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Abstract. This paper is devoted to analyze the Dirichlet problem for a nonlinear elliptic equation involving
the 1-Laplacian and a total variation term, that is, the inhomogeneous case of the equation arising in the
level set formulation of the inverse mean curvature flow. We study this problem in an open bounded set
with Lipschitz boundary. We prove an existence result and a comparison principle for nonnegative L1-
data. Moreover, we search the summability that the solution reaches when more regular L p-data, with
1 < p < N , are considered and we give evidence that this summability is optimal. To prove these results,
we apply the theory of L∞-divergence measure fields which goes back to Anzellotti (Ann Mat Pura Appl
(4) 135:293–318, 1983). The main difficulties of the proofs come from the absence of a definition for the
pairing of a general L∞-divergence measure field and the gradient of an unbounded BV -function.

1. Introduction

Our aim in this paper is to analyze the following Dirichlet problem:

{
−div

(
Du

|Du|
)

+ |Du| = f (x) in �,

u = 0 on ∂�,
(1)

where � is a bounded open subset of RN with Lipschitz boundary ∂� and f is a
nonnegative function belonging to L1(�). As usual when the 1-Laplacian operator is
considered, the natural energy space to study this problem is BV (�), that is, the space
of all functions of bounded variation.

The homogeneous problem, in an unbounded domain, arises in the level set formu-
lation of the inverse mean curvature flow, namely

⎧⎪⎨
⎪⎩

−div
(

Du
|Du|

)
+ |Du| = 0 in �,

u = 0 on ∂�,

u(x) → ∞ as |x | → ∞.

(2)
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The inverse mean curvature flow is a one-parameter family of hypersurfaces {�t }t≥0

whose normal velocity Vn(t) at each time t equals the inverse of its mean curvature
H(t). Given �0, the problem is to find F : �0 × [0, T ] → R

N such that

∂F

∂t
= ν

H
, t ≥ 0, (3)

where ν(t)denotes the unit outward normal to�t = F(�0, t). The level set formulation

(2) was introduced in [13] (see also [14,21]); observe that div
(

Du
|Du|

)
gives the mean

curvature of the level sets and |Du| yields the inverse of the speed. In the case that �

includes a bounded connected component, it produces a sudden phenomenon called
fattening by which this component disappear instantaneously.

If a nonnegative source is considered, as in (1), then (3) becomes

∂F

∂t
= ν

H + source
≤ ν

H
, t ≥ 0,

so that the datum damps the flux. This inhomogeneous inverse mean curvature flow
was studied in [18].

Although the homogeneous problem is not interesting in bounded domains because
it leads to the trivial solution, this does not occur in the non-homogeneous case since
the source can override the fattening phenomenon (at least when f is not very small).
Problem (1) in bounded domains has been considered in [17] for data f ∈ L p(�), with
p > N , seeking bounded solutions, and in [16] when data belong to the Marcinkiewicz
space LN ,∞(�), looking for unbounded variational solutions. Existence and unique-
ness results have been obtained in both papers for any given nonnegative datum.

It is worth mentioning that the gradient term is essential to get existence and unique-
ness results. In [15] (see also [9,19] for more general data), it is shown that there exist
solutions to problem {

−div
(

Du
|Du|

)
= f (x) in �,

u = 0 on ∂�,

only when data are small enough. On the other hand, uniqueness cannot be expected
since if u is a solution and g is a real increasing smooth function, then v = g(u) should
be a solution as well. Therefore, the total variation term has a regularizing effect.

Our purpose is to go a step further and study problem (1) when data are merely
integrable functions. This kind of non-variational problems has extensively been stud-
ied for problems involving the p-Laplacian (1 < p ≤ N ). In this framework, there
are two different formulations: that of entropy solution introduced in [4] (see also [5])
and that of renormalized solution, for which we refer to [10]. Both approaches sys-
tematically use truncations of solutions. In [2], in the framework of the 1-Laplacian,
the authors also introduce a notion of solution by means of truncations. We follow the
same concept, but adapted to our situation. Indeed, since the regularizing effect of the
total variation yields u

∣∣
∂�

= 0, the boundary condition holds in the sense of traces.
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Another feature deriving from the regularizing effect is u ∈ BV (�) without jump
part. Nevertheless, this fact does not allow us to define (following Anzellotti, see [3])
the pairing of a general L∞-divergence measure vector field z and the solution u.
Hence, truncations must remain in the definition of solution. Instead of products of
the form (z, Du), we have to handle with products such as (z, De−u) and (e−uz, Du).
Beyond these kind of technical complication, the existence theorem holds as it was
expected, and we will only make explicit those parts of the proof which are dif-
ferent of that for regular data in [16, Theorem 4.3]. Much more interesting is the
comparison principle. We point out that, even in the context of bounded solutions,
its proof is new and simpler than that of the uniqueness result in [17]. We also in-
vestigate solutions when data belong to L p(�), with 1 < p < N , finding that the

solution lies in L
Np
N−p (�). Note that Lebesgue spaces continuously adjust with the

known cases p = 1 (in which u ∈ BV (�) ⊂ L
N

N−1 (�)) and p = N (see [16,
Proposition 4.7]).

This paper is organized as follows. In Sect. 2, we introduce some definitions and
notation and we also give some preliminaries results that we will need. Among these
results, we foreground Proposition 2.4 for which we supply a new proof. This propo-
sition is essential to deal with pairings involving functions of the solution (such as
truncations) through Proposition 2.7. Section 3 is devoted to prove the existence re-
sult and the comparison principle. In Sect. 4, we show the best summability that the
solution can get when data belong to L p(�), with 1 < p < N . Finally, in the last
section we show examples of radial solutions, which give evidence that the obtained
regularity is optimal.

2. Preliminaries

In this section, we will introduce some notation and auxiliary results which will be
used throughout this paper. In what follows, we will consider N ≥ 2, and given a set
E , we will write HN−1(E) to denote its (N − 1)-dimensional Hausdorff measure and
L1(E) or |E | its Lebesgue measure.

In this paper, � will always stand for an open subset ofRN with Lipschitz boundary.
Thus, an outward normal unit vector ν(x) is defined for HN−1-almost every x ∈ ∂�.
We will make use of the usual Lebesgue and Sobolev spaces, denoted by Lq(�) and
W 1,p

0 (�), respectively (see for instance [6] or [11]).

We recall that for a Radon measure μ in � and a Borel set A ⊆ �, the measure
μ A is defined by (μ A)(B) = μ(A ∩ B) for any Borel set B ⊆ �.

The truncation function will be used throughout this paper. Given k > 0, it is defined
by

Tk(s) = min{|s|, k} sign(s), (4)

for all s ∈ R.
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2.1. Functions of bounded variation

The natural energy space to study problems involving the 1-Laplacian is the space
of all functions of bounded variation, that is, functions u : � → R belonging to
L1(�) whose derivative in the sense of distributions Du is a Radon measure with
finite total variation. This space will be denoted by BV (�).

Let u ∈ BV (�), we can decompose the Radon measure Du into its absolutely
continuous part and its singular part with respect to the Lebesgue measure: Du =
Dau+ Dsu. We denote by Su the set of all x ∈ � which are not Lebesgue points, that
is, x 
∈ Su if there exists ũ(x) such that

lim
ρ↓0

1

|Bρ(x)|
∫
Bρ(x)

|u(y) − ũ(x)| dy = 0.

We say that x ∈ � is an approximate jump point of u, denoted by x ∈ Ju , if there
exist two real numbers u+(x) > u−(x) and νu(x) with |νu(x)| = 1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫
B+

ρ (x,νu(x))
|u(y) − u+(x)| dy = 0,

lim
ρ↓0

1

|B−
ρ (x, νu(x))|

∫
B−

ρ (x,νu(x))
|u(y) − u−(x)| dy = 0,

where

B+
ρ (x, νu(x)) = {y ∈ Bρ(x) | 〈y − x, νu(x)〉 > 0}

and

B−
ρ (x, νu(x)) = {y ∈ Bρ(x) | 〈y − x, νu(x)〉 < 0}.

We know that Su is countablyHN−1-rectifiable andHN−1(Su\Ju) = 0 by the Federer–
Vol’pert Theorem (see [1, Theorem 3.78]). Moreover, we also know

Du Ju = (u+ − u−)νuHN−1 Ju .

Using Su and Ju , we can split Dsu in its jump part D ju and its Cantor part Dcu,
defined by

D ju = Dsu Ju and Dcu = Dsu (�\Su).

Then, we have

D ju = (u+ − u−)νuHN−1 Ju .

In addition, if x ∈ Ju , then νu(x) = Du
|Du| (x) where Du

|Du| is the Radon–Nikodým
derivative of Du with respect to its total variation |Du|.
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The precise representative u∗ : � \ (Su \ Ju) → R of u is defined by

u∗(x) =
{
ũ(x) if x ∈ � \ Su,
u−(x)+u+(x)

2 if x ∈ Ju .

For the sake of simplicity, most of the time we will denote both function and its precise
representative by u.

We will use the chain rule, but only when u is a bounded variation function without
jump part.

PROPOSITION 2.1. Let u ∈ BV (�) with D ju = 0 and let f be a Lipschitz
function in �. Then, v = f ◦ u belongs to BV (�) and Dv = f ′(u)Du, so that
D jv = 0.

It is worth noting that f is only differentiable a.e., so that f ′(u) could be undefined in
a non-empty set. Nevertheless, the above formula f ′(u)Du has a meaning since f ′(u)

is not defined in a |Du|-null set, due to the assumption D ju = 0 (see [1, Proposition
3.92]).

For further information about bounded variation functions, we refer to [1,12] and
[22].

2.2. L∞-divergence measure fields

We will denote by DM∞(�) the set of all vector fields z ∈ L∞(�;RN ) such
that divz is a Radon measure in � with finite total variation. Following [2], we will
use these vector fields to give a sense to Du

|Du| in our equation, even if Du is a Radon
measure and, moreover, if it vanishes in a zone of the domain. More concretely, we
seek a vector field z ∈ L∞(�;RN ) satisfying ‖z‖∞ ≤ 1 and (z, DTk(u)) = |DTk(u)|
for all k > 0.

Let z ∈ DM∞(�) and w ∈ BV (�) ∩C(�) ∩ L∞(�), where C(�) stands for the
space of continuous functions on �. For every ϕ ∈ C∞

0 (�), we define the functional

〈(z, Dw), ϕ〉 = −
∫

�

w ϕ divz −
∫

�

w z · ∇ϕ dx .

It was proved in [3] that this distribution has order 0 since satisfies

|〈(z, Dw), ϕ〉| ≤ ‖ϕ‖∞‖z‖∞
∫

�

|Dw|.

Thus, it is actually a Radon measure with finite total variation and the following
inequality holds

|(z, Dw)| ≤ ‖z‖∞|Dw| (5)

as measures in �. In particular, the Radon measure (z, Dw) is absolutely continuous
with respect to |Dw|. Denoting by

θ(z, Dw, ·) : � → R



6 M. Latorre and S. Segura de León J. Evol. Equ.

the Radon–Nikodým derivative of (z, Dw) with respect to |Dw|, it follows that∫
B
(z, Dw) =

∫
B

θ(z, Dw, x) |Dw| for all Borel sets B ⊂ �,

and

‖θ(z, Dw, ·)‖L∞(�,|Dw|) ≤ ‖z‖∞.

Moreover, if f : R → R is a Lipschitz continuous increasing function, then

θ(z, D( f ◦ w), x) = θ(z, Dw, x) |Dw|-a.e. in �. (6)

The Anzellotti theory also provides the definition of a weak trace on ∂� to the
normal component of any vector field z ∈ DM∞, denoted by [z, ν]. This weak trace
satisfies ‖[z, ν]‖∞ ≤ ‖z‖∞. Relating the pairing (z, Dw) and the weak trace [z, ν] a
Green’s formula holds.

THEOREM 2.2. If z ∈ DM∞ and w ∈ BV (�) ∩ C(�) ∩ L∞(�), then we have∫
�

w divz +
∫

�

(z, Dw) =
∫

∂�

w [z, ν] dHN−1.

As mentioned, for a general z ∈ DM∞(�), Anzellotti’s theory assumes that w ∈
BV (�) ∩C(�) ∩ L∞(�) in order to define (z, Dw) and to prove a Green’s formula.
This theory was generalized to consider w ∈ BV (�)∩ L∞(�) in [8] using a different
approach, and in [7] and [20] following the same definitions of Anzellotti. Indeed,
given z ∈ DM∞(�) and w ∈ BV (�) ∩ L∞(�); for every ϕ ∈ C∞

0 (�), we may
define the functional

〈(z, Dw), ϕ〉 = −
∫

�

w∗ ϕ divz −
∫

�

w z · ∇ϕ dx .

We explicitly mention that the precise representative w∗ is summable with respect to
divz and that this definition depends on the chosen representative of the function.

Now, we present some results which we use several times in the sequel. Next propo-
sition was proved in [17].

PROPOSITION 2.3. Let z ∈ DM∞(�) and let u, w ∈ BV (�) ∩ L∞(�) be
functions such that D ju = D jw = 0. Then

(w z, Du) = w∗(z, Du) as Radon measures in �.

In principle, it is not clear that (6) holds in the case that z ∈ DM∞(�) and
u ∈ BV (�)∩ L∞(�). However, we will see that (6) holds if we assume the jump part
D ju vanishes. This result was proved in [17], but an extra hypothesis is needed in the
proof, namely the set of discontinuities of u is HN−1-null. We next prove this result
under the general assumption D ju = 0. Following Anzellotti, the main ingredient to
prove the above formula is a “slicing” result that links the measure (z, Du) with the
measures (z, Dχ Eu,t

), where Eu,t := {x ∈ � : u(x) > t}.
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PROPOSITION 2.4. Let z ∈ DM∞(�) and consider u ∈ BV (�) ∩ L∞(�) with
D ju = 0. Let Eu,t := {x ∈ � : u(x) > t}. Then, for all ϕ ∈ C∞

0 (�), the function
t �→ 〈(z, Dχ Eu,t

), ϕ〉 is L1-measurable and

〈(z, Du), ϕ〉 =
∫ +∞

−∞
〈(z, Dχ Eu,t

), ϕ〉 dt. (7)

Proof. First we observe that we may assume u ≥ 0; if not, we consider the function
u + ‖u‖∞.

For every set E (measurable with respect to Lebesgue measure), we denote by ∂∗E
its essential boundary (see [1, Definition 3.60]). We point out that for every measurable
set E ⊂ � having finite perimeter, the condition |divz|(∂∗E) = 0 implies

χ E divz = χ ∗
E divz.

As a consequence, we obtain the following claim:
If E ⊂ � is a measurable set with finite perimeter such that |divz|(∂∗E) = 0, then

〈(z, Dχ E ), ϕ〉 = −
∫
E

ϕ divz −
∫
E
z · ∇ϕ

for all ϕ ∈ C∞
0 (�).

In what follows, recall that u stands for the precise representative of the BV -
function. Observe that, thanks to the coarea formula, the level sets Eu,t have finite
perimeter for L1-almost all t ∈ R. Moreover, since D ju = 0, it follows that

HN−1 (
∂∗Eu,t ∩ ∂∗Eu,s

) = 0 for s 
= t.

Then, applying |div (z)| � HN−1 (by [8, Proposition 3.1]), we have

|div (z)| (∂∗Eu,t ∩ ∂∗Eu,s
) = 0 if s 
= t.

Therefore, there exists A ⊂ R numerable such that

|div (z)| (∂∗Eu,t
) = 0 if t ∈ R\A.

In other words, we have seen that |div (z)| (∂∗Eu,t
) = 0 for L1-almost all t > 0. Thus,

our claim implies that if ϕ ∈ C∞
0 (�), then

〈(z, Dχ Eu,t
), ϕ〉 = −

∫
Eu,t

ϕ divz−
∫
Eu,t

z · ∇ϕ dx, for L1-almost all t > 0. (8)

Considering ϕ ∈ C∞
0 (�), we apply the slicing formula for integrable functions

(see, for instance, [22, Lemma 1.5.1]) and (8) to get that the function

t �→ −
∫
Eu,t

ϕ divz dt −
∫
Eu,t

z · ∇ϕ dx
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is L1-measurable and

〈(z, Du), ϕ〉 = −
∫

�

u∗ϕ divz −
∫

�

u z · ∇ϕ

=
∫ ∞

0

[
−

∫
Eu,t

ϕ divz dt −
∫
Eu,t

z · ∇ϕ dx

]
dt

=
∫ ∞

0
〈(z, Dχ Eu,t

), ϕ〉 dt,

as desired. �

PROPOSITION 2.5. Let z ∈ DM∞(�) and consider u ∈ BV (�) ∩ L∞(�) with
D ju = 0. Let Eu,t := {x ∈ � : u(x) > t}. Then, for all Borel set B ⊂ �, the
function t �→ ∫

B(z, Dχ Eu,t
) is L1-measurable and

∫
B
(z, Du) =

∫ +∞

−∞

[∫
B
(z, Dχ Eu,t

)

]
dt. (9)

Proof. Let S denote a countable set in C∞
0 (�) which is dense with respect to the

uniform convergence. Then, for every t ∈ R such that Eu,t has finite perimeter and
for every ϕ ∈ C∞

0 (�) with ϕ ≥ 0, it yields

〈(z, Dχ Eu,t
)+, ϕ〉 = sup{〈(z, Dχ Eu,t

), ψ〉 : ψ ∈ S, 0 ≤ ψ ≤ ϕ}.

Thus, the positive part of the measure t �→ 〈(z, Dχ Eu,t
)+, ϕ〉 defines aL1-measurable

function since it is the supremum of a countable quantity of L1-measurable functions.
Recalling the Riesz representation theorem, we may go further considering an open
set B ⊂ �: It follows from∫

B
(z, Dχ Eu,t

)+ = sup{〈(z, Dχ Eu,t
)+, ψ〉 : ψ ∈ S, 0 ≤ ψ ≤ χ B},

that t �→ ∫
B(z, Dχ Eu,t

)+ defines a L1-measurable function. The regularity of the

measure leads to the same conclusion for an arbitrary Borel set. This function is L1-
summable since∫

B
(z, Dχ Eu,t

)+ ≤
∫
B

|(z, Dχ Eu,t
)| ≤ ‖z‖∞

∫
B

|Dχ Eu,t
|,

for L1-almost all t ∈ R, and t �→ ∫
B |Dχ Eu,t

| defines an L1-summable function, due
to the coarea formula.

On the other hand, a similar argument can be done for the negative part of the
measures (z, Dχ Eu,t

), so that t �→ ∫
B(z, Dχ Eu,t

)− defines anL1-summable function

for every Borel set B ⊂ �. As a consequence, t �→ ∫
B(z, Dχ Eu,t

) defines an L1-
summable function for every Borel set B ⊂ �.
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Finally, consider a distribution μ defined by

〈μ, ϕ〉 = 〈(z, Du), ϕ〉 −
∫ +∞

−∞
〈(z, Dχ Eu,t

), ϕ〉 dt.

Proposition 2.4 implies that 〈μ, ϕ〉 = 0 for all ϕ ∈ C∞
0 (�), wherewith μ is a Radon

measure which vanishes identically. Therefore, (9) holds true. �

COROLLARY 2.6. Let z ∈ DM∞(�) and consider u ∈ BV (�) ∩ L∞(�) with
D ju = 0. Then,

θ(z, Du, x) = θ(z, Dχ Eu,t
, x) |Dχ Eu,t

|-a.e. in � forL1-almost all t ∈ R, (10)

Proof. Let a, b ∈ R, with a < b and let B ⊂ � be a Borel set. Applying (9) to the
set {x ∈ � : a ≤ u(x) ≤ b} ∩ B, we obtain

∫
{a≤u≤b}∩B

(z, Du) =
∫ b

a

[∫
B
(z, Dχ Eu,t

)

]
dt. (11)

Now we are analyzing both sides of (11). On the one hand, the coarea formula implies∫
{a≤u≤b}∩B

(z, Du) =
∫

{a≤u≤b}∩B
θ(z, Du, x)|Du|

=
∫ b

a

[∫
B

θ(z, Du, x)|Dχ Eu,t
|
]

dt.

On the other,

∫ b

a

[∫
B
(z, Dχ Eu,t

)

]
dt =

∫ b

a

[∫
B

θ(z, Dχ Eu,t
, x)|Dχ Eu,t

|
]

dt.

Hence, (11) becomes

∫ b

a

[∫
B

θ(z, Du, x)|Dχ Eu,t
|
]

dt =
∫ b

a

[∫
B

θ(z, Dχ Eu,t
, x)|Dχ Eu,t

|
]

dt.

It follows that, for L1-almost all t ∈ R,∫
B

θ(z, Du, x)|Dχ Eu,t
| =

∫
B

θ(z, Dχ Eu,t
, x)|Dχ Eu,t

|

holds for every Borel set B. The desired equality (10) is proved. �

PROPOSITION 2.7. Let z ∈ DM∞(�) and consider u ∈ BV (�) ∩ L∞(�) with
D ju = 0. If f : R → R is a Lipschitz continuous non-decreasing function, then

θ(z, D( f ◦ u), x) = θ(z, Du, x) |D( f ◦ u)|-a.e. in �. (12)
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Proof. We may follow Anzellotti (see [3, Proposition 2.8]) for the case of an increasing
function. For the general case, consider f non-decreasing and let ε > 0. Since the
function given by t �→ f (t) + εt is increasing, it follows that

(z, D( f ◦ u)) + ε(z, Du) = (z, D(( f ◦ u) + εu)) = θ(z, Du, x)|D(( f ◦ u) + εu)|
= θ(z, Du, x)( f ′(u) + ε)|Du|

as measures in �. Letting ε → 0, we deduce

(z, D( f ◦ u)) = θ(z, Du, x)|D( f ◦ u)| as measures in �.

Therefore, we have seen that (12) holds. �

3. Main results

In this section, we prove our main results, namely the existence theorem and the
comparison principle. We begin by stating our concept of solution to problem (1). The
first difficulty we have to deal with is that we are not able to define the distribution
(z, Du) when data are just integrable functions. Following [2], we will solve this
problem introducing truncations in the concept of solution used in [16].

DEFINITION 3.1. We say that u ∈ BV (�) is a solution to problem (1) if D ju = 0
and there exists a vector field z ∈ DM∞(�) with ‖z‖∞ ≤ 1 such that

− divz + |Du| = f in D′(�), (13)

(z, DTk(u)) = |DTk(u)| as measures in � (for every k > 0), (14)

and
u
∣∣
∂�

= 0. (15)

3.1. Existence theorem

THEOREM 3.2. Let� be an open and bounded subset ofRN with Lipschitz bound-
ary and let f be a nonnegative function in L1(�). Then, problem (1) has at least one
solution.

Proof. The same proof of [16, Theorem 4.3] works with minor modifications. Never-
theless, some remarks are in order.

The first remark is concerning the pairing (e−u z, Du). If u is integrable with respect
to the measure div (e−uz) and ϕ ∈ C∞

0 (�), then the integrals∫
�

ϕ u div (e−uz) and
∫

�

u e−uz · ∇ϕ dx

are both finite; notice that the second integral is bounded due to the inequality u e−u ≤
e−1. Therefore,

〈(e−u z, Du), ϕ〉 = −
∫

�

ϕ u div (e−uz) −
∫

�

u e−uz · ∇ϕ dx
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is a well-defined distribution (although the distribution (z, Du) is not). Moreover, we
may apply the Anzellotti procedure and obtain a Radon measure.

Taking this fact in mind, we may follow the proof of [16, Theorem 4.3]. Starting
from suitable approximating problems, we get a limit of the approximate solutions
u ∈ BV (�) such that D ju = 0. In addition, we also get a vector field z ∈ DM∞(�)

such that ‖z‖∞ ≤ 1. Moreover, Eq. (13) holds and

−div (e−uz) = e−u f.

This last equality implies that u is integrable with respect to the measure div (e−uz)
and so (e−u z, Du) is a Radon measure.

Two conditions of Definition 3.1 must still be proved, namely (14) and (15). We
begin by seeing

(z, DTk(u)) = |DTk(u)| as measures in � (16)

for every k > 0.
To see (16) we start with the following equality as measures (proved in [16, Theorem

4.3]):
|De−u | ≤ (e−uz, Du). (17)

First, we will show

|De−Tk (u)| ≤ (e−uz, DTk(u)).

On the one hand, considering the restriction to the set {u ≥ k} we have

|De−Tk (u)| {u ≥ k} = e−Tk (u)|DTk(u)| {u ≥ k} = 0,

and on the other hand

|(e−uz, DTk(u))| {u ≥ k} ≤ |DTk(u))| {u ≥ k} = 0.

Now, we just work with the restriction to the set {u < k}. For every ϕ ∈ C∞
0 (�) such

that ϕ ≥ 0, using the definition of the distribution and applying (17) we arrive at

〈(e−uz, DTk(u)) {u < k}, ϕ〉 = −
∫

{u<k}
ϕ u div (e−uz) −

∫
{u<k}

u e−uz · ∇ϕ dx

= 〈(e−uz, Du) {u < k}, ϕ〉 ≥
∫

{u<k}
ϕ |De−u |

=
∫

�

ϕ e−u |DTk(u)| =
∫

�

ϕ |De−Tk (u)|.

Now, we have to prove that (z, DTk(u)) = |DTk(u)| as measures in �. We use
Proposition 2.3 and the chain rule to get

|De−Tk (u)| ≤ (e−uz, DTk(u)) = e−u(z, DTk(u)) ≤ e−u |DTk(u)| = |De−Tk (u)|.
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Then, the inequality becomes equality and e−u(z, DTk(u)) = e−u |DTk(u)| as mea-
sures in �. We deduce that

(z, DTk(u)) = |DTk(u)|
as measures in �, since e−u = 0 yields Tk(u) = k for every k > 0.

To check the boundary condition (15), we consider the real function defined by

J1(s) =
∫ s

0
T1(σ ) dσ.

Then, in the same way than in [16, Theorem 4.3], we obtain∫
�

|DT1(u)| +
∫

∂�

|T1(u)| dHN−1 +
∫

�

|DJ1(u)| +
∫

∂�

|J1(u)| dHN−1

≤
∫

�

f T1(u) dx . (18)

Using the equation and the previous step, and applying the Green’s formula and the
chain rule, we get∫

�

f T1(u) dx = −
∫

�

T1(u) divz +
∫

�

T1(u)|Du|

=
∫

�

(z, DT1(u)) −
∫

∂�

T1(u)[z, ν] dHN−1 +
∫

�

|DJ1(u)|

=
∫

�

|DT1(u)| −
∫

∂�

T1(u)[z, ν] dHN−1 +
∫

�

|DJ1(u)|.

Going back to (18) and simplifying, it follows that∫
∂�

(|T1(u)| + T1(u)[z, ν]) dHN−1 +
∫

∂�

|J1(u)| dHN−1 ≤ 0.

Observe that both integrals are nonnegative, so that both vanish. In particular, J1(u) =
0 HN−1-a.e. on ∂�. Therefore, the boundary condition holds true. �

3.2. Comparison principle

Before proving the comparison principle, we need to present some preliminary
results.

PROPOSITION 3.3. Let z be a vector field in DM∞(�) and let u be a function
of bounded variation with D ju = 0 and such that (z, DTk(u)) = |DTk(u)| for
every k > 0. If g : � → R is a bounded, increasing and Lipschitz function, then
(z, Dg(u)) = |Dg(u)| holds as measures.
Proof. Since (z, DTk(u)) = |DTk(u)|, the Radon–Nikodým derivative of (z, DTk(u))

with respect to its total variation |DTk(u)| is θ(z, DTk(u), x) = 1. Moreover, using
Proposition 2.7 we get

θ(z, Dg(Tk(u)), x) = θ(z, DTk(u), x) = 1,
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that is, (z, Dg(Tk(u))) = |Dg(Tk(u))| for every k > 0. Now, we apply the chain
rule to get |Dg(Tk(u))| = g′(Tk(u))T ′

k(u)|Du|, taking into account that the set where
g′(Tk(u))T ′

k(u) is undefined is |Du|-negligible. Thus, we get

(z, Dg(Tk(u))) = g′(Tk(u))T ′
k(u)|Du|

for every k > 0. Next, the dominated convergence theorem leads to

(z, Dg(u)) = g′(u) |Du|.

Applying the chain rule again, we are done. �

PROPOSITION 3.4. Let f ∈ L1(�). If u ∈ BV (�) is a solution to problem (1)
and z ∈ DM∞(�) is the associated vector field, then the following equality holds:

−div (e−uz) = e−u f in D′(�).

Proof. Let ϕ ∈ C∞
0 (�), we take the test function e−uϕ in problem (1) and we obtain

−
∫

�

e−uϕ divz +
∫

�

e−uϕ |Du| =
∫

�

e−uϕ f dx .

Now, since e−u is bounded, we can use the definition of pairing (z, De−u) and the
former equality becomes∫

�

e−uz · ∇ϕ dx +
∫

�

ϕ (z, De−u) +
∫

�

e−uϕ |Du| =
∫

�

e−uϕ f dx .

Finally, using (z, De−u) = −e−u |Du| (see Proposition 3.3) and Green’s formula we
deduce

−div (e−uz) = e−u f in D′(�).

�

THEOREM 3.5. Let f1 and f2 be two nonnegative functions in L1(�)with f1 ≤ f2,
and consider problems

{
−div

(
Du1|Du1|

)
+ |Du1| = f1(x) in �,

u1 = 0 on ∂�,
(19)

and {
−div

(
Du2|Du2|

)
+ |Du2| = f2(x) in �,

u2 = 0 on ∂�.
(20)

If u1 is a solution to problem (19) and u2 is a solution to problem (20), then u1 ≤ u2.



14 M. Latorre and S. Segura de León J. Evol. Equ.

Proof. For each i = 1, 2, we know that a solution ui ∈ BV (�) satisfies D jui = 0
and there exists a vector field zi ∈ DM∞(�) such that ‖zi‖∞ ≤ 1. Moreover,

−divzi + |Dui | = fi in D′(�),

(zi , DTk(ui )) = |DTk(ui )| as measures in � (for every k > 0),

and

ui
∣∣
∂�

= 0.

We are seeking that u1 ≤ u2, to this end we divide the proof in several steps.
STEP 1: (z1 −z2, D(Tk(u1)−Tk(u2))

+) is a positive Radon measure for all k > 0.
Let ϕ ∈ C∞

0 (�) with ϕ ≥ 0. Then, the measure (z1 − z2, D(Tk(u1) − Tk(u2))
+)

actually is∫
�

ϕ (z1 − z2, D(Tk(u1) − Tk(u2))+)

=
∫
{Tk (u1)>Tk (u2)}

ϕ (z1 − z2, D(Tk(u1) − Tk(u2)))

=
∫
{Tk (u1)>Tk (u2)}

ϕ

[
(z1, DTk(u1)) − (z2, DTk(u1)) − (z1, DTk(u2)) + (z2, DTk(u2))

]

=
∫
{Tk (u1)>Tk (u2)}

ϕ

[
|DTk(u1)| − (z2, DTk(u1)) − (z1, DTk(u2)) + |DTk(u2)|

]
≥ 0,

because (zi , Du j ) ≤ |Du j | for i, j = 1, 2.
Therefore, we conclude that (z1 − z2, D(Tk(u1) − Tk(u2))

+) is a positive Radon
measure.
STEP 2: Prove that

∫
{u1>u2}(e

−u2 − e−u1)(|Du1| − |Du2|) ≥ 0.

First, we take the test function (e−u2 − e−u1)+ in problem (19) and since (e−u2 −
e−u1)+ 
= 0 if u1 > u2, we get∫

{u1>u2}
(z1, D(e−u2 − e−u1)) +

∫
{u1>u2}

(e−u2 − e−u1) |Du1|

=
∫

�

(e−u2 − e−u1)+ f1 dx . (21)

Moreover, using that e−u2 − e−u1 = (1 − e−u1) − (1 − e−u2) we also have∫
�

(e−u2 − e−u1)+ f1 dx =
∫

{u1>u2}
(z1, D(1 − e−u1)) −

∫
{u1>u2}

(z1, D(1 − e−u2))

+
∫

{u1>u2}
e−u2 |Du1| −

∫
{u1>u2}

e−u1 |Du1|

=
∫

{u1>u2}
|D(1 − e−u1)| −

∫
{u1>u2}

(z1, D(1 − e−u2))
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+
∫

{u1>u2}
e−u2 |Du1| −

∫
{u1>u2}

e−u1 |Du1|

= −
∫

{u1>u2}
(z1, D(1 − e−u2)) +

∫
{u1>u2}

e−u2 |Du1|,
(22)

where we have used Proposition 2.7 and the chain rule.
Now, taking the same test function (e−u2 − e−u1)+ in problem (20) and making

similar computations we obtain∫
�

(e−u2 − e−u1)+ f2 dx =
∫

{u1>u2}
(z2, D(1 − e−u1)) −

∫
{u1>u2}

e−u1 |Du2|. (23)

Since f1 ≤ f2, we can join expressions (22) and (23) to get the following inequality:∫
{u1>u2}

e−u1 |Du2| +
∫

{u1>u2}
e−u2 |Du1|

≤
∫

{u1>u2}
(z1, D(1 − e−u2)) +

∫
{u1>u2}

(z2, D(1 − e−u1))

≤
∫

{u1>u2}
|(z1, D(1 − e−u2))| +

∫
{u1>u2}

|(z2, D(1 − e−u1))|

≤
∫

{u1>u2}
|D(1 − e−u2)| +

∫
{u1>u2}

|D(1 − e−u1)|

=
∫

{u1>u2}
e−u2 |Du2| +

∫
{u1>u2}

e−u1 |Du1|,

where we have used that ‖zi‖ ≤ 1 for i = 1, 2 and the chain rule.
In conclusion, we have just proved∫
{u1>u2}

e−u2 |Du2| +
∫
{u1>u2}

e−u1 |Du1| −
∫
{u1>u2}

e−u1 |Du2| −
∫
{u1>u2}

e−u2 |Du1| ≤ 0,

and we are done.
STEP3:The Radon measure (z1−z2, D(Tk(u1)−Tk(u2))

+) vanishes for all k > 0.
Since u1 is a solution to problem (19) and u2 is a solution to problem (20), the

following equalities hold in D′(�) (see Proposition 3.4):

− div (e−u1z1) = e−u1 f1 (24)

and
− div (e−u2z2) = e−u2 f2. (25)

Firstly, let k > 0 we choose the test function (Tk(u1) − Tk(u2))
+ in equality (24).

Applying Green’s formula, we get∫
�

(e−u1z1, D(Tk(u1) − Tk(u2))
+) =

∫
�

(Tk(u1) − Tk(u2))
+e−u1 f1 dx, (26)
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and using the same test function but now in equality (25) we have∫
�

(e−u2z2, D(Tk(u1) − Tk(u2))
+) =

∫
�

(Tk(u1) − Tk(u2))
+e−u2 f2 dx . (27)

Now, we put together (26) and (27) to obtain∫
�

(Tk(u1) − Tk(u2))
+(e−u1 f1 − e−u2 f2) dx

=
∫

�

(e−u1z1 − e−u2z2, D(Tk(u1) − Tk(u2))
+)

=
∫

{Tk (u1)>Tk (u2)}
(e−u2z2 − e−u1z1, D(Tk(u2) − Tk(u1))). (28)

Observe that the integral on the left-hand side is non-positive since e−u1 f1 −e−u2 f2 ≤
0 where Tk(u1) − Tk(u2) > 0. Our aim is to prove the following limit:

lim
k→∞

∫
�

(e−u1z1 − e−u2z2, D(Tk(u1) − Tk(u2))
+) = 0, (29)

which is non-positive because of (28). To this end, we write∫
{Tk (u1)>Tk (u2)}

(e−u2z2 − e−u1z1, D(Tk(u2) − Tk(u1)))

=
∫

{Tk (u1)>Tk (u2)}
((e−u2 − e−u1) z2, D(Tk(u2) − Tk(u1)))︸ ︷︷ ︸

(I.1)

+
∫

{Tk (u1)>Tk (u2)}
(e−u1(z2 − z1), D(Tk(u2) − Tk(u1)))︸ ︷︷ ︸

(I.2)

,

and will see that the limits as k goes to ∞ of (I.1) and of (I.2) are nonnegative and so
(29) holds.

On the one hand, we know that∫
{Tk (u1)>Tk (u2)}

((e−u2 − e−u1) z2, D(Tk(u2) − Tk(u1)))

≥
∫

{Tk (u1)>Tk (u2)}
(e−u2 − e−u1)χ {u2<k}|Du2|

−
∫

{Tk (u1)>Tk (u2)}
(e−u2 − e−u1)χ {u1<k}|Du1|,

and when we take limits when k goes to ∞, we get

lim
k→∞

∫
{Tk (u1)>Tk (u2)}

((e−u2 − e−u1) z2, D(Tk(u2) − Tk(u1)))

=
∫

{u1>u2}
(e−u2 − e−u1)(|Du2| − |Du1|) ≥ 0,

which is nonnegative due to Step 2.
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On the other hand, we already know that integral (I.2) is nonnegative (because of
Step 1); therefore, the limit when k → ∞ is nonnegative too.

In short, we have proved

lim
k→∞

∫
{Tk (u1)>Tk (u2)}

(Tk(u1) − Tk(u2))(e
−u1 f1 − e−u2 f2) dx

= lim
k→∞

∫
�

(e−u1z1 − e−u2z2, D(Tk(u1) − Tk(u2))
+) = 0.

Furthermore, since (28) = (I.1) + (I.2) and the limits of integral (I.1) and (I.2) are
both nonnegative, it follows that both limits vanish.

Now, some remarks on Radon–Nikodým derivatives of these measures are in or-
der. Let θ1

k (z2, DTk(u1), x) be the Radon–Nikodým derivative of (z2, DTk(u1)) with
respect to |DTk(u1)|:

θ1
k (z2, DTk(u1), x) |DTk(u1)| = (z2, DTk(u1)).

Since |(z2, DTk(u1))| ≤ |DTk(u1)|, it follows that |θ1
k (z2, DTk(u1), x)| ≤ 1. We point

out that this function is |DTk(u1)|-measurable and, taking θ1
k (z2, DTk(u1), x) = 0 in

{u1 ≥ k}, it is |Du1|-measurable.

On the other hand, it holds that (z2, DTk+1(u1)) {u1 < k} = (z2, DTk(u1)).
Therefore

θ1
k+1(z2, DTk+1(u1), x)χ {u1<k}(x) = θ1

k (z2, DTk(u1), x),

and θ1
k (z2, DTk(u1), x) defines a non-decreasing sequence of |Du1|-measurable func-

tions.

Likewise, if we denote by θ2
k (z1, DTk(u2), x) the Radon–Nikodým derivative of

(z1, DTk(u2)) with respect to |DTk(u2)|, then we may deduce the inequality |θ2
k (z1,

DTk(u2), x)| ≤ 1. Moreover, θ2
k (z1, DTk(u2), x) defines a non-decreasing sequence

of |Du2|-measurable functions.

Now, we define the functions θ1(x) and θ2(x) such that

θ1(x) = θ1
k (z2, DTk(u1), x) if u1(x) < k,

and

θ2(x) = θ2
k (z1, DTk(u2), x) if u2(x) < k.

We know that θ1 and θ2 are |Du1| and |Du2|-measurable, respectively, and satisfy
|θ1| ≤ 1 and |θ2| ≤ 1.
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So let us get back to expression (I.2). We know that

∫
�

(e−u1(z1 − z2), D(Tk(u1) − Tk(u2))
+)

=
∫

{Tk (u1)>Tk (u2)}
e−u1

[
(z1, DTk(u1)) − (z2, DTk(u1))

−(z1, DTk(u2)) + (z2, DTk(u2))

]

=
∫

�

e−u1χ {Tk (u1)>Tk (u2)}∩{u1<k}(1 − θ1(x))|Du1|

+
∫

�

e−u1χ {Tk (u1)>Tk (u2)}∩{u2<k}(1 − θ2(x))|Du2|,

and using the dominated convergence theorem we can take limit when k → ∞ to
arrive at

0 =
∫

{u1>u2}
e−u1(1 − θ1(x))|Du1| +

∫
{u1>u2}

e−u1(1 − θ2(x))|Du2|.

Since both integrals are nonnegative, it yields

0 =
∫

{u1>u2}
e−u1(1 − θ1(x))|Du1| =

∫
{u1>u2}

e−u1(1 − θ2(x))|Du2|.

Therefore, we deduce that 1 − θ i (x) = 0 |Dui |-a.e. in {u1 > u2} for i = 1, 2 and
then, the Radon–Nikodým derivative is θ ik = 1 |Dui |-a.e. in {u1 > u2} ∩ {ui < k}
with i = 1, 2 for every k > 0. That is, we have the following equalities as measures:

|DTk(u1)| {u1 > u2} = (z2, DTk(u1)) {u1 > u2}, (30)

and

|DTk(u2)| {u1 > u2} = (z1, DTk(u2)) {u1 > u2}. (31)

Finally, noting that {Tk(u1) > Tk(u2)} ⊆ {u1 > u2} and the measure (z1 − z2,

D(Tk(u1) − Tk(u2))
+) is nonnegative:

(z1 − z2, D(Tk(u1) − Tk(u2))
+)

=
[
|DTk(u1)| − (z2, DTk(u1)) − (z1, DTk(u2)) + |DTk(u2)|

]
{Tk(u1) > Tk(u2)}

≤
[
|DTk(u1)| − (z2, DTk(u1)) − (z1, DTk(u2)) + |DTk(u2)|

]
{u1 > u2}

= 0.
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STEP 4: (zi , DTk(u j )) {Tk(u1) > Tk(u2)} = |DTk(u j )| {Tk(u1) > Tk(u2)}
as measures for i, j = 1, 2 and k > 0.

Since {Tk(u1) > Tk(u2)} ⊆ {u1 > u2} and we have proved equalities (30) and
(31), Step 4 is straightforward.
STEP 5: If u1 > u2, then f1 = f2 = 0.
In Step 3, we have proved that the limit of expression (28) when k goes to ∞ is 0.

Then, using the monotone convergence theorem, we get

0 =
∫

�

(u1 − u2)
+(e−u1 f1 − e−u2 f2) dx .

Notice that if u1 > u2, then e−u1 f1 = e−u2 f2 and f1 = e−(u2−u1) f2 > f2 when
f2 
= 0. We conclude that u1 > u2 implies f2 = f1 = 0.
STEP 6: Prove that

∫
{u1>u2} |Du1| = ∫

{u1>u2} |Du2|.
Firstly, we take Tε((Tk(u1)−Tk(u2))

+) as a test function in problems (19) and (20)
and using the previous step, we get the following equalities:

0 =
∫

{Tk (u1)>Tk (u2)}
(z1, DTε(Tk(u1) − Tk(u2)))

+
∫

{Tk (u1)>Tk (u2)}
Tε(Tk(u1) − Tk(u2)) |Du1|, (32)

and

0 =
∫

{Tk (u1)>Tk (u2)}
(z2, DTε(Tk(u1) − Tk(u2)))

+
∫

{Tk (u1)>Tk (u2)}
Tε(Tk(u1) − Tk(u2)) |Du2|. (33)

Now, we use Step 3 to have:

(z1 − z2, D(Tk(u1) − Tk(u2))) {Tk(u1) > Tk(u2)} = 0.

Furthermore, when we take the restriction to the set {0 < Tk(u1) − Tk(u2) < ε} for
all ε > 0, we also get that the measure vanishes. Due to this fact, when we consider
together equations (32) and (33), we obtain∫

{Tk (u1)>Tk (u2)}
Tε(Tk(u1) − Tk(u2)) |Du1|

=
∫

{Tk (u1)>Tk (u2)}
Tε(Tk(u1) − Tk(u2)) |Du2|.

Now, dividing both integrals by ε and using the dominated convergence theorem, we
can take limits as ε goes to 0 and then we get∫

{Tk (u1)>Tk (u2)}
|Du1| =

∫
{Tk (u1)>Tk (u2)}

|Du2|.
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Finally, the dominated convergence theorem also allows us to take limits as k → ∞
and so we arrive at ∫

{u1>u2}
|Du1| =

∫
{u1>u2}

|Du2|. (34)

STEP 7: Prove Du1 = Du2 = 0 in {u1 > u2}.
We begin taking the test function (Tk(u1) − Tk(u2))

+ in problem (19) and having
in mind Step 4 and Step 5, we get:

0 =
∫

{Tk (u1)>Tk (u2)}
|DTk(u1)| −

∫
{Tk (u1)>Tk (u2)}

|DTk(u2)|

+
∫

{Tk (u1)>Tk (u2)}
(Tk(u1) − Tk(u2)) |Du1|. (35)

Now, the first two integrals are convergent as k → ∞ due to the dominated con-
vergence theorem and the last one converges by the monotone convergence theorem.
Hence, when k goes to ∞ in (35) we get

0 =
∫

{u1>u2}
(|Du1| − |Du2|) +

∫
{u1>u2}

(u1 − u2) |Du1|,

and since the first integral is finite, the last one is finite too.
On the other hand, we have proved in Step 6 that the first integral vanishes, then the

above equality becomes

0 =
∫

{u1>u2}
(u1 − u2) |Du1|,

and we deduce that |Du1| {u1 > u2} = 0 and also Du1 = 0 in {u1 > u2}.
To prove that Du2 = 0 in {u1 > u2} we use (34) and since we already know that

Du1 = 0 in {u1 > u2}, it becomes

0 =
∫

{u1>u2}
|Du2|.

Therefore, we have that Du2 = 0 in {u1 > u2}.
STEP 8: u1 ≤ u2 in �.
We have seen that D(u1 − u2) = 0 in {u1 > u2} and since D j (u1 − u2) = 0, it

holds that D(u1 − u2)
+ = 0 in �. Moreover, we know that (u1 − u2)

+ = 0 in ∂�,
therefore we get that 0 = (u1 − u2)

+ in �. �

COROLLARY 3.6. Let� be a bounded open subset ofRN with Lipschitz boundary.
Let f be a nonnegative function in L1(�). Then, problem{

−div
(

Du
|Du|

)
+ |Du| = f (x) in �,

u = 0 on ∂�,

has a unique solution u ∈ BV (�).
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Table 1. Comparison of the summability of the solution depending
on the summability of the datum

Data Solution
f ∈ L p(�) with p > N u ∈ L∞(�)

f ∈ LN (�) u ∈ Lq(�) with 1 ≤ q < ∞
f ∈ L p(�) with 1 < p < N u ∈ L

Np
N−p (�)

f ∈ L1(�) u ∈ L
N

N−1 (�)

4. Better summability

In Sect. 3, we have seen that problem (1) has a solution for every nonnegative

datum of L1(�), and this solution belongs to BV (�) ⊂ L
N

N−1 (�). We expect that the
solution satisfies a better summability if the datum belongs to L p(�), p > 1. In this
regard, we recall that when data f are in the space L p(�) with p > N , it is proved in
[17] that the solution is always bounded. For datum f ∈ LN (�), we proved in [16]
that the solution belongs to Lq(�) with 1 < q < ∞.

In this section, we are showing that solutions belong to L
Np
N−p (�) if data are in

L p(�) with 1 < p < N . Observe that this result adjust continuously for p = 1 and
p = N with the known facts (see Table 1).

The proof of our theorem relies on certain preliminary results. The first one enable
us to take a power of our solution uq as a test function in problem (1).

PROPOSITION 4.1. If u ∈ BV (�) is a solution to problem (1) satisfying uq ∈
L p′

(�) for certain q > 1, then uq and uq+1 ∈ BV (�). Moreover,∫
�

|Duq | +
∫

�

uq |Du| =
∫

�

uq f. (36)

Proof. Fixed k > 0, we define the function Gk(s) = s − Tk(s), and we take the test
function Gδ(Tk(u)q) with δ, k > 0 in problem (1) obtaining the following equality:∫

�

(z, DGδ(Tk(u)q)) +
∫

�

Gδ(Tk(u)q) |Du| =
∫

�

Gδ(Tk(u)q) f dx .

Since we know that the Radon–Nikodým derivative of (z, DGδ(Tk(u)q)) and
(z, DTk(u)) with respect their respective total variations are the same (Proposition 2.7)
and (z, DTk(u)) = |DTk(u)| holds for all k > 0, we deduce that

(z,Gδ(Tk(u)q)) = |DGδ((Tk(u))q)|.

Then, we can write:∫
�

|DGδ(Tk(u)q)| +
∫

�

Gδ(Tk(u)q) |Du| =
∫

�

Gδ(Tk(u)q) f dx . (37)
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Now, we use the inequality Gδ(Tk(u)q) ≤ uq and Hölder’s inequality to get the
following bound:∫

�

Gδ(Tk(u)q) f dx ≤
∫

�

uq f dx ≤ ‖uq‖p′ ‖ f ‖p < ∞.

Therefore, each integral in left-hand side of (37) is also bounded:∫
�

|DGδ(Tk(u)q)| ≤ ‖uq‖p′ ‖ f ‖p < ∞, (38)

and ∫
�

Gδ(Tk(u)q) |Du| ≤ ‖uq‖p′ ‖ f ‖p < ∞. (39)

We will take advantage of these bounds to take limits in (37).
Now, we are able to prove uq ∈ BV (�). Using the chain rule in (38), we can write

the following inequalities∫
�

χ {u<k}∩{uq>δ}|Duq | =
∫

�

|DGδ(Tk(u)q)| ≤ ‖uq‖p′ ‖ f ‖p < ∞,

and, using monotone convergence theorem, we let δ → 0+ to get∫
�

χ {u<k}|Duq | ≤ ‖uq‖p′ ‖ f ‖p < ∞.

Lastly, we let k goes to ∞ and appealing to the monotone convergence theorem once
more, it works out that uq is a bounded variation function.

Let 0 < δ < 1 and keeping in mind (39), we get the following bound∫
�

χ {u<k}∩{uq+1>δ}|Duq+1| = (q + 1)

∫
�

uqχ {u<k}∩{uq+1>δ}|Du|

≤ (q + 1)

∫
�

(Gδ(Tk(u)q) + δ) |Du|
≤ (q + 1)(‖uq‖p′ ‖ f ‖p + δ‖u‖BV ) < ∞.

Taking limits when δ → 0+ and also when k → ∞, we get∫
�

|Duq+1| ≤ (q + 1)‖uq‖p′ ‖ f ‖p < ∞, (40)

that is, uq+1 ∈ BV (�).
To conclude, we take limits in (37) firstly when δ → 0+ and secondly when k → ∞,

and then, we obtain ∫
�

|Duq | +
∫

�

uq |Du| =
∫

�

uq f.

�
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THEOREM 4.2. Let 1 < p < N and let f ∈ L p(�) be a nonnegative function.
Then, the solution to problem (1) belongs to BV (�)∩ Ls(�) for every 1 ≤ s <

Np
N−p .

Proof. Let u ∈ BV (�) denote the unique solution to problem (1). For every j ∈ N,
we will prove that u ∈ Ls j (�) where

s j = N ′
j∑

k=0

(
N ′

p′

)k

.

It should be noted that lim j→∞ s j = N ′ ∑∞
k=0

(
N ′
p′

)k = Np
N−p . Thus, proving u ∈

Ls j (�) for all j ∈ N, we are done.
Firstly, we choose q = N ′

p′ and since uq ∈ L p′
(�), we may apply Proposition 4.1

to conclude that uq+1 ∈ BV (�) ⊆ LN ′
(�) and therefore u ∈ L

N ′
(
N ′
p′ +1

)
(�), that is,

u ∈ Ls1(�).
Assuming now that u ∈ Ls j (�), we take

q = N ′

p′
j∑

k=0

(
N ′

p′

)k

.

By hypothesis, we already know that u ∈ Lqp′
(�), and using Proposition 4.1, we get

uq+1 ∈ BV (�) ⊆ LN ′
(�). Hence, u ∈ LN ′(q+1)(�) = Ls j+1(�). �

Now we are ready to prove the main result of this section.

THEOREM 4.3. Let f be a nonnegative function belonging to L p(�) with 1 <

p < N. Then, the unique solution u to problem (1) satisfies u ∈ BV (�) ∩ L
Np
N−p (�).

Proof. To show that u ∈ L
Np
N−p (�), we first claim that inequality (42) below holds for

every 0 < q <
N (p−1)
N−p .

If we choose 0 < q <
N (p−1)
N−p , then we have that qp′ <

N (p−1)
N−p

p
p−1 = Np

N−p .

Therefore, applying Theorem 4.2 and Proposition 4.1 we arrive at uq+1 ∈ BV (�).
Now, we use Sobolev’s inequality and inequality (40) to get

(∫
�

u(q+1)N ′
dx

) 1
N ′

≤ C(p, N )

∫
�

|Duq+1|

≤ C(p, N )(q + 1)‖ f ‖p

(∫
�

uqp
′
dx

) 1
p′

. (41)

Moreover, since qp′ < (q + 1)N ′, we can apply Hölder’s inequality and we also get

∫
�

uqp
′
dx ≤

(∫
�

(uqp
′
)

(q+1)N ′
qp′ dx

) qp′
(q+1)N ′

|�|1− qp′
(q+1)N ′ .
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Summing up, we have

(∫
�

u(q+1)N ′
dx

) 1
N ′

≤C(p, N )(q + 1)‖ f ‖p

(∫
�

u(q+1)N ′
dx

) q
(q+1)N ′

|�| 1
p′−

q
(q+1)N ′ ,

that is, we have proved our claim:

(∫
�

u(q+1)N ′
dx

) 1
N ′

(
1− q

q+1

)
≤ C(p, N )(q + 1)‖ f ‖p|�| 1

p′ −
q

(q+1)N ′ . (42)

Now, let 0 < qn <
N (p−1)
N−p define a non-decreasing sequence convergent to N (p−1)

N−p .
Hence, for every n ∈ N it holds

(∫
�

u(qn+1)N ′
dx

) 1
N ′ 1

qn+1 ≤ C(p, N )(qn + 1)‖ f ‖p|�| 1
p′ −

qn
(qn+1)N ′ .

Thanks to Fatou’s lemma, letting n → ∞, we get

∫
�

u
p (N−1)
N−p N ′

dx ≤ lim inf
n→∞

[
C(p, N )(qn + 1)‖ f ‖p|�| 1

p′ −
qn

(qn+1)N ′
]N ′(qn+1)

≤
[
C(p, N )

p (N − 1)

N − p
‖ f ‖p

] Np
N−p

.

Therefore, u ∈ L
Np
N−p (�) holds. �

REMARK 4.4. Going back to Proposition 4.1, it follows from u
N (p−1)
N−p ∈ L p′

(�)

that u
N (p−1)
N−p can be taken as a test function in problem (1), that is,∫

�

|D(u
N (p−1)
N−p )| +

∫
�

u
N (p−1)
N−p |Du| =

∫
�

f u
N (p−1)
N−p .

5. Explicit examples

This section is devoted to show radial examples of solutions in a ball. These examples
allow us to provide evidence that our regularity result is sharp (see Remark 5.2 below).

In the sequel, we denote by BR(0) the open ball centered at 0 and of radius R.

EXAMPLE 5.1. Let R > 0, we consider problem

{
−div

(
Du

|Du|
)

+ |Du| = λ
|x |q in BR(0),

u = 0 on ∂BR(0),
(43)

with 1 < q < N and λ > 0.
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We know that a solution u to problem (43) must be a nonnegative function of
bounded variation with no jump part and there also exists a vector field z ∈ DM∞(�)

with ‖z‖∞ ≤ 1 such that

− divz + |Du| = λ

|x |q in D′(�), (44)

(z, DTk(u)) = |DTk(u)| as measures in � (for every k > 0),

and

u
∣∣
∂�

= 0.

We assume that the solution is radial, that is, u(x) = h(|x |) = h(r). Moreover, in
order to satisfy the Dirichlet condition, we want that h(R) = 0 holds. In addition, we
also assume h′(r) ≤ 0 for all 0 ≤ r ≤ R.

If h′(r) < 0 in an interval, then the vector field is given by z(x) = h′(|x |)
|h′(|x |)| = − x

|x |
and divz(x) = − N−1

|x | .
Therefore, Eq. (44) becomes

N − 1

r
− h′(r) = λ

rq
. (45)

Since we are assuming that h′(r) < 0, then

N − 1

r
− λ

rq
< 0.

Now, we define

ρλ =
(
N − 1

λ

) 1
1−q

.

Thus, if r ≤ ρλ, then h′(r) < 0 may hold, and if r > ρλ the solution must satisfy
h′(r) = 0.

We assume 0 < ρλ < R. Then, when ρλ ≤ r ≤ R the solution to problem (43)
is constant, and since we know that h(R) = 0 we deduce that h(r) = 0 for all
ρλ ≤ r ≤ R.

On account of (45), if 0 ≤ r < ρλ, then solution is given by

h(ρλ) − h(r) =
∫ ρλ

r
h′(s) ds =

∫ ρλ

r

(
N − 1

s
− λ

sq

)
ds

= (N − 1) log
(ρλ

r

)
+ λ

1 − q
(r1−q − ρ

1−q
λ ).

Therefore,

u(x) =
{

(N − 1) log
( |x |

ρλ

)
+ λ

1−q (ρ
1−q
λ − |x |1−q) if 0 ≤ |x | < ρλ,

0 if ρλ < |x | ≤ R.



26 M. Latorre and S. Segura de León J. Evol. Equ.

The vector field z must be identified. When ρλ ≤ r ≤ R we know that the vector
field is z(x) = − x

|x | , and when 0 ≤ r < ρλ, we assume that the vector field is radial:
z(x) = x ξ(|x |). Thus, divz(x) = N ξ(|x |) + |x | ξ ′(|x |), and Eq. (44) becomes

−(N ξ(r) + r ξ ′(r)) = λ

rq
.

That is,

−r N ξ(r) = −
∫ (

r N ξ(r)
)′

dr =
∫

λ r N−1−q dr = λ

N − q
r N−q + C,

for some constant C to be determinate. Then,

ξ(r) = − λ

N − q
r−q − C r−N .

Since we need a continuous vector field and we know that z(x) = − x
ρλ

for x with
|x | = ρλ, we get the following equation

ρ−1
λ = λ

N − q
ρ

−q
λ + C ρ−N

λ .

Finally, using that λ = (N − 1) ρ
q−1
λ we deduce

C = ρN−1
λ

1 − q

N − q
,

and therefore, the vector field is given by

z(x) =
⎧⎨
⎩

− x
|x | if 0 ≤ |x | < ρλ,

− x
N−q

(
(N − 1)

ρ
q−1
λ|x |q + (1 − q)

ρN−1
λ

|x |N
)

if ρλ < |x | ≤ R.

REMARK 5.2. In our Theorem 4.3, we have proved that if f ∈ L
N
q (BR(0)),

then u ∈ L
N

q−1 (BR(0)). Since λ
|x |q ∈ Ls(BR(0)) for all s < N

q , it follows that u ∈
Lr (BR(0)) for all r < N

q−1 . This is exactly what it is shown.

REMARK 5.3. In [16, Proposition 4.4] it was proved that for any “small” datum
f ∈ W−1,∞(BR(0)), the solution to problem (1) is always trivial. Nevertheless, in our
examples we always get a non-trivial solution. This is due to the fact that the datum
f (x) = λ |x |−q when 1 < q < N is not in the space W−1,∞(BR(0)):

Let s = N −q, then function v(x) = |x |−s −R−s ∈ W 1,1
0 (BR(0)) since s < N −1.

However, the product f (x)v(x) = λ|x |−N − f (x)R−s 
∈ L1(BR(0)). We conclude
that f 
∈ W−1,∞(BR(0)).

It may be worth comparing our example with that occurring when the datum is λ
|x |q ,

with 0 < q < 1. In the same way as in Example 5.1, the solution to problem (43)
depends on a value

rλ =
(
N − q

λ

) 1
1−q

.
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When 0 < q < 1, the solution to problem (43) is given by

u(x) =
⎧⎨
⎩

(N − 1) log
( rλ
R

) + λ
1−q (R1−q − r1−q

λ ) if 0 ≤ |x | ≤ rλ,

(N − 1) log
( |x |

R

)
+ λ

1−q (R1−q − |x |1−q) if rλ < |x | ≤ R,

and the vector field associated is

z(x) =
{

− λ
N−q x |x |−q if 0 ≤ |x | ≤ rλ,

− x
|x | if rλ < |x | ≤ R.

It is easy to see that, since 0 < q < 1, this solution is always bounded.
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