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Abstract. In a recent paper we presented a general perturbation result for generators of C0-semigroups,
c.f. Theorem 2.1 below. The aim of the present work is to replace, in case the unperturbed semigroup is
analytic, the various admissibility conditions appearing in this result by simpler inclusion assumptions on
the domain and the range of the perturbation. This is done in Theorem 2.4 and allows to apply our results
also in situations which are only in part governed by analytic semigroups. The power of our approach to
treat in a unified and systematic way wide classes of PDE’s is illustrated by a generic example, a degenerate
differential operator with generalized Wentzell boundary conditions, a reaction diffusion equation with
unbounded delay and a perturbed Laplacian.

1. Introduction

Many linear partial differential equations can be rewritten as an Abstract Cauchy
Problem

⎧
⎨

⎩

d

dt
x(t) = Gx(t), t ≥ 0,

x(0) = x0
(ACP)

for an unbounded (differential) operator G on a Banach space X , cf. [9, Chap. VI]. It
is well known that (ACP) is well posed if and only if G generates a C0-semigroup on
X , cf. [9, Sect. II.6]. Being concerned with the generator property of G one basically
relies on two methods, the Lumer–Phillips theorem in the dissipative and the Hille–
Yosida theorem in the general case. However, the latter is based on growth estimate
of all powers of the resolvent of G and can be verified explicitly only in very special
cases.
In order to check well posedness of (ACP) for (nondissipative) operators G where

direct computations involving the resolvent are impossible to perform, one can try to
split G into a sum “G = A + P” for a simpler generator A and a perturbation P
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and then use some kind of perturbation theory to conclude that also G generates a
C0-semigroup on X .

In [2] we presented an abstract result in this direction (see also Theorem 2.1 below),
which can be interpreted as a purely operator-theoretic approach to former work by
Weiss [24, Thms. 6.1 & 7.2] and Staffans [23, Thms. 7.1.2 & 7.4.5] on the well
posedness of linear closed-loop systems. More precisely, we considered operators G
of the form

G = (A−1 + BC)|X
where B ∈ L(U, X−1) and C ∈ L(Z ,U ), cf. Sect. 2.1 for more details. Our former
result was based on various “admissibility” conditions, cf. Notation 2.3 below, and
unified previous perturbation results due to Desch–Schappacher, Miyadera–Voigt and
Greiner.
In the present paper we replace these admissibility assumptions for generators A of

analytic semigroups by simple inclusions concerning the range of B and the domain
of C with respect to certain intermediate spaces. We emphasize that our approach is
highly versatile and allows treating various classes of differential equations in a unified
and systematicway.Moreover, we point out that in contrast to otherwell-known results
on the perturbation of analytic semigroups (see, e.g., [9, Sect. III.2]) we do not assume
that P = BC is relatively bounded with respect to A. On the contrary, in most cases
the perturbation P will change the domain of A, i.e., we may have D(G) �= D(A) as
in the examples in Sect. 3.

This paper is organized as follows. In Sect. 2 we first recall briefly the perturbation
result from [2] and then show how it can be simplified in the analytic case to obtain
our main result, Theorem 2.4. For its proof we use a characterization of analytic
semigroups of angle θ ∈ (0, π

2 ], see Lemma 2.6, which might be of its own interest.
Then, in Sect. 3 we illustrate the power of our approach by four examples. First,
we consider a generic example which significantly extends boundary perturbations
considered by Greiner and Greiner–Kuhn, cf. Corollaries 3.6 and 3.7. Next, we apply
our results to

• a degenerate second-order differential equation on C[0, 1] with generalized
Wentzell boundary conditions,

• a reaction–diffusion equation on Lp[0, π ] subject to Neumann boundary condi-
tions with distributed unbounded delay, and

• a second-order differential equation on L2(�)with perturbed Robin-type bound-
ary conditions on some domain � ⊂ R

n .

In the Appendix we collect some results which are useful in order to verify the as-
sumptions of our main results.
We mention that this is the first in a series of papers dedicated to applications of our

perturbation result from [2]. In forthcoming works we will treat, among other, per-
turbations of operator matrices, generators of cosine families, diffusion on networks,
complete second-order and delay differential equations.
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2. Perturbation of generators

2.1. The abstract perturbation result

In this subsection we briefly recall the Weiss–Staffans type perturbation result from
[2].
On the Banach spaces X , U and Z we consider the operators

• A : D(A) ⊂ X → X ,
• B ∈ L(U, X A−1),
• C ∈ L(Z ,U )

and assume that A is the generator of a C0-semigroup (T (t))t≥0 on X . Here X A
1

and X A−1 denote the inter- and extrapolated Sobolev spaces with respect to A (cf. [9,
Sect. II.5.a]). Moreover, Z = D(C) is a Banach space such that

X A
1 ↪→ Z ↪→ X,

where “↪→” denotes a continuous injection. For a triple (A, B,C) as above and t > 0
we indicate by

F (A,B,C)
t : Lp([0, t],U)→ Lp([0, t],U)

the associated input–output map, i.e.,

(F (A,B,C)
t u

)
(r)=C

∫ r

0
T−1(r − s)Bu(s) ds for u ∈ W2,p

0

([0, t],U) and r ∈ [0, t],

where (T−1(t))t≥0 denotes the extrapolated semigroup generated by A−1 on X A−1.
Here for p ≥ 1, k ∈ N, an interval I ⊆ R such that 0 ∈ I and a Banach space V we
define

Wk,p
0 (I, V ) := { f ∈ Wk,p(I, V

) : f (0) = f ′(0) = · · · = f (k−1)(0) = 0
}
.

Finally, we denote by rg(T ) the range of a linear operator T . Then by [2, Thm. 10]
the following holds.

THEOREM 2.1. Let A generate a C0-semigroup (T (t))t≥0 on X, B ∈ L(U, X A−1)

and C ∈ L(Z ,Y ). Moreover, assume that there exist 1 ≤ p < +∞, t > 0 and M ≥ 0
such that

(i) rg
(
R(λ, A−1)B

) ⊆ Z for some λ ∈ ρ(A),

(ii)
∫ t

0
T−1(t − s)Bu(s) ds ∈ X for all u ∈ Lp([0, t],U),

(iii)
∫ t

0

∥
∥CT (s)x

∥
∥p
U ds ≤ M · ‖x‖p

X for all x ∈ D(A),

(iv)
∫ t

0

∥
∥
∥C
∫ r

0
T−1(r − s)Bu(s) ds

∥
∥
∥
p

U
dr ≤ M · ‖u‖p

p for all u ∈ W2,p
0

([0, t],U),

(v) 1 ∈ ρ(F (A,B,C)
t ).
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Then the operator

ABC := (A−1 + BC)|X , D(ABC ) = {x ∈ Z : (A−1 + BC)x ∈ X
}

(2.1)

generates a C0-semigroup (TBC (t))t≥0 on the Banach space X. Moreover, the per-
turbed semigroup verifies the variation of parameters formula

TBC (t)x = T (t)x+
∫ t

0
T−1(t − s) · BC · TBC (s)x ds for all t ≥ 0 and x ∈D(ABC ).

REMARK 2.2. Using the closed graph theorem one can show that condition (ii) in
the previous result is equivalent to the estimate

∥
∥
∥
∥

∫ t

0
T−1(t − s)Bu(s) ds

∥
∥
∥
∥
X

≤ M · ‖u‖p for all u ∈ W1,p([0, t],U) (2.2)

for some M ≥ 0, cf. [2, Rem. 2].

NOTATION 2.3. It is convenient to use the following notions for operators A, B
and C as above. Consider the conditions (i–v) in Theorem 2.1. Then

• the triple (A, B,C) is called compatible, if (i) holds,
• the operator B is called p-admissible control operator, if (ii) holds,
• the operator C is called p-admissible observation operator, if (iii) holds,
• the pair (B,C) is called jointly p-admissible, if (i–iv) hold,
• the identity I dU ∈ L(U ) is called p-admissible feedback operator, if (v) holds.

2.2. Perturbation of analytic semigroups

While Theorem 2.1 is valid for arbitrary semigroups, the following result is tailored
for the analytic case. It substitutes the compatibility and admissibility conditions by
inclusion relations between the range of B, the domain of C and certain intermediate
spaces.
In the sequel ω0(A) denotes the growth bound of the semigroup generated by A,

cf. [9, Def. I.5.6], FA
α is the Favard space of A of order α ∈ R, see [9, Sect. II.5.b],

and (−A)γ indicates the fractional power of order γ ∈ R of A as in [9, Sect. II.5.c].
Finally, for a linear operator T wewrite [D(T )] := (D(T ), ‖•‖T )with the graph norm
‖•‖T given by ‖x‖T := ‖x‖ + ‖T x‖ for x ∈ D(T ).

THEOREM2.4. Let (A, D(A)) generate an analytic semigroup of angle θ ∈ (0, π
2 ]

on X andassume that B ∈ L(U, X A−1)andC ∈ L(Z ,U ). Forβ ∈ [0, 1]andγ ∈ (0, 1]
consider the following conditions:

(i) rg(R(λ, A−1)B) ⊆ FA
1−β .

(ii) [D((λ − A)γ )] ↪→ Z for some λ > ω0(A).
(iii) β + γ < 1.

Then the following holds.
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(a) If (i) holds, then B is a p-admissible control operator for all p > 1
1−β

, and, if
β = 0, then also for p = 1.

(b) If (ii) holds, then C is a p-admissible observation operator for all p < 1
γ
.

(c) If (i–iii) hold, then
(1) (A, B,C) is compatible.
(2) (B,C) is jointly p-admissible for all 1

1−β
< p < 1

γ
, and, if β = 0, then also

for p = 1.
(3) For every 0 < ε < 1 − (β + γ ) and 1

1−β
≤ p < 1

γ
there exists M ≥ 0 such

that

∥
∥F (A,B,C)

t

∥
∥
p ≤ M · tε for all 0 < t ≤ 1.

Hence, I dU ∈ L(U ) is a p-admissible feedback operator for the triple
(A, B,C).

In conclusion, conditions (i–iii) imply that the operator (A−1 + BC)|X generates an
analytic C0-semigroup of angle θ on X.

In order to prove part (a) and (c.2) of the above result we need the following quite
crippled version of Young’s inequality which, however, perfectly fits our needs. Here,
for two functions K and v on (0, t0] for some t0 > 0 we define their convolution by

(K ∗ v)(t) :=
∫ t

0
K (t − s)v(s) ds, t ∈ (0, t0]

and put (K ∗ v)(0) := 0.

LEMMA 2.5. Let K : (0, 1] → L(Y, X) be strongly continuous. Moreover, assume
that 1 ≤ p, q, r ≤ +∞ satisfy 1

p + 1
q = 1 + 1

r . If k(•) := ||K (•)||L(Y,X) ∈ Lq [0, 1]
and v ∈ C([0, 1],Y ), then K ∗ v ∈ Lr ([0, 1], X) and

‖K ∗ v‖r ≤ ‖k‖q · ‖v‖p. (2.3)

Proof. Weadapt the proof of [3, Prop. 1.3.5] where convolutions onR+ are considered
and K is assumed to be strongly continuous onR+. Fix 0 < t ≤ 1 andv ∈ C([0, 1],Y ).
Then s → b(s) := K (t − s)v(s) is continuous on (0, t), hence measurable. Note that
k(t − •) ∈ Lq [0, t] ⊆ L1[0, t], thus the estimate

‖b(s)‖ = ‖K (t − s)v(s)‖ ≤ k(t − s) · ‖v‖∞

implies that ||b(•)|| is integrable on [0, t]. By Bochner’s theorem (see [3, Thm. 1.1.4])
this shows that b is integrable and hence (K ∗ v)(t) exists for all t ∈ [0, 1]. Next we
show that t → (K ∗ v)(t) is continuous on [0, 1]. Let t ∈ [0, 1] and h ∈ R such
that t + h ∈ [0, 1]. Since k ∈ Lq [0, 1] ⊆ L1[0, 1] and v ∈ C([0, 1],Y ) is uniformly
continuous, we conclude
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∥
∥(K ∗ v)(t + h) − (K ∗ v)(t)

∥
∥

≤
∫ t

0
k(s) · ∥∥v(t + h − s) − v(t − s)

∥
∥ ds

+
∣
∣
∣
∣

∫ t+h

t
k(s) · ∥∥v(s + h − s)

∥
∥ ds

∣
∣
∣
∣

≤ ‖k‖1 · sup
s,s+h∈[0,1]

∥
∥v(s + h) − v(s)

∥
∥+

∣
∣
∣
∣

∫ t+h

t
k(s) ds

∣
∣
∣
∣ · ‖v‖∞

→ 0 as h → 0.

This shows that K ∗v ∈ C([0, 1], X) ⊂ Lr ([0, 1], X) and by the scalar-valued version
of Young’s inequality (see [21, Sect. IX.4, Expl. 1]) we finally obtain

‖K ∗ v‖r ≤ ∥∥k ∗ ‖v(•)‖Y
∥
∥
r ≤ ‖k‖q · ‖v‖p

as claimed. �

Now we are well prepared to give the

Proof of Theorem 2.4. Note that for every λ > ω0(A)we have FA
1−β = FA−λ

1−β . Hence,
replacing if necessary A by A − λ we can assume without loss of generality that
ω0(A) < 0 and λ = 0.

(a) Since A−1
−1B ∈ L(U, X) and FA

1−β ↪→ X , assumption (i) and the closed

graph theorem imply that A−1
−1B ∈ L(U,FA

1−β). Hence, for all u ∈ C([0, 1],U ) ⊂
Lp
([0, 1],U)

v := A−1
−1Bu ∈ C

([0, 1],FA
1−β

) ⊂ Lp([0, 1],FA
1−β

)
. (2.4)

Since rg(T (t)) ⊆ D(A∞) for all t > 0, we can define

K : (0, 1] → L(FA
1−β, X

)
, K (t) := AT (t).

Then K is strongly continuous on (0, 1], and by [9, Prop. II.5.13] there exists M > 0
such that

∥
∥tβK (t)x

∥
∥
X ≤ sup

s∈(0,1]

∥
∥sβ AT (s)x

∥
∥
X ≤ M · ‖x‖FA

1−β
for all x ∈ FA

1−β.

This implies that

k(t) := ‖K (t)‖L(FA
1−β ,X) ≤ M · t−β for all t ∈ (0, 1]. (2.5)

Hence, k ∈ Lq [0, 1] if β · q < 1, i.e.,

k ∈ Lq [0, 1] if

{
q < 1

β
and β > 0, or

q ≥ 1 and β = 0.
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Next we choose r = +∞ in Young’s inequality from Lemma 2.5. Then q = p
p−1 and

from (2.3) it follows that there exists M ≥ 0 such that for all u ∈ C([0, 1],U )

∥
∥
∥
∥

∫ 1

0
T−1(1 − s)Bu(s) ds

∥
∥
∥
∥
X

= ∥∥(K ∗ v)(1)
∥
∥
X ≤ ‖K ∗ v‖∞

≤ M · ‖k‖q · ‖u‖p

provided
⎧
⎪⎪⎨

⎪⎪⎩

p

p − 1
= q <

1

β
and β > 0 ⇐⇒ p >

1

1 − β
and β > 0, or

p

p − 1
= q ≥ 1 and β = 0 ⇐⇒ p ≥ 1 and β = 0.

Since W1,p([0, 1],U ) ⊂ C([0, 1],U ), the assertion follows from Remark 2.2.
(b) For all t > 0 we have by (ii)

∥
∥CT (t)

∥
∥L(X,U )

≤ ∥∥C(−A)−γ
∥
∥L(X,U )

· ∥∥(−A)γ T (t)
∥
∥L(X)

.

Since by [22, Lem. 12.36] there exists M ≥ 0 such that
∥
∥(−A)γ T (t)

∥
∥L(X)

≤ M · t−γ for all t ∈ (0, 1], (2.6)

we conclude that C is a p-admissible observation operator for all p < 1
γ
.

(c.1) By [9, Props. II.5.14 & 5.33] we have

D
(
(−A)α

)
↪→ FA

α ↪→ D
(
(−A)δ

)
for all 1 > α > δ > 0. (2.7)

Since by assumption (iii) we have 1 − β > γ , (2.7) and (ii) imply

rg
(
A−1

−1B
) ⊆ FA

1−β ⊆ D
(
(−A)γ

) ⊆ Z = D(C),

i.e., the triple (A, B,C) is compatible.
(c.2) Since rg(T (t)) ⊆ D(A∞) we can define

L : (0, 1] → L(FA
1−β, X

)
, L(t) := (−A)1+γ T (t).

Then L is strongly continuous on (0, 1]. Using (2.5) and (2.6) we obtain for 0 < t ≤ 1
and suitable M ≥ 0

l(t) := ∥∥L(t)
∥
∥L(FA

1−β ,X)
≤ ∥∥(−A)γ T

( t
2

)∥
∥L(X)

· ∥∥AT ( t2
)∥
∥L(FA

1−β ,X)

≤ M · t−(β+γ ). (2.8)

Now choose in Young’s inequality from Lemma 2.5 p = 1
1−β

≤ r < 1
γ
. Then we

obtain 1
q = β + 1

r > β + γ , and hence

q · (β + γ ) < 1



1190 M. Adler et al. J. Evol. Equ.

which by (2.8) implies that l ∈ Lq [0, 1]. Thus, by (2.3) there exists M ≥ 0 such that
the input–output map Ft := F (A,B,C)

t for all 0 < t ≤ 1 and u ∈ C([0, 1],U ) satisfies

∥
∥Ft u

∥
∥
r ≤

(∫ 1

0

∥
∥
∥
∥C
∫ t

0
T−1(t − s)Bu(s) ds

∥
∥
∥
∥

r

U
dt

) 1
r

≤ ∥∥C(−A)−γ
∥
∥ ·
(∫ 1

0

∥
∥
∥
∥

∫ t

0
(−A)1+γ T−1(t − s) · A−1

−1Bu(s) ds

∥
∥
∥
∥

r

X
dt

) 1
r

≤ M · ∥∥L ∗ v
∥
∥
r

≤ M · ‖l‖q · ‖u‖ 1
1−β

where v ∈ C
([0, 1],FA

1−β

)
is given by (2.4). This shows that for every 1

1−β
≤ r < 1

γ

and 0 < t ≤ 1 the input–output map has a unique bounded extension

Ft : L 1
1−β
([0, t],U)→ Lr ([0, t],U). (2.9)

Since Lr
([0, t],U) ↪→ L

1
1−β
([0, t],U) for r ≥ 1

1−β
, this together with (b) and (c)

proves that the pair (B,C) is jointly p-admissible for all p ∈ ( 1
1−β

, 1
γ
) and in case

β = 0 also for p = 1.
(c.3) By Jensen’s inequality we have for all 1 ≤ p ≤ r < +∞ and

u ∈ Lr
([0, t],U) ⊆ Lp

([0, t],U)

‖u‖p ≤ t
1
p − 1

r · ‖u‖r .
This combined with (2.9) gives for all 1

1−β
≤ p ≤ r < 1

γ
and u ∈ Lr

([0, t],U) that

t−
1
p + 1

r · ‖Ft u‖p ≤ ‖Ft u‖r ≤ M · ‖u‖ 1
1−β

≤ M · t1−β− 1
p · ‖u‖p.

For given 0 < ε < 1− (β +γ )we take r := 1
1−β−ε

∈ ( 1
1−β

, 1
γ

)
and obtain by density

of Lr
([0, t],U) in Lp

([0, t],U) that

‖Ft‖p ≤ M · t1−β− 1
r ≤ M · tε

as claimed. Clearly (a–c) combined with Theorem 2.1 imply that (A−1 + BC)|X
generates a C0-semigroup. This semigroup is analytic of angle θ by the following
two lemmas. More precisely, Lemma 2.7 allows us to repeat the above reasoning for
A, B, C replaced by eiϕ A, eiϕB, C to obtain that also eiϕ ABC is a generator of a
C0-semigroup on X for all ϕ ∈ (−θ, θ). By Lemma 2.6 this implies the assertion. �

In the following for an operator A and ϕ ∈ R we use the notation

Aϕ := eiϕ A.

LEMMA 2.6. Let 0 < θ ≤ π
2 . Then A generates an analytic semigroup of angle θ

if and only if Aϕ generates a C0-semigroup for every ϕ ∈ (−θ, θ).
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Proof. Assume first that A generates an analytic semigroup (T (z))z∈�θ∪{0} of angle
θ where �θ denotes the open sector

�θ := {z ∈ C\{0} : | arg(z)| < θ
}
.

Then it is clear that for every ϕ ∈ (−θ, θ) the operators Tϕ(t) := T (eiϕ t) define a
strongly continuous semigroup (Tϕ(t))t≥0 with generator Aϕ , cf. [3, Prop. 3.7.2.(c)].

Conversely, assume that Aϕ generates a C0-semigroup (Tϕ(t))t≥0 for every ϕ ∈
(−θ, θ). Then by [9, Thm. II.4.6.(b)] the operator A generates an analytic semigroup
(T (z))z∈�θ ′∪{0} of some angle θ ′ > 0. If θ ′ ≥ θ , we are done and hence assume that
θ ′ < θ . Then we have to show that the map z → T (z) can be extended analytically
from �θ ′ to the open sector �θ .
To this end we fix some ϕ ∈ (θ ′, θ) and consider the two projections on the complex

plane P±ϕ : C → C onto e±iϕ · R along e∓ϕi · R. Then for z ∈ �ϕ we put r±(z) :=
e∓iϕ · P±ϕz ≥ 0. Since P±ϕ = 1 − P∓ϕ , this implies z = r+(z) · eiϕ + r−(z) · e−iϕ .
Using this representation of z we define

T̃ : �ϕ → L(X), T̃ (z) := Tϕ

(
r+(z)

) · T−ϕ

(
r−(z)

)
. (2.10)

Since the resolvents of A±ϕ commute, also the semigroups (T±ϕ(t))t≥0 commute.
Using this fact and the equations r±(z + w) = r±(z) + r±(w) it follows that

T̃ (z) · T̃ (w) = T̃ (z + w) for all z, w ∈ �ϕ.

Next we show that (T̃ (z))z∈�ϕ
is strongly continuous on the closed sector �ϕ . To this

end choose M, ω > 0 such that ‖T±ϕ(t)‖ ≤ M · eωt for all t ≥ 0. Then from the
continuity of r±(•) and the fact that r±(z) ≤ ‖P±ϕ‖ · |z| we obtain for x ∈ X and
z, w ∈ �ϕ

∥
∥T̃ (z)x − T̃ (w)x

∥
∥ ≤ ∥∥Tϕ

(
r+(z)

) · [T−ϕ

(
r−(z)

)− T−ϕ

(
r−(w)

)]
x
∥
∥

+ ∥∥[Tϕ

(
r+(z)

)− Tϕ

(
r+(w)

)] · T−ϕ

(
r−(w)

)
x
∥
∥

≤ Meω
(
‖Pϕ‖+‖P−ϕ‖

)
·|z| ·

(∥
∥T−ϕ

(
r−(z)

)
x − T−ϕ

(
r−(w)

)
x
∥
∥

+ ∥∥Tϕ

(
r+(z)

)
x − Tϕ

(
r+(w)

)
x
∥
∥
)

→ 0 as w → z in �ϕ .

Hence, (T̃ (z))z∈�ϕ
is strongly continuous as claimed. This implies in particular that

for every ψ ∈ [−ϕ, ϕ] the restriction
T̃ψ(t) := T̃

(
eiψ t

)
, t ≥ 0

defines a C0-semigroup on X . Next we compute its generator Ãψ . Let

r± := r±
(
eiψ
)
, i.e. eiψ = r+ · eiϕ + r− · e−iϕ.
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Then by definition of T̃ (z) in (2.10) we have T̃ψ(t) = Tϕ(r+t) · T−ϕ(r−t). Hence, for
x ∈ D(A) we obtain

d

dt
T̃ψ(t)x = r+Aϕ · Tϕ(r+t) · T−ϕ(r−t)x + r−A−ϕ · Tϕ(r+t) · T−ϕ(r−t)x

= (r+eiϕ A + r−e−iϕ A
) · T̃ (z)x = eiψ A · T̃ (z)x .

This implies eiψ A ⊆ Ãψ , and since ρ(eiψ A)∩ρ( Ãψ) �= ∅, we obtain Ãψ = eiψ A =
Aψ . Since a generator uniquely determines the generated semigroup, we conclude
that

T (z) = T̃ (z) for all z ∈ �θ ′,

i.e., (T̃ (z))z∈�ϕ
is a strongly continuous extension of (T (z))z∈�θ ′∪{0}. For this reason

from now on we can drop the tilde and write T (z) = T̃ (z) for all z ∈ �ϕ .
Summing up,we showed that A generates a semigroup (T (z))z∈�ϕ

which is strongly

continuous on �ϕ and analytic on �θ ′ . It remains to show that (T (z))z∈�ϕ
is analytic

on �ϕ . To this end note that for each r > 0

z → T
(
re±iϕ) · T (z) = T

(
re±iϕ + z

)
is analytic on �θ ′ �⇒

z → T (z) is analytic on re±iϕ + �θ ′ .

Since

�ϕ =
⋃

r>0

(
re±iϕ + �θ ′

)

this implies that (T (z))z∈�ϕ
is analytic on the whole open sector�ϕ as claimed. Recall

that ϕ ∈ (θ ′, θ) was arbitrary. Thus, from

�θ =
⋃

ϕ∈(−θ,θ)

�ϕ

we finally conclude that (T (t))t≥0 can be extended to an analytic semigroup
(T (z))z∈�θ∪{0}, i.e., is analytic of angle (at least) θ . �

LEMMA 2.7. Let A generate an analytic semigroup of angle θ ∈ (0, π
2 ). Moreover,

letϕ ∈ (−θ, θ) andλ > 0 such thatω0(A−λ), ω0(Aϕ−λ) < 0. Then for allα ∈ (0, 1]
one has

D
(
(λ − A)α

) = D
(
(λ − Aϕ)α

)
and FA

α = F
Aϕ
α . (2.11)

Proof. Note that by the previous result Aϕ generates an analytic semigroup. Without
loss of generality we assume that λ = 0.

To show the first equality in (2.11) fix some α ∈ (0, 1). Then by the definition of
(−A)−α (see, e.g., [9, Def. II.5.25]), the equality

R(λ, Aϕ) = e−iϕR
(
e−iϕλ, A

)
(2.12)
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and Cauchy’s integral theorem it follows that (−Aϕ)−α = e−iϕα · (−A)−α. This
implies

D((−A)α) = rg((−A)−α) = rg((−Aϕ)−α) = D((−Aϕ)α)

for α ∈ (0, 1) while for α = 1 it is obviously satisfied.

Next we show that FA
α ⊆ F

Aϕ
α for α ∈ (0, 1]. Let x ∈ FA

α . Then by (2.12), the
resolvent equation, theHille–Yosida theorem for Aϕ and [9, Prop. II.5.12]we conclude
that

sup
λ>0

∥
∥λαAϕR(λ, Aϕ)x

∥
∥ = sup

λ>0

∥
∥λαA

(
R(e−iϕλ, A) − R(λ, A)

)
x + λαAR(λ, A)x

∥
∥

≤ sup
λ>0

∥
∥(1 − e−iϕ)λR(e−iϕλ, A)λαAR(λ, A)x

∥
∥

+ sup
λ>0

∥
∥λαAR(λ, A)x

∥
∥

≤
(

1 + sup
λ>0

∥
∥(1 − e−iϕ)λR(λ, Aϕ)

∥
∥

)

· sup
λ>0

∥
∥λαAR(λ, A)x

∥
∥

< +∞.

Again by [9, Prop. II.5.12] this implies that x ∈ F
Aϕ
α , hence FA

α ⊆ F
Aϕ
α . In order to

show the converse inclusion note that A = e−iϕ Aϕ . The assertion then follows as
above by interchanging the roles of A and Aϕ and substituting ϕ by −ϕ. �

3. Examples

3.1. The generic example

Many concrete examples fit into the following general frameworkwhich generalizes
boundary perturbations in the sense of Greiner, cf. [12].
We start with a Banach space X and a linear “maximal operator”1 Am : D(Am) ⊆

X → X . In order to single out a restriction A of Am we take a Banach space ∂X , called
“space of boundary conditions,” and a linear “boundary operator” L : D(Am) → ∂X
and define

A ⊆ Am, D(A) = {x ∈ D(Am) : Lx = 0
} = ker(L). (3.1)

Next we perturb A in the following way. For a Banach space Z satisfying D(Am) ⊆ Z
and X A

1 ↪→ Z ↪→ X , and operators P ∈ L(Z , X) and � ∈ L(Z , ∂X) we consider

G ⊆ Am + P, D(G) := {x ∈ D(Am) : Lx = �x
} = ker(L − �). (3.2)

cf. Fig. 1.
Hence, G can be considered as a twofold perturbation of A,

1 “Maximal” in the sense of a “big” domain, e.g., a differential operator without boundary conditions.
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X ⊇ Z ⊇ D(Am) X............................................................................................................................................................................................................................................................................................... ............
Am

.......

.........
...............
............................................................................................................................................................................................................................................................................................................................................................................................................................................................

...
.........
...

P

∂X

................................................................................................................................................................................................................................................................................................................................................. ...........
.

L

.......................................................................................................................................................................................................................................................................................................................................................................................................................................... ............

Φ

Figure 1. The operators defining G in (3.2)

• by the operator P to change its action, and
• by the operator � to change its domain.

We note that in [12] the operator � : X → ∂X has to be bounded and P = 0. Below
we will show that this example fits into our framework for unbounded operators �

and P , too. To this end we first make the following

ASSUMPTIONS 3.1. (a) A generates a C0-semigroup (T (t))t≥0 on X .
(b) For some μ ∈ C the restriction

L|ker(μ−Am ) : ker(μ − Am) → ∂X

is invertible with bounded inverse

Lμ := (L|ker(μ−Am )

)−1 ∈ L(∂X , X).

Next we elaborate on the so-called abstract Dirichlet operator Lμ which plays a
crucial role in this approach. Note that in contrast to the setting in [12, (1.13)] we do
not assume that D(Am) equipped with some norm finer than ‖•‖X is complete.

PROPOSITION 3.2. Let Assumption 3.1.(b) be satisfied. Then for all λ ∈ ρ(A)

L|ker(λ−Am ) : ker(λ − Am) → ∂X

is invertible with bounded inverse given by

Lλ = (μ − A)R(λ, A)Lμ ∈ L(∂X , X). (3.3)

Proof. Let L̃λ ∈ L(∂X , X) be the operator defined by the right-hand side of (3.3).
Then the identity L̃λ = (

I d + (μ − λ)R(λ, A)
)
Lμ implies that rg(L̃λ) ⊆ ker(μ −

Am) + D(A) ⊆ D(Am) and L L̃λ = I d∂X . Moreover, for x ∈ ∂X

(λ − Am)L̃λx = (λ − Am)Lμx + (μ − λ)(λ − Am)R(λ, A)Lμx

= (λ − μ)Lμx + (μ − λ)Lμx = 0,

i.e., rg(L̃λ) ⊆ ker(λ − Am). Summing up this proves that L : ker(λ − Am) → ∂X is
surjective with right-inverse L̃λ. To show injectivity assume that x ∈ ker(λ − Am) ∩
ker(L). Then x ∈ D(A) and (λ − A)x = 0 which implies x = 0 since λ ∈ ρ(A). �
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Note that by the previous result Lλ = R(λ, A−1)(μ− A−1)Lμ; hence, the operator

LA := (μ − A−1)Lμ = (λ − A−1)Lλ ∈ L(∂X , X A−1) (3.4)

is independent of λ ∈ ρ(A).
The following result gives sufficient conditions implying Assumption 3.1.(b). For

a proof we refer to [12, Lem. 1.2] and [6, Lem. 2.2].

LEMMA 3.3. If L is surjective and either

• Am is closed and L ∈ L([D(Am)], ∂X), or
• (Am−μ

L

) : D(Am) ⊂ X → X × ∂X is closed for some (hence for all) μ ∈ C,2

then for every λ ∈ ρ(A), Assumption 3.1.(b) is satisfied.

Using the operator LA from (3.4) we obtain the following representation of G in
(3.2).

LEMMA 3.4. We have

G = (A−1 + P + L A · �
)∣
∣
X . (3.5)

Proof. Denote by G̃ the operator defined by the right-hand-side of (3.5) and fix some
λ ∈ ρ(A). Then for x ∈ Z we have

x ∈ D(G̃) ⇐⇒ (A−1 − λ)
(
I d − Lλ�

)
x + (P + λ)x ∈ X

⇐⇒ (
I d − Lλ�

)
x ∈ D(A) = ker L

⇐⇒ Lx = �x

⇐⇒ x ∈ D(G), (3.6)

where in (3.6) we used that x = (
I d − Lλ�

)
x + Lλ�x ∈ D(A) + ker(λ − Am) ⊆

D(Am). Moreover, for x ∈ D(G) we obtain

G̃x = (Am − λ)
(
I d − Lλ�

)
x + (P + λ)x

= (Am − λ)x + (P + λ)x

= (Am + P)x = Gx,

hence G = G̃ as claimed. �

In order to represent G given in (3.5) as ABC like in (2.1), we define the product
space

U := X × ∂X (3.7)

and the operators

B := (I dX , L A
) ∈ L(U, X A−1) and C := (P

�

) ∈ L(Z ,U ). (3.8)

Then a simple computation shows the following.

2 In [6, Rem. 3.3], the authors present an example showing that
(Am
L

)
is closed while Am is not closed.
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LEMMA 3.5. The triple (A, B,C) given by (3.1), (3.8) is compatible. Moreover,
G in (3.2) can be written as G = ABC .

By applying Theorem 2.1 to this situation we obtain the following result.

COROLLARY 3.6. Assume that for some 1 ≤ p < +∞ the pairs (LA, P) and
(LA,�) are jointly p-admissible for A and that there exists t > 0 such that 1 ∈
ρ(F (A,B,C)

t ) where

F (A,B,C)
t =

(
F (A,I dX ,P)
t F (A,L A,P)

t

F (A,I dX ,�)
t F (A,L A,�)

t

)

∈ L(X × ∂X
)
.

Then G given by (3.2) generates a C0-semigroup on X. Here the condition 1 ∈
ρ(F (A,B,C)

t ) is in particular satisfied if p > 1 and 1 ∈ ρ(F (A,L A,�)
t ).

Proof. We only have to verify the assertion concerning the invertibility of I d −
F (A,B,C)
t for p > 1. This, however, follows immediately from Lemma A.3.(b) by

the use of Schur complements (cf. [20, Lem. 2.1]). �

We note that Corollary 3.6 can be regarded as an operator-theoretic extension of
the main result in [15] (Theorem 4.1) which is formulated in the language of systems
theory and where P = 0 is assumed.

If in the above situation A generates an analytic semigroup, then from Theorem 2.4
and Lemma A.1 we obtain the following simplification.

COROLLARY 3.7. Let A generate an analytic semigroup of angle θ ∈ (0, π
2 ] on

X. If there exist λ > ω0(A), β ≥ 0 and γ > 0 such that

(i) rg(Lλ) ⊆ FA
1−β ,

(ii) [D((λ − A)γ )] ↪→ Z,
(iii) β + γ < 1,

then G given by (3.2) generates an analytic semigroup of angle θ on X.

REMARK 3.8. The previous corollary improves [13, Thm. 2.6.(c)] (see [14,16,19]
as well) where, by means of a resolvent estimate, a similar result in the context of
abstract Hölder spaces is proved. In contrast to our approach, the approaches in the
above references are not applicable to problems like Example 3.3 where only part of
the system is governed by an analytic semigroup, but the semigroup associated with
the whole system is not analytic, cf. Remark 3.13. We emphasize that nevertheless we
can use the results in Theorem 2.4 to establish the admissibility of the related operators
in Example 3.3.

3.2. A degenerate second-order differential operator on C[0, 1] with generalized
Wentzell boundary conditions

As a first concrete application of our approach we prove the following generation
result.
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THEOREM3.9. Let a ∈ C[0, 1]with a(s) > 0 for s ∈ (0, 1) such that 1a ∈ L1[0, 1]
and [0, 1] � s → ∫ s

0
1

a(r) dr is Hölder-continuous of exponent δ ∈ (0, 1]. Moreover,
define Am on C[0, 1] by

Am f := a · f ′′, D(Am) := { f ∈ C[0, 1] ∩ C2(0, 1) : a · f ′′ ∈ C[0, 1]}. (3.9)

Then D(Am) ⊂ C1[0, 1] and for all b, c ∈ C[0, 1] and � ∈ L(C1[0, 1],C2) the
operator

G f := Am f + b f ′ + c f, D(G) := { f ∈ D(Am) : ((Am f )(0)
(Am f )(1)

) = � f
}

(3.10)

generates a compact, analytic semigroup of angle π
2 on C[0, 1].

Proof. Since 1
a ∈ L1[0, 1], it follows for f ∈ D(Am) that f ′′ = 1

a · Am f ∈ L1[0, 1].
Hence, f ∈ W2,1[0, 1] ⊂ C1[0, 1] and therefore D(Am) ⊂ C1[0, 1]. Next we define
the operator A ⊂ Am with domain

D(A) :=
{
f ∈ D(Am) : ((Am f )(0)

(Am f )(1)

) = 0
}
.

Moreover, we choose X := C[0, 1], ∂X := C
2, Z := C1[0, 1], L := (

δ0Am
δ1Am

) :
D(Am) → ∂X and P := b(•) d

ds + c(•). Then the operators defined in (3.2) and (3.10)
coincide.
We proceed by verifying the assumptions of Corollary 3.7. Firstly, by [5, Thm. 4.2]

the operator A generates an analytic semigroup of angle π
2 on X . Hence, Assump-

tion 3.1.(a) is satisfied.
(i) As shown in the proof of [8, Cor. 4.1, part (ii)] the operator Ã ⊂ Am with domain

D( Ã) :=
{
f ∈ D(Am) : ( f (0)f (1)

) = 0
}

is dissipative and invertible. Moreover, [0,+∞) ⊂ ρ( Ã) and ‖ ÃR(λ, Ã)‖ ≤ 2 for all
λ ≥ 0. Next, let ε0(s) := 1 − s and ε1(s) := s for s ∈ [0, 1]. Then L̃0 ∈ L(∂X , X)

where L̃0
(x0
x1

) := x0 · ε0 + x1 · ε1 ∈ ker(Am).3 For λ > 0 define

Lλ := − 1
λ

· ÃR(λ, Ã)L̃0 ∈ L(∂X , X).

Then essentially the same computations as in the proof of Proposition 3.2 show that
Lλ is indeed the abstract Dirichlet operator for Am and the (Wentzell-type) boundary
operator L = (

δ0Am
δ1Am

)
. Therefore, Assumption 3.1.(b) is satisfied. Moreover, ‖Lλ‖ ≤

2
λ

· ‖L0‖ for all λ > 0 and hence rg(Lλ) ⊆ FA
1 by Lemma A.1.(a). This shows (i) for

β = 0.

3 L̃0 is just the abstract Dirichlet operator for Am and the (Dirichlet-type) boundary operator L̃ := (δ0
δ1

)
.
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(ii) As in the proof of [8, Cor. 4.1, part (iii)] Taylor’s formula implies for f ∈ D(A),
s ∈ [0, 1] and 0 �= ε ∈ (−1, 1) such that s + ε ∈ [0, 1] the estimate

∣
∣ f ′(s)

∣
∣ ≤ 2

|ε| · ‖ f ‖∞ +
∣
∣
∣
∣

∫ s+ε

s

dr

a(r)

∣
∣
∣
∣ · ‖A f ‖∞

≤ 2

|ε| · ‖ f ‖∞ + M · |ε|δ · ‖A f ‖∞

for someM ≥ 0, where in the second inequality we used the assumption on the Hölder
continuity of the antiderivative of 1

a . Choosing ρ := |ε|−(1+δ) > 1 and α := 1
1+δ

∈
[ 12 , 1) we obtain for f ∈ D(A)

∥
∥ d

ds
f
∥
∥∞ ≤ (M + 2) · (ρα‖ f ‖∞ + ρα−1‖A f ‖∞

)

for all ρ > 1. Since ( d
ds ,C

1[0, 1]) is closed, Lemma A.2 implies (ii) for all γ ∈
(α, 1) �= ∅.
(iii) follows since β = 0 and γ < 1.
Summing up, we verified all assumptions of Corollary 3.7 and hence G generates

an analytic semigroup of angle π
2 on X . Finally, since at the beginning of the proof

we showed that D(Am) ⊂ C1[0, 1], we conclude by the closed graph and the Arzelà–
Ascoli theorems that

XG
1 ↪→ C1[0, 1] c

↪→ C[0, 1],
where “

c
↪→” denotes a compact injection. Hence, XG

1
c

↪→ X and [9, Prop. II.4.25]
implies thatG has compact resolvent. By [9, Thm. II.4.29] it follows that the semigroup
generated by G is compact. This completes the proof. �

COROLLARY 3.10. Under the assumptions on a, b, c ∈ C[0, 1] made in The-
orem 3.9, the degenerate differential equation with generalized Wentzell boundary
conditions given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du

dt
(t, s) = a(s)

d2u

ds2
(t, s) + b(s)

du

ds
(t, s) + c(s) u(t, s), 0 < s < 1, t ≥ 0,

a d2u

ds2
(t, j) = ϕ j u(t), j = 0, 1, t ≥ 0,

u(0, s) = f0(s), 0 ≤ s ≤ 1
(DE)

is well posed on C[0, 1] for all functionals ϕ0, ϕ1 ∈ (C1[0, 1])′.
REMARK 3.11. Note that every function a ∈ C[0, 1] of the form

a(s) = m(s) · sα0(1 − s)α1 , s ∈ [0, 1]
for α0, α1 ∈ [0, 1) and a strictly positive m ∈ C[0, 1] satisfies the assumption of
Theorem 3.9. Hence, this result generalizes [8, Cor. 4.1] and [10, Thm. 3] where such
a and less general boundary operators � were considered, respectively.



Vol. 17 (2017) Perturbation of analytic semigroups and applications 1199

3.3. A reaction–diffusion equation on Lp[0, π ] with nonlocal Neumann boundary
conditions

For 1 ≤ p < +∞ define X p := Lp[0, π ]. Then it is well known (or use [7,
Thm. 2.2.(b)] and [3, Thm. 3.14.17]) that the operator A ⊂ d2

ds2
with domain

D(A) := { f ∈ W2,p[0, π ] : f ′(0) = 0 = f (π)
}

generates a bounded analytic semigroup on X p. For γ ∈ (0, 1) we take the space

Zγ := [D((−A)γ
)]

.

Moreover, let Y p := Lp([−π, 0], X p) which by [4, Thm. A.6] is isometrically iso-
morphic to the space L p([−π, 0] × [0, π ]). For this reason in the sequel we will use
the notation v(r, s) := (v(r))(s) for v ∈ Y p and r ∈ [−π, 0], s ∈ [0, π ]. Then the
following holds.

THEOREM3.12. Let p ∈ [1,+∞)andγ ∈ (0, 1
p ). Then for every P ∈ L(Zγ , X p)

and all functions μ : [−π, 0] → R of bounded variation the operator

G :=
(

∂2

∂s2
+ P 0

0 ∂
∂r

)

,

D(G) :=
{
( f
v

) ∈ W2,p[0, π ] × W1,p([−π, 0], X p) : v(0) = f, f (π) = 0,

f ′(0) =
∫ π

0

∫ 0

−π
v(r, s) dμ(r) ds

}

generates a C0-semigroup on X p := X p × Y p = Lp[0, π ] × Lp([−π, 0], X p).

REMARK 3.13. Note that the semigroup group generated byG will not be analytic.
Nonetheless, Theorem 2.4 will be very helpful to deal with the analytic part in the first
component. The whole matrix will then be treated by Corollary 3.6.

Proof. Wefirst showhow the operatorG fits into the abstract framework fromSect. 3.1.
To this end we introduce the following operators and spaces, where, for simplicity, in
the sequel we put X := X p, Y := Y p and X := X p. Consider

• Am := d2

ds2
with domain D(Am) = { f ∈ W2,p[0, π ] : f (π) = 0} on X ,

• L := δ′
0 : D(Am) → ∂X := C, i.e., L f = f ′(0),

• Dm := d
dr with domain D(Dm) = W1,p([−π, 0], X) on Y = Lp([−π, 0], X),

• K := δ0 : D(Dm) → ∂Y := X = Lp[0, π ], i.e., Kv = v(0),
• A = Am |ker L , D := Dm |ker K .

Then, as mentioned above, A is the generator of an analytic semigroup (T (t))t≥0 on
X while D generates the nilpotent left-shift semigroup (S(t))t≥0 on Y . Moreover, the
associated Dirichlet operators exist for μ = 0 and are given by

• L0 ∈ L(∂X , X) = L(C,Lp[0, π ]), (L0x)(s) = x · (s − π) for s ∈ [0, π ],
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• K0 ∈ L(∂Y ,Y ) = L(Lp[0, π ],Lp([−π, 0],Lp[0, π ])), (K0 f )(r) := f for
r ∈ [−π, 0].

This shows that Assumption 3.1 is satisfied. Next, we define the spaces ∂X := ∂X ×
∂Y = C × Lp[0, π ] and Z := Zγ × [D(Dm)] = [D((−A)γ )] × W1,p([−π, 0], X)

and introduce the operator matrices

A :=
(
A 0
0 D

)

: D(A) := D(A) × D(D) ⊂ X → X , LA :=
(
LA 0
0 KD

)

: X → XA−1,

P :=
(
P 0
0 0

)

: Z → X , � :=
(
0 ϕ

I d 0

)

: Z → ∂X ,

where KD := −D−1K0 and ϕ(v) := ∫ π

0

∫ 0
−π

v(r, s) dμ(r) ds. Then as in Lemma 3.4
we can write (G, D(G)) as a perturbation of the form

G = (A−1 + P + LA · �)|X .

We proceed by verifying the conditions of Corollary 3.6. Since A is diagonal with
diagonal domain, we can split the problem into three parts: We show that

(i) (L A, P) is jointly p-admissible for A,
(ii) (KD, ϕ) is jointly p-admissible for D,
(iii) 1 ∈ ρ(Ft ) for some t > 0 where

Ft =
⎛

⎜
⎝

F (A,I d,P)
t F (A,L A,P)

t 0

0 0 F (D,KD,ϕ)
t

F (A,I d,I d)
t F (A,L A,I d)

t 0

⎞

⎟
⎠ . (3.11)

As already mentioned, due to the nonanalytic part stemming from the left-shift
semigroup (S(t))t≥0 generated by D on Y , the operator matrix G will not generate an
analytic semigroup on X . Still, we use of our perturbation Theorem 2.4 to treat the
analytic part (i) and also to prove (iii).
(i) First we use Lemma A.1 to show that rg(L0) ⊆ FavAp+1

2p

. To this end note that

for c ∈ ∂X = C we have for λ > 0

(Lλc) (s) = c · sinh
(√

λ(s − π)
)

√
λ · cosh(π√

λ)
, s ∈ [0, π ].

Using this representation and the estimate sinh(s) ≤ es
2 for s ≥ 0 we obtain

sup
λ>0

∥
∥λ

p+1
2p Lλ

∥
∥ = sup

λ>0
λ

1
2p ·
(∫ π

0

(
sinh

(√
λ(s − π)

)

cosh(π
√

λ)

)p

ds

) 1
p

≤ sup
λ>0

eπ
√

λ

2p
1
p · cosh(π√

λ)

≤ 1.
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This implies assumption (i) of Theorem 2.4 for β = 1− p+1
2p = p−1

2p . Moreover, since

γ < 1
p ,

β + γ <
p−1
2p + 1

p = p+1
2p ≤ 1,

Theorem 2.4 implies that (LA, P) is jointly q-admissible for A for all q ∈ (
2p
p+1 ,

1
γ
).

If p = 1, then β = 0; hence, again by Theorem 2.4 we obtain the same conclusion
for q = 1. For p > 1 we have p ∈ (

2p
p+1 ,

1
γ
). This proves (i).

(ii) We first show that the functional ϕ is a p-admissible observation operator for
D. In fact, for v ∈ D(D) = W1,p

0 ([−π, 0], X) we have
∫ π

0

∣
∣ϕ S(t)v

∣
∣p dt =

∫ π

0

∣
∣
∣
∣

∫ π

0

∫ −t

−π

v(r + t, s) dμ(r) ds

∣
∣
∣
∣

p

dt

≤
∫ π

0

(∫ π

0

∫ −t

−π

∣
∣v(t + r, s)

∣
∣ d|μ|(r) ds

)p

dt

≤
∫ π

0

(
π · |μ|[−π,−t])p−1

∫ π

0

∫ −t

−π

∣
∣v(t + r, s)

∣
∣p d|μ|(r) ds dt

(3.12)

≤ (π · |μ|[−π, 0])p−1 ·
∫ π

0

∫ −t

−π

∫ π

0

∣
∣v(t + r, s)

∣
∣p ds d|μ|(r) dt

(3.13)

= (π · |μ|[−π, 0])p−1 ·
∫ π

0

∫ −t

−π

‖v(t + r)‖p
X d|μ|(r) dt

= (π · |μ|[−π, 0])p−1 ·
∫ 0

−π

∫ −r

0
‖v(t)‖p

X dt d|μ|(r) (3.14)

≤ π p−1 · (|μ|[−π, 0])p · ‖v‖p
p ,

where in (3.12) we used Hölder’s inequality twice and the Fubini–Tonelli theorem in
(3.13), (3.14).
Next, as in the proof of [2, Cor. 25]we obtain for u ∈ W 1,p

0 ([0, π ], X) and t ∈ (0, π ]
that ∫ t

0
S−1(t − r)KDu(r) dr = u

(
max{0, • + t}). (3.15)

Hence, the operator KD is a p-admissible control operator for D.
Now we show that the pair (KD, ϕ) is p-admissible. In fact, using (3.15) we obtain

for u ∈ W1,p([0, π ], X) by essentially the same computations as above
∫ π

0

∣
∣
∣
∣ϕ

∫ t

0
S−1(t − r)KDu(r) dr

∣
∣
∣
∣

p
dt =

∫ π

0

∣
∣
∣
∣
∣

∫ π

0

∫ 0

−π
u
(
max{0, r + t}, s) dμ(r) ds

∣
∣
∣
∣
∣

p

dt

≤
∫ π

0

(∫ π

0

∫ 0

−t

∣
∣u(t + r, s)

∣
∣ d|μ|(r) ds

)p
dt

≤ (π · |μ|[−π, 0])p−1 ·
∫ π

0

∫ 0

−t
‖u(t + r)‖pX d|μ|(r) dt

≤ π p−1 · (|μ|[−π, 0])p · ‖u‖pp .
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(iii) We first determine the input–output map of the complete system. Note that by
(3.7) we should choose U = X × ∂X = (X × Y ) × (∂X × ∂Y ). However, since the
perturbation P only acts on X , we can cancel out the factor Y and choose

U := X × ∂X = X × (∂X × ∂Y ) = Lp[0, π ] × C × Lp[0, π ].
By this reduction and the diagonal structure of the generatorAwe obtain the simplified
input–output map4 Ft ∈ L(U) given by (3.11). Note that by Theorem 2.4.(c.3) we
have

∥
∥F (A,∗,�)

t

∥
∥→ 0 as t → 0+, (3.16)

where “∗, �” indicates one of the pairs “I d, P ”, “LA, P ”, “I d, I d ” or “L A, I d ”.
In particular, I d − F (A,I d,P)

t is invertible for t > 0 sufficiently small. Using Schur
complements (cf. [20, Lem. 2.1]) the invertibility of I d − Ft is therefore equivalent
to the invertibility of

I d −
(

F (A,I d,I d)
t F (A,L A,I d)

t

)
·
((

I d − F (A,I d,P)
t

)−1 F (A,L A,P)
t

0 I d

)

·
(

0

F (D,KD ,ϕ)
t

)

= I d − F (A,I d,I d)
t · F (A,L A,P)

t · F (D,KD,ϕ)
t − F (A,L A,I d)

t · F (D,KD,ϕ)
t .

Since by (3.16)
∥
∥
∥F (A,I d,I d)

t · F (A,L A,P)
t · F (D,KD,ϕ)

t + F (A,L A,I d)
t · F (D,KD,ϕ)

t

∥
∥
∥→ 0 as t → 0+,

the assertion holds for t > 0 sufficiently small.
Summing up (i–iii), by Corollary 3.6 the matrix G generates a C0-semigroup on

X . �

COROLLARY 3.14. The reaction–diffusion equation subject to Neumann bound-
ary conditions with distributed unbounded delay given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
(t, s) = d2u

ds2
(t, s) + b(s)

du

ds
(t, s) + c(s) u(t, s), 0 < s < π, t ≥ 0,

du

ds
(t, 0) =

∫ π

0

∫ 0

−π

u(t + r, s) dμ(r) ds, t ≥ 0,

u(t, π) = 0, t ≥ 0,

u(r, s) = u0(r, s), 0 < s < π, r ∈ [−π, 0],
u(0, s) = f0(s), 0 < s < π

(RDE)

is well posed on Lp[0, π ] for all p ∈ [1, 2), b, c ∈ L∞[0, π ] and μ of bounded
variation.

4 The real input–output map of the whole system is obtained from Ft by inserting at the second place a
row and a column containing only zeros.



Vol. 17 (2017) Perturbation of analytic semigroups and applications 1203

Proof. Let P := b(•) d
ds + c(•) with domain Z := W1,p[0, π ]. By the previous result

it suffices to prove that Zγ ↪→ Z for γ ∈ ( 12 ,
1
p ) �= ∅. To this end note that by [9,

Expl. III.2.2] for each f ∈ D(A) and ε > 0

∥
∥ f ′∥∥

p ≤ 9
ε

· ‖ f ‖p + ε · ‖A f ‖p.

Setting ρ := ε−2 the assertion follows from Lemma A.2. �

REMARK 3.15. Theorem 3.12 generalizes [15, Expl. 5.2] where only the exponent
p = 2 and the perturbation P = 0 is considered.

3.4. The Laplacian with generalized Robin boundary conditions

For some open, bounded domain � ⊂ R
n with smooth boundary ∂� we consider

on the Hilbert space X := L2(�) the maximal operator

Am f := � f with domain D(Am) := { f ∈ H
3
2 (�) : � f ∈ L2(�)

}
.

Next we choose the boundary space ∂X := L2(∂�) and the boundary operator L :
D(Am) ⊂ X → ∂X , L f := ∂ f

∂ν
5 which is well-defined by [18, Chap. 2, Thm. 7.3].

Let A := Am |ker(L) whose domain is given by

D(A) = { f ∈ H
3
2 (�) : � f ∈ L2(�),

∂ f
∂ν

= 0
}
.

Hence, A is the Neumann Laplacian on L2(�) which is self-adjoint and dissipative,
hence generates an analytic semigroup. Therefore, Assumption 3.1.(a) is satisfied.
To verify the existence of the abstract Dirichlet operators we use the fact that by

[18, Chap. 2, Thm. 7.4] for μ > 0 the operator6

P := (�−μ
L

) : { f ∈ H
3
2 (�) | (� − μ) f ∈ �− 1

2 (�)
}→ H− 1

2 (�) × L2(∂�)

is an algebraic and topological isomorphism. Since L2(�) ⊂ �− 1
2 (�) this implies

that for g ∈ L2(∂�) there exists a unique f ∈ H
3
2 (�) such that

P f =
(

� f − μ f
L f

)

=
(
0
g

)

⇐⇒
{

� f = μ f ∈ L2(�),

L f = g.

Therefore, f ∈ D(Am). For g ∈ ∂X define Lμg := f ∈ X . Then, by the continuity of
the inverseP−1 we obtain Lμ ∈ L(∂X , X); hence, the Assumption 3.1.(b) is satisfied.
In the following result we investigate the generator property of perturbations of A.

5 Here ∂
∂ν

denotes the outward normal derivative
6 For the definition of �

− 1
2 (�) see [18, Chap. 2, Sect. 6.3].
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THEOREM3.16. Letα ∈ (0, 3
2 ). Then for every operator� ∈ L(Hα(�),L2(∂�))

and P ∈ L(Hα(�),L2(�)) the operator

G ⊆ � + P,

D(G) := { f ∈ H
3
2 (�) : � f ∈ L2(�),

∂ f
∂ν

= �( f )
} = ker(L − �)

generates a compact, analytic semigroup of angle π
2 on L2(�).

Proof. In order to show that G generates an analytic semigroup we verify the condi-
tions (i–iii) of Corollary 3.7. To this end we first choose δ ∈ (α, 3

2 ) and λ > 0. By

[11, Thm. 2] we have D
(
(λ − A)

ϑ
2
) = Hϑ(�) for all ϑ ∈ (0, 3

2 ). Thus, the Dirichlet
operators satisfy

rg(Lλ) ⊂ D(Am) ⊂ H
3
2 (�) ⊂ Hδ(�) = D

(
(λ − A)

δ
2
) ⊂ FA

δ
2

where the last inclusion follows from [9, Props. II.5.14&5.33]. This gives condition (i)
for β := 1 − δ

2 . Using again [11, Thm. 2] we conclude that

Z := Hα(�) = [D((λ − A)
α
2
)]

which shows condition (ii) for γ := α
2 . Moreover, since δ > α

β + γ = 1 − δ
2 + α

2 < 1

which shows (iii). Summing up this implies that G generates an analytic semigroup.
To prove compactness of this semigroup first note that by [1, Thm. 6.2] we have the

injections [D(G)] ↪→ H1(�)
c

↪→ L2(�). Hence, [9, Prop. II.4.25] implies that G has
compact resolvent and the assertion follows from [9, Thm. II.4.29]. �

REMARK 3.17. We note that the above result could be easily adapted to cover
uniformly elliptic operators studied in [17, Thm. 1.1] by completely different methods.

We give a concrete application of Theorem 3.16.

COROLLARY 3.18. Let 1 < α < 3
2 . Then the second-order differential equation

with perturbed Robin boundary conditions given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, s) = �u(t, s) +

n∑

i=1

bi (s)
∂u

∂xi
(t, s) + c(s) u(t, s), s ∈ �, t ≥ 0,

∂u

∂ν
(t, z) =

m∑

j=1

〈[ϕ j u](t, •), ω j 〉L2(∂�) · g j (z) + η(z)u(t, z), z ∈ ∂�, t ≥ 0,

u(0, s) = f0(s), s ∈ �

is well posed on L2(�) for all ϕ1, ..., ϕm ∈ L(Hα(�),L2(∂�)), b1, ..., bn, c ∈
L∞(�), ω1, ..., ωm ∈ L2(∂�), g1, ..., gm ∈ L2(∂�) and η ∈ L2(∂�).

Proof. The assertion follows immediately from Theorem 3.16 by choosing P :=
∑n

i=1 bi (•) ∂
∂xi

+ c(•) ∈ L(Z , X) and � := ∑m
j=1〈ϕ j •, ω j 〉L2(∂�) · g j + η · tr(•) ∈

L(Z , ∂X) for Z := Hα(�). �
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4. Conclusions

Wepresented an approach to the perturbation of generators A of analytic semigroups
which, under conditions on rg(B) and D(C), gives that (A−1 + BC)|X generates an
analytic semigroup as well. Our main results are Theorem 2.4 for the general case and
Corollaries 3.6, 3.7 for our Generic Example 3.1. In contrast to the known literature
on this subject, our results

• allow perturbations P = BC which are not relatively A-bounded as, e.g., in [9,
Sect. III.2],

• give the angle of analyticity of the perturbed semigroup, unlike [13, Thm. 2.6]
in the situation of the generic example,

• are applicable also to coupled systems which are only in part governed by an
analytic semigroup, cf. Remark 3.13.

Moreover, nevertheless being very general, our results applied to concrete situations
recover or even improve generation results obtained bymethods tailored for the specific
case, cf. Remarks 3.8, 3.11, 3.15 and 3.17.

Appendix A.

In this appendix we collect some results which are quite helpful to check the hy-
potheses of Theorem 2.4 and Corollaries 3.6, 3.7 in applications. First we consider
condition (i) in Corollary 3.7.

LEMMA A.1. In the situation of Sect. 3.1, for α ∈ (0, 1] the following are equiv-
alent.

(a) There exists λ0 > ω0(A) such that supλ>λ0
‖λαLλx‖ < +∞ for all x ∈ ∂X.

(b) There exist λ0 > ω0(A) and M > 0 such that ‖Lx‖ ≥ λαM · ‖x‖ for all λ ≥ λ0

and x ∈ ker(λ − Am).
(c) rg(Lμ) = ker(μ − Am) ⊂ FA

α for some μ ∈ ρ(A).

Moreover, if α = 1, then (a–c) are also equivalent to

(d) L A is a 1-admissible control operator for A.
(d) For all x ∈ D(Am) there exists a sequence (xn)n∈N ⊂ D(A) such that

limn→+∞ xn = x and supn∈N ‖xn‖ < +∞.

Proof. The equivalence of (a) and (b) follows immediately from the definition of Lλ

as the inverse of L : ker(λ − A) → ∂X . To show the equivalence of (a) and (c), note
that from (3.3) we obtain for x ∈ ∂X and fixed μ ∈ ρ(A)

sup
λ>λ0

∥
∥λαAR(λ, A)Lμx

∥
∥ ≤ sup

λ>λ0

∥
∥λα(μ − A)R(λ, A)Lμx

∥
∥+ sup

λ>λ0

∥
∥μλαR(λ, A)Lμx

∥
∥

= sup
λ>λ0

∥
∥λαLλx

∥
∥+ sup

λ>λ0

∥
∥μλαR(λ, A)Lμx

∥
∥.
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Recall that α ≤ 1, hence by the Hille–Yosida theorem we have in any case

sup
λ>λ0

∥
∥μλαR(λ, A)Lμx

∥
∥ < +∞.

Thus, we conclude that

sup
λ>λ0

∥
∥λαAR(λ, A)Lμx

∥
∥ < +∞ ⇐⇒ sup

λ>λ0

∥
∥λαLλx

∥
∥ < +∞.

By [9, Prop. II.5.12] the condition on the left-hand side is equivalent to Lμx ∈ FA
α ,

and therefore we obtain (a) ⇐⇒ (c).
For the equivalence of (a–c) and (d–e) in case α = 1 see [9, Proof of Cor. III.3.6],

[9, Ex. III.3.8.(4)] and [9, Ex. II.5.23.(2)]. �

If one can represent a Banach space Z as the domain [D(K )] of a closed operator
K equipped with its graph norm, then the condition [D((λ − A)γ )] ↪→ Z appearing
in Theorem 2.4.(ii) and Corollary 3.7.(ii) can frequently be verified by the following
result.

LEMMA A.2. Let A be the generator of an analytic semigroup and let K be a
closed linear operator such that D(A) ⊆ Z = [D(K )]. If for α ∈ (0, 1) and every
ρ ≥ ρ0 > 0 we have

‖Kx‖ ≤ M · (ρα‖x‖ + ρα−1‖Ax‖) for all x ∈ D(A)

and some constant M ≥ 0, then [D((λ−A)γ )] ↪→ Z for every γ > α and λ > ω0(A).

Proof. By (the proof of) [22, Lem. 12.39] the operator K (λ− A)−γ is bounded which
by the closed graph theorem implies that D((λ − A)γ ) ⊆ D(K ). Moreover, from the
estimate

‖Kx‖ ≤ ∥∥K (λ − A)−γ
∥
∥ · ‖(λ − A)γ x‖

it follows that [D((λ − A)γ )] ↪→ Z . �

Finally, we consider pairs (B,C) where we assume that one of the operators B or
C is bounded.

LEMMA A.3. Let A be the generator of a C0-semigroup and let p ≥ 1.

(a) If B ∈ L(U, X A−1) is a p-admissible control operator and Z = X, i.e., C ∈
L(X,U ), then (A, B,C) is compatible, (B,C) is jointly p-admissible and there
exists M ≥ 0 and t0 > 0 such that

∥
∥F (A,B,C)

t

∥
∥ ≤ M · t 1

p for all 0 < t ≤ t0.

In particular, I dU is p-admissible for the triple (A, B,C).
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(b) If B ∈ L(U, X) and C ∈ L(Z ,U ) is a p-admissible observation operator, then
(A, B,C) is compatible, (B,C) is jointly p-admissible and there exists M ≥ 0
and t0 > 0 such that

∥
∥F (A,B,C)

t

∥
∥ ≤ M · t1− 1

p for all 0 < t ≤ t0.

In particular, if p > 1, then IdU is p-admissible for the triple (A, B,C).

Proof. The assertions follow immediately from [2, Rems. 17 & 19]. �
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