2dx, for every r > 0,

which means that

lim inf
n→∞ sup

y∈RN

∫
|x−y|≤a(tn)

|u(tn, x)|2dx ≥
∫
RN

|V (x)|2dx .

Since the sequence {tn}∞n=1 is arbitrary, we obtain

lim inf
t→T ∗ sup

y∈RN

∫
|x−y|≤a(t)

|u(t, x)|2dx ≥
∫
RN

|Q(x)|2dx . (4.7)
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Observe that for every t ∈ [0, T ∗), the function g(y) := ∫
|x−y|≤a(t) |u(t, x)|2dx is

continuous on y ∈ R
N and g(y) → 0 as |y| → ∞. So there exists a function

x(t) ∈ R
N such that for every t ∈ [0, T ∗)

sup
y∈RN

∫
|x−y|≤a(t)

|u(t, x)|2dx =
∫

|x−x(t)|≤a(t)
|u(t, x)|2dx .

This and (4.7) yield (4.1). �

In the following theorem, we study the limiting profile of blow-up solutions of (1.2).

THEOREM 4.3. Let u0 ∈ H1, λ1 = −1, λ2 = 1, p1 = 4
N , and 0 < p2 < 4

N .
Assume ‖u0‖L2 = ‖Q‖L2 , and the corresponding solution u of (1.2) blows up in finite
time T ∗ > 0, then there exist x(t) ∈ R

N and θ(t) ∈ [0, 2π) such that

ρN/2(t)u(t, ρ(t)(· + x(t)))eiθ(t) → Q strongly in H1, as t → T ∗, (4.8)

where ρ(t) = ‖∇Q‖L2‖∇u(t)‖L2 .

Proof. We use the notations in the proof of Theorem 4.2. Assume that ‖u0‖L2 =
‖Q‖L2 . Recall that we have verified that ‖V ‖L2 ≥ ‖Q‖L2 in the proof of Theorem 4.2.
Whence

‖Q‖L2 ≤ ‖V ‖L2 ≤ lim inf
n→∞ ‖vn‖L2 = lim inf

n→∞ ‖u(tn)‖L2 = ‖u0‖L2 = ‖Q‖L2 ,

and then,
lim
n→∞ ‖vn‖L2 = ‖V ‖L2 = ‖Q‖L2 , (4.9)

which implies

vn(· + xn) → V strongly in L2 as n → ∞.

We infer from the inequality (2.4) that

‖vn(· + xn) − V ‖p1+2
L p1+2 ≤ C‖vn(· + xn) − V ‖p1

L2‖∇(vn(· + xn) − V )‖2L2 .

From ‖∇vn(· + xn)‖L2 ≤ C , we get

vn(· + xn) → V in L p1+2 as n → ∞.

Next, we will prove that vn(·+ xn) converges to V strongly in H1. For this aim, we
estimate as follows:

0 = lim
n→∞ H(vn)

= 1

2

∫
RN

|∇Q(x)|2dx − 1

p1 + 2
lim
n→∞

∫
RN

|vn(x)|p1+2dx

= 1

2

∫
RN

|∇Q(x)|2dx − 1

p1 + 2

∫
RN

|V (x)|p1+2dx . (4.10)
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Thus, we infer from the inequality (2.4) that

1

2

∫
RN

|∇Q(x)|2dx = 1

p1 + 2

∫
RN

|V (x)|p1+2dx ≤ 1

2

‖V ‖p1
L2

‖Q‖p1
L2

‖∇V ‖2L2

= 1

2
‖∇V ‖2L2 . (4.11)

On the other hand, we deduce from (4.2) that ‖∇V ‖L2 ≤ lim infn→∞ ‖∇vn(· +
xn)‖L2 = ‖∇Q‖L2 . Hence, we have ‖Q‖H1 = ‖V ‖H1 and

vn(· + xn) → V strongly in H1 as n → ∞. (4.12)

This and (4.11) imply that

H(V ) = 1

2

∫
RN

|∇V (x)|2dx − 1

p1 + 2

∫
RN

|V (x)|p1+2dx = 0.

Up to now, we have verified that

‖V ‖L2 = ‖Q‖L2 , ‖∇V ‖L2 = ‖∇Q‖L2 and H(V ) = 0.

The variational characterization of the ground state implies that

V (x) = eiθ Q(x + x0) for some θ ∈ [0, 2π), x0 ∈ R
N

and

ρ
N/2
n u(tn, ρn(· + x0)) → eiθ Q(· + x0) strongly in H1 as n → ∞.

Since the sequence {tn}∞n=1 is arbitrary, we infer that there are two functions x(t) ∈ R
N

and θ(t) ∈ [0, 2π) such that

ρN/2(t)eiθ(t)u(t, ρ(t)(x + x(t))) → Q strongly in H1 as t → T ∗.

�

In the following theorem, we will prove that the blow-up solution |u(t, x)|2 like a
δ-function as t → T ∗ at the point x = x0, which implies that the point x0 concentrates
all mass of blow-up solution of (1.2).

THEOREM 4.4. Let u0 ∈ �, λ1 = −1, λ2 = 1, p1 = 4
N , and 0 < p2 < 4

N . If the
solution u of (1.2) blows up in finite time T ∗ > 0 and ‖u0‖L2 = ‖Q‖L2 , then there
exists x0 ∈ R

N such that

|u(t, x)|2 → ‖Q‖2L2δx0 (4.13)

in the sense of distribution as t → T ∗.
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Proof. According to Theorem 4.2, it follows that for all r > 0

lim inf
t→T ∗

∫
|x−x(t)|<r

|u(t, x)|2dx ≥ ‖Q‖2L2 . (4.14)

This, together with the conservation of mass ‖u(t)‖2
L2 = ‖u0‖2L2 = ‖Q‖2

L2 , implies
that for all r > 0

lim inf
t→T ∗

∫
|x−x(t)|<r

|u(t, x)|2dx = ‖Q‖2L2 .

This yields
|u(t, x + x(t))|2 → ‖Q‖2L2δx=0. (4.15)

By using the inequality (2.4), for any ε > 0 and any real-valued function θ defined
on R

N , we have

H(e±iεθu) ≥ 1

2

∫
RN

|∇(e±iεθu)|2dx
(
1 − ‖u‖p1

L2

‖Q‖p1
L2

)
= 0.

Therefore,

0 ≤ H(e±iεθu) = ε2

2

∫
RN

|u|2|∇θ |2dx ∓ ε Im
∫
RN

ū∇u · ∇θdx + H(u),

which implies that
∣∣∣∣∓Im

∫
RN

ū∇u · ∇θdx

∣∣∣∣ ≤
(
2H(u)

∫
RN

|u|2|∇θ |2dx
)1/2

. (4.16)

For any j = 1, 2, . . . , N , it follows from (4.16) and H(u(t)) ≤ E(u(t)) = E(u0)
that ∣∣∣∣ ddt

∫
RN

|u(t, x)|2x j dx
∣∣∣∣ = 2

∣∣∣∣
∫
RN

ū∂ j udx

∣∣∣∣
= 2

∣∣∣∣
∫
RN

ū∇u∇x jdx

∣∣∣∣
≤ 2

(
2H(u)

∫
RN

|u|2|∇x j |2dx
)1/2

≤ C.

Let tm, tk ∈ (0, T ∗) be any two sequences satisfying limm→∞ tm = limk→∞ tk = T ∗.
Then for any j = 1, 2, . . . , N , we have∣∣∣∣

∫
RN

|u(tm, x)|2x j dx −
∫
RN

|u(tk, x)|2x j dx
∣∣∣∣ ≤ C |tm − tk | → 0 as m, k → ∞,

which implies that

lim
t→T ∗

∫
RN

|u(t, x)|2x j dx exists for any j = 1, 2, . . . , N .
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Set

x0 = ‖Q‖−2
L2 lim

t→T ∗

∫
RN

|u(t, x)|2xdx .
Then

lim
t→T ∗

∫
RN

|u(t, x)|2xdx = x0‖Q‖2L2 . (4.17)

On the other hand, we infer from Lemma 2.2 that there is a constant c0 such that∫
RN

|x |2|u(t, x)|2dx ≤ c0.

This yields
∫
RN

|x |2|u(t, x + x(t))|2dx ≤ 2
∫
RN

|x + x(t)|2|u(t, x + x(t))|2dx

+ 2|x(t)|2
∫
RN

|u(t, x + x(t))|2dx
≤ 2c0 + 2|x(t)|2‖u0‖2L2 . (4.18)

We infer from (4.15) that

lim sup
t→T ∗

|x(t)|2‖Q‖2L2 = lim sup
t→T ∗

∫
|x |<1

|x + x(t)|2|u(t, x + x(t))|2dx

≤
∫
RN

|x |2|u(t, x)|2dx ≤ c0.

Thus,

lim sup
t→T ∗

|x(t)| ≤
√
c0

‖Q‖L2
. (4.19)

Combining (4.18) and (4.19), we obtain

lim sup
t→T ∗

∫
RN

|x |2|u(t, x + x(t))|2dx ≤ C.

Hence, for any ε > 0, there exists R0 = R0(ε) such that

lim sup
t→T ∗

∣∣∣∣
∫

|x |≥R0

x |u(t, x + x(t))|2dx
∣∣∣∣ ≤ C

R0
< ε.

It follows from (4.15) that

lim sup
t→T ∗

∣∣∣∣
∫
RN

|u(t, x)|2xdx − x(t)‖Q‖2L2

∣∣∣∣ = lim sup
t→T ∗

∣∣∣∣
∫
RN

|u(t, x)|2(x − x(t))dx

∣∣∣∣
≤ lim sup

t→T ∗

∣∣∣∣
∫

|x |≤R0

|u(t, x + x(t))|2xdx
∣∣∣∣

+ ε

≤ ε, (4.20)
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which, together with (4.17) implies that limt→T ∗ x(t) = x0. Therefore,

lim sup
t→T ∗

∫
RN

|u(t, x)|2xdx = ‖Q‖2L2x0,

and
|u(t, x)|2 → ‖Q‖2L2δx=x0 in the sence of distribution as t → T ∗.

�

The following theorem gives the lower bound for the blow-up rate of blow-up
solutions with critical mass ‖u0‖L2 = ‖Q‖L2 .

THEOREM 4.5. Let u0 ∈ �, λ1 = −1, λ2 = 1, p1 = 4
N , and 0 < p2 < 4

N . If the
solution u of (1.2) blows up in finite time T ∗ > 0 and ‖u0‖L2 = ‖Q‖L2 , then there
exists a constant C > 0 such that

‖∇u(t)‖L2 ≥ C

T ∗ − t
, ∀t ∈ [0, T ∗). (4.21)

Proof. Let h ∈ C∞
0 (RN ) be a nonnegative radial function such that

h(x) = h(|x |) = |x |2, i f |x | < 1 and |∇h(x)|2 ≤ Ch(x).

For A > 0, we define hA(x) = A2h( x
A ) and gA(t) = ∫

hA(x − x0)|u(t, x)|2dx with
x0 defined by (4).
From (4.16), for every t ∈ [0, T ∗), we have

∣∣∣∣ ddt gA(t)

∣∣∣∣ = 2

∣∣∣∣∣∣Im
N∑
j=1

∫
RN

ū(t, x)∇u(t, x)∇hA(x − x0)dx

∣∣∣∣∣∣
≤ 2

√
E(u0)

(∫
RN

|u(t, x)|2|∇hA(x − x0)|2dx
)1/2

≤ C
√
gA(t), (4.22)

which implies ∣∣∣∣ ddt
√
gA(t)

∣∣∣∣ ≤ C.

Integrating on both sides, we obtain∣∣∣√gA(t) − √
gA(t1)

∣∣∣ ≤ C |t − t1|. (4.23)

It follows from (4.13) that

gA(t1) → ‖Q‖L2hA(0) = 0 as t1 → T ∗.

Therefore, letting t1 → T ∗ in (4.23), it follows that

gA(t) ≤ C(T ∗ − t)2.
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Now fix t ∈ [0, T ∗) and let A go to infinity, we have∫
RN

|x − x0|2|u(t, x)|2dx ≤ C(T ∗ − t)2.

Then the uncertainty principle
(∫

RN
|u(t, x)|2dx

)2

≤
(∫

RN
|x − x0|2|u(t, x)|2dx

) (∫
RN

|∇u(t, x)|2dx
)

,

implies a lower bound of the blow-up rate

‖∇u(t)‖L2 ≥ C

T ∗ − t
, ∀t ∈ [0, T ∗).

�

5. The L2-supercritical case

When λ1 < 0, λ2 ∈ R, 4
N < p1 < 4

N−2 and 0 < p2 < p1, for some large initial
data, the solutionmay blow up in finite time. In order to investigate some concentration
properties of the blow-up solutions to (1.2) in this case, we need the following version
of compactness lemma which comes from [9].

LEMMA 5.1. Let {un}∞n=1 be a bounded sequence in Ḣ sc ∩ Ḣ1, such that

lim sup
n→∞

‖∇un‖L2 ≤ M, lim sup
n→∞

‖un‖L p1+2 ≥ m > 0.

Then, there exist {x1n}∞n=1, {x2n }∞n=1 ⊂ R
N , V1 ∈ Ḣ sc ∩ Ḣ1, and V2 ∈ L pc ∩ Ḣ1 such

that, up to a subsequence,

un
(
· + x1n

)
⇀ V1 weakly in Ḣ sc ∩ Ḣ1,

with

‖V1‖p1
Ḣ sc

≥ 2mp1+2

(p1 + 2)M2 ‖Q‖p1
Ḣ sc

,

and
un

(
· + x2n

)
⇀ V2 weakly in L pc ∩ Ḣ1,

with

‖V2‖2L pc ≥ 2mp1+2

(p1 + 2)M2 ‖R‖2L pc ,

where Q and R are the solutions of the following elliptic equations

− �Q + p1
2

(−�)sc Q = |Q|p1Q, (5.1)

and
− �R + |R|pc−2R = |R|p1R, (5.2)

respectively.
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In the following theorem, we will use the ground states of equations (5.1) and (5.2)
to describe some concentration properties of blow-up solutions to (1.2). This result is
closed related to the result obtained for the classical nonlinear Schrödinger equation
(1.1) with 4

N < p < 4
N−2 by Guo [9].

THEOREM 5.2. Let λ1 < 0, λ2 ∈ R, 4
N < p1 < 4

N−2 , 0 < p2 < p1 and

u0 ∈ Ḣ sc ∩ Ḣ1. If the solution u of (1.2) blows up in finite time T ∗ > 0 and satisfies

sup
t∈[0,T ∗)

‖u(t)‖Ḣ sc < ∞. (5.3)

Assume that λ(t) > 0 such that

λ(t)‖∇u(t)‖
1
sc
L2 → ∞, (5.4)

as t → T ∗. Then, there exist x1(t), x2(t) ∈ R
N such that

lim inf
t→T ∗

∫
|x−x1(t)|≤λ(t)

|(−�)
sc
2 u(t, x)|2dx ≥ ‖Q‖2

Ḣ sc , (5.5)

and

lim inf
t→T ∗

∫
|x−x2(t)|≤λ(t)

|u(t, x)|pcdx ≥ ‖R‖pc
L pc , (5.6)

where Q and R solve the elliptic equations (5.1) and (5.2), respectively.

Proof. Set

ρ(t) = ‖∇Q‖
1

1−sc
L2 /‖∇u(t)‖

1
1−sc
L2 and v(t, x) = ρ

2
p1 (t)u(t, ρ(t)x).

Let {tn}∞n=1 be an any time sequence such that tn →T ∗,ρn =ρ(tn) and vn(x)=v(tn, x).
Then, it follows from assumption (5.3) that vn satisfies ‖vn‖Ḣ sc = ‖u(tn)‖Ḣ sc < ∞
uniformly in n. Moreover, by some direct computations, we obtain

‖∇vn‖L2 = ρ1−sc
n ‖∇u(tn)‖L2 = ‖∇Q‖L2 ,

and

H(vn) := 1

2

∫
RN

|∇vn(x)|2dx + λ1

p1 + 2

∫
RN

|vn(x)|p1+2dx

= ρ2(1−sc)
n

(
1

2

∫
RN

|∇u(tn, x)|2dx + λ1

p1 + 2

∫
RN

|u(tn, x)|p1+2dx

)

= ρ2(1−sc)
n

(
E(u(tn)) − λ2

p2 + 2

∫
RN

|u(tn, x)|p2+2dx

)

= ‖∇Q‖2
L2

‖∇u(tn)‖2L2

(
E(u0) − λ2

p2 + 2

∫
RN

|u(tn, x)|p2+2dx

)
. (5.7)
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In the following, we will prove H(vn) → 0 as n → ∞, which implies
∫
RN |vn(x)

|p+2dx → 2‖∇Q‖2
L2 .

When 0 < p2 < 4
N , note that the following Gagliardo–Nirenberg inequality

∫
RN

|u(x)|p2+2dx ≤ C‖u‖
2(p2+2)−Np2

2
L2 ‖∇u‖

Np2
2

L2 . (5.8)

By the similar argument as (4.4), it follows that H(vn) → 0 as n → ∞.
When 4

N ≤ p2 < p1 < 4
N−2 and Np1

2 < p2 + 2, we can obtain the following
Gagliardo–Nirenberg inequality∫

RN
|u(x)|p2+2dx ≤ C‖u‖(p2+2)(1−θ1)

L
Np1
2

‖∇u‖θ1(p2+2)
L2 , (5.9)

where θ1 = 4p2+8−2Np1
(p2+2)(2p1+4−Np1)

. Thus, we deduce from θ1(p2+2) < 2 that H(vn) → 0
as n → ∞.

When 4
N ≤ p2 < p1 < 4

N−2 and Np1
2 > p2 + 2, we have

∫
RN

|u(x)|p2+2dx ≤ C‖u‖(1−θ2)(p2+2)
L2 ‖u‖θ2(p2+2)

L
Np1
2

≤ C‖u‖(1−θ2)(p2+2)
L2 ‖u‖θ2(p2+2)

Hsc ,

(5.10)
where θ2 = Np1 p2

(p2+2)(Np1−4) . This inequality and the assumption (5.3) imply that
H(vn) → 0 as n → ∞.
When 4

N ≤ p2 < p1 < 4
N−2 and Np1

2 = p2 + 2, it follows from the Sobolev
embedding that ∫

RN
|u(x)|p2+2dx = ‖u‖p2+2

L
Np1
2

≤ C‖u‖p2+2
Hsc , (5.11)

which, together with the assumption (5.3), implies that H(vn) → 0 as n → ∞.
Set m = 2‖∇Q‖2

L2 and M = ‖∇Q‖2
L2 . Then it follows from Lemma 4.1 that there

exist V ∈ Ḣ sc ∩ Ḣ1 and {xn}∞n=1 ⊂ R
N such that, up to a subsequence,

vn(· + xn) = ρnu(tn, ρn · +xn) ⇀ V weakly in Ḣ sc ∩ Ḣ1

with
‖V ‖2

Ḣ sc ≥ m

2M
‖Q‖2

Ḣ sc . (5.12)

By the definition of Ḣ sc , we have

(−�)
sc
2 ρnu(tn, ρn · +xn) ⇀ (−�)

sc
2 V weakly inL2.

Thus, for any R > 0,∫
|x |≤R

|(−�)
sc
2 V (x)|2dx ≤ lim inf

n→∞

∫
|x−xn |≤ρn R

|(−�)
sc
2 u(tn, x)|2dx .

In view of the assumption λ(tn)/ρn → ∞, this implies immediately∫
|x |≤R

|(−�)
sc
2 V |2dx ≤ lim inf

n→∞ sup
y∈RN

∫
|x−y|≤λ(tn)

|(−�)
sc
2 u(tn, x)|2dx .
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Since the sequence {tn}∞n=1 is arbitrary, we obtain∫
|x |≤R

|(−�)
sc
2 V |2dx ≤ lim inf

n→∞ sup
y∈RN

∫
|x−y|≤λ(t)

|(−�)
sc
2 u(t, x)|2dx .

Observe that for every t ∈ [0, T ), the function y �→ ∫
|x−y|≤λ(t) |(−�)

sc
2 u(t, x)|2dx

is continuous and goes to zero at infinity. Thus, there exists x(t) ∈ R
N such that

∫
|x−x(t)|≤λ(t)

|(−�)
sc
2 u(t, x)|2dx = sup

y∈RN

∫
|x−y|≤λ(t)

|(−�)
sc
2 u(t, x)|2dx .

This and (5.12) yield (5.5). The proof of (5.6) is similar, so we omit it. This completes
the proof. �
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