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Abstract. We consider non-autonomous evolutionary problems of the form

u′(t) + A(t)u(t) = f (t), u(0) = u0,

on L2([0, T ]; H), where H is a Hilbert space. We do not assume that the domain of the operator A(t)
is constant in time t , but that A(t) is associated with a sesquilinear form a(t). Under sufficient time
regularity of the forms a(t), we prove well-posedness with maximal regularity in L2([0, T ]; H). Our
regularity assumption is significantly weaker than those from previous results inasmuch as we only require
a fractional Sobolev regularity with arbitrary small Sobolev index.

1. Introduction

Let K be the field R or C and let V and H be Hilbert spaces over the field K such

that V
d

↪→ H ; i.e., V is continuously and densely embedded in H . Then H
d

↪→ V ′ via
v �→ (v | ·)H , where V ′ denotes the antidual (or dual ifK = R) of V . Let I := [0, T ]
where T > 0. Suppose a : I × V × V → K is a bounded quasi-coercive non-
autonomous form; i.e., a(t, ·, ·) is sesquilinear for all t ∈ I , a(·, v, w) is measurable
for all v,w ∈ V , and there exist constants M, η > 0 such that

|a(t, v, w)| ≤ M‖v‖V ‖w‖V (t ∈ I, v, w ∈ V ),

Re a(t, v, v) ≥ η‖v‖2V − M‖v‖2H (t ∈ I, v ∈ V ).

We define the operator A(t) ∈ L(V, V ′) by A(t)v := a(t, v, ·) and the operator
A(t) : D(A(t)) → H by D(A(t)) := {v ∈ V : A(t)v ∈ H}, A(t)v := A(t)v for all
t ∈ I .
A famous result due to Lions (see [11, p. 513]) states that the non-autonomous

Cauchy problem
u′ + A(·)u(·) = f, u(0) = u0 (1.1)

is well posed with maximal regularity in V ′ and the trace space is H ; i.e., for every
f ∈ L2(I ; V ′) and u0 ∈ H there exists a unique u ∈ H1(I ; V ′) ∩ L2(I ; V ) ↪→
C(I ; H) that solves (1.1).
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We say that a has H maximal regularity if for all f ∈ L2(I ; H) and u0 = 0 the
solution u of (1.1) is in H1(I ; H), and consequently in

MR := {u ∈ L2(I ; V ) ∩ H1(I ; H) : Au ∈ L2(I ; H)}.
It is easy to see that if a has H maximal regularity, then the solution u of (1.1) is in
H1(I ; H) for every f ∈ L2(I ; H) and u0 ∈ Tr, where the trace space Tr is defined
by Tr = {v(0) : v ∈ MR}.

In the autonomous case, i.e., a(·, v, w) is constant for every v,w ∈ V , additional
regularity of the inhomogeneity f and the initial value u0 leads to higher regularity
of the solution u. In particular, it is known that one has maximal regularity in H
with Tr = D(A(0)1/2). The problem of non-autonomous H maximal regularity has
been studied extensively in the literature and was explicitly asked by Lions (see [17,
p. 68]), if the form is additionally symmetric, i.e., a(t, v, w) = a(t, w, v) for all t ∈ I ,
v,w ∈ V . As shown recently, the property of H maximal regularity fails in general
in the non-autonomous case, that is without further regularity assumptions on the
form a. This was first shown in [9, p. 36]. Furthermore, in [13] for any α ∈ (0, 1/2) an

example of complex Hilbert spaces V
d

↪→ H and a bounded coercive symmetric non-
autonomous form a : I ×V ×V → CwithA(·) ∈ Cα(I ;L(V, V ′))was constructed,
which fails to have H maximal regularity.
Lions himself proved H maximal regularity if a is symmetric and A(·) ∈ C1(I ;

L(V ; V ′)) (see [17, p. 65]). Using a different approach, H maximal regularity was
established in [20], assuming thatA(·) ∈ Cα(I ;L(V, V ′)) for some α > 1/2, without
symmetry assumption. This result was further improved in [15], where the aforemen-
tioned Hölder condition is replaced by a weaker ‘Dini’ condition for a, which can be
viewed as a generalization of the Hölder condition above to the limiting case α = 1/2.
Moreover, in [15], maximal L p(I ; H) regularity was established for 1 < p < ∞.
Lions’ result was recently generalized in another direction in [10]. Assume in ad-

dition that a is symmetric and of bounded variation; i.e., there exists a bounded and
non-decreasing function g : I → R such that

|a(t, v, w) − a(s, v, w)| ≤ [g(t) − g(s)]‖v‖V ‖w‖V (0 ≤ s ≤ t ≤ T, v, w ∈ V ).

Then a has maximal regularity in H with Tr = V , andMR is continuously embedded
in C(I ; V ).

More recent further contributions to maximal regularity for non-autonomous prob-
lems are [2–4,7,23].
The main contribution of the present article is a general result on higher regularity

of solutions to the non-autonomous problem (1.1); see Theorem 6.2. As a special case,
it contains the following result on H maximal regularity.

COROLLARY 1.1. Suppose that in addition A(·) belongs to the homogeneous
fractional Sobolev space W̊ 1/2+δ,2(I ;L(V, V ′)) for some δ > 0; i.e.,

∫
I

∫
I

‖A(t) − A(s)‖2L(V,V ′)
|t − s|2+2δ dt ds < ∞.
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Then (1.1) has H maximal regularity with Tr = D(A(0)1/2). Moreover, MR embeds
continuously in H1/2(I ; V ).

Note that W 1/2+δ,2(I ;L(V, V ′)) ↪→ C(I ;L(V, V ′)) and we identifyA(·) with its
continuous version.
This result closes the gap between the Hölder and the bounded variation assumption

on the form a in the following sense: It holdsC1/2+δ(I ;L(V ; V ′)) ↪→ W̊ 1/2+δ,2(I ;L
(V, V ′)). Moreover, without symmetry of the form, by the counterexample in [9,
p. 36] mentioned above, bounded variation does not suffice for H maximal regularity.
However, if we replace this assumption by the slightly stronger assumption A ∈
W̊ 1,1+δ(I ;L(V, V ′)), for some δ > 0, we also obtain that W̊ 1,1+δ(I ;L(V, V ′)) ↪→
W̊ 1/2+δ′,2(I ;L(V, V ′)) with δ′ = δ

1+δ
. Thus, Corollary 1.1 applies and yields H

maximal regularity.
We like to point out that Theorem 6.2 does not only treat the case of H maximal

regularity, but covers the whole range of complex interpolation spaces [H, V ′]1−2α ,
where α ∈ (0, 1/2]. Maximal regularity with respect to this space will be obtained
under the additional assumption thatA(·) is in W̊α+δ,1/α(I ;L(V, V ′)) for some δ > 0.
Further, we investigate perturbations of lower order as in [5,22]. As an application

the authors of [5,22] treat non-autonomous Robin boundary conditions. Again we
significantly relax the regularity assumption from a Hölder condition to a fractional
Sobolev space condition.
Our approach relies on elementaryHilbert spacemethods, such as the Lax–Milgram

lemma and Plancherel’s theorem. A key idea in the proof of Corollary 1.1 is to test
equation (1.1) not only with u and u′ but also withHu′, whereH denotes the Hilbert
transform. This is crucial to obtain a bound for the H1/2(R; V ) norm of u.

The present article is organized as follows. Section 2 is of preliminary character.
We provide some well-known results about fractional powers of operators associated
with forms and complex interpolation spaces. Section 3 is concerned with abstract
maximal regularity results on I = R. Here, we discuss conditions on operators A ∈
L(L2(R; V ), L2(R; V ′)) such that the Cauchy problem of the form u′ + Au = f is
well posed with maximal regularity in V ′, H and in the spaces ‘in between.’ Section 4
is devoted to non-autonomous forms and their associated operators. In Sect. 5we apply
our abstract maximal regularity result of Sect. 3 to non-autonomous forms on I = R,
and in Sect. 6 we treat initial value problems by reducing them to the situation of
Sect. 5. In Sect. 7 we illustrate our results from Sect. 6 with applications to parabolic
problems in divergence form (scalar equations and systems) and to problems related
to generalized fractional Laplacians. Finally, in the appendix we collect some facts
about Banach space-valued fractional Sobolev spaces on the real line.

2. Interpolation of the Gelfand triple

Let V and H be Hilbert spaces over the field K, such that V
d

↪→ H ; i.e., V is
continuously and densely embedded in H . Then there exists a constant cH such that
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‖v‖H ≤ cH‖v‖V (v ∈ V ). (2.1)

We denote by V ′ the antidual (or dual if K = R) of V . Furthermore, we embed H
into V ′ by the mapping

j : v �→ (v | ·)H . (2.2)

Then (u | v)H = 〈 j (u), v〉 for all u ∈ H and v ∈ V, where 〈·, ·〉 denotes the duality
pairing between V ′ and V . Moreover, H is dense in V ′ and

‖ j (u)‖V ′ ≤ cH‖u‖H (u ∈ H),

where cH is the same constant as in (2.1). It is convenient to identify V and H
as subspaces of V ′. This means with respect to (2.2) that we identify u ∈ H with
j (u) ∈ V ′.
We define B ∈ L(V, V ′) by Bv = (v | ·)V . Note that this is the operator associated

with the scalar product in V . Since this is a symmetric and coercive sesquilinear form
B is invertible, defines a sectorial operator on V ′ and the part B in H of B defines a
self-adjoint operator (see [21, p. 15]).
We define the Hilbert space Hγ , where γ ∈ [−1, 1] by

Hγ := {v ∈ D(Bγ /2) : Bγ /2v ∈ H}, ‖v‖Hγ := ‖Bγ /2v‖H ,

where Bγ /2 denotes the fractional power of the sectorial operator B (see, e.g., [1, p.
163]).

PROPOSITION 2.1. If γ ∈ [0, 1], then Hγ = [H, V ]γ and H−γ = [H, V ′]γ ,
where we denote by [·, ·]γ the complex interpolation space of order γ . In particular,
H−1 = V ′, H0 = H, and H1 = V .

Proof. Let v ∈ D(B). Since B is self-adjoint, we have ‖B1/2v‖2H = (Bv | v)H =
‖v‖2V . Thus, D(B1/2) = V and since B−1/2 = B1/2B−1 we also have D(B1/2) =
H . Since B is self-adjoint it has bounded imaginary powers. It follows that B =
B1/2BB−1/2 has also bounded imaginary powers. Thus, the claim follows by [18,
Theorem 4.17]. �

Let a : V ×V → K be a sesquilinear form.Moreover, we assume that a is bounded,
i.e., there exists some M ≥ 0 such that

|a(v,w)| ≤ M‖v‖V ‖w‖V (v,w ∈ V )

and coercive, i.e., there exists η > 0 such that

Re a(v, v) ≥ η‖v‖2V (v ∈ V ).

Let A ∈ L(V, V ′), Av = a(v, ·) be its associated operator and A ∈ L(D(A), H),
D(A) = {v ∈ V : Av ∈ H} its part in H . Note that A defines a sectorial operator on
V ′.
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PROPOSITION 2.2. Let α ∈ (−1/2, 1/2). Then there exist constants c,C > 0
depending only on α, M and η such that

c‖v‖H2α ≤ ‖Aαv‖H ≤ C‖v‖H2α (v ∈ H2α).

Proof. For the case α ∈ [0, 1/2), see [16, Theorem 3.1]. The case α ∈ (−1/2, 0)
follows by a duality argument.Wedefine the adjoint sesquilinear forma∗ : V×V → K

by a∗(v,w) = a(w, v). Then a∗ is bounded and coercive with the same constants M
and η. Moreover, the part in H of the operator A∗ associated with a∗ is the adjoint
operator of A and

c‖v‖H2β ≤ ‖(A∗)βv‖H ≤ C‖v‖H2β (v ∈ H2β) (2.3)

for β ∈ [0, 1/2). Let v,w ∈ V , then we obtain by (2.3) with β = −α

(Aαv | w)H = (v | (A∗)αw)H ≤ ‖v‖H−2α‖(A∗)αw‖H2α ≤ ‖v‖H−2α
1
c ‖w‖H

and
〈v,w〉H2α,H−2α = (Aαv | (A∗)−αw)H ≤ ‖Aαv‖HC‖w‖H−2α .

Taking the supremum over all w ∈ V with ‖w‖H ≤ 1 in the first inequality and with
‖w‖H−2α ≤ 1 in the second proves the claim. �

3. Maximal regularity on R

Let V and H be Hilbert spaces over the fieldK such that V ↪→
d

H . Furthermore, let

A ∈ L(L2(R; V ), L2(R; V ′)) and set M := ‖A‖. Suppose there exists some η > 0
such that

Re
∫
R

〈Av, v〉 dt ≥ η‖v‖2
L2
V

(v ∈ L2(R; V )). (3.1)

Note that we denote the norm of L2(R; X) by ‖·‖L2
X
for any Hilbert space X .

THEOREM 3.1. For every f ∈ L2(R; V ′), there exists a unique u ∈ MR0(A) :=
L2(R; V ) ∩ H1(R; V ′) such that

u′ + Au = f (3.2)

in L2(R; V ′). In addition, u ∈ H1/2(R; H).

Proof. We define the Hilbert space V0 := H1/2(R; H) ∩ L2(R; V ) with norm ‖v‖2V0

:= ‖∂1/2v‖2
L2
H

+ ‖v‖2
L2
V
. Furthermore, we define the bounded sesquilinear form

E : V0 × V0 → K by

E(v,w) :=
∫
R

(∂1/2v | ∂(1/2)∗(1 − δH)w)H dt +
∫
R

〈Av, (1 − δH)w〉 dt
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where δ := η
M+1 andH is the Hilbert transform, i.e., the operator with Fourier symbol

−i sign ξ . Note that E is bounded.Moreover, E is coercive, since for v ∈ V0 we obtain
by the boundedness of A, (3.1) and Parseval’s relation that

Re E(v, v) ≥ Re
∫
R

|ξ |(i sign(ξ) + δ)‖v̂‖2H dξ + (η − δM)‖v‖2
L2
V

= δ‖∂1/2v‖2
L2
H

+ (η − δM)‖v‖2
L2
V

= δ‖v‖2V0
,

where v̂(ξ) = 1√
2π

∫
R e−i tξ v(t) dt denotes the Fourier transform of v.

Let f ∈ L2(R; V ′) and define F ∈ V ′
0 by

F(w) :=
∫
R

〈 f, (1 − δH)w〉 dt.

Then by the Lax–Milgram Lemma, there exists a unique u ∈ V0 such that

E(u, w) = F(w) (w ∈ V0). (3.3)

Since 0 < δ < 1 we obtain that 0 < 1 − δ ≤ |δi sign ξ + 1| ≤ 1 + δ for all ξ ∈ R.
Thus, by Plancherel’s theorem 1 − δH defines an isomorphism on H1(R; V ). Now
(3.3) implies

−
∫
R

〈u, v′〉 dt +
∫
R

〈Au, v〉 dt =
∫
R

〈 f, v〉 dt (v ∈ H1(R; V )).

Hence, u ∈ H1(R; V ′) and u satisfies (3.2) by density of H1(R; V ) in L2(R; V ).
On the other hand, any solution of (3.2) satisfies (3.3), since MR0(A) ↪→ V0. This
embedding is a consequence of the estimate

∫
R

∥∥|ξ |1/2û(ξ)
∥∥2
H dξ =

∫
R

〈|ξ |û(ξ), û(ξ)〉 dξ ≤ ‖ξ û‖L2
V ′ ‖û‖L2

V

and Plancherel’s theorem. Thus, u is unique. �

In order to model evolutionary problems, we introduce the following ‘causality’
condition.

PROPOSITION 3.2. Suppose the operator A is as above and commutes with the
function 1(−∞,t) for all t ∈ R in the sense that

1(−∞,t)Av = A(1(−∞,t)v) (v ∈ L2(R; V ), t ∈ R).

Then for any t ∈ R and u ∈ MR0(A) we have u(s) = 0 for all s ≤ t if and only if
f (s) := u′(s) + Au(s) = 0 for a.e. s < t . Here, we identify u with its continuous
version with values in V ′.

Proof. Let t ∈ R and u ∈ MR0(A). Note that we have ‖u(·)‖2H ∈ W 1,1(R) with(‖u(·)‖2H
)′ = 2Re〈u′, u〉 (see [25, Proposition 1.2]).
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First suppose that u(s) = 0 for all s ≤ t . Then we obtain that

f (s) = u′(s) + Au(s) = 0 + 1(−∞,t)(s)Au(s) = 0 (a.e. s < t).

Now suppose that f (s) = 0 for a.e. s < t . We have

η

∫ t

−∞
‖u‖2V ds ≤ Re

∫ t

−∞
〈Au, u〉 ds = Re

∫ t

−∞
〈 f − u′, u〉 ds

= −1

2

∫ t

−∞
(‖u‖2H )′ ds = −1

2
‖u(t)‖2H .

Thus, u(s) = 0 for all s ≤ t . �

Next we prove higher regularity under stronger conditions on the operatorA, where
we write A as the sum of a regular part A1 and a perturbation A2. Let α ∈ (0, 1/2]
and let A1,A2 : L2(R; V ) → L2(R; V ′) be linear operators. Suppose there exist
constants η, η1 > 0 and M ≥ 0 such that

‖A1v‖L2
V ′ ≤ M‖v‖L2

V
(v ∈ L2(R; V )), (3.4)

A1v ∈ Hα(R; V ′) & ‖∂αA1v‖L2
V ′ ≤ M‖v‖Hα

V
(v ∈ Hα(R; V )), (3.5)

Re
∫
R

〈A1v, v〉 dt ≥ η‖v‖2
L2
V

(v ∈ L2(R; V )), (3.6)

Re
∫
R

〈∂αA1v, ∂αv〉 dt ≥ η1‖∂αv‖2
L2
V

− M‖v‖2
L2
V

(v ∈ Hα(R; V )). (3.7)

Moreover, suppose that there exist M2 ≥ 0 and η2 < η such that

‖A2v‖L2
V ′ ≤ M2‖v‖L2

V
(v ∈ L2(R; V )), (3.8)

Re
∫
R

〈A2v, v〉 dt ≥ −η2‖v‖2
L2
V

(v ∈ L2(R; V )), (3.9)

and that for every ε > 0 there exists a constant cε with

∣∣∣∣
∫
R

〈A2v, ∂α∂α∗w〉 dt
∣∣∣∣ ≤

[
ε‖∂αv‖L2

V
+ cε‖v‖L2

V

]

×
[
‖w‖Hα

V
+ ‖∂2αw‖L2

H1−2α

]
(v ∈ Hα(R; V ), w ∈ H2α(R; V )). (3.10)

Note that the operator A := A1 + A2 is in L(L2(R; V ), L2(R; V ′)) by (3.4) and
(3.8) and satisfies (3.1) by (3.6) and (3.9). Thus, we may apply Theorem 3.1 to the
operator A.
We define the Hilbert space Vα := H1/2+α(R; H) ∩ Hα(R; V ) with norm

‖v‖2Vα
:= ‖∂1/2+αv‖2

L2
H

+ ‖v‖2Hα
V
.
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Furthermore, we define the maximal regularity space

MRα(A) := {v ∈ H1(R; H2α−1) ∩ L2(R; V ) : Av ∈ L2(R; H2α−1)}
with norm

‖v‖2MRα(A) := ‖v′‖2
L2
H2α−1

+ ‖Av‖2
L2
H2α−1

.

Note that MRα(A) is a Hilbert space.

THEOREM 3.3. Let α ∈ (0, 1
2 ] andA := A1 +A2, whereA1,A2 : L2(R; V ) →

L2(R; V ′) are linear operators satisfying (3.4)–(3.10). Then, for every f ∈
L2(R; H2α−1), there exists a unique u ∈ MRα(A) such that

u′ + Au = f (3.11)

in L2(R; H2α−1). Moreover, MRα(A) ↪→ Vα .

For the proof of the theorem, we begin with two lemmas.

LEMMA 3.4. Let α ∈ (0, 1
2 ] and δ ∈ [0, 1−2α]. Suppose u ∈ H

δ+1
2 +α(R; H−δ)∩

H δ+α(R; H1−2δ). Then u ∈ H δ+2α(R; H1−2δ−2α) and

‖∂δ+2αu‖L2(R;H1−2δ−2α) ≤ ‖u‖
2α
1−δ

H
δ+1
2 +α

(R;H−δ)
‖u‖1−

2α
1−δ

H δ+α(R;H1−2δ)
. (3.12)

Proof. Note that

H δ+2α(R; H1−2δ−2α) = [H δ+1
2 +α(R; H−δ), H

δ+α(R; H1−2δ)]λ,
with λ = 2α

1−δ
∈ [0, 1]. Now the claim follows by Proposition 2.1 and [18, p. 53]. �

LEMMA 3.5. Let α ∈ (0, 1
2 ] and A := A1 + A2, where A1,A2 : L2(R; V ) →

L2(R; V ′) are linear operators satisfying (3.4)–(3.10). If f ∈ L2(R; H2α−1) and
u ∈ MR0(A) ∩ Vα such that u′ + Au = f , then u ∈ MRα(A).

Proof. Let δ ∈ [0, 1 − 2α] and suppose that u ∈ H δ+α(R; H1−2δ). We show that u

is in H
δ+1
2 +α(R; H−δ). Let ρ : R → [0,∞) be a mollifier and define the function

ρn : R → [0,∞) by ρn(t) := nρ(nt) for n ∈ N. We set gn := g ∗ ρn for any n ∈ N

and g ∈ L2(R; V ′). Moreover, we denote by |∂| the operator with Fourier symbol |ξ |.
Since un ∈ H1(R; V ), we obtain

‖∂ δ+1
2 +αun‖2L2

H−δ

= ‖B−δ/2|∂| δ+1
2 +αun‖2L2

H

=
∫
R

(Hu′
n |B−δ|∂|δ+2αun)H dt =

∫
R

〈H( fn − (Au)n),B−δ|∂|δ+2αun〉 dt

=
∫
R

(Bα−1/2H fn |B1/2−δ−α|∂|δ+2αun)H dt

−
∫
R

〈H|∂|α(A1u)n,B−δ|∂|δ+αun〉 dt −
∫
R

〈(A2u)n, |∂|2α+δHB−δun〉 dt
=: R1 + R2 + R3.
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We have
|R1| ≤ ‖ f ‖L2(R;H2α−1)

‖∂δ+2αun‖L2(R;H1−2δ−2α).

By (3.5) we have
|R2| ≤ M‖u‖Hα(R;V )‖∂δ+αu‖L2(R;H1−2δ)

.

Moreover, by (3.10) for every ε > 0 there exists some constant cε such that

|R3| ≤ [
ε‖∂αu‖L2

V
+ cε‖u‖L2

V

][‖u‖H δ+α(R;H1−2δ)
+ ‖un‖H δ+2α(R;H1−2δ−2α)

]
.

We apply Lemma 3.4 and Young’s inequality for products and obtain that there exists
some constant c > 0 such that

‖∂ δ+1
2 +αun‖L2

H−δ

≤ c
[
‖u‖H δ+α(R;H1−2δ)

+ ‖u‖Vα + ‖ f ‖L2(R;H2α−1)

]
.

By this inequality and since un → u in L2(R; V ), we obtain that every subse-

quence of (un) converges weakly to u in H
δ+1
2 +α(R; H−δ). Hence, u belongs to

H
δ+1
2 +α(R; H−δ).
If α ≥ 1

4 , we choose δ = 1 − 2α and obtain that u ∈ H1(R; H2α−1) and conse-
quently u ∈ MRα(A). In the case α < 1

4 , we have to iterate. We consider the sequence

δn = 1 − 2−n . If u ∈ H1−2−n+α(R; H21−n−1), which is the case for n = 1, then we

obtain by the consideration above that u ∈ H1−2−(n+1)+α(R; H2−n−1), provided that
1−2−n +α ≤ 1. Now if n is the maximal integer satisfying this inequality, we choose
δ = 1 − 2α and obtain that u ∈ H1(R; H2α−1). �

Proof of Theorem 3.3. Let α ∈ (0, 1/2] and f ∈ L2(R; H2α−1). Note that Vα ↪→
H2α(R; H1−2α)∩Hα(R; V ) by Lemma 3.4 with δ = 0. Thus, by (3.10) the sesquilin-
ear form (v,w) �→ ∫

R〈A2v, ∂α∂α∗w〉 dt extends continuously to a sesquilinear form
from Vα × Vα toK.
We define the bounded sesquilinear form E : Vα × Vα → K by

E(v,w) :=
∫
R

(∂1/2+αv | ∂(1/2−α)∗[∂α∗∂α(1 − δH) + ρ]w)H dt

+
∫
R

〈∂αA1v, ∂α(1 − δH)w〉 dt +
∫
R

〈A2v, ∂α∗∂α(1 − δH)w〉 dt

+ρ

∫
R

〈(A1 + A2)v,w〉 dt,

where we choose δ, ρ > 0 appropriately. Furthermore, we define F ∈ V ′
α by

F(w) :=
∫
R

(Bα−1/2 f |B−α+1/2[∂α∗∂α(1 − δH) + ρ]w)H dt.

We show later that E is coercive. If this is the case, then by the Lax–Milgram
Lemma, there exists a unique u ∈ Vα such that

E(u, w) = F(w) (w ∈ Vα).
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The operator D : H1/2+α(R; V ) → H1/2−α(R; V ), v �→ [∂α∗∂α(1 − δH) + ρ]v is
invertible, since it has the symbol (1 + δi sign(ξ))|ξ |2α + ρ. Let v ∈ H1/2−α(R; V )

and set w = D−1v ∈ Vα . Now the identity E(u, w) = F(w) implies, as in the proof
of Theorem 3.1, that u ∈ MR0(A) with u′ + Au = f in L2(R; V ′). We conclude by
Lemma 3.5 that u ∈ MRα(A). Moreover, u is unique by Theorem 3.1.

We finish the proof of the theorem by establishing coercivity of E . Let v ∈ Vα , then

Re E(v, v) ≥ Re
∫
R

[|ξ |1+2α(i sign(ξ) + δ) + ρiξ ]‖v̂‖2H dξ

+ (η1 − δM)‖∂αv‖2
L2
V

+ (ρ(η − η2) − δM − M)‖v‖2
L2
V

−
[
ε‖∂αv‖L2

V
+ cε‖v‖L2

V

] [
‖(1 − δH)v‖Hα(R;V ) + ‖∂2α(1 − δH)v‖L2

H1−2α

]

≥ δ‖∂1/2+αv‖2
L2
H

+ (η1 − δM)‖∂αv‖2
L2
V

+ (ρ(η − η2) − δM − M)‖v‖2
L2
V

−
[
ε‖∂αv‖L2

V
+ cε‖v‖L2

V

]
2
√

δ2 + 1‖v‖Vα

by (3.6), (3.7), (3.9), (3.10) and Lemma 3.4. Hence, E is coercive for sufficiently small
δ, ε and sufficiently large ρ by Young’s inequality for products. �

4. Non-autonomous forms

Let V,W, H be Hilbert spaces over the field K with V,W
d

↪→ H . Let I ⊂ R be a
closed interval. The mapping

a : I × V × W → K

is called a non-autonomous form if a(t, ·, ·) : V ×W → K is sesquilinear for all t ∈ I
and a(·, v, w) : I → K is measurable for all v ∈ V and w ∈ W .
We say the non-autonomous form a is bounded if there exists a constant M such

that
|a(t, v, w)| ≤ M‖v‖V ‖w‖W (t ∈ I, v ∈ V, w ∈ W ). (4.1)

PROPOSITION 4.1. There exists a unique operatorA ∈ L(L2(I ; V ), L2(I ;W ′))
such that a(t, v(t), w(t)) = 〈(Av)(t), w(t)〉 for a.e. t ∈ I , for all v ∈ L2(I ; V ) and
w ∈ L2(I ;W ).

LEMMA 4.2. The mapping � : L2(I ;W ′) → (L2(I ;W ))′, v �→ ∫
I 〈v(t), .〉 dt is

an isometric isomorphism.

For a proof of the lemma, see [12, p. 98].

Proof of Proposition 4.1. We define the bounded form

ã : L2(I ; V ) × L2(I ;W ) → K, ã(v,w) =
∫
I
a(t, v, w) dt,
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and we define Ã ∈ L(L2(I ; V ), (L2(I ;W ))′) by Ãv = ã(v, ·). We setA := �−1◦Ã,
then by the definition of � and Ã we have

∫
I
〈Av,w〉 dt = 〈 Ãv,w〉 = ã(v,w) =

∫
I
a(t, v, w) dt

for all v ∈ L2(I ; V ) and all w ∈ L2(I ;W ). �

Let a : I × V × W → K be a bounded non-autonomous form. Then we call the
operator A ∈ L(L2(I ; V ), L2(I ;W ′)) from Proposition 4.1 the operator associated
with a and we write A ∼ a. Moreover, we denote by A(t) ∈ L(V,W ′) the operator
v �→ a(t, v, ·).
In the case that V = W , we call a quasi-coercive if there exist η > 0 and ω ∈ R

such that
Re a(t, v, v) + ω‖v‖2H ≥ η‖v‖2V (t ∈ I, v ∈ V ) (4.2)

and coercive if there exists η > 0 such that

Re a(t, v, v) ≥ η‖v‖2V (t ∈ I, v ∈ V ). (4.3)

Note that A + ω and A(t) + ω are invertible if a : I × V × V → K is a bounded
quasi-coercive non-autonomous form and A ∼ a.

5. Maximal regularity for non-autonomous operators associated with forms on
R

Let V and H be Hilbert spaces over the field K with V
d

↪→ H . Suppose a : R ×
V × V → K is a bounded coercive non-autonomous form, where M ≥ 0 and η > 0
are constants such that (4.1) and (4.3) hold. LetA ∈ L(L2(R; V ), L2(R; V ′)) be the
operator associated with a.

THEOREM 5.1. For every f ∈ L2(R; V ′) there exists a unique u ∈ MR0(A) such
that

u′ + Au = f. (5.1)

Proof. It is easy to check, that A satisfies the conditions of Theorem 3.1. �

Next we consider higher regularity. Let α ∈ (0, 1/2], β ∈ [0, α) and let a1 : R ×
V ×V → K, a2 : R×V × H1+2β−2α → K be bounded non-autonomous forms and
A1 ∼ a1, A2 ∼ a2. Thus, there exist constants M, M2 such that

|a1(t, v, w)| ≤ M‖v‖V ‖w‖V (t ∈ R, v, w ∈ V ), (5.2)

|a2(t, v, w)| ≤ M2‖v‖V ‖w‖H1+2β−2α (t ∈ R, v ∈ V, w ∈ H1+2β−2α). (5.3)

By the definition of H2α−2β−1, we have that it is a subspace of V ′; thus, the mapping
v �→ Av := (A1 + A2)v defines a bounded operator from L2(R; V ) to L2(R; V ′).
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Moreover, we suppose that there exist constants η > 0 and η2 < η such that

Re a1(t, v, v) ≥ η‖v‖2V (t ∈ R, v ∈ V ), (5.4)

Re a2(t, v, v) ≥ −η2‖v‖2V (t ∈ R, v ∈ V ). (5.5)

Note that the form a : R × V × V → K, a = a1 + a2 satisfies the conditions of
Theorem 5.1.

THEOREM 5.2. Suppose in addition that A1(·) ∈ W̊α+δ0,
1
α (R;L(V, V ′)) and if

β > 0 that A2(·) ∈ W̊β+δ0,
1
β (R;L(V, H2α−2β−1)) for some δ0 > 0. Then for every

f ∈ L2(R; H2α−1), there exists a unique u ∈ MRα(A) such that

u′ + Au = f. (5.6)

Moreover, MRα(A) ↪→ Hα(R; V ).

For the proof, it will be crucial to control the commutator |∂|αA1v −A1|∂|αv. This
will be established by the following lemma.

LEMMA5.3. Let X,Y beHilbert spaces, γ ∈ (0, 1/2] andG ∈ L∞(R;L(X,Y ))∩
W̊ γ+δ0,

1
γ (R;L(X,Y )) for some δ0 > 0. Then for every ε > 0 there exists some

constant cε such that

(∫
R

∫
R

‖(G(t) − G(s))v(s)‖2Y
|t − s|1+2γ ds dt

)1/2

≤ ε‖∂γ v‖L2(R;X) + cε‖v‖L2(R;X) (v ∈ Hγ (R; X)). (5.7)

Moreover, the mapping u(·) �→ G(·)u(·) belongs to L(Hγ (R; X), Hγ (R; Y )).

Proof. Let 0 < h < 1 and M := ‖G(t)‖L∞(R;L(X,Y )). We obtain by Fubini’s theorem
that

(∫
R

∫
R\(t−h,t+h)

‖(G(t) − G(s))v(s)‖2Y
|t − s|1+2γ ds dt

)1/2

≤ 2M

(∫
R

∫
R\(t−h,t+h)

‖v(s)‖2X
|t − s|1+2γ ds dt

)1/2

= 2M

(∫
R

∫
R\(s−h,s+h)

1

|t − s|1+2γ dt ‖v(s)‖2X ds

)1/2

= 2M√
γ hγ

‖v‖L2(R;X)

for all v ∈ L2(R; X). Next choose 0 < δ < δ0 and p > 1
γ
such that p(γ + δ) ≤

1
γ
(γ + δ0). Let q be such that 1

2 = 1
p + 1

q . For v ∈ Hγ (R; X), we obtain by Hölder’s
inequality
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(∫
R

∫ t+h

t−h

‖(G(t) − G(s))v(s)‖2Y
|t − s|1+2γ ds dt

)1/2

≤
(∫

R

∫ t+h

t−h

‖G(t) − G(s)‖p
L(X,Y )

|t − s|1+p(γ+δ)
ds dt

)1/p (∫
R

∫ t+h

t−h

‖v(s)‖qX
|t − s|1−δq

ds dt

)1/q

.

Using the uniform boundedness of G by the constant M , we obtain that the first term
on the right-hand side is bounded by

(2M)
γ p−1
γ p [G]

1
pγ

W
γ+δ0, 1γ (R;L(X;Y ))

,

which is finite by our assumptions on the form. By Fubini’s theorem, we obtain for
the second term that

(∫
R

∫ t+h

t−h

‖v(s)‖qX
|t − s|1−δq

ds dt

)1/q

=
(∫

R

∫ s+h

s−h
|t − s|δq−1 dt ‖v(s)‖qX ds

)1/q

= hδ

(
2

δq

∫
R

‖v(s)‖qX ds

)1/q

.

Since p > 1
γ
, we obtain that q < 2

1−2γ if γ < 1
2 and q < ∞ if γ = 1

2 . Now the
inequality (5.7) follows by Lemma 7.12.
Let v ∈ Hγ (R; X), then by Proposition 7.9

Cγ ‖∂γGv‖L2(R;Y ) =
(∫

R

∫
R

‖Gv(t) − Gv(s)‖2Y
|t − s|1+2γ ds dt

)1/2

≤
(∫

R

∫
R

‖G(t)(v(t) − v(s))‖2Y
|t − s|1+2γ ds dt

)1/2

+
(∫

R

∫
R

‖(G(t) − G(s))v(s)‖2Y
|t − s|1+2γ ds dt

)1/2

≤ (MCγ + 1)‖∂γ v‖L2(R;X) + c1‖v‖L2(R;X),

where c1 is the constant from (5.7). Thus, the mapping u(·) �→ G(·)u(·) belongs to
L(Hγ (R; X), Hγ (R; Y )). �

Proof of Theorem 5.2. It is our goal to show that A1 and A2 satisfy the conditions of
Theorem 3.3. First we consider the operatorA1. Note that (5.2) implies (3.4) and (5.3)
implies (3.6). By Lemma 5.3 we obtain that A1 satisfies (3.5). Next we show that A1

satisfies (3.7). Let v ∈ Hα(R; V ), then by Corollary 7.10

Cα Re
∫
R

〈∂αA1v(t), ∂αv(t)〉 dt

= Re
∫
R

∫
R

〈(A1v(t) − A1v(s)), v(t) − v(s)〉
|t − s|1+2α ds dt
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= Re
∫
R

∫
R

〈A1(t)(v(t) − v(s)), v(t) − v(s)〉
|t − s|1+2α ds dt

+Re
∫
R

∫
R

〈(A1(t) − A1(s))v(s), v(t) − v(s)〉
|t − s|1+2α ds dt

≥ ηCα‖∂αv‖2L2(R;V )
− [

ε‖∂αv‖L2(R;V ) + cε‖v‖L2(R;V )

]√
Cα‖∂αv‖L2(R;V ).

Here, we use again Lemma 5.3 with γ = α for some ε > 0. If we choose ε < η
√
Cα ,

then the desired estimate (3.7) follows by Young’s inequality.
Next we consider the operator A2. The assumptions (3.8) and (3.9) are satisfied

by (5.3) and (5.5). In the case β = 0, the assumption (3.10) is satisfied without any
further conditions on A2.
For β > 0, we have by Lemma 5.3
∣∣∣∣
∫
R

〈A2v, ∂α∂α∗w〉 dt
∣∣∣∣ =

∣∣∣∣
∫
R

(Bα−β−1/2∂βA2v |B1/2−α+β∂α∂(α−β)∗w)H dt

∣∣∣∣
≤ ‖∂βA2v‖L2

H2α−2β−1
‖∂α∂(α−β)∗w‖L2

H1−2α+2β

≤ C‖v‖Hβ(R;V )‖∂2α−βw‖L2
H1−2α+2β

≤
[
ε‖∂αv‖L2

V
+ cε‖v‖L2

V

] [
‖w‖Hα(R;V ) + ‖∂2αw‖L2(R;H1−2α)

]
.

for all v ∈ Hα(R; V ), w ∈ H2α(R; V ), for any ε > 0 and sufficiently large cε. Here,
we apply the complex interpolation inequality (see [18, p. 53]) on the space

H2α−β(R; H1−2α+2β) = [Hα(R; H1), H
2α(R; H1−2α)] α−β

α

and Young’s inequality. Thus, A1 and A2 satisfy the conditions of Theorem 3.3. �

REMARK 5.4. The theorem extends to more general perturbations than A2, e.g.,
sums of such operators, provided that condition (5.5) holds for the sum of these
operators.

REMARK 5.5. The statement of Theorem 5.2 implies that the mapping

T : MRα(A) → L2(R; H2α−1), Tu = (∂ + A)u

defines an isomorphism. Thus, T and T−1 are bounded operators by the closed graph
theorem. On the other hand, we may see by our proofs that these bounds depend only
on the constants appearing in the conditions of the theorem.

6. Initial value problems

Let V, H be Hilbert spaces over the fieldKwith V
d

↪→ H and let I = [0, T ] where
T > 0. Suppose a : I × V × V → K is a bounded coercive non-autonomous form,
where M ≥ 0, η > 0 and ω ≥ 0 are constants such that (4.1) and (4.2) hold. Let
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A ∈ L(L2(I ; V ), L2(I ; V ′)) be the operator associated with a. For α ∈ [0, 1/2], we
define the maximal regularity (Hilbert) space

MRα(I ;A) := {v ∈ H1(I ; H2α−1) ∩ L2(I ; V ) : Av ∈ L2(I ; H2α−1)}
with norm

‖v‖2MRα(I ;A) := ‖v′‖2L2(I ;H2α−1)
+ ‖Av‖2L2(I ;H2α−1)

.

Note that MR0(I ;A) ↪→ C(I ; H) by [25, p. 106, Proposition 1.2].

THEOREM 6.1. For every f ∈ L2(I ; V ′) and u0 ∈ H, there exists a unique
u ∈ MR0(I ;A) = H1(I ; V ′) ∩ L2(I ; V ) with

u′ + Au = f, u(0) = u0. (6.1)

This result is well known, at least in the case that H is separable (see [11, p. 513]).
In order to illustrate our strategy of reducing the case of an interval to R and for the
sake of completeness, we provide a proof.

Proof of Theorem 6.1. First note that u ∈ MR0(I ;A) is a solution of u′ + Au = f ,
u(0) = u0 if andonly ifv(t) := e−ωt u(t) ∈ MR0(I ;A) is a solution ofv′+(A+ω)v =
e−ω· f , v(0) = u0. Thus, we may assume that a is coercive, i.e., ω = 0.

It is our goal to apply Theorem 5.1. We extend a on the complement of I by
1
T

∫ T
0 a(t, ·, ·) dt . We denote this extension again by a. Then a : R × V × V → K is

a bounded coercive non-autonomous form. In particular, (4.1) and (4.2) hold with the
same constants M ≥ 0 and η > 0.

In the case u0 = 0,we extend f by 0 on the complement of I , then the restriction to I
of the solution u given by Theorem 5.1 satisfies (6.1) and is unique by Proposition 3.2.

For the case u0 ∈ H \ {0} note that H = [V, V ′]1/2 = (V, V ′)1/2,2 since V and
V ′ are Hilbert spaces. By the trace method for the real interpolation spaces (see [18,
Corollary 1.14]), there exists some v ∈ MR0([0,∞);A) with v(0) = u0. We set
w(t) := v(−t) ∈ MR0((−∞, 0];A) and we extend f to R by w′(t) + (Aw)(t) on
(−∞, 0) and by 0 on (T,∞). Again the restriction to I of the solution u given by
Theorem 5.1 satisfies (6.1) and is unique by Proposition 3.2. �

Next we consider higher regularity. Let α ∈ (0, 1/2], β ∈ [0, α) and let a1 : I ×
V × V → K, a2 : V × H1+2β−2α → K be bounded non-autonomous forms and
A1 ∼ a1, A2 ∼ a2. Thus, there exist constants M, M2 such that

|a1(t, v, w)| ≤ M‖v‖V ‖w‖V (t ∈ I, v, w ∈ V ), (6.2)

|a2(t, v, w)| ≤ M2‖v‖V ‖w‖H1+2β−2α (t ∈ I, v ∈ V, w ∈ H1+2β−2α). (6.3)

By the definition of H1+2β−2α , we have that V is a subspace of H1+2β−2α , and thus,
the mapping v �→ Av := (A1 + A2)v defines a bounded operator from L2(I ; V ) to
L2(I ; V ′). Moreover, we suppose that a1 is quasi-coercive; i.e., there exist constants
η > 0 and ω ∈ R such that

Re a1(t, v, v) + ω‖v‖H ≥ η‖v‖2V (t ∈ I, v ∈ V ). (6.4)
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THEOREM 6.2. In addition, suppose that A1(·) ∈ W̊α+δ0,
1
α (I ;L(V, V ′)) and if

β > 0 that A2(·) ∈ W̊β+δ0,
1
β (I ;L(V, H2α−2β−1)) for some δ0 > 0. For t ∈ I we

denote by A(t) the part of A1(t) in H if β = 0 and the part of A(t) in H if β < 1/2.
Then for every f ∈ L2(I ; H2α−1) and u0 ∈ H2α for α < 1/2 and u0 ∈ D(A(0)1/2)
for α = 1/2, there exists a unique u ∈ MRα(I ;A) with

u′ + Au = f, u(0) = u0. (6.5)

Moreover, MRα(I ;A) ↪→ Hα(I ; V ), MRα(I ;A) ↪→ C(I ; H2α) if α < 1
2 and u(t) ∈

D(A(t)1/2) for every u ∈ MR1/2(I ;A) and every t ∈ I .

Proof. It is our goal to apply Theorem 5.2. By the same rescaling argument as in the
proof of Theorem 6.1, we may assume that a1 is coercive, i.e., ω = 0. We even may
replaceA2 byA2 +λ for some λ ≥ 0. This will be necessary to obtain (5.5) for some
η2 < η.
Since A1(·) belongs to the space W̊α+δ0,

1
α (I ;L(V, V ′)), we may extend A1(·) to

W̊α+δ0,
1
α (R;L(V, V ′))by applying the operatorsE l

0 andEr
T defined inProposition 7.8.

Moreover,we extendA2(·) to W̊β+δ0,
1
β (R;L(V, H2α−2β−1)) in the sameway ifβ > 0

and by 0 if β = 0. To apply Theorem 5.2, it remains to show that (5.5) holds for some
η2 < η if we choose λ sufficiently large. Indeed by (6.3) and Young’s inequality, we
obtain for sufficiently large λ that

Re〈A2(t)v, v〉 + λ‖v‖2H ≥ −|〈A2(t)v, v〉| + λ‖v‖2H ≥ −M2‖v‖V ‖v‖H1+2β−2α

+ λ‖v‖2H ≥ −M2‖v‖V ‖v‖2α−2β
H ‖v‖1+2β−2α

V + λ‖v‖2H ≥ −η

2
‖v‖2V

for all v ∈ V and all t ∈ R.
We proceed as in the proof of Theorem 6.1. In the case u0 = 0, we extend f by 0 on

the complement of I , then the restriction to I of the solution u given by Theorem 5.2
satisfies (6.1) and is unique by Proposition 3.2.

Next we consider the case u0 �= 0. By the trace method for real interpolation (see

[18, Corollary 1.14]), there exists some v ∈
{
MRα([0,∞);A(0)) : β > 0

MRα([0,∞);A1(0)) : β = 0
with

v(0) = u0, where we use Proposition 2.2 in the case α < 1/2. Note that in the
case β = 0 we have MRα(I ;A) = MRα(I ;A1) with equivalent Norms, since A2 ∈
L(L2(I ; V ); L2(I ; H)). We set w(t) := v(−t) ∈

{
MRα((−∞, 0];A(0)) : β > 0

MRα((−∞, 0];A1(0)) : β = 0
and we extend f toR by w′(t)+Aw(t) on (−∞, 0) and by 0 on (T,∞). Finally, the
restriction to I of the solution u given by Theorem 5.2 satisfies (6.5) and is unique by
Proposition 3.2.

Moreover, MRα(I ;A) ↪→ C(I ; H2α) if α < 1
2 (see [28, Theorem 3.6.]) and in

the case α = 1
2 we have u|[T,∞) ∈

{
MRα([T,∞);A(T )) : β > 0

MRα([T,∞);A1(T )) : β = 0
, hence u(T ) ∈

D(A(T )1/2) again by [18, Corollary 1.14]. �
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7. Applications

This section is devoted to some applications of the results given in the previous
sections. We give examples illustrating the theory without seeking for generality.
Throughout this section, we consider the field K = R.

7.1. Elliptic operators with time-dependent L∞ coefficients

Let � ⊂ Rd be a bounded domain, where d ∈ N. Suppose a jk ∈ L∞(I × �),
j, k ∈ {1, . . . , d} satisfy

d∑
j,k=1

a jk(t, x)ξ jξk ≥ η|ξ |2 (t ∈ I, x ∈ �, ξ ∈ Rd).

for some η > 0. By H1
0 (�)we mean the closure of the test functionsD(�) in H1(�).

We denote for β ∈ [0, 1) by Hβ
0 (�) the space [L2(�), H1

0 (�)]β and by H−β(�)

the space [L2(�), H−1(�)]β , where H−1(�) := (H1
0 (�))′. Note that H−β(�) =

(Hβ
0 (�))′ (see [27, p. 72]).

COROLLARY 7.1. Let I = [0, T ], α ∈ [0, 1/2] and if α > 0 suppose that in

addition a jk ∈ W̊α+δ, 1
α (I ; L∞(�)) for some δ > 0. If α = 1/2 we also assume that

� has Lipschitz boundary. Then for every f ∈ L2(I ; H2α−1(�)), u0 ∈ H2α
0 (�) there

exists a unique u ∈ Hα(I ; H1
0 (�)) ∩ H1(I ; H2α−1(�)) such that

u′ − div((a jk)∇u) = f, u(0) = u0.

Proof. We define the non-autonomous form a1 : I × H1
0 (�) × H1

0 (�) → R by

a1(t, v, w) =
∫

�

d∑
j,k=1

a jk(t, x)∂ jv(t, x) ∂kw(t, x) dx .

Then a1 satisfies the conditions of Theorem 6.2. Note for the case α = 1/2 that
D(A(0)1/2) from Theorem 6.2 coincides with the space H1

0 (�) (see [8]). �

Note that the domain of the part ofA1(t) in H2α−1
0 (�) is time dependent for α > 0,

where A1 ∼ a1.

7.2. Elliptic operators on Rd with mixed regularity

Let I = [0, T ] with T > 0, d ∈ N, 0 < α0 < α < 1
2 and 0 < β0 < β < 1 such

that 2α0+β0 = 1. Moreover, let a jk ∈ L∞(I ×Rd), j, k ∈ {1, . . . , d} such that there
exits some η > 0 with

d∑
j,k=1

a jk(t, x)ξ jξk ≥ η|ξ |2 (t ∈ I, x ∈ Rd , ξ ∈ Rd).
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COROLLARY 7.2. Suppose in addition that a jk ∈ W̊
α, 1

α0 (I ; W̊β, d
β0 (Rd)) for all

j, k ∈ {1, . . . , d}. Then for every f ∈ L2(I ; L2(Rd)) and every u0 ∈ H1(Rd), there
exists a unique u ∈ H1(I ; L2(Rd)) ∩ H1/2(I ; H1(Rd)) such that

u′ − div((a jk)∇u) = f, u(0) = u0.

Proof. We set V := H1+β0(Rd), H := Hβ0(Rd), and we identify H with H ′, then
V ′ = Hβ0−1(Rd). Hence, H2α0−1 = H−β0 = [H, V ′]β0 = L2(Rd). It is our goal to
apply Theorem 6.2 in this setting. We define b : Hβ0(Rd) × Hβ0(Rd) → R by

b(v,w) =
∫
Rd

∫
Rd

(v(x) − v(y))(w(x) − w(y))

|x − y|2β0
dx dy

|x − y|d + (v | w)L2(Rd ).

Then b is a scalar product on Hβ0(Rd). Let B ∈ L(Hβ0(Rd), (Hβ0(Rd))′) be its
associated operator and B ∈ L(H2β0(Rd), L2(Rd)) the part of B in L2(Rd).
Moreover, we define the non-autonomous form

a : I × H1+β0(Rd) × H1+β0(Rd) → R, a(t, v, w) =
d∑

j,k=1

b
(
a jk(t)∂kv, ∂ jw

)

and we denote its associated operator by A. By our assumptions on the coefficients
a jk , we obtain that a is bounded, quasi-coercive and that

A(·) ∈ W̊
α, 1

α0 (I ;L(H1+β0(Rd), (H1+β0(Rd))′)).

We only show that a is quasi-coercive, the other properties are easy to check. Let
v ∈ H1+β0(Rd), then

a(t, v, v) =
d∑

j,k=1

[∫
Rd

∫
Rd

a jk(t, x)
(∂kv(x) − ∂kv(y))(∂ jv(x) − ∂ jv(y))

|x − y|2β0
dx dy

|x − y|d

+
∫
Rd

∫
Rd

(a jk(t, x) − a jk(t, y))∂kv(y)(∂ jv(x) − ∂ jv(y))

|x − y|2β0
dx dy

|x − y|d

+
∫
Rd

a jk(t, x)∂kv(x)∂ jv(x) dx

]

≥
d∑

k=1

η

2
b(∂kv, ∂kv)

−
d∑

j,k=1

1

2η

∫
Rd

∫
Rd

|a jk(t, x) − a jk(t, y)|2|∂kv(y)|2
|x − y|2β0

dx dy

|x − y|d ,

where we used the ellipticity of (a jk), Hölder’s inequality and Young’s inequality
(a ·b ≤ η

2a
2+ 1

2ηb
2, a, b ∈ R). It remains to estimate the last term by η

4

∑d
j,k=1 b(∂kv,

∂kv) + C‖v‖2
Hβ0

for some C ≥ 0. This can be done as in the proof of Lemma 5.3
using the regularity of (a jk). Thus, a is quasi-coercive.
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Let f ∈ L2(I ; L2(Rd)) and u0 ∈ H1(Rd). By Theorem 6.2, there exists a unique
u ∈ MRα0(A) such that u′ + Au = f in L2(I ; (H1+β0(Rd))′) and u(0) = u0. Since
the identity

〈v,w〉(H1+β0 (Rd ))′,H1+β0 (Rd ) = (v | Bw)L2(Rd ) (v ∈ L2(Rd), w ∈ H2β0(Rd))

holds and since ∂ j Bv = B∂ jv for every v ∈ H1+2β0(Rd), j ∈ {1, . . . , d} we see that
the function u is the desired solution. �

7.3. Parabolic systems

Let I = [0, T ] with T > 0, d, n ∈ N. Let almjk ∈ L∞(I ; BUC(Rd)) for j, k ∈
{1, . . . , d}, l,m ∈ {1, . . . , n} and suppose that there exists η > 0 such that

d∑
j,k=1

n∑
l,m=1

almjk (t, x)ζlζmξ jξk ≥ η|ζ |2|ξ |2 (t ∈ I, x ∈ Rd , ζ ∈ Rn, ξ ∈ Rd).

Note that this condition is called the Legendre–Hadamard ellipticity condition.

COROLLARY 7.3. Let α ∈ [0, 1/2] and if α > 0 suppose in addition that a jk ∈
W̊α+δ, 1

α (I ; L∞(Rd)) for some δ > 0. Then for every f ∈ L2(0, T ; H2α−1(Rd))n,
u0 ∈ H2α(Rd)n, there exists a unique u ∈ Hα(I ; H1(Rd))n ∩ H1(I ; H2α−1(Rd))n

such that

u′
l −

n∑
m=1

div
(
(almjk ) j,k∈{1,...,d}∇um

) = fl (l ∈ {1, . . . , n}), u(0) = u0.

Note that the domain of the elliptic operator is time dependent.

Proof. We define the non-autonomous form a : I × H1(Rd)n × H1(Rd)n → R by

a(t, v, w) =
∫
Rd

d∑
j,k=1

n∑
l,m=1

almjk (t, x)∂ jvm ∂kwl dx .

Then a satisfies the conditions of Theorem 6.2.
Indeed, boundedness and time regularity are a direct consequence of the assump-

tions above. Furthermore, quasi-coercivity may be obtained by localization of the
coefficients almjk (t, ·) and Plancherel’s theorem (see [14, Theorem 3.25]). �

7.4. Time-dependent generalized fractional Laplacians

Let I = [0, T ] with T > 0, d ∈ N, α ∈ [0, 1/2] and β ∈ (0, 1). Suppose
K : I × Rd × Rd → R is measurable, K (t, ·, ·) is symmetric for all t ∈ I , and there
exist constants 0 < η < M such that η ≤ K (t, x, y) ≤ M for all t ∈ I , x, y ∈ Rd .
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COROLLARY 7.4. Let α ∈ [0, 1/2] and β ∈ (0, 1). In addition, suppose that K ∈
W̊α+δ, 1

α (I ; L∞(R2d)) for some δ > 0. Then for every f ∈ L2(I ; H (2α−1)β(Rd)),
u0 ∈ H2αβ

0 (Rd), there exists a unique u ∈ Hα(I ; Hβ(Rd)) ∩ H1(I ; H (2α−1)β(Rd))

such that

u′ + p. v.
∫
Rd

K (t, x, y)
(u(t, x) − u(t, y))

|x − y|2β+d
dy = f, u(0) = u0.

Proof. We define the bounded and quasi-coercive non-autonomous form a : I ×
Hβ(Rd) × Hβ(Rd) → R by

a(t, v, w) =
∫
Rd

∫
Rd

K (t, x, y)
(v(x) − v(y))(w(x) − w(y))

|x − y|2β
dx dy

|x − y|d

and we denote byA its associated operator. It is easy to check thatA(·) ∈ W̊α+δ, 1
α (I ;

L(Hβ(Rd), (Hβ(Rd))′)). Thus, we may apply Theorem 6.2. For the case α = 1
2 ,

note that D(A(0)1/2) = Hβ(Rd), where A(0) denotes the part of A(0) in H , since
a(t, ·, ·) is symmetric. �

Appendix: Vector-valued fractional calculus

The material covered in this appendix is well known, despite that we could not
find all the needed results in the literature. More results about vector-valued Sobolev
spaces can be found in [6,19] and [26].
Let α ∈ (0, 1), let p ∈ [1,∞), let I ⊂ R be an interval, and let E be a Banach

space. Given a measurable function f : I → E , we set

[ f ]Wα,p(I ;E) :=
(∫

I

∫
I

(‖ f (t) − f (s)‖E
|t − s|α

)p dt ds

|t − s|
)1/p

.

We define the homogeneous fractional Sobolev space

W̊α,p(I ; E) := { f : I → E measurable : [ f ]Wα,p(I ;E) < ∞}
and the fractional Sobolev space

Wα,p(I ; E) := { f ∈ L p(I ; E) : [ f ]Wα,p(I ;E) < ∞}.
Note that [·]Wα,p(I ;E) is a seminorm and

(
Wα,p(I ; E), ‖·‖Wα,p(I ;E)

)
is a Banach space

where

‖ f ‖Wα,p(I ;E) :=
(
‖ f ‖p

L p(I ;E)
+ [ f ]pWα,p(I ;E)

)1/p
.

We collect some well-known results about these spaces.

PROPOSITION 7.5. Let α ∈ (0, 1), let p ∈ [1,∞), let I = (a, b), where
−∞ < a < b < ∞, and let E be a Banach space. There exists an operator
E ∈ L(Wα,p(I ; E),Wα,p(R; E)), such that (E f )|I = f for all f ∈ Wα,p(I ; E)

and supp(E f ) ⊂ (a − (b − a), b + (b − a)).
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Proof. Let ϕ ∈ D(R) with ϕ(t) = 1 for all t ∈ I and suppϕ ⊂ (a − (b − a), b +
(b − a)). It is easy to check that the mapping defined by

(E f )(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (t), t ∈ I

ϕ(t) f (2a − t), t ∈ (a − (b − a), a)

ϕ(t) f (2b − t), t ∈ (b, b + (b − a))

0, else

has the desired properties. �

PROPOSITION 7.6. Let α ∈ (0, 1), let p ∈ [1,∞), let I ⊂ R be an interval,
and let E be a Banach space. The E-valued test functions D(R; E) are dense in
Wα,p(R; E), and the smooth functions C∞(I ; E) are dense in Wα,p(I ; E).

Proof. Since D(R; E) is dense in W 1,p(R; E) and since

Wα,p(R; E) =
(
L p(R; E),W 1,p(R; E)

)
α,p

we obtain that D(R; E) is also dense in Wα,p(R; E) by [27, p. 39].
The second statement follows by Proposition 7.5 and the first statement. �

Let α ∈ (0, 1), let p ∈ [1,∞), let I ⊂ R be an interval, and let E be a Banach
space. Given a function f : I → E , we set

[ f ]Cα(I ;E) := sup
s,t∈I

‖ f (t) − f (s)‖E
|t − s|α .

We define the space of Hölder continuous functions

Cα(I ; E) := { f ∈ C(I ; E) : [ f ]Cα(I ;E) < ∞}.
Note that Cα(I ; E) is a Banach space with respect to the norm

‖ f ‖Cα(I ;E) := ‖ f ‖L∞(I ;E) + [ f ]Cα(I ;E).

By [26, Corollary 26], we have what follows.

PROPOSITION 7.7. Let α ∈ (0, 1), let p > 1
α
, let I ⊂ R be an interval, and let

E be a Banach space. Then

W̊α,p(I ; E) ↪→ C̊α− 1
p (I ; E).

If α > 1
p , we identify the function f ∈ Wα,p(I ; E) with its continuous version.

PROPOSITION 7.8. Let α ∈ (0, 1), let p > 1
α
, let I ⊂ R be an interval, and let

E be a Banach space. For any t ∈ I the mappings

Er
t : W̊α,p(I ; E) → W̊α,p(I ∪ [t,∞); E), (Er

t f )(s) =
{
f (s), s ∈ I, s < t

f (t), s ≥ t
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and

E l
t : W̊α,p(I ; E) → W̊α,p(I ∪ (−∞, t]; E), (E l

t f )(s) =
{
f (s), s ∈ I, s > t

f (t), s ≤ t

define bounded operators.

Proof. We consider the interval I = [0, T ] and the operator E l
0, the other cases are

similar. Let f ∈ C∞(I ; E). By subtracting f (0), we may assume f (0) = 0. We have

[E l
0 f ]pWα,p((−∞,T ];E)

=
∫
I

∫
I

(‖ f (t) − f (s)‖E
|t − s|α

)p dt ds

|t − s| + 2
∫
I

∫
(−∞,0)

(‖ f (s)‖E
(s − t)α

)p dt ds

s − t

= [ f ]pWα,p(I ;E)
+ 2

αp

∫
I

(‖ f (s)‖E
sα

)p

ds.

Since f is smooth and thus also Lipschitz continuous, the second term on the right-
hand side is finite. By [24, p. 745, (6.8)] we have that

(∫
I

(‖ f (s)‖E
sα

)p

ds

)1/p

≤ 1 + α − 1/p

α − 1/p
[ f ]Wα,p(I ;E).

Hence, [E l
0 f ]pWα,p((−∞,T ];E)

≤ C[ f ]Wα,p(I ;E) for some constant C depending only
on α and p. Finally, by Proposition 7.6 and Proposition 7.7 this estimate extends to
arbitrary f ∈ Wα,p(I ; E). �

Let H be a Hilbert space and let α ∈ [0,∞). We define

Hα(R; H) := {u ∈ L2(R; H) : |ξ |α û(ξ) ∈ L2(R; H)}

and for u ∈ Hα(R; H) we define ∂αu by (∂αu)̂ (ξ ) = (iξ)α û(ξ) and |∂|αu by
(|∂|αu)̂ (ξ ) = |ξ |α û(ξ). Then Hα(R; H) is a Hilbert space with the norm

‖u‖2Hα
H

:= ‖u‖2
L2
H

+ ‖∂αu‖2
L2
H
.

PROPOSITION 7.9. For α ∈ (0, 1), we have Hα(R; H) = Wα,2(R; H) with

Cα‖∂αu‖2
L2
H

= [u]2Wα,2(R;H)
,

where Cα := 2
∫
R

1−cos s
|s|1+2α ds.

Proof. First note that

Cα|ξ |2α = 2
∫
R

1 − cos(ξh)

|h|1+2α dh =
∫
R

|1 − eiξh |2
|h|1+2α dh
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by substituting s with h|ξ |. Let u ∈ L2(R; H). By Plancherel’s theorem and by
Fubini’s theorem, we have

Cα‖∂αu‖2
L2
H

= Cα‖|ξ |α û(ξ)‖2
L2
H

=
∫
R

Cα|ξ |2α‖û(ξ)‖2H dξ

=
∫
R

∫
R

|1 − eiξh |2
|h|1+2α dh‖û(ξ)‖2H dξ =

∫
R

∫
R

‖(1 − eiξh)û(ξ)‖2H
|h|1+2α dξ dh

=
∫
R

∫
R

‖u(t) − u(t + h)‖2H
|h|1+2α dt dh = [u]2Wα,2(R;H)

. �

By polarization, we also have

Cα(∂αu | ∂αv)L2
H

=
∫
R

∫
R

(u(t) − u(s) | v(t) − v(s))H
|t − s|1+2α dt ds (u, v ∈ Hα(R; H)).

COROLLARY 7.10. For every u ∈ Hα(R; V ′) and every v ∈ Hα(R; V ), we have

Cα

∫
R

〈∂αu, ∂αv〉 dt =
∫
R

∫
R

〈u(t) − u(s), v(t) − v(s)〉
|t − s|1+2α dt ds.

PROPOSITION 7.11. Let u ∈ L2(R; H) and α > 0. Then u ∈ Hα(R; H) if and
only if there exists a v ∈ L2(R; H) such that

(u | ∂α∗ϕ)L2
H

= (v | ϕ)L2
H

(ϕ ∈ D(R; H)).

Proof. By Plancherel’s theorem, we obtain

(û | (iξ)αϕ̂)L2
H

= (v̂ | ϕ̂)L2
H

(ϕ ∈ D(R; H)).

Hence, by the density of D(R; H) in L2(R; H) it follows that (iξ)α û = v̂. �

LEMMA 7.12. Let α ∈ (0, 1
2 ] and let 2 < p < 2

1−2α if α < 1
2 and 2 < p < ∞ if

α = 1
2 . Then Hα(R; H) ↪→ L p(R; H) and for every ε > 0, there exists cε such that

‖v‖L p(R;H) ≤ ε‖∂αv‖L2(R;H) + cε‖v‖L2(R;H)

for all v ∈ Hα(R; H).

Proof. Let p′ be such that 1 = 1
p + 1

p′ and q such that 1
p′ = 1

2 + 1
q . Note that p

′ = p
p−1

and q = 2
1−2/p > 1

α
. For ρ > 0 and v ∈ Hα(R; H) ∩ L p(R; H), we have

‖v‖L p(R;H) = ‖ ˆ̂v‖L p(R;H) ≤ cp‖v̂‖L p′ (R;H)

≤ ‖(ρ1/α + |·|)−α‖Lq (R)‖(ρ1/α + |·|)αv̂‖L2(R;H)

≤
(

2

qα − 1

)1/q

ρ
1
qα

−1 (
ρ‖v‖L2(R;H) + ‖∂αv‖L2(R;H)

)
.

This estimate proves the claim for ρ sufficiently large. �



906 D. Dier and R. Zacher J. Evol. Equ.

Let I ⊂ R be an interval. We define Hα(I ; H) := { f |I : f ∈ Hα(R; H)} with

‖ f ‖Hα(I ;H) := inf{‖g‖Hα(R;H) : g ∈ Hα(R; H), g|I = f }.

Since Hα(I ; H) is isometric isomorphic to the quotient space Hα(R; H)/{ f ∈
Hα(R; H) : f |I = 0}, it is also a Hilbert space. Furthermore, by Proposition 7.5
and Proposition 7.9 we have Hα(I ; H) = Wα,2(I ; H) with equivalent norms for
α ∈ (0, 1).
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