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Abstract. We consider nonlinear parabolic equations involving fractional diffusion of the form ∂t u +
(−�)s�(u) = 0, with 0 < s < 1, and solve an open problem concerning the existence of solutions for
very singular nonlinearities � in power form, precisely �′(u) = c u−(n+1) for some 0 < n < 1. We also
include the logarithmic diffusion equation ∂t u + (−�)s log(u) = 0, which appears as the case n = 0. We
consider the Cauchy problem with nonnegative and integrable data u0(x) in one space dimension, since the
same problem in higher dimensions admits no nontrivial solutions according to recent results of the author
and collaborators. The limit solutions we construct are unique, conserve mass, and are in fact maximal
solutions of the problem. We also construct self-similar solutions of Barenblatt type, which are used as a
cornerstone in the existence theory, and we prove that they are asymptotic attractors (as t → ∞) of the
solutions with general integrable data. A new comparison principle is introduced.

1. Introduction

In this paper, we consider a class of nonlinear parabolic equations involving frac-
tional diffusion of the form

∂t u + (−�)s�(u) = 0. (1.1)

The symbol (−�)s denotes the fractional Laplacian operator with 0 < s < 1, i.e., the
nonlocal operator defined by

(−�)sv(x) = c(N , s) p.v.
∫
RN

v(x) − v(y)

|x − y|N+2s dy, ∀x ∈ R
N , (1.2)

acting on the whole Euclidean space at least for functions in the Schwartz class S.
The formula is valid for all dimensions N ≥ 1. The constant c(N , s) is given in the
literature, but it is not needed in what follows and p.v. means principal value of the
integral.
The existence and properties of solutions for this type of equations with fractional

diffusion have been studied by the author and collaborators for nonlinearities � that
are positive and increasing for u > 0, in particular when �(u) = um with m > 0, cf.
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[8,9,18–20,42,43]. This includes singular cases for 0 < m < 1 since then �′(u) =
mum−1 → ∞ as u → 0.
Here, we are interested in very singular nonlinearities, more precisely, when � :

R+ → R is a monotone increasing function of u with a singularity in u = 0 such that
�(0+) = −∞. Consequently, nonnegative data and solutions are considered. The
standard cases we have in mind are �n(u) = −1/un for some n > 0, or �0(u) =
log(u). They correspond to �′(u) ∼ u−(n+1) with n + 1 ≥ 1; thus, the denomination
very singular is introduced in the literature for this type of equations with standard
Laplacian, cf. [39].Wewill keep this tradition for equationswith a fractional Laplacian.
These very singular diffusion equations are also described in the literature as very fast
diffusion, superfast diffusion, or ultra-fast diffusion, cf. e.g. [25,31,39].
For such equations, the existence of solutions is not at all obvious. Thus, we have

proved in a recent paper with Bonforte and Segatti [7] that when the space dimension is
N ≥ 2 and we try to solve the Cauchy problem in the whole spaceRN with integrable
initial data, then there exist no nontrivial solutions, even if we accept local-in-time
solutions defined for a short time interval, 0 < t < T .1 The same happens for the
problem posed in a bounded domain with zero Dirichlet data.
The purpose of this paper is to prove that there is a range of existence of solutions

for very singular equations of the form (1.1) with � = �n if the space dimension is 1.
We will also prove that the solutions have the good properties of the nonsingular range
of parameters �(u) = um with m > 0. A very crude explanation of the existence
result is as follows: By becoming strictly positive for t > 0, the solutions avoid the
singularity in a way that suffices to grant first nontrivial existence and then the rest of
the properties.
Before stating the results, let us point out that the standard notation for the non-

singular equation is �(u) = c um with c,m > 0. In this paper, the exponent of the
nonlinearity�n iswritten in terms of n = −mwith n ≥ 0, and the detailed calculations
are done for n > 0. The reason for this notation is to avoid the use of negative expo-
nents that might confuse the reader in interpreting the results.2 The space dimension
is N , mostly N = 1 here.

THEOREM 1.1. Let N = 1 and let �(u) = �n(u) with n > 0 or �(u) = log(u)

(case n = 0). Equation (1.1) posed in Q = R × (0,∞) with initial data

u(x, 0) = u0(x) ∈ L1(R), u0 ≥ 0, (1.3)

admits a positive very weak solution if s > 1/2 and 0 ≤ n < 2s − 1. There could
be nonuniqueness of the solutions, but we construct a unique limit solution for every
initial data, and we prove that it is maximal among all solutions. This solution exists
globally in time, u ∈ C([0,∞) : L1(R)), and is positive everywhere.

1By trivial solution, we mean u(x, t) ≡ 0 in the whole domain of definition.
2The reader may also wonder, why the minus sign in the coefficient of �n? It is needed to make �n an
increasing function, so that the equation will be parabolic in some sense.
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The range of exponents 1/2 < s < 1 and 0 ≤ n < 2s − 1 is almost sharp. There is
indeed another isolated case of existence of integrable solutions in 1D, namely s = 1/2
and n = 0 (logarithmic diffusion). The very peculiar properties of this case deserve a
separate study, but we give a preliminary idea in Sect. 12 that supports the assertion
of existence of solutions at least for short times. For the other exponents s ∈ (0, 1),
n ≥ 0, in dimension one, nontrivial solutions do not exist by the mentioned results of
[7].
The construction of solutions proceeds by approximation, taking approximate initial

data that are uniformly positive, so that the problem is no more singular. Passing then
to the limit in the approximations, we obtain a solution that is shown to be nontrivial
after some effort. It is called the limit solution (upper limit solution, to be precise). It
is subsequently proved to be a very weak solution. Here we define very weak solution
of Eq. (1.1) as a nonnegative function u ∈ C((0,∞) : L1(RN )) such that

∫ ∞

0

∫
R

u
∂ζ

∂t
dxdt =

∫ ∞

0

∫
R

�(u) (−�)sζ dxdt, (1.4)

and the last integral is absolutely convergent for all ζ smooth and compactly supported.
In the theorem, �(u) = �n(u).

In the course of the present paper, we will also establish the main properties of the
constructed solutions. We select here the main results for easy reference.

THEOREM 1.2. The limit solution preserves mass,
∫
u(x, t) dx = ∫

u0(x) dx.
Moreover, it is a weak solution for t > 0 and satisfies the bounds

C1(t)(1 + |x |2)s/(1+n) ≤ u(x, t) ≤ C2‖u0‖δ
1t

−α (1.5)

with α = 1/(2s − n − 1), δ = 2sα, a continuous function C1(t) > 0 that may
depend on the solution, and a constant C2(n, s) > 0. The collection of limit solutions
generates an ordered, L1-contraction semigroup in L1+(R).

A specially important feature of the paper is the construction and properties of the
fundamental solutions.

THEOREM 1.3. There exists a special function of the form

U (x, t) = t−αF(x t−α) (1.6)

that is a very weak positive solution of the problem for t ≥ τ > 0 and takes on a Dirac
mass as initial data, u(x, t) → δ(x) as x → 0 in the sense of positive Radonmeasures.
The profile F is positive everywhere, integrable, symmetric, F(x) = F(−x), and F
monotone decreasing for x > 0. Moreover,

lim|x |→∞ |x |2s/(1+n)F(|x |) = C(s, n) > 0. (1.7)

The constant C(s, n) can be calculated as the constant appearing in the very singular
solution, a special solution with formula Ũ (x, t) = C(s, n) t1/(1+n)|x |−2s/(1+n), that
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has a nonintegrable singularity at x = 0. Finally, the solution with initial data M δ(x),
M > 0, is just

UM (x, t) = M U (x, M−(1+n)t) , so that FM (ξ) = M2sα F(M (1+n)αξ). (1.8)

Using the terminology of [40], we call a fundamental any solution with u(x, 0)
equal to a Dirac delta, and Barenblatt solution a fundamental solution that is also self-
similar. On the one hand, the Barenblatt solutions of the theorem play an important role
in completing the existence theory described in Theorem 1.2. In the theory, different
comparison theorems are also used, in particular a new shifting comparison result,
that we prove as Theorem 4.2. On the other hand, the Barenblatt solutions explain the
asymptotic behaviour of general solutions, according to the following general theorem.

THEOREM 1.4. Let u0 ∈ L1(R), let M = ∫
u0(x) dx, and let UM be the self-

similar Barenblatt solution with mass M. Then as t → ∞ the solutions u(x, t) and
UM (x, t) are increasingly close and we have

lim
t→∞ ‖u(·, t) −UM (·, t)‖1 = 0, (1.9)

Indeed, convergence happens in all L p norms, 1 ≤ p < ∞, in the form

lim
t→∞ tαp‖u(·, t) −UM (·, t)‖L p(R) = 0, αp = p − 1

p(2s − 1 + n)
. (1.10)

There are some other results worth recalling. Thus, as a side result of our analy-
sis, we construct in Sect. 8 the very singular solution (VSS), which is explicit (see
Theorem 8.1) and has very special properties. Very singular solutions have played a
special role in the theory of fast diffusion equations, as attested, e.g. in [12]. Our VSS
will give us a first clue to the lower bound O(|x |−2s/(1+n)) for the spatial decay of all
positive solutions, that we have stated in (1.5), and plays a role in different passages
of the existence theory that we will develop below.
After all these theorems are proved and shifting comparison is established,wedevote

a short section to a preliminary presentation of the special case s = 1/2, n = 0. The
paper concludes with a section on comments, open problems.

Precedents and commentary

(1) Many results are known about Problems (1.1)–(1.3), mainly for standard dif-
fusion s = 1, where the Laplacian is used instead of the fractional Laplacian. The
nonsingular case �(u) = um with m > 0 is known as the porous medium equation
when m > 1, the heat equation form = 1 and the fast diffusion equation, 0 < m < 1;
their theory has been studied in great detail and is described in monographs like
[2,17,38,39]. As a basic existence result, each of these equations generates a mild
solution for every initial data u0 ∈ L1(RN ), and the collection of such solutions forms
an ordered L1 contraction semigroup for every fixed m.
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(2) For equations with fractional Laplacians of the form (1.1)–(1.2) with 0 < s < 1
and the same of power-like nonlinearity �(u) = um , m > 0, the study of the Cauchy
problem with nonnegative data in L1(RN ), N ≥ 1, has been done in the papers
[18,19], and most of the basic results are still true though the techniques may be quite
different. More precisely, existence and uniqueness of solutions in the class of very
weak or strong solutions have been proved, and the main qualitative and quantitative
properties are established. Thus, when N (m − 1) + 2s > 0, the solutions are positive
everywhere in Q = R

N ×(0,∞); the so-called smoothing effect asserts that L1 initial
data produce bounded solutions for positive times and indeed

u(x, t) ≤ C(N ,m, s)‖u0‖γ
1 t

−α

where α = N/(N (m − 1) + 2s) and γ = 2s/(N (m − 1) + 2s), both positive in this
range. A main feature of the theory is the existence of fundamental solutions and their
use in establishing the asymptotic behaviour of general solutions. This was proved in
[40], also under the necessary restriction N (m − 1) + 2s > 0.

(3) Since this condition on the exponents to obtain goodbehaviour becomes formally
m > 1 − 2s in 1D, a similar theory could be expected to hold for very singular
exponents m < 0, if 2s − 1 > n = −m > 0 when N = 1. However, the difficulties
of dealing the singular nonlinearities prevented the inclusion of this extension in the
works [18,19,40]. We supply in this paper the approach and tools to fill such a gap in
the range of exponents of Theorem 1.1. In particular, we construct the fundamental
solutions and show that they are responsible for the asymptotic behaviour of general
solutions. The text below shows that such extended theory is far from immediate and
needs some involved tools.
(4) The case of singular powers�(u) = −u−n with n > 0, or�0(u) = log(u), was

considered by the author many years ago in [35] for the standard Laplacian, s = 1. A
remarkable result of non-existence of integrable solutions was proved for all n ≥ 0 if
N ≥ 3, for n > 0 if N = 2, and for n ≥ 1 if N = 1. That paper is a remote precedent
for the present work (previously, non-existence for the particular limit case n = 1
in N = 1 had been proved in [22] using a special transformation). More precisely,
when we perform the natural approximation by regular problems, as explained in the
next section, the sequence of approximations collapses to zero for all x ∈ R and all
t > 0 for all initial data in the integrable class. This radical phenomenon is called
instantaneous extinction. On the other hand, existence occurs in the remaining cases,
N = 1, 0 ≤ n < 1, and N = 2, n = 0. This agrees with the results we are going to
prove in the fractional case. Interesting properties arise in the existence cases, see a
detailed account in [39, Section 9]. The non-existence results of [35] were extended
to optimal classes of (nonintegrable) initial data in [14–16].
(5) In the case of singular nonlinearities and fractional Laplacians, which is our

framework here, the non-existence of solutions has been recently established in col-
laboration with Bonforte and Segatti [7], in the range that perfectly complements
the positive result of Theorem 1.1 plus the announced existence result for s = 1/2,
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n = 0 in 1D. Non-existence happens for all singular power cases (n ≥ 0) in dimen-
sion N ≥ 2. In all those non-existence cases, we got instantaneous extinction for the
initial value problem with any data u0 ∈ L1+(R). Putting these results together, we
obtain a complete picture of the solubility problemwith integrable data for all singular
parameters.

More on notations

We use the sign f ∼ g to denote that both functions are proportional in a certain
limit or range of values I (which may be explicit or understood from the context). If
the proportionality ratio goes to 1 in some limit, then we write f ≈ g. In the proofs,
we will often use rearranged functions defined on the line. This means that they are
nonnegative, symmetric and monotone nonincreasing for x > 0. Other notations will
be explained as they appear.

2. Problem, approximation, and limit solutions

Let us discuss the way to prove existence for the Cauchy Problem (1.1)–(1.3), i.e. to
find solutions of the equation posed in Q = R× (0,∞) with T > 0, taking on initial
data u0(x), assumed to be nonnegative and integrable. In this section, we also assume
that u0 is bounded, a restriction that is made for convenience and will be removed
later on. The nonlinear function � is defined, increasing and smooth for u > 0, with
�(s) → −∞ as s → 0. More precisely, we will construct a compete theory for
the case where � is chosen from the list �n , n ≥ 0, as mentioned in Introduction.
From this moment on, we assume n to be fixed. Following [35], a strategy of proof of
existence or non-existence of solutions is based on approximating problem (1.1)–(1.3)
by the family problems

{
∂t uε + (−�)s(�(uε)) = 0, n > 0,

uε(x, 0) = u0(x) + ε for x ∈ R
N ,

(2.1)

for any ε > 0, so that we avoid data with values on the singular level u = 0. The
standard theory applies to these problems and a classical solution uε(t, x) exists for all
ε > 0, and it is strictly positive: uε ≥ ε (see details in the next subsection). Moreover,
the maximum principle holds for these classical solutions, and we have uε ≥ uε′ for
ε ≥ ε′ > 0. Therefore, we can take the monotone limit

ū(x, t) = lim
ε→0

uε(x, t) . (2.2)

This function is a kind of generalized solution of the problem, which belongs to the
class of limit solutions. It is now an important step of the theory to decide in which
sense this limit solution is a solution of the equation in a more traditional functional
sense (like very weak, weak, strong or viscosity solution), and also in which sense it
takes the initial data. In cases of nonuniqueness of such solutions, the unique limit
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obtained by the above method has been called by various names: maximal solution,
SOLA, proper solution, …. However, this kind of considerations is not the main issue
of this paper, which is concerned with describing the existence and behaviour of the
class of limit solutions. In order to recall the way the limit is taken (via approximations
from above) and to avoid possible confusions, we propose the more precise term upper
limit solutions for the limits (2.2), but we will allow the simpler name limit solutions
when there is no fear of confusion.

This approximation method has been used in [35] to prove non-existence in the case
of standard Laplacian asmentioned above, and in [7] to prove the non-existence results
for fractional diffusion and those singular � that do not fall into the cases treated in
this paper.

2.1. Existence and properties of the approximate solution

It is convenient to write uε(x, t) = vε(x, t) + ε and then try to solve the Cauchy
problem

{
∂tv + (−�)s(�ε(v)) = 0 with �ε(v) := �(v + ε) − �(ε)

v(0) = u0 for x ∈ R.
(2.3)

for all ε > 0. This is a modified problem prepared to avoid the singular level u = 0
of the equation by displacement of the axes. Note that for ε > 0 and for nonnegative
arguments�ε is a smooth, positive, monotone increasing functionwith�ε(0) = 0 and
�′

ε(v) positive, bounded and decreasing for all v ≥ 0; �′
ε(v) is uniformly positive

if v is bounded. The theory of existence and uniqueness of weak solutions vε to
the nonsingular Problem (2.3) is given in [42, Theorem 8.2]. After obtaining these
solutions, we restore for any ε > 0 the original u-level by defining uε := vε + ε, as
stated at the beginning. Clearly, we have that uε ≥ ε (actually, uε > ε) and hence
vε ≥ 0 in Q.

Let us list some further properties of vε and uε. For the proof, we may again refer
to [7,19,42].

• Boundedness and regularity. These solutions are shown to be bounded for strictly
positive times. More precisely, for every t > 0 and every p ∈ [1,∞] there holds

‖vε(·, t)‖p ≤ ‖u0‖p (2.4)

As a consequence, if u0 belongs to L∞, then vε is regular enough to satisfy the equation
in the classical sense at least when t > 0, by the results of [42]. Therefore, uε = vε +ε

is smooth and satisfies the original equation in the classical sense in Q. Under these
circumstances, the initial data are also taken, at least in the sense of convergence in
L1(RN ). For unbounded data, this result about initial data follows from density and
contraction in L1, see next paragraph.
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• L1-contraction and comparison. The evolution (2.3) is an L1 contraction, namely
for two solutions u1,ε, u2,ε we have∫

RN
(u1ε(x, t) − u2ε(x, t))+dx ≤

∫
RN

(u01 − u02)+dx for t > 0, (2.5)

Here, (·)+ denotes the positive part function. In particular, standard comparison fol-
lows: If u01 ≤ u02 a.e., then for every t > 0 we get u1ε(·, t) ≤ u2ε(·, t) a.e.
• Mass conservation. Nonnegative solutions to the evolution Eq. (2.3) conserve the
mass, cf. [19,42]. More precisely, we have for all t ≥ 0

∫
RN

vε(x, t) dx =
∫
RN

u0(x) dx i.e.,
∫
RN

(uε(x, t) − ε) dx =
∫
RN

u0(x) dx .

(2.6)
• Monotonicity with respect to ε. An easy version of the above comparison argument
shows also that for 0 < ε < ε′ we have 0 < ε ≤ uε ≤ uε′ .
• Time monotonicity. There is an important monotonicity property valid of all non-
negative solutions, known as the Bénilan–Crandall inequality

∂t uε ≤ uε

(n + 1)t
∀(x, t) ∈ Q. (2.7)

The argument only uses the scaling invariance of the equation and the maximum
principle, so [5]’s argument applies.
• The smoothing effect. It says that all solutions with integrable data are in fact
bounded for positive times. This follows from Theorem 8.2 of [42] that we adapt to
our dimension and notations as follows.

PROPOSITION 2.1. Let � ∈ C1(R) be such that �′(u) ≥ C |u|−n−1 for some
n ∈ R and |u| ≥ C. If u0 ∈ L1(RN ) ∩ L p(RN ), where p ≥ 1 satisfies 2sp > 1 + n,
then a weak L1-energy solution to the Cauchy problem (1.1)–(1.3) is bounded in
R × (τ,∞) for all τ > 0. More precisely, it satisfies

sup
x∈RN

|u(x, t)| ≤ max
{
C, C1 t

−αp‖u0‖δp
p

}
(2.8)

withαp = 1/(2sp−n−1) and δp = 2spγp, the constant C1 depending on n, p, σ,C.

See also [19] in that respect. The statement of [42] does not assume thatm = −n >

0, only that 2sp > 1 − m. The assumptions on � are satisfied by the nonlinearities
�ε of the approximate problems (2.3); hence, the result applies to the approximations
vε. Recall that we write m = −n and note that the constants in the formula may also
depend on ε. We will solve the latter difficulty later on.

2.2. Passing to the limit

We may now pass to the limit ε → 0 using the monotonicity in ε of the family uε.
By the monotone convergence theorem, the limit ū is taken in the local L1 sense, i.e.
in L1(B) for every compact subset B of RN × [0,∞]. We have
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PROPOSITION 2.2. If u0 is a nonnegative function in L1(RN ), there exists the
monotone limit ū = limε→0 uε with local convergence in L1(Q).

3. Existence of nontrivial limit solutions

The main problem with this procedure concerns the possibility that the limit may
become identically zero in QT for some relevant class of initial data. This is what
happens for N ≥ 2, as established in [7]. In the cases we study here, this failure of
existence will not happen as we will show below. In fact, the limit will be nontrivial
for all nontrivial initial data. The proof of this general result is long and proceeds in
steps. The first of such steps consists in exhibiting at least one nontrivial solution.
A reminder: In the next sections, we concentrate on the case of exponents s > 1/2

and 0 ≤ n < 2s − 1. Note that even if the diffusion is singular, the range is formally
the same as the good fast diffusion range 1 > m > (N − 2s)/N , considered in the
general theory of [19]; hence, it is supercritical in the notation of that paper. But there
only exponents m > 0 were considered.

3.1. The very singular solution, I

In paper [40], a formal solution of equation ut + (−�)sum = 0 is constructed with
the form

U (x, t) = H(t)F(x) = C(N , s,m) t1/(1−m)|x |−2s/(1−m) (3.1)

when m > (N − 2s)/N , so that the spatial profile has a nonintegrable singularity at
x = 0. This type is called very singular solution in the literature (VSS for short). It is
also proved that such formal solution is a limit of a monotone increasing sequence of
standard solutions.
Following that paper we try the same formula here for m = −n ≤ 0 with factors

H1(t) = C t1/(1+n), F1(x) = |x |−2s/(1+n).

• Let us check that it works in the parameter range, s > 1/2, n + 1 < 2s with n > 0.
We have φ(F(x)) = −|x |2sn/(1+n), so that a simple calculation gives

Lsφ(F(x)) = −K (s, n) |x |2sn/(1+n)−2s = −K (s, n)F(x) . (3.2)

We prove in the note below that K (s, n) is positive in this range of values of s, n. It is
now easy to see that if we put

U1(x, t) = H1(t)F1(x) with C1+n = K (n + 1), (3.3)

then U1 is a solution of the 1D equation in the range 0 < n < 2s − 1, unless at the
singular point x = 0.

The singularity prevents the VSS from being acceptable as an example of nontrivial
solution in the theory we are considering for Problem (1.1)–(1.3), at this stage. But
we will return to this topic in style in Sect. 8.
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Note on fractional Laplacians of power functions. The s-Laplacian of a power,
(−�)s |x |α , α > 0, α �= 2s, is the power k(α, s) |x |α−2s, with a constant factor that
for N = 1 equals

k(α, s) = 22s
�((1 + α)/2) �((−α + 2s)/2)

�((1 + α − 2s)/2) �(−α/2)
(3.4)

In our case, we take α = 2sn/(1 + n) > 0. Hence, �((1 + α)/2) > 0; besides,
(−α + 2s)/2 = s/(1 + n) > 0 so that �((−α + 2s)/2) > 0; moreover, α/2 =
sn/(1 + n) < 1 (since s < 2 and n/(1 + n) < 1/2), so that �(−α/2) < 0. Finally,
for our choice of α

1 + α − 2s = 2ns

1 + n
+ 1 − 2s = 2sn − (1 + n)(2s − 1)

1 + n
= 1 + n − 2s

1 + n
∈ (0, 1).

It means that �((−α + 2s)/2) < 0. Therefore, k(α, s) > 0 for these particular values
of α and s. This is what we have called K (s, n) some lines above.

3.2. A bounded subsolution

Though the singularity prevents the VSS from being directly useful as an example
of nontrivial solution, the idea is not completely lost. We will start from it to construct
a useful smooth variant, but it will be only a subsolution.

LEMMA 3.1. There exists a bounded and smooth function in separate variable
form

Ũ (x, t) = H(t)F2(x) (3.5)

which is a positive subsolution of the equation for some 0 < t < T and all x ∈ R.
Moreover, F2 is symmetric, radially decreasing and F2(x) ≈ c|x |2s/(1+n) as x → ∞.
Changing the form of H, we can get a supersolution. In both cases, H is continuous
and the initial value H(0) > 0 can be chosen.

Proof. (i) In order to avoid the problem with the singularity of the VSS, we round
the function F1 in a small ball near x = 0 to get a smooth positive F2, so that instead
of the exact formula (−�)sφ(F1) = −K (s)F1(x) for x �= 0 we get an approximate
equation for all x that we can still use. Indeed, in view of the perturbation we get that
(−�)sφ(F2) is bounded on bounded sets; on the other hand, the difference

(−�)sφ(F1) − (−�)sφ(F2) = O(|x |−(1+2s) as |x | → ∞.

The last formula comes directly from the representation formula for (−�)s plus the fact
that φ(F1)−φ(F2) has compact support. This correction O(|x |−(1+2s)) is lower order
with respect to (−�)sφ(F1) at infinity since (−�)sφ(F1) ∼ F1 = F2 ∼ |x |−2s/(1+n)

for all large |x |. Summing up, there exist constants K1, K2 > 0 such that

− K1F2(x) ≤ −(−�)sφ(F2) ≤ K2F2(x) . (3.6)
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If we now take H(0) = a > 0 and H ′ ≤ −K1H−n , we get a subsolution,

∂t Ũ + (−�)s�n(Ũ ) ≤ 0 ,

in some time interval. In the last case, maybe H decays and vanishes in finite time
(even if this is not realistic for actual solutions, as we will see, it is just the form of the
modified subsolution). Take F = F2 and this choice of H to end the construction of
the desired subsolution Ũ . Finally, note that since H(0) can be taken at will we find
a family of bounded subsolutions and the L∞ norm can be taken as small as wanted.

(ii) In the same way, if we take F1 as before and H(0) = a > 0 such that H ′ ≥
K2H−n , then we get a formal supersolution. In this case, it will exist for all times. �

Case n = 0 This case is settled by replacing the power −u−n by log(u) and repeating
the above procedure. We will need the calculation the s-Laplacian of the logarithm.
We have

(−�)s(log |x |) = c(s) |x |−2s . (3.7)

A short proof is as follows: Using the previous formula for α > 0, α very small we
get

k(α, s) ∼ α22s−2 (2s − 1)�(1/2) �(s)

�((3 − 2s)/2)
(3.8)

where we have used �(−α/2)) ∼ �(1)(−2/α), and �((1 + α − 2s)/2) ∼ 2/(1 −
2s) �((3 − 2s)/2). We now use the expression log(x) = limα→0(xα − 1)/α, x > 0,
to conclude that the formula is true with c(s) = limα→0 k(α, s)/α > 0 if 2s > 1.
Then the rest of the steps is quite similar, and the conclusions of Lemma 3.1 hold.

PROPOSITION 3.2. Let N = 1 and 0 < n < 2s − 1. Let the initial data u0 be
positive and integrable and satisfy u0(x) ≥ CF2(x) for all x. Then the limit solution
constructed as in Sect. 2 is nontrivial. In fact, it sits on top of one of the constructed
subsolutions; hence, it is a positive very weak solution of the equation, at least in a
certain time interval 0 < t < T . Nontrivial solutions are also obtained for n = 0,
1/2 < s < 1.

Proof. The subsolution can be compared by classical results with all approximate
problems and remains below for all the existence time. This allows us to prove that the
limit solution does not vanish identically when we take initial data that decay equal
or slower than F . By the L1 contraction, the same nontrivial limit happens for any
continuous and bounded initial data. �

REMARK. This is the first successful step in a long road that leads to the proof that
all upper limits corresponding to nontrivial data are in fact positive weak solutions.

3.3. Some properties of nontrivial limit solutions

• Scaling property. If u(x, t) is a nontrivial limit solution, then so is

uAL(x, t) = Au(Lx, L2s A−(1+n)t) (3.9)
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for all parameters A, B > 0. We leave the easy proof to the reader (see similar
arguments in [39]).
• The smoothing effect. It says that all limit solutions with integrable data are in fact
bounded so that we use bounded solutions in the proofs.We have for all limit solutions

sup
x∈R

|u(x, t)| ≤ C2 t
−α‖u0‖δ

1 (3.10)

with α = 1/(2s − n − 1) and δ = 2s/(2s − n − 1), the constant C2 depending on
n, s.

Proof. Use the smoothing effect in the rough form already proved for the approximate
solutions and let t = 1 to conclude that the result holds for M = ‖u0‖1 = 1. When
M �= 1 and t �= 1 use the scaling rule (3.9) in the usual way to reduce the proof to the
particular case. This is a well-known scaling trick. �

• Time monotonicity. The limit solutions satisfy

∂t u ≤ u

(1 + n)t
. (3.11)

It follows from the same property for the approximations. As we said there, the ar-
gument has a proof using scaling arguments originally due to Bénilan and Crandall
[5].
Also the properties of L p boundedness, pointwise comparison, and L1 contraction

of the approximate solutions pass to the limit without change.
• Space monotonicity. Aleksandrov’s principle. The Aleksandrov–Serrin reflection
method is a well-established tool to prove monotonicity of solutions of wide classes
of (possibly nonlinear) elliptic and parabolic equations, cf. [1,32]. It has been quite
useful in particular in the case of the PME, as documented in [11,38]. This is the
version proved in [40, Theorem 15.2] for nonlinear parabolic equations with fractional
diffusion of the type (1.1), and adapted to our situation

PROPOSITION 3.3. Let vε the unique solution of (2.3) with initial data u0 ∈
L1(R), u0 ≥ 0. Under the assumption that

u0(x) ≤ u0(2a − x)) for x > a (3.12)

for some a > 0, we have for all t > 0

vε(x, t) ≤ vε(2a − x, t) for x > a . (3.13)

In plainwords, the result dealswith comparison of a solutionwith its space reflection
with respect to the point x = a. If it is true for t = 0, then it is true forever. After
passage to the limit, the same comparison is true for the obtained upper solutions. An
immediate consequence of this that has been used in the literature and we will use
below is
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COROLLARY 3.4. An upper limit solution with initial data supported in the half-
fine {x < a} is monotone nonincreasing in x in the region {x > a, t > 0}. If the initial
data are supported in the half-fine {x > −a}, the solution is monotone nondecreasing
in x in the region {x < −a, t > 0}.

4. Comparison results

The standard comparison theorem (Maximum Principle) applies the approximate
problems; hence, it will be valid in the limit ε → 0 for the class of upper limit solutions.
The Aleksandrov principle is another comparison theorem. In the sequel, we will use
two other comparison results, which we discuss next.

4.1. Symmetrization and concentration comparison

Symmetrization techniques are a very popular tool of obtaining a priori estimates
for the solutions of different partial differential equations, notably those of elliptic and
parabolic type. The application of Schwarz symmetrization allows to obtain sharp a
priori estimates for elliptic problem by comparison with a model symmetric problem.
For parabolic problems, the usual pointwise comparison of the solutions of the two
problems fails and is replaced by comparison of integrals [3]. In the case of the porous
medium equation ut = �um that result was established in [33,37] and holds for all
m > 0. In order to state the result we will use, the following definition is needed:

DEFINITION. Let f, g ∈ L1
loc(R

N ) be two radially symmetric functions on R
N .

We say that f is less concentrated than g, and we write f ≺ g, if for all R > 0 we get
∫
BR(0)

f (x) dx ≤
∫
BR(0)

g(x) dx . (4.1)

The partial order relationship≺ is called comparison of mass concentrations. In the
applications, we are going to assume that f and g are rearranged functions.
The following result is proved in [43].

THEOREM 4.1. Let Let u1, u2 be two nonnegative, weak solutions of the equation
ut + (−�)s�(u) = 0, posed in Q = R

N × (0,∞), with nonnegative initial data
u01, u02 ∈ L1(RN ). Assume that both u02 and u01 are rearranged and u02 ≺ u01.
Assume moreover that the nonlinear function �(u) is positive, smooth and concave
for u > 0. Then, for all t > 0 the functions u1(·, t) and u1(·, t) are rearranged and
we have

u2(·, t) ≺ u1(·, t). (4.2)

In particular, we have ‖u2(·, t)‖p ≤ ‖u1(·, t)‖p for every t > 0 and every p ∈ [1,∞].
This result applies to the solutions vε of the regularized problems (2.1). In the

limit, it will apply to all nontrivial solutions of the singular fractional FDE (1.1) with
� = �n and n ≥ 0, for all 0 < s < 1.
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Note that in 1D the integrals in formula (4.1) have a more classical interpretation:
The integral

∫ x
0 f (x) dx is just the distribution function of the mass density f , that

we are assuming to be nonnegative, integrable and monotone decreasing for x > 0.
Therefore, formula (4.2) is just a comparison of distribution functions.

4.2. Shifting comparison

A new comparison result that is related to symmetrization in spirit and techniques
is based on lateral displacement of the solution, viewed as a mass distribution.

THEOREM 4.2. Let two functions u01, u02 ∈ L1(R)with the following properties:

(i) They are nonnegative and rearranged around their points of maximum x1 and
x2 resp., with x1 < x2. The total mass is the same.

(ii) We assume moreover that
∫ x
−∞ u02 dx ≤ ∫ x

−∞ u01 dx for every x ∈ R.

Besides, we assume that � is monotone, concave and defined on R+ with �(0) = 0
and 0 < �′(0) < ∞. Then, the following comparison inequalities hold for the
corresponding (limit) solutions

∫ x

−∞
u2(x, t) dx ≤

∫ x

−∞
u1(x, t) dx, (4.3)

for every x ∈ R and every t > 0.

This result is called theShifting comparison lemma. It is essentially one-dimensional,
and it was established in the PME case by Vázquez [34] and it proved useful in studies
of free boundary location or asymptotic behaviour. It is related to mass transport and
Wasserstein distances [36,45]. It will be crucial in some proofs below, like the proof
of the existence for general initial data and the asymptotic behaviour. Since it has a
rather technical and long proof, we will delay to Sect. 11 at the end of the paper.

5. Mass conservation and global solutions

The property of mass conservation plays an important role in passing from local-
in-time existence to global solutions, since it prevents the phenomenon of finite-time
extinction. A first result is as follows.

PROPOSITION 5.1. Let us assume that N = 1, s > 1/2 and 0 ≤ n < 2s − 1 and
let us assume that u0 is integrable and u0(x) ≥ cF2(x), i.e.

u0(x) ≥ c/(1 + |x |2)s/(1+n) (5.1)

for some c > 0. Then the limit solution not only is positive in a certain time interval
0 < t < T , but it also conserves mass in that interval:

∫
R

u(x, t) dx =
∫
R

u0(x, t) dx . (5.2)
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Proof. (i) Let us first assume that n > 0.We will prove conservation of mass for small
times. We take a nonnegative nonincreasing cutoff function ζ(s) such that ζ(s) = 1
for 0 ≤ |s| ≤ 1, ζ(s) = 0 for |s| ≥ 2, and define ζR(x) = ζ(|x |/R). We have
(−�)sζ1 ∈ L1(RN ) ∩ L∞(RN ); moreover, |(−�)sζ1| ∼ |x |−(1+2s) as |x | → ∞.
The radial cutoff function ζR has the scaling property

(−�)sζR(x) = R−2s(−�)sζ1(x/R). (5.3)

We take the approximate solutions uε of Eq. (1.1) with nonlinearity �ε as in Sect. 2,
multiply by ζR and integrate by parts. We have

∫
R

(uε(t1) − u0 − ε) ζR dxdt =
∫ t1

0

∫
R

u−n
ε (−�)sζR dx .

Note that the last integral is absolutely integrable. Passing to the limit ε → 0 we get
for every t > 0,

∫
R

u(t1) ζR dx −
∫
R

u0 ζR dx =
∫ t1

0

∫
R

u−n (−�)sζR dxdt. (5.4)

Let us split the right-hand side of (5.4) into the integrals for |x | ≤ R and |x | ≥ R. We
only estimate the integrals in x , forgetting for the moment the time integration. We
get

|I1(R)| ≤
∫

|x |≥R
u−n(t) |(−�)sζR || dx ≤ C

R2s

∫
|x |≥R

|x |2ns/(1+n)(|x |/R)−(1+2s) dx .

Putting x = Ry, we get

I1(R) ≤ CR2ns/(1+n)

R2s−1

∫
|y|≥1

|y| 2ns
1+n −(1+2s) dy = CR−γ

∫
|y|≥1

dy

|y|2+γ

Since γ = 2s − 1 − 2ns/(1 + n) = 2s/(n + 1) − 1 > 0, we get I1(R) → 0 as
R → ∞. On the other hand, for the analogous integral in the set |x | ≤ R we get

|I2(R)| ≤
∫

|x |≤R
u−n(t) |(−�)sζR | dx ≤ C

R2s

∫
|x |≤R

|x |2ns/(1+n) dx ≤ CR−γ

that goes also to zero as R → ∞. Since these estimates do not depend on t (for small
t) we may go back to Eq. (5.4) and let R → ∞ to get

∫
R

u(x, t1) dx =
∫
R

u0(x) dx,

which is the mass conservation law. This law holds for the small times for which we
have the lower estimate for the limit solution u (for instance, the estimate coming from
comparison with the subsolution constructed in Sect. 3, as used in Proposition 3.2).

This method of proof is inspired in a common technique that was used to prove the
property in the case s = 1 for m > (N − 2)/N , N ≥ 2. The beginning is the same,
but the further details are quite different.
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(ii) In the case n = 0, the nonlinearity is logarithmic and not power-like. We arrive
at formulas I1(R) and I2(R) with the bound c log(1 + |x |2) instead of c|x |2ns/(1+n),
and we put n = 0 in the rest of the places. The remaining steps follow easily. �

PROPOSITION5.2. If the initial data u0 is a rearranged functionwithmass M > 0,
the limit solution u(x, t) exists globally in time, is positive everywhere and the mass
is conserved for all times.

Proof. (i) We first prove that for rearranged initial data in the same class u0 ≥ c F2(x)
the solution exists for all times and conservation of mass holds also for all times. We
know that u is positive and conserves mass for 0 < t < T1 = T1(u). Assume that this
maximal time is finite. We use the scaling property of the equation to define of new
solutions

uL(x, t) = Lu
(
Lx, L2s−(1+n)t

)
(5.5)

with L > 1. Let us introduce the notation uL = TLu for future reference. This scaling,
a particular case of (3.9), keeps the mass of the solutions u and uL identical. Now,
since the time of existence of the family uL shrinks to the time TL = T1/L2s−(1+n),
we seem have a problem in using rescaling. But the problem can be fixed by using
symmetrization (concentration comparison), and we end up with an expected gain.
Indeed, the new solution uL for L > 1 is clearly more concentrated than u1(x, t) =

u(x, t) at at time t = 0; hence, it will be more concentrated at all times by the
result of Sect. 4.1. Then, the concentration relation (4.2) immediately implies that
the mass of uL must be conserved as long as the mass of u is, say until T1(u); the
justification for TL ≤ t ≤ T1 is done by doing symmetrization comparison on the
approximate problems and passing to the limit, which cannot be trivial because of this
argument. This means that the nontrivial existence time with conservation of mass
for uL is T (uL) ≥ T1. Undoing the scaling we get the same property for u in a time
T (u) ≥ L2s−(1+n)T1, hence T1 must be infinite.
(ii) Next, we prove that the solution is positive everywhere. Let us do an analysis of
what happens if a rearranged solution touches zero, and show that this cannot happen.
First, we use the monotonicity properties in space and time to show that, if the solution
vanishes at t = t1 and x = R, then we must have u(x, t) = 0 for all |x | ≥ R and
t ≥ t1. Using the proof of the mass formula of Proposition 5.1, we have for the
approximations uε

d

dt

∫
R

uε(x, t)ζ(x) dx = −
∫
R

�n(uε) (−�)sζ dx

Taking a cutoff function supported in [−R1, R1],with R1 < R,weknow that−(−�)sζ

> 0 for |x | ≥ R1, and since�n(uε) tends tominus infinity in the setwe have described,
we have

−
∫

|x |≥R1

�n(uε) (−�)sζ dx → −∞
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as ε → 0. The integral for |x | ≤ R1 has a bounded limit since the limit u is bounded
below; hence, |�(u)| is bounded. Applying this between times t1 and t1 + τ , we can
show that the weightedmassmust be zero for all times larger than t1. Since the solution
is rearranged, this implies that the mass will be zero, which is excluded by the previous
step.
(iii) The next step is to consider rearranged initial data that do not satisfy a bound
from below like (5.1), for instance u0 may be compactly supported. Let M > 0 be
the initial mass. In that case we make a small perturbation by adding to u0 a tail of
the form ηδ(x) = δ(1+ |x |2)−s/(1+n) and besides we truncated the initial data on top
to make it bounded. We may do all this and conserve the mass M . In this way, we
obtain a solution uδ to the problem where the previous analysis applies, and mass is
conserved. We now use the L1 contraction property and the conservation of mass for
uδ , and we conclude that the limit solution u corresponding to initial data u0 must
have mass ∫

u(x, t) dx ≥ M − ‖uδ
0 − u0‖1

which is positive for δ small; hence, u is a global solution. The argument is justified
as limit solution, i.e., in the limit of approximate problems. Finally, by letting δ → 0
we derive the mass conservation property for u. �

Positivity can now be obtained for all solutions with continuous initial data, not
necessarily rearranged, by standard comparison with a solution with compactly sup-
ported rearranged data (after possibly a space displacement to fit it under u0). Such
a subsolution is positive for all positive times; hence, u is too. We will return to this
question later on, after we get some quantitative estimates on the behaviour.

5.1. Concept of solution: the mass function

As a preliminary for the next developments, we need to clarify the type of solution
that we get at this stage when we pass to the “limit solutions.” In the end, we would
like to prove that our positive solutions are very weak in stated sense that

∫ ∫
u ζt dxdt =

∫ ∫
�n(u) (−�)sζ dxdt (5.6)

for all smooth test functions with compact support. However, the last term offers a
difficulty as long as we do not know the decay of u at infinity, i.e., as long as we do
not control the growth of u−n , since typically (−�)sζ behaves like O(|x |1+2s) as
|x | → ∞.

The conditions of Proposition 5.1 do allow for a correct passage to the limit ε → 0
in the definition, but the conditions of Proposition 5.2 do not. Keeping the assumption
of rearranged data, we find a remedy by weakening the definition by integration in
space to get a new function V (r, t) = ∫ r

0 u(x, t) dx so we have Vr = u for all r > 0
and we can write the equation formally as
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Vt =
∫ r

0
ut dx = −

∫ r

0
(−�)s�n(u) dx (5.7)

Putting (−�)s = −∂2xx (−�)s
′
with s′ = 1 − s > 0, and integrating we get

Vt = ∂r (−�)−s′(�n(u)), Vr = u. (5.8)

This is an integrated version of the weak solution that makes perfect sense for the
approximate problems and for their limits in the very weak sense. We will call V (x, t)
the mass function; it is the distribution function in Probability, but that name might
lead to confusion here.

6. The Barenblatt solutions in 1D

After establishing mass conservation for all times, we can construct the Barenblatt
solutions and derive the main properties.

6.1. Existence

Take one of the rearranged solutions u1(x, t) of the previous section (Proposition
5.2) with initial data u01(x) that we may assume continuous. It exists globally in time,
is positive everywhere and conserves mass. Let us fix the L1 norm of u1 to 1. Take
then the rescaled family {uL(x, t) = TLu : L ≥ 1} defined by formula (5.5) of the
previous section. Finally, pass to the limit

U (x, t) = lim
L→∞ uL(x, t). (6.1)

We have to show that this limit exists and has the desired properties.

(i) In principle, the family uL(x, t) converges weakly in L1 for t ≥ τ > 0, and
there may also be a nonunique limit. It is best to use an argument based on
concentrations, whichmakes it natural to arguewith the family ofmass functions
VL(x, t) = ∫ x

0 uL(x, t) dx . By the concentration comparison result, we see that
the family {VL} is monotone increasing in the parameter L for x > 0 (resp.
negative and decreasing for x < 0). Hence, the limit V∞(x, t) exists and does
not depend on subsequences Lk → ∞. The convergence VL(x, t) → V∞(x, t)
is uniform convergence in x for every fixed positive time.

(ii) Differentiation in x gives the unique weak limit U = limL→∞ UL . Stronger
convergence will be proved later on.

(iii) For t = 0, we have V∞(x, 0) = 1/2 for all x > 0, V∞(x, 0) = −1/2 for all
x < 0, in other words the limit of the initial data is a delta function. We have to
show that for all positive times U (·, t) is not trivial away from x = 0 [i.e. it is
not equal to δ(x)]. This follows from the smoothing effect (proved in Sect. 3.3)
that applies uniformly to all functions uL . We conclude thatU (·, t) is a bounded
function for all t > 0; therefore, U (·, t) is not a Dirac delta, and V∞(·, t) is
Lipschitz continuous in x uniformly if t ≥ τ > 0.
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(iv) Let us prove next that the limit must be a self-similar function. The argument is
based on passing to the limit in the scaling family using the group of transfor-
mations. In fact, for all L , k > 0 we have TLTku1 = TkLu1, Passing to the limit
k → ∞ and using the the uniqueness of the limit because of the comparison
of concentrations, we get U (x, t) = TLU (x, t) = LU (Lx, L2s−1−nt), hence
LU (Lx, L2s−1−n) = U (x, 1). In the usual way, it follows that

U (x, t) = t−αF(xt−α), α = 1/(2s − (1 + n) , (6.2)

with F(x) = U (x, 1).
(v) It is immediate that the profile F is positive everywhere, bounded, integrable,

and rearranged (i. e., F(x) = F(−x) and F monotone decreasing for x > 0).
(vi) To construct the Barenblatt solutions with initial data M δ(x) with any mass

M > 0, we use another scaling T ′ defined by (T ′u)(x, t) = M u(x, M−(1+n)t),
which transforms solutions of mass 1 into solutions of mass M . We get a self-
similar solution with the same formula as before, but now the profile is

FM (x) = M2sαF
(
xM (1+n)α

)
. (6.3)

6.2. Alternative approach and better convergence

The idea is to apply the same type of approach to the approximate problems (2.1) to
obtain a fundamental solution of each of those problems. After careful inspection, we
see that we can find a solutionU∞ε(x, t) with initial dataU0ε(x, 0) = δ0(x)+ ε. This
is better done by using the formulation vε(x, t) = uε(x, t) − ε that solves Problem
(2.3), to which we can apply the usual L1 theory and comparison of concentrations.
Therefore, we obtain a fundamental solution with this argument, and the difference is
that this time we cannot conclude that it is self-similar. On the other hand, the whole
collection of rescaled solutions UL ,ε(x, t) are uniformly bounded for t ≥ τ > 0;
hence, by the regularity results of [42], they are uniformly Cα continuous for a certain
α > 0. The family is thus locally compact in L1

loc (in both space and time), which
means that the convergence UL ,ε(x, t) → U∞,ε(x, t) takes place in the strong sense
of L1(R) for every t > 0. This is a key improvement in the situation.
Now we take the monotone limit of these fundamental solutions to get

lim
ε→0

U∞,ε(x, t) = U∞(x, t)

By a simple comparison, U∞(x, t) ≥ U (x, t), where U is the previously constructed
Barenblatt solution, formula (6.2). By the equality of masses, we conclude that both
are the same function, U∞ = U .
It is now easy to see that UL(x, t) → U (x, t) in L1(R) for every t ≥ τ > 0. In

fact,

‖(UL(x, t) −U (x, t))+‖L1(−R,R) ≤ ‖(UL ,ε(x, t) −U (x, t))+‖L1(−R,R)

≤ ‖(UL ,ε(x, t) −U∞,ε(x, t))+‖L1(−R,R) + o(ε),
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where the last term is the contribution of ‖U∞,ε(x, t) −U∞(x, t)‖L1(−R,R). Fixing a
small ε > 0 and using the convergenceUL ,ε(x, t) → U∞,ε(x, t) in L1(R), there is an
Lε > 0 such that have ‖UL(x, t)−U (x, t))‖ ≤ ε for L ≥ Lε. All together, this means
that (UL(x, t) −U (x, t))+ → 0 in L1(−R, R) as L → ∞. Since the mass in the far
field is uniformly small, and there is totalmass equality,we getUL (x, t)−U (x, t) → 0
in L1(R). This is the improved convergence that we needed.

6.3. Uniqueness

PROPOSITION 6.1. The fundamental solution is independent of the rearranged
function u0 that starts the construction.

Proof. For bounded functions of compact support, this is done by symmetrization
comparison and iterated limits. Indeed, let us start from functions u1 and ũ1 and let
U and Ũ the corresponding Barenblatt solutions obtained in the limit of the scaling
process. Then, it is not difficult to see that the scaled function u0k is more concentrated
than ũ0 if k is large enough. Therefore, ukL is more concentrated than ũ0L , hence in
the limit U (·, t) is more concentrated than Ũ (·, t). The reverse relation also holds;
hence, U = Ũ .
For general data, we use L1 contraction. �

7. Study of the profile

We want to know more about the profile F of the Barenblatt solution, in particular
its equation and its asymptotics for large |x |.
7.1. Profile Equation

We can apply to U the concept of solution of last section and perform the compu-
tation when U is self-similar. Then, with ξ = x t−α ,

Vt = d

dt

∫ r

0
t−αF(x t−α) dx = −α t−(α+1)

∫ r

0
(F(ξ) + ξ F ′(ξ)) dx

= −α t−1ξ F(ξ) .

Therefore, Eq. (5.8) becomes at t = 1

∂x (−�)−s′(F−n(x)) = αx F(x), x > 0. (7.1)

This is the integro-differential equation satisfied by the profile F . Note that 1− 2s′ =
2s − 1 > 0, so that the operator in the LHS has a positive degree of differentiation,
∂xL−s′ = HLs−1/2. We can also write the equation as

∫ r

0
(−�)s F−n(r) dr = αx F(x),

∫ r

0
F−n(r) dr = α(−�)−s(x F(x)) . (7.2)
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7.2. Asymptotic behaviour of F

According to the analogy with the Barenblatt solutions constructed for the case
m > 0 in [40], since we are in the case m < m1 = N/(N + 2s) (a value that was
important in that respect), we expect the following behaviour.

PROPOSITION 7.1. The profile F decays as |x | → ∞ like r−γ , with γ = 2s/(1+
n) > 1 . Indeed, there exists the finite positive limit

lim
r→+∞ F(r) rγ = c∞, (7.3)

and moreover F(r) ≤ c∞r−γ for all r > 0.

REMARK. Later on we will calculate the constant c∞ explicitly as a corollary of
our work on very singular solutions, Sect. 8.

Proof. (i) We need a first estimate of the decay of F . Since it is an integrable and
rearranged function, we immediately get F(x) ≤ C/|x |, which is too rough. A better
estimate is obtained as follows: We start the scaling procedure to construct U by
taking as initial data u01 the function F2(x) of Lemma 3.1. By comparison with the
subsolution of the Lemma, we have a decay rate u1(x) ≥ c(t)|x |−2s/(1+n) for all
|x | ≥ 1 uniformly in some time interval 0 < t < T1.
We can show a similar decay rate for the limit solution U (x, t) by applying con-

centration comparison. Indeed, the mass of u1 in region |x | ≥ R > 1 is estimated
as C(t)R1−2s/(1+n), and the mass of U has to be less than that by the comparison.
By using the monotonicity of U w.e.t. |x |, we get the conclusion that U is less than
c1(t) |x |−2s/(1+n). Recall that F(x) is just U (x, 1). Therefore,

F(x) ≤ C |x |−2s/(1+n).

The reader can find similar arguments in [40, Section 12].
(ii) The power-like bound from below can be obtained following the ideas of [40]:

We start from the homogeneity estimate (3.11) that says that (1 + n) t ut ≤ u. In
terms of the self-similar profile, this just means that −(1 + n)α( F + r F ′(r)) ≤ F ,
r = |x | > 0, hence

−r F ′(r)
F(r)

≤ 1 + 1

(1 + n)α
= 2s

1 + n
.

Integration of this inequality gives the following lower bound, valid for all r ≥ 1, all
s ∈ (0, 1):

F(r) ≥ C r−2s/(1+n). (7.4)

Moreover, the function J (r) := F(r) r−2s/(1+n) is monotone nondecreasing with r ,
so that it has a limit as r → ∞. Let us put

lim|x |→∞ F(x) |x |−2s/(1+n) = c∞(s, n). (7.5)

In principle, the limit may be finite and positive or infinite. By part (i), it is finite. �
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8. The very singular solution

The a priori bounds on the profile of the Barenblatt solutions make it easy to pass
to the limit M → ∞ and obtain a special function, called the very singular solution
(VSS), much as we have done in [40] for m > 0. This is the result

THEOREM 8.1. The Very Singular Solution calculated in Sect. 3,

Ũ (x, t) = C(n, s) t1/(1+n)|x |−2s/(1+n), (8.1)

is the limit of the Barenblatt solutions UM (x, t) as the mass M goes to infinity.

Proof. We recall that the value of the constant C(n, s) can be explicitly computed
from the calculations there as C(n, s) = K (n, s)(1 + n).

By the established comparison properties, it is clear that the sequence of Barenblatt
solutions UM (x, t) is monotone increasing with M > 0. Next, we check that they
are all bounded above by the VSS. A direct comparison of UM with Ũ is difficult to
justify directly; hence, we argue in another way to get our conclusion.
We first fix the mass equal to one and use the upper profile bound, F(r) ≤

c∞r−2s/(1+n) for all r > 0, to conclude that

U1(x, t) ≤ c∞t1/(1+n)|x |−2s/(1+n).

We know that the whole sequence UM can be obtained from M = 1 by the rescaling
UM (x, t) = (TMu)(x, t) := M u(x, M−(1+n)t). We immediately see that UM (x, t)
satisfies the same upper bound, even with the same constant, c∞(M) = c∞(1). Once
we have the same upper bound for the whole sequence, we may pass to the monotone
limit and get

U∞(x, t) ≤ c∞t1/(1+n)|x |−2s/(1+n).

But since the functions UM are invariant under the mass conserving scaling, so is
the unique limit, hence U∞(x, t) is self-similar, U∞(x, t) = t−αF∞(x t−α). Also
F∞(y) ≥ FM (y) for all y > 0 and all M > 0, and F∞(y) ≤ c∞|y|−2s/(1+n). It easily
follows from a tail analysis that F∞(y) = c∞|y|−2s/(1+n), hence

U∞(x, t) = c∞t1/(1+n)|x |−2s/(1+n).

We conclude that U∞ is another possible very singular solution of the equation ob-
tained as limit of upper limit solutions. In order to see that U∞ and Ũ must be the
same we only have to check that both are weak solutions for the equation for x �= 0; in
other words, the profiles must be weak solutions for F Eq. (7.1). This is what selects
the constant in a unique way. We conclude that c∞ = C(n, s) and U∞ = Ũ . �

As a corollary of the above result, we can refine the information on the Barenblatt
solutions obtained in Proposition 7.1 as follows
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PROPOSITION 8.2. The profiles FM, M > 0, of the Barenblatt solution satisfy
the uniform bound F(r) ≤ C(n, s)r−2s/(1+n) for all r > 0, and this estimate is sharp
at infinity

lim
r→+∞ F(r) r2s/(1+n) = C(n, s), (8.2)

where C(n, s) is the constant of the VSS.

9. The theory for general initial data

Here we want to complete the proof of Theorems 1.1 and 1.2 on the existence
and properties of solutions of the Cauchy Problem. We establish existence, positivity
and behaviour as |x | → ∞. The basic analysis is done for compactly supported and
rearranged data. Then, we perform a series of extensions of the results to greater
generality.
• Compactly supported and rearranged data. (i) Existence and conservation of
mass. Assume to fix ideas that u0 is supported in the interval [−R, R], and has total
mass M . Wemay use shifting comparison with the Barenblatt solutions with the initial
masses located on either end of the support to prove bounds from above and below
for the mass function of u, defined by v(x, t) = ∫

−∞ u(x, t) dx , in terms of displaced
versions of the mass function of the Barenblatt solution with the same mass, VM

corresponding to UM . We get

VM (x − R, t) ≤ v(x, t) ≤ VM (x + R, t).

Recall that VM (∞, t) = M for every t > 0 by mass conservation. This not only
proves nontrivial existence for all times, but also conservation of the total mass and
existence of a nontrivial mass (i. e., L1 integral) on every interval of length larger than
2R.

We have to justify that shifting comparison applies to Barenblatt solutions, and this
is done by starting the construction with compactly supported ũ1(x) and its scalings
u0,L(x) = Lu1(Lx).
(ii) Positivity. By the Aleksandrov principle, see Corollary 3.4, the function u(x, t)
is monotone decreasing in x for x > R and t > 0. Together with the previous mass
analysis, this implies that u(x, t) > 0 for x > R. A similar argument happens for
x < −R and ensures for positivity for all |x | > R and all t > 0.
In order to establish the positivity for |x | ≤ R at times t > 0, we take time t1 > 0

and move the the origin or coordinates to a point x1 > 2R. Setting y = x − x1, we see
that u(y + x1, t) is positive near the new origin and bounded below by a rearranged
function ũ0(y) with small support [−R1, R1] to which the preceding result applies so
that ũ(y, t) is positive for |y| > R1. By comparison, u(x, t) is positive with a uniform
lower bound for |x | ≤ R and t = 2t1.
(iii) Asymptotic behaviour as |x | → ∞.
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PROPOSITION 9.1. For every solution with rearranged and compactly supported
data with mass 1, we have

C1|x |2s/(1+n) ≤ u(x, t) t−1/(1+n) ≤ C2|x |2s/(1+n) (9.1)

for all |x | ≥ 2R, and the constants do not depend on the particular u, nor on t.

Proof. The upper bound comes from the mass analysis of (i) and the monotonicity in
x for large |x |. We get

x u(x, t) ≤ 2
∫ x

x/2
u(x, t) dx ≤ 2

∫ ∞

x/2
u(x, t) dx

and by the shifting comparison result, this mass is less than the mass of the displaced
Barenblatt U∞(x − R, t) which is proportional to

(c∞/γ ) t1/(1+n)|x − R|−γ , γ = (2s − 1 − n)/(1 + n).

We conclude that there is a constant c1 such that for all x ≥ 2R.

u(x, t) ≤ c1t
1/(1+n)|x |2s/(1+n).

• The lower bound follows from similar arguments, but now we compare with the
mass of U∞(x + R, t). We get

(k − 1)xu(x, t) ≥
∫ kx

x
u(x, t) dx =

∫ ∞

x
u(x, t) dx −

∫ ∞

kx
u(x, t) dx = I1 − I2.

The first integral I1 is estimated from below by the mass ofU∞(x + R, t) in the same
interval which is accurately given by C2t1/(1+n)|x |−γ , while the second is estimated
from above by the massU∞(x − R, t) and gives C1t1/(1+n)|kx |−γ in first approxima-
tion. Hence, for k > C2/C1 and x large enoughwe get u(x, t) ≥ c3t1/(1+n)|x |2s/(1+n),
which implies the stated lower bound. �

REMARK. The translation of these results for data with mass M �= 1 is easy by
using the mass-changing transformation T .

• Rearranged data. If the initial data are rearranged but not compactly supported,
we use approximation of the data from below with compactly supported data, so that
by comparison the property of positivity follows. Conservation of mass comes from
the L1 contraction property. The asymptotic lower bound in (9.1) still holds, but the
upper bound need not hold (it depends on the behaviour of the initial data for large
|x |).
• Continuous data. In this case, there is a possible problem with the positivity of the
solution, which is still not guaranteed by us. This is proved for continuous data u0 by
putting below some rearranged data with compact support, ũ0, to which the previous
theory applies. Then we can apply comparison to see that u has large tails, above the
minimum decay estimate of (9.1). Then, conservation of mass is true for t ≥ τ > 0.
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In order to get conservation ofmass since the beginning, we add a small perturbation
with suitable tail to u0. After an easy argument, this implies general conservation of
mass and general minimum decay estimate.
• General data with compact support. We attack the general case for data with
compact support in the interval IR = [−R, R]. We propose to use convolution with a
smooth kernel to obtain a smooth approximation u0δ , that produces a solution to which
the previous paragraph applies. By L1 contraction, we get conservation of mass, so
that the solution must be global in time.
Due to mass conservation and the smoothing effect, the mass of the solution u

cannot be contained in the original interval for large times. Then there is a time T1
such that half the mass is outside IR . By the space monotonicity away from IR , we
can put a displaced rearranged subsolution below, and then, there are tails with at least
the minimal decay rate for t > T1. Now we use the monotonicity in time to derive the
same conclusion also for all t ≥ τ > 0.
• Finally, when u0 is not compactly supported, rearranged or continuous, we just
approximate from below with compactly supported data and pass to the monotone
limit. The rest of the argument follows.

9.1. L1 continuity and initial data

We want to show that the limit solution is continuous as an orbit t �→ u(·, t), as
stated in Theorem 1.1. At t = 0, this means that it takes the initial data in L1(R). We
may use the fact that this holds for the approximate problems and then pass to the
limit, using a Fatou argument plus conservation of mass.
The continuity at t > 0 can be made into a stronger result, and in fact we obtain

Lipschitz continuity of the orbit for all positive times. This is a consequence of the time
monotonicity and the conservation of mass. Indeed, the first implies that for h > 0

u(x, t + h) − u(x, t) ≤
(
(1 + (h/t))1/(1+n) − 1

)
u(x, t) ≤ Ch u(x, t)

which is uniform if t ≥ τ > 0 and h ≤ cτ . Since u is bounded, this implies a pointwise
Lipschitz bound from above. The L1 bound from below comes from conservation of
mass.

9.2. Upper limit solutions are very weak solutions

This subsection extends to the singular case the result of papers [18–20]. Since the
approximate solutions uε of Problem (2.1) are smooth, they satisfy the very weak
formulation. The main difficulty in passing to the limit when ε → 0 is the control of
the possible growth of �n(u) as |x | → ∞. But this depends on having a good lower
bound for u, and such a bound is contained in the left-hand side of (9.1). It follows that
the integrals involved in the passage to the limit are uniformly absolutely integrable.
Now we can pass to the limit is the ε approximate equations written in very weak

form to show that the limit solution is indeed a very weak solution.
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9.3. Upper limit solutions form a semigroup

We consider the maps St : L1+(R) → L1+(R) that map any initial data u0 to
the solution of the equation at time t > 0, Stu0 = u(·, t). Since the approximate
problems (2.1) produce unique classical solutions, the semigroup property is true for
them, Sε

t+t1u0 = Sε
t (S

ε
t1u0). Passing to the limit, we obtain the same property for our

upper limit solutions arguing as follows:
Fix u0 and t1 > 0 and recall the monotone convergence uε(x, t1) → u(x, t1) that

takes place in L1
loc(R). Consider now v0 = u(·, t1) as initial data for a new lap of the

evolution. In order to get the upper limit solution St (v0), we take ε′ > 0 and solve the
approximate problem with v0,ε′ = v0 + ε′. If we now take ε′ smaller than ε/2, we get
an estimate of ‖(v0,ε′ − uε(x, t1))+‖1 in the following way. We first note that set of
points K where u(x, t1) > ε/2 has measure less than 2‖u(x, t1)‖1/ε. Therefore∫

K
(v0,ε′ − uε(x, t1))+ dx =

∫
K
(v0(x) + ε′ − uε(x, t1))+ dx ≤ |K |ε′.

On the other hand, since uε(x, t1) ≥ ε everywhere, and v0,ε′(x) ≤ ε/2+ ε′ on R \ K ,
on that set we have v0,ε′ − uε(x, t1) ≤ 0. We conclude that

‖(v0,ε′ − uε(x, t1))+‖1 ≤ ε′

ε
‖u0‖1.

By the ordered contraction property, this estimate remains true during the evolution,
hence ∥∥∥∥

(
Sε′
t v0,ε′ − uε(x, t + t1)

)
+

∥∥∥∥
1

≤ ε′

ε
‖u0‖1

holds for all t > 0. Let now ε′ → 0 to get by the very definition of the upper limit
solution that

‖(Stv0(x) − uε(x, t + t1))+‖1 ≤ 0.

This means that Stv0(x) ≤ uε(x, t + t1)) for a.e. x ∈ R. In other words, St (St1u0) ≤
St+t1u0. By the conservation of mass, both functions are the same, which proves the
semigroup property St (St1u0) = St+t1u0.

9.4. Upper limit solutions are maximal solutions

In the standard Laplacian case s = 1 with singular diffusion, it is known that in
the range of exponents 0 < n < 1 where there is existence of nontrivial solutions,
the limit solution is not the only possible solution defined in the whole line x ∈ R.
On the contrary, there are infinitely many other solutions with the same initial data
determined by some “flux at infinity,” as described in [21,28]. But the upper limit
solution is the maximal element in that class, in fact it is the only one for which the
total mass does not decrease in time.
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In order to repeat the proof of maximality in a short way, we only consider a class
of solutions that admits comparison with classical supersolutions (which will be the
solutions uε of the approximate problems). Let us call good solutions the elements of
such a class.

THEOREM 9.2. Let ug(x, t) denote a good solution of (1.1) for our choice of �

defined in an interval 0 < t < T and having nonnegative initial data u0 ∈ L1(R), and
let u(x, t) the upper limit solution with same initial data. Then, ug ≤ u in R× (0, T ).

The further exploration of the existence of such solutions falls out of the scope of
this paper for reasons of space.

10. Asymptotic behaviour of general solutions

Wewant to proveTheorem1.4,whichmeans thatwewant to show that theBarenblatt
solutions are asymptotic attractors of the solutions with general data restricted only
by the running conditions on the initial data: u0(x) ≥ 0, u0 ∈ L1(R). We address first
the question of convergence in the L1 norm, which is split into a number of cases.
•Weconsider first rearranged initial data. The result is just a reformulation of the proof
of construction of the Barenblatt solution in Sect. 6. The argument is well known in
the literature, see [38]. We just recall that the rescaled family uL(x, t) converges to
UM in L1(R) at any time t > 0, and fix t = 1 to get

lim
L→∞ ‖uL(x, 1) −UM (x, 1)‖1 → 0

We then undo the scaling, see formula (5.5), to find that

lim
L→∞ ‖u

(
x, L2s−1−n

)
−UM

(
x, L2s−1−n

)
‖1 → 0

Putting t = L2s−1−n → ∞ we obtain the result.
•Themainnovelty lies in establishing the result for general data that are not rearranged.
We have to use the trick introduced in paper [27] with Portilheiro for general data with
compact support. We argue as follows: we fix t1 � 1 and assume the support of u0 be
included in [−R, R]. Define

ũ1(r) := inf|x |=r
u(x, t1), ũ2(r) := max|x |=r

u(x, t1).

We easily verify that ũ1(r), ũ2(r) are nonnegative and radially symmetric functions,
they are nonincreasing as functions of r for r ≥ R, we have the immediate comparison

ũ1(r) ≤ u(x, t1) ≤ ũ2(r) ,

where |x | = r . We also have by the Aleksandrov reflection comparison

ũ2(r) ≥ ũ1(r) ≥ ũ2(r + 2R)
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for all r ≥ R. It is then easy to verify that the 1-d mass of ũ2(r) − ũ1(r) is less than
CRt−1/(n+1)

1 , which can be made very small.
We restart the evolution at time t1 and get radially symmetric solutions ũ1(x, t), ũ2

(x, t) with initial data ũ1(r), ũ2(r) resp., and we also have the original u(x, t + t1)
(now displaced in time) that stays between them. The asymptotic behaviour says that
ũ1(x, t) converges to theBarenblattUM1 and ũ1(x, t) converges to theBarenblattUM2 .
Moreover, the masses satisfy M1 ≤ M ≤ M2 and M2 − M1 ≤ ε. The asymptotic
formula for convergence of u(·, t) to UM (·, t) follows easily.
• If u0 does not have compact support, we use approximation and L1 contraction.
• The estimate in the L p norms is just an interpolation between the convergence
result for p = 1 just proved, and the L∞ bound of the form u(x, t) ≤ C t−α with
α = 1/(2s − 1 − n).

This result allows to extend the uniqueness of the fundamental solutions as follows

THEOREM 10.1. Every upper limit solution for positive times that is self-similar
and integrable is a Barenblatt solution UM (x, t) for some M > 0. It can be obtained
by rescaling from any integral and nonnegative initial data with mass M.

Proof. Let u1 be that solution and M its mass. Since it is self-similar, we have

‖u1(·, t1) −UM ((·, t1)‖1 = ‖u1(·, t2) −UM ((·, t2)‖1
Fix now t1 > 0 and let t2 → ∞. Applying Theorem 1.4, the right-hand side goes to
zero. Hence, u1 ≡ UM . The second assertion is easier. �

11. Proof of the shifting comparison lemma

In this section, we will give a complete proof of Theorem 4.2. Note that this result
applies to the approximate problems that have nonsingular functions �. The passage
to the limit allows to apply it to our upper limit solutions.

11.1. Elliptic problem: extended problem

The implicit time discretization scheme [4,13] directly connects the analysis of the
parabolic Eq. (1.1) to solving a sequence of elliptic equations of the form

(−�)σ/2 v + B(v) = f (x) x ∈ R, (11.1)

where σ ∈ (0, 2) and f is an integrable function defined in R. We assume that the
nonlinearity is given by a function B : R+ → R+, which is smooth and monotone
increasing with B(0) = 0 and B ′(v) > 0. It is not essential to consider negative values
for our main results, but the general theory can be done in that greater generality. We
are using here nonnegative data and solutions. In the parabolic application B = �−1,
see [38,43]. Then, we need to prove the following result
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THEOREM 11.1. Let us consider two functions f1, f2 ∈ L1(R) with the following
properties:

(i) They are nonnegative, and rearranged around their points of maximum x1 and
x2 resp., with x1 < x2. BY this mean that fi (x − xi ) is rearranged.

(ii) We assume moreover that
∫ x
−∞ f2 dx ≤ ∫ x

−∞ f1 dx.
(iii) the mass is the same,

∫
f1(x) dx = ∫

f2(x) dx = M > 0.

Besides, we assume that B is convex and defined onR+ with B(0) = 0 and B ′(0) > 0.
Then, the following comparison inequalities hold

∫ x

−∞
v2(x) dx ≤

∫ x

−∞
v1(x) dx,

∫ x

−∞
B(v2(x)) dx ≤

∫ x

−∞
B(v1(x)) dx (11.2)

for every x ∈ R.

Proof. (a) It will be convenient to formulate the elliptic problem by using a proper
extension problem, which is defined as the trace of a properly defined Dirichlet–
Neumann problem as follows. If w is a weak solution to the local problem

⎧⎪⎪⎨
⎪⎪⎩

divx,y
(
y1−σ ∇w

) = 0 in Q+,

− 1

κσ

lim
y→0+ y1−σ ∂w

∂y
(x, y) + B(w(x, 0)) = f (x) for x ∈ R

(11.3)

where Q+ := R × (0,+∞) is the upper half-plane and κσ is the constant that is not
important in what follows. See [10] which is the main reference in the issue of this
extension. We can define again a suitable meaning of weak solution in terms of this
extended problem.The functional setting is perfectly explained in [43], Sect. 3.1. There
is a solution to problem (11.3). Then, the trace ofw overR×{0}, TrR(w) = w(·, 0) =:
v is said a solution to problem (11.1). Using the change of variables z = Cyσ for a
convenient constant c > 0, the problem can also be written as

⎧⎪⎪⎨
⎪⎪⎩
c zν

∂2w

∂z2
+ ∂2w

∂x2
= 0 in Q+

−∂w

∂z
(x, 0) = f (x) − B(w(x, 0)) for x ∈ R.

(11.4)

Weuse the extension formulation andwritewi (x, 0) = vi (x) andui = B(vi ), i = 1, 2.
(b) Note that the properties (i) of the fi ’s hold also for the solutions v1 and v2.

Conservation of mass applies so that B(v1) and B(v2) have the same mass M . Due to
the properties of B, the functions v1 and v2 are also integrable, though their masses are
not controlled. By the properties of the extension to the upper half-plane, the functions
w2(z, z) and w1(x, z) are also integrable in x for every fixed z > 0.
(c) Using a similar strategy to the symmetrization proof in paper [43], we introduce

the function

Z(s, z) =
∫ s

−∞
(w2(τ, z) − w1(τ, z))dτ. (11.5)
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Then, it is clear that
c zν Zzz + Zxx = 0 (11.6)

and
Z(−∞, z) = 0, Z(∞, z) = 0. (11.7)

A crucial point in our arguments below is played by the derivative of Z with respect
to z. Due to the boundary conditions contained in (11.4), we have

Zz(x, 0) ≥
∫ x

−∞
(B(w2(τ, 0)) − B(w1(τ, 0)) dτ (11.8)

Recall that wi (τ, 0) = vi (τ ). Observe also that the function

Y (x, 0) =
∫ x

−∞
B(w2(τ, 0)) − B(w1τ, 0)) dτ

has the same points of maximum or minimum and the same regions of monotonicity
than Z(x, 0).
(d) Then we argue as follows. Due to the maximum principle and the boundary con-
ditions (11.7), a positive maximum of Z can be achieved only on the line {z = 0}. On
the other hand, in the interval I = {x : x1 < x < x2} we know that ∂xv1 ≤ 0 and
∂xv2 ≥ 0 hence in this interval I

Yxx = ∂x B(v2) − ∂x B(v1) ≥ 0

and the maximum of Y must lie outside of I ; hence, the same happens for Z . Suppose
the maximum of Z happens at (x0, 0) with x0 ≥ x2. We must also have Zz(x0, 0) < 0
by Hopf’s maximum principle, and by (11.8), this leads to Y (x0, 0) < 0. But for
x > x0

Y (x, 0) − Y (x0, 0) =
∫ x

x0
[B(v2(τ )) − B(v1(τ ))] dτ

≤
∫ s

s0
B ′(v2(τ, 0))(v2(τ ) − v1(τ )) dτ.

Here, we have used the convexity of B so that B ′ is an increasing real function and

B(v2(τ )) − B(v1(τ )) ≤ B ′(v2(τ )) (v2(τ )) − v1(τ )).

After integration by parts in the expression for the increment of Y , we get

Y (x, 0) − Y (x0, 0) ≤ [
B ′(v2(τ ))(Z(τ, 0) − Z(x0, 0))

]x
x0

−
∫ x

x0
B ′′(v2(τ ))v2,x (τ )(Z(τ, 0) − Z(x0, 0))dτ.

Since Z has amaximumat x0 and B ′ is positive, the first term in theRHS is nonpositive.
As for the second, we have: B ′′ > 0, v2,x < 0, and Z(x, 0)− Z(x0, 0) ≤ 0; hence, the
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last term is also nonpositive. We conclude that Y (x, 0) ≤ Y (x0, 0) < 0 for all x > x0.
This is a contradiction, because by the conservation of mass property at plus infinity
we have Y (∞, 0) = 0. Therefore, there is no positive maximum for Z on this side.
(ii) Similar argument on the other side, x < x1 reversing the roles of v1 and v2 and

the direction of integration, that starts now at +∞. We conclude that Z(x, 0) ≤ 0
everywhere.
(iii) Once we have Z(x, 0) ≤ 0, we also want to prove that Y (x, 0) ≤ 0. We may

use Lemma 11.2 below (a well-known result), taking advantage of the convexity of B
and choosing any convex, increasing function � : [0,∞) → [0,∞). This ends the
proof of the comparison theorem in this case. �

LEMMA11.2. Let f, g ∈ L1(�)be two rearranged functions onaball� = BR(0).
Then, f ≺ g if and only if for every convex nondecreasing function � : [0,∞) →
[0,∞) with �(0) = 0 we have

∫
�

�( f (x)) dx ≤
∫

�

�(g(x)) dx . (11.9)

This result still holds if R = ∞ and f, g ∈ L1
loc(R

N ) with g → 0 as |x | → ∞.

REMARK. We have imposed severe conditions on the shape of u01, u02, and we
have required � to be concave. Are these conditions necessary? They are not for the
same result with standard Laplacian instead of fractional Laplacian.

12. A preview of logarithmic diffusion with s = 1/2

This is a kind of exceptional case in the parameter diagram. The study is a bit
different from the previous analysis, and much of our intuition comes from a similar
special case that happens for standard diffusion s = 1, in dimension N = 2 with
logarithmic diffusion n = 0. An explicit solution exists then, and it was used in [35].
The formula is

U (x, t) = 8(T − t)

(1 + |x |2)2 , x ∈ R
2, 0 < t < T . (12.1)

Note thatU is positive only in the time interval 0 < t < T . As a very weak solution, it
can be defined for all t > 0, and it vanishes identically for t ≥ T . Another important
property is the total mass decay with a constant rate

d

dt

∫
R2

U (x, t) dx = −8π. (12.2)

But, as shown by a number of studies, this rate does not correspond the limit solutions,
which are characterized by the rule dM(t)/dt = −4π . A gap of nonuniqueness opens
up, and this is carefully described in [39], where related literature can be found.
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12.1. Existence of a positive solution

Luckily, in our one-dimensional case there also exists an explicit solution of the
evolution equation

∂t u + (−�)1/2(log u) = 0 in R × (0, T ) (12.3)

with a smooth initial condition u(x, 0) ∈ L1(R). It is given by the formula

U (x, t) = 2λ (T − t)

λ2 + |x |2 in R × (0,+∞), (12.4)

with any λ > 0, so it is indeed a whole family of solutions related by scaling. We
see that U has the separate variable type as in the previous example, and U (·, t) is in
L1(R) for any 0 ≤ t < T . It is very peculiar that the solution becomes identically
zero in finite time. This is the so-called finite-time extinction phenomenon, which is
typical of some ranges of fast diffusion, see [39] for standard diffusion and [19,26]
for fractional diffusion.
In order to prove that (12.4) is a classical solution of the equation we write it in the

form U (x, t) = (T − t)F(x) and we need to find an integrable profile F > 0 such
that

(−�)1/2F(x) = F(x). (12.5)

It only remains to check that F(x) = 2/(1+|x |2) is a solution of this nonlinear elliptic
equation. This is only a technical calculus result.
Observe that the initial mass is in all cases (12.4)

M0 = ‖U0‖1 = 2T
∫

dx

1 + x2
= 2πT,

so that in the extinction time is given by T = ‖U0‖1/2π.Accordingly, the mass decay
rule is M ′(t) = −2π , which is related to what happens for N = 2 and standard
diffusion (see above).
In the same way as in the previous analysis of the case s > 1/2, we can use this

example and standard comparison to prove that for initial data u0(x) ≥ c/(1 + |x |2)
with c > 0, the limit solution is nontrivial, more precisely positive for 0 < t < T
with T = c/2. We do not expect upper limit solutions to conserve mass since this
does happen for the special case of standard diffusion s = 1, N = 2, as described in
[30,39,41].

13. Comments, extensions, and open problems

• We have given preference in the paper to the treatment of the more singular case
of exponents n > 0. However, the logarithmic equation is also covered, and the
main results are proved to be true, as special case n = 0. This is shown not
only at the formal level, but also technical details are given as needed. There is
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another variant of the limit case n = 0, the sign diffusion ut = �sign(u), that
is related to the total variation flow and was treated in [6]. We are not covering
the fractional version of this variant.

• The actual behaviour of the solutions of logarithmic diffusion on the line with
exponent s = 1/2 is a question to be investigated, and this will done in a separate
work. For the nonsingular equation ∂t u + (−�)s(1+ log u) = 0, the study was
done in [20], see also [42].

• The existence of nonmaximal solutions, which are not upper limit solutions and
do not conservemass, is an interesting open problem. For the standard Laplacian,
it was solved in [21,28] where it is proved that there are infinitely many solutions
for every integrable initial data, and they are determined by some flux conditions
at infinity. A large related literature has developed, see, e.g. [23,24,28,29].

• Equation (5.8) is a kind of fractional p-Laplacian equation for themass function.
It would be interesting to perform a study of its properties and applicability.

• Elliptic problems and the Crandall–Liggett approach. A natural way to solve the
evolution equation is by implicit discretization in time, a method that became
basic in the early studies of the Porous Medium Equation, see the original paper
CL71 or [38, Chapter 10]. In the present situation, it means that we have to
solve elliptic problems of the form (−�)s�(u) + u = f . Note that when
�(u) = log(u), this equation takes the suggestive form (−�)sv + ev = f .
Non-existence results are carefully described in [7] for the range of parameters
2s < n + 1. The existence theory in our parameter range is not difficult. We
refrain from further details for reasons of space, but see [7, Section 9].

• Dirichlet problem in bounded domains. In the case of the standard Laplacian,
s = 1, no nontrivial solutions exist for the Dirichlet problemwith zero boundary
data. The question is open for our equations.

• Problems with more general nonlinearities �. Symmetrization can be applied
in some cases using the results of [44] to compare a general � with the power
cases we deal with. It can give the starting results on nontrivial existence. Non-
existence results in that direction are explained in [7]. Of course, in the simple
case where�(u) = −c u−n (or�(u) = c log(u)) with some c > 0, the constant
may be absorbed into the time variable and we need not make any changes to
the theory.

• Problems with other classes of initial data are worth studying. A simple example
is the constant solutions do not belong to our class of integrable upper limit
solutions. It is not difficult to construct solutions for initial data in L p(R) with
p > 1 using the smoothing effect and approximation by integrable data. We can
consider in this way initial data that are not integrable with different decay rates
at infinity. It is even possible to consider data that grow at infinity.

• A different direction is establishing existence of upper limit solutions with non-
negative Radon measures as initial data. An example for that extension is the
Barenblatt solutions that we have just constructed. Since the basic process for
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general measures is easy following the indications of [40, Section 4], we leave
it to the interested reader.
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