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1. Introduction

In recent years, there has been a renewed interest in problems related to partial
differential equations formulated in domains that change over time. This is partly due
to the fact that a number of problems in mathematical biology are naturally posed on
growing domains (e.g., developing organisms or proliferating cells, see, for instance,
[13,20,22]) or domains that evolve in some particular way. Such issues have originated
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a wide amount of mathematical research; let us mention [6,14,15,29]. To this, we
should add more classical engineering applications such as fluids or gases in settings
as channels or pipes with confining walls that may be displaced, removed or brought in
at will. A sample of different applications of partial differential equations in evolving
domains can be found in the recent survey paper [21]. In fact, it is not hard to conjecture
that new applications will involve equations in moving domains in the future. Apart
from that, partial differential equations posedonnoncylindrical domains are interesting
also from the purely mathematical point of view.

This has led to an outburst of works on this subject in the literature that added up
to some classical works [5,10,12,23,24,33] to the extent that the number of current
references is overwhelming. Let us comment on this literature according to the ap-
proach, the assumptions on the evolution of the domain where the equation is posed
and the types of equations considered.Many authors used semigroupmethods to tackle
these problems (see, for instance, [1,27] and references therein), but other approaches
include adding a time viscosity [9], mapping the spacetime domain to a cylindrical
domain [4] or using De Giorgi’s minimizing movements [7,19]. As regards time vari-
ations of the domain, it is customary to impose some sort of continuity (for instance,
Lipschitz continuity [30], relaxed toHölder continuity in [9] and to absolute continuity
in [28]), alternatively a monotonicity condition can be used (i.e., expanding domains
[7,19]) or Reinfenberg-type domains can be considered [11]. Concerning the type of
equations, most of the works focus on parabolic equations which are assumed to be
linear or in divergence form (see, however, [8,9,27,28] where also other operators are
admitted).

In this paper, we are interested in well-posedness of parabolic equations in diver-
gence form, in bounded domains that evolve in time. More precisely, we deal with
the Cauchy–Dirichlet problem, in a formulation that allows boundary conditions to
depend on time.

Let us discuss what are the novelties of this work with respect to the already existing
literature. First, we introduce a simple approach to construct solutions, which consists
in performing a time slicing of the domain and then solving a family of approximating
equations in cylindrical domains. The simplicity of this approach may allow to use it
as a starting point for devising numerical methods for this sort of problems. Despite
its simplicity, we are not aware of other works where such a slicing strategy is used.
Our approach allows to deal with nonlinear equations, which include the parabolic
p-Laplacian as a particular case. Also, our slicing technique applies to quite general
variations on the domain over time: We only require them to be of bounded variation,
allowing for sudden jumps (expansions or contractions) of the domain. In particular,
we do not impose any constraint on the topology of the evolving domains, which may
differ from that of the initial domain. We are also able to prove uniqueness under some
additional constraints on the domain (see Sect. 5).

To our best knowledge, this generality has not been previously achieved in the
literature, except for the case of purely expanding domains [7]. However, in [28] F.
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Paronetto proposes a different approach, which can be extended to cover quite general
operators and boundary conditions.

Possible extensions. Since our main goal is presenting a method to tackle parabolic
equations inmoving domains,wedid not focus on looking for themost general possible
result. For instance, for the sake of simplicity we chose to deal only with bounded
initial data. We stress that our main idea is to use a time slicing to approximate the
original problem by a sequence of problems defined on cylindrical domains. As we do
not focus on any particular equation, we chose to use abstract Lions’ theory to provide
existence for the approximating problems. However, we could also use other theories
as starting point to provide existence of approximate solutions. If we are interested
in a particular equation (the p-Laplace equation, say), then we will likely be using
specific existence results to set up our method, and those will provide a much more
accurate framework for the admisible set of initial conditions.

In that line of thought, the fact that our present formulation does not allow to deal
with degenerate equations, such as the porous media equation and its variants, could
appear as a drawback. Again, we argue that suitable modifications of the method
here proposed would allow to tackle these problems. In fact, even sticking to Lions’
theory, the porous media equation and related ones can be treated by making use of
the compactness results by Dubinskii [17], carefully adapting our arguments in order
to cope with that (see [25, Chapter I, 12]). We did not pursue this line here in order to
keep the presentation as simple as possible.

We also point out that we cannot deal with operators with linear growth such as
the total variation flow or the parabolic minimal surface equation (see [8] for some
results in this direction in the one-dimensional case). This is another challenging line
to explore. Finally, following the same approach it should be possible to consider
similar evolution equations on manifolds evolving in time and/or nonlocal operators
(see [2,3] and references therein).

2. Standing assumptions and main results

Our purpose is to prove existence and uniqueness results for nonlinear parabolic
equations with time-dependent coefficients in time-dependent domains. More pre-
cisely, given an open set ˜� ⊂ [0, T ] × R

d we shall consider the following problem:

⎧

⎨

⎩

ut (t, x) = div (A(t, x, u,∇u)) in ˜�,
u(0, x) = u0(x) in �(0),
u(t, x) = ψ(t, x) in ∂l˜� ∪ ∂−1˜�,

(2.1)

where we let ν˜� = (νt , νx ) be the outer unit normal to ∂˜�, �(0) is the initial domain
defined in Assumption 2.2, and we set
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∂±1˜� := {(t, x) ∈ ∂˜� : t > 0, νt = ±1},
∂l˜� := {(t, x) ∈ ∂˜� : |νt | < 1} = {(t, x) ∈ ∂˜� : |νx | > 0}.

In order to establish existence and uniqueness of solutions, we shall make suitable
assumptions on the flux vector field A, on the data u0, ψ and on the domain ˜�.

ASSUMPTION 2.1. The set ˜� ⊂ (0, T )×R
d is a bounded open set with Lipschitz

boundary, and we let

�(t) := {x ∈ R
d : (t, x) ∈ ˜�} t ∈ (0, T ).

Note that �(t) is an open set, possibly empty, for all t ∈ (0, T ).

Notice that �(t) has Lipschitz boundary for a.e. t ∈ (0, T ), and there exist the
limits

�(t±) := lim
s→t± �(s) for all t ∈ [0, T ], (2.2)

where the limit is taken in the Hausdorff topology.

ASSUMPTION 2.2. The set �(0) := �(0+) is open and has Lipschitz boundary.

Next, we describe our assumptions on the operator A. Let Q0 be an open set of
R
d such that ∪t∈[0,T ]�(t) ⊂⊂ Q0—where by ⊂⊂ we mean that the inclusion is

compact—and let QT := (0, T ) × Q0. We shall denote by M(QT ) the space of all
Radon measures on QT .

ASSUMPTION 2.3. The function A : QT ×R×R
d → R

d is a Carathéodory map
satisfying

|A(t, x, z, ξ)| ≤ c|ξ |p−1 + b(t, x), c > 0, b ∈ L p′
(QT ),

1 < p < ∞, 1
p + 1

p′ = 1, (2.3)

A(t, x, z, ξ) · ξ ≥ α|ξ |p − d(t, x), α > 0, d ∈ L1(QT ), (2.4)

(A(t, x, z, ξ) − A(t, x, z, ξ∗)) · (ξ − ξ∗) ≥ 0, (2.5)

for a.e. (t, x) ∈ QT , and for all z ∈ R, ξ, ξ∗ ∈ R
d . Moreover, we assume that

|A(t, x, z, ξ) − A(s, y, w, ξ)| ≤ (ω(|t − s| + |x − y|) + C |z − w|)|ξ |p−1, (2.6)

where ω is a modulus of continuity and C ≥ 0. We assume also that

A(t, x, z, 0) = 0 ∀z ∈ R, a.e. (t, x) ∈ QT . (2.7)

Note that (2.5) and (2.7) imply that

A(t, x, z, ξ) · ξ ≥ 0, a.e. in QT , and for all z ∈ R, ξ ∈ R
d . (2.8)

We will consider the problem (2.1) with initial and boundary conditions

u(0, x) = u0(x) ∈ L∞(�(0)), (2.9)

u(t, x) = ψ(t, x), (t, x) ∈ ∂l˜� ∪ ∂−1˜�, t > 0. (2.10)
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ASSUMPTION 2.4. We assume that

ψ ∈ C(QT ) ∩ L p(0, T ;W 1,p
0 (Q0)), (2.11)

and

ψt ∈ L1(QT ) ∩ L p′
(0, T ;W−1,p′

(Q0)). (2.12)

Let us now define the space after which we model the solutions of our problem.

DEFINITION 2.5. Let V be the closure of C1
c (

˜�) with respect to the norm

||v||V :=
(∫

˜�

|∇v|p dxdt
)1/p

, v ∈ C1
c (

˜�).

Notice that functions in V do not necessarily have zero trace on ∂±1˜� or on �(0).

Our concept of solution will be the following:

DEFINITION 2.6. We say that a function u ∈ L1(˜�) is a weak solution of (2.1) if
the following statements hold:

1. u − ψ ∈ V and A(t, x, u,∇u) ∈ L p′
(˜�).

2. ut ∈ V∗ (note that this implies that u has a trace on ∂±1˜� and on �(0)).
3. u(0) = u0 a.e. on �(0) and u = ψ a.e. on every relatively open subset of ∂−1˜�.

4. The following integral formulation

−
∫ T

0

∫

�(t)
uφt dxdt −

∫

�(0)
u0φ(0) dx +

∫ T

0

∫

�(t)
A(t, x, u,∇u) · ∇φ dxdt = 0

(2.13)
holds for all φ ∈ D([0, T ) × Q0) with suppφ ⊂⊂ ˜�.

Let us state the main existence result of this paper.

THEOREM 2.7. Let Assumptions 2.1–2.4 be satisfied. Then there exists a weak
solution of (2.1) in the sense of Definition 2.6.

Following [28, Assumption H.2], we introduce an additional assumption on the
domain which we will need in the uniqueness proof.

ASSUMPTION 2.8. For every t0 ∈ [0, T ], there exist an open neighborhood U of
t0 and a family of maps G(·, t) : �(t0) → �(t), with t ∈ U ∩ [0, T ], such that

– G(·, t) is a bijection for almost every t ∈ U ∩ [0, T ];
– G(·, t) is Lipschitz continuous with its inverse for every t ∈ U ∩ [0, T ];
– G(x, ·) and |∇G(x, ·)| are absolutely continuous for almost every x ∈ �(t0);
– |∇G(·, t)| ∈ L1(�(t0)) for every t ∈ U ∩ [0, T ] and ∂t |∇G| ∈ L1(�(t0) ×

(0, T )).
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Note that this assumption does not allow “jumps” of the sections �(t). However,
we could work in a more general framework in which the conditions in Assumption
2.8 break down for a finite set of times; we comment on this in Remark 5.3 below.
Let us state now our uniqueness result.

THEOREM 2.9. Let Assumptions 2.1–2.4 and 2.8 be satisfied. Then the solution
of (2.1) is unique in the class of weak solutions.

3. Construction of approximate solutions

Let us divide the interval [0, T ] into sub-intervals 0 = t0 < t1 < · · · < tN−1 <

tN = T . The points ti are chosen so that:

1. �(ti ) has Lipschitz boundary for all i ∈ {0, . . . , N − 1},
2. (2.3)–(2.7) hold for a.e. x ∈ �(ti ) and for all z ∈ R, ξ ∈ R

d ,
3. ti are Lebesgue points of ψ(t) ∈ L p(0, T ;W 1,p

0 (Q0)) and ψ(ti ) ∈ W 1,p(Q0),
4. ti are Lebesgue points of the map t ∈ [0, T ] → A(t) ∈ L1(Q0 × (−R, R) ×

B(0, R)) for any R > 0, being B(0, R) the open ball centered at zero with radius
R,

5. � := maxk=0,...,N−1 |tk − tk+1| → 0 as N → ∞.

Let Ik = [tk, tk+1). We iteratively solve the parabolic problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ukt = div
(

A(tk, x, u
k,∇uk)

)

, t ∈ Ik, x ∈ �(tk)

uk(t, x) = ψ(t, x), t ∈ Ik, x ∈ ∂�(tk)

uk(tk, x) =
⎧

⎨

⎩

limt→tk− uk−1(t, x), x ∈ �(tk) ∩ �(tk−1)

ψ(tk, x), x ∈ �(tk)\�(tk−1).

(3.1)

If t0 = 0 we let u0(0, x) = u0(x). Notice that the iterative initial condition for t = tk
makes sense thanks to the continuity properties of uk−1, see (3.5).

3.1. Study of the model problem on a time slice

Let �0 be an open bounded set in R
d with Lipschitz boundary. Let A(x, z, ξ) be

such that (2.3)–(2.7) hold a.e. in x ∈ �0 and for all z ∈ R, ξ ∈ R
d . Let us consider

the problem
⎧

⎨

⎩

ut = div (A(x, u,∇u)) t ∈ [0, T ], x ∈ �0,
u(t, x) = ψ(t, x) t ∈ [0, T ], x ∈ ∂�0,
u(0, x) = u0(x) x ∈ �0.

(3.2)

where ψ satisfies (2.11)–(2.12) and u0 ∈ L2(�0).
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DEFINITION 3.1. We say that a function u ∈ L1((0, T ) × �0) is a weak solution
of (3.2) if u ∈ L p(0, T ;W 1,p(�0)), A(x, u,∇u) ∈ L p′

((0, T ) × �0)),

−
∫ T

0

∫

�0

uφt dxdt−
∫ T

0

∫

�0

u0φ(0) dx+
∫ T

0

∫

�0

A(x, u,∇u)·∇φ dxdt = 0 (3.3)

holds for all φ ∈ D([0, T ) × �0), and

u(t) − ψ(t) ∈ W 1,p
0 (�0) a.e. t ∈ (0, T ).

Note that, by (2.3), if u ∈ L p(0, T ;W 1,p(�0)), then A(x, u,∇u) ∈ L p′
((0, T ) ×

�0)).

PROPOSITION 3.2. Problem (3.2) admits a unique weak solution in the sense of
Definition 3.1.

Proof. The proof is a standard application of the theory developed in [25,26]; we
include it for completeness. We consider the auxiliary problem

⎧

⎨

⎩

vt − div
(

˜A(t, x, v,∇v)
) = −ψt t ∈ [0, T ], x ∈ �0,

v(t, x) = 0 t ∈ [0, T ], x ∈ ∂�0,
v(0, x) = u0(x) − ψ(0, x) x ∈ �0.

(3.4)

Here

˜A(t, x, z, ξ) := A(x, z + ψ(t, x), ξ + ∇ψ(t, x)).

According to the notation in [25,26], we let H = L2(�0),

B =
⎧

⎨

⎩

W 1,p
0 (�0) if p ≥ 2,

W 1,p
0 (�0) ∩ L2(�0) if 1 < p < 2,

and F = L p(0, T ; B), so that B is dense in H and

−div˜A : F → F ′ = L p′
(0, T ; B ′) and ψt ∈ F ′,

with

B ′ =
{

W−1,p′
(�0) if p ≥ 2,

W−1,p′
(�0) + L2(�0) if 1 < p < 2.

Observe that, by our assumptions on A(x, z, ξ) and ψ , ˜A(t, x, z, ξ) is a Leray–Lions
operator (see [25,26]). Indeed, the monotonicity requirement is satisfied thanks to
(2.5). The coercivity condition follows from (2.4) and Poincare’s inequality in a stan-
dard way [lower-order terms are estimated thanks to (2.3)]. Then thanks to Lions’
theory there exists some v ∈ F solving (3.4) in F ′. In fact, this solution verifies that

v ∈ L p(0, T, B) and vt ∈ L p′
(0, T ; B ′).
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Notice that v ∈ C(0, T ; L2(�0)) thanks to Lemma 3.3 below.
Let now u = v + ψ . Then u is a weak solution of (3.2) with initial condition

u(0) = u0. Clearly u ∈ L p(0, T ;W 1,p(�0)), ut ∈ L p′
(0, T ; B ′) and

u ∈ C(0, T ; L2(�0)). (3.5)

To prove uniqueness, let u, v be two different solutions. Note that u − v ∈ F . If A
does not depend on u, we multiply the equation for (u − v)t by u − v and integrate
by parts (see, e.g., [31, Chapter III]). Recalling (2.5) we have that

1

2

d

dt
(u − v, u − v)H = 〈(u − v)t , u − v〉

W−1,p′ (�0)−W 1,p
0 (�0)

= 〈div(A(x,∇u) − A(x,∇v)), u − v〉
W−1,p′ (�0)−W 1,p

0 (�0)

= −〈A(x,∇u) − A(x,∇v),∇u − ∇v〉L p′ (�0)−L p(�0)

≤ 0.

Hence, ‖u − v‖2 is nonincreasing and uniqueness follows.
For the general case, consider δ > 0 and let

Tδ(s) =
⎧

⎨

⎩

s if − δ ≤ s ≤ δ,

−δ if s < −δ,

δ if s > δ.

Clearly Tδ(u − v) ∈ F and again after multiplication of the equation for (u − v)t by
Tδ(u − v)/δ and integration by parts, we obtain that

1

2

d

dt
(u − v, Tδ(u − v)/δ)H

= −1

δ
〈∇Tδ(u − v), A(x, u,∇u) − A(x, v,∇v)〉L p(�0)−L p′ (�0)

≤ −1

δ
〈(∇u − ∇v)χ{|u−v|≤δ}, A(x, u,∇v) − A(x, v,∇v)〉L p(�0)−L p′ (�0)

.

Then, using (2.6) we get

1

2

d

dt
(u − v, Tδ(u − v)/δ)H ≤ C

δ

∫

{|u−v|≤δ}
|u − v||∇u − ∇v||∇v|p−1 dx

≤ C
∫

{|u−v|≤δ}
|∇u − ∇v||∇v|p−1 dx .

The term on the far right converges to zero when δ → 0, since the integrand is in
L1(�0) and ∇(u − v) = 0 a.e. where u − v = 0. As Tδ/δ(u − v) → sign(u − v), we
get that ‖u − v‖1 is nonincreasing, and we conclude the proof. �

The following continuity result is standard (see, for instance, [25, Ch. 2, Rem. 1.2]
or [31]).
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LEMMA 3.3. Let V be a reflexive Banach space with dual V ′. Let H be a Hilbert
space that we identify with its dual. Assume that V ⊂ H ⊂ V ′ with the injection
V ⊂ H being dense. Then, u ∈ L p(0, T ; V ) together with ut ∈ L p′

(0, T ; V ′) imply
that there is a representative of u which is continuous from [0, T ] to H.

Since uk ∈ C(tk, tk+1; L2(�(tk))) we can define the traces

uk(tk+) := lim
t→tk+

uk(t) uk(tk+1−) := lim
t→tk+1−

uk(t),

where the limit is taken in L2(�(tk)).

3.2. The approximate solutions u�

We now let

�� := {(t, x) : t ∈ [tk, tk+1), x ∈ �(tk), k = 0, . . . , N − 1}
= ∪k=1,...,N−1[tk, tk+1) × �(tk).

Notice that �� does not depend only on � = maxk=0,...,N−1 |tk − tk+1|, but depends
on the entire sequence {tk}k .
LEMMA3.4. �� converges to˜� in theHausdorff sense. As a consequence,χ�� →

χ
˜� strongly in L1(QT ) (hence in L p(QT ) for all p < ∞).

Proof. The Hausdorff convergence of �� to ˜� can be easily verified when ˜� is a
polyhedron. The claim follows by approximating a generic˜�with Lipschitz boundary
with polyhedra, in the topology generated by the Hausdorff distance. �

We now glue the solutions uk(t, x) of (3.1) together and define the approximate
solutions

u�(t, x) :=
N−1
∑

k=0

χ[tk ,tk+1)(t)u
k(t, x)χ�(tk )(x), (3.6)

ũ�(t, x) :=
N−1
∑

k=0

χ[tk ,tk+1)(t)(u
k(t, x)χ�(tk )(x) + ψ(t, x)χQ0\�(tk)(x)), (3.7)

for (t, x) ∈ QT . When we write uk(t, x)χ�(tk )(x) in the above formulae we intend the
function which coincides with uk(t, x) in �(tk) and it is equal to zero outside �(tk).

In the sequel, we shall prove the compactness of u� and ũ� as � → 0.

3.3. Estimates on u�

We now derive some estimates on the approximate solutions u� defined in (3.6).

LEMMA 3.5. Assume that ‖ψ‖∞, ‖u0‖∞ ≤ C for someC > 0. Then ‖u�‖L∞(��)

≤ C for any t > 0.
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Proof. It is enough to prove the estimate in (0, t1)×�(0). Let [·]+ denote the positive
part (resp. [·]− the negative part) and let C ≥ ‖ψ‖∞. Then the pairing of [u − C]+
with u�

t makes sense; multiplying (3.2) by [u − C]+ and integrating by parts, we get
to

1

2

d

dt

∫

�(0)
([u�(t) − C]+)2 dx =

∫

�(0)
[u� − C]+divA(0, x, u�,∇u�) dx

= −
∫

�(0)
A(0, x, u�,∇u�)∇([u� − C]+) dx .

There are no boundary terms present thanks to our choice of C . Note that ∇([u� −
C]+) = χ{u�>C}∇u�, so that we can use (2.8) to ensure that the time derivative above
is nonpositive. Hence,

∫

�(0)
([u�(t) − C]+)2 dx ≤

∫

�(0)
([u0 − C]+)2 dx .

Thus, if u0 ≤ C then u�(t) ≤ C too for any t ∈ [0, t1). This works in the same way
for the time derivative of the integral of ([u� + C]−)2, with inequalities reversed. If
we now choose C = max{‖u0‖∞, ‖ψ‖∞}, we deduce that ‖u�(t)‖∞ ≤ C . �

LEMMA 3.6. There holds

N−1
∑

k=0

∫ tk+1

tk

∫

�(tk )
|∇u�(t)|p dxdt ≤ C,

for some constant C > 0 depending only on ˜�, on ψ and on the structural constants
in Assumption 2.3.

Proof. We fix k and notice that the pairing of u� − ψ with ukt on (tk, tk+1) × �(tk)
makes sense. After integration by parts we get

1

2

d

dt

∫

�(tk )
(u� − ψ)2 dx = −

∫

�(tk)
∇(u� − ψ)A(tk, x, u

�,∇u�) dx

−
∫

�(tk)
(u� − ψ)ψt dx .

Notice that the last term is well defined thanks to our assumptions onψ and to Lemma
3.5. Integrating the former equality on [tk, tk+1], we obtain

1

2

∫

�(tk )
(u�(tk+1) − ψ)2 dx = 1

2

∫

�(tk)
(u�(tk) − ψ)2 dx

−
∫ tk+1

tk

∫

�(tk)
(u� − ψ)ψt dxdt +

∫ tk+1

tk

∫

�(tk)
∇ψ A(tk, x, u

�,∇u�) dxdt

−
∫ T

0

∫

�(tk)
∇u�A(tk, x, u

�,∇u�) dxdt =: I + I I + I I I + I V .
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Let us now control the last three terms. The second one can be easily estimated as

I I ≤ 2C̄
∫ tk+1

tk

∫

�(tk)
|ψt | dxdt, C̄ := max{‖ψ‖∞, ‖u0‖∞}.

Concerning the fourth term, using (2.4) we get

I V ≤ −
∫ tk+1

tk

∫

�(tk)
α|∇u�|p dxdt +

∫ tk+1

tk

∫

�(tk)
|d(t, x)| dxdt.

In a similar way, using (2.3) we obtain

III≤
∫ tk+1

tk

∫

�(tk)
c|∇ψ ||∇u�|p−1 dxdt +

∫ tk+1

tk

∫

�(tk)
|∇ψ |b(t, x) dxdt = A + B.

Let us estimate A and B. For that we use Young’s inequality with weights:

a b ≤ ε pa p

p
+ bp′

p′ε p′ , ε > 0, being p, p′ given by (2.3).

Then

B ≤ 1

p
‖∇ψ‖p

L p([tk ,tk+1]×�(tk))
+ 1

p′ ‖b‖
p

L p′ ([tk ,tk+1]×�(tk))

and

A ≤ cε p

p
‖∇ψ‖p

L p([tk ,tk+1]×�(tk))
+ c

p′ε p′ ‖∇u�‖p
L p([tk ,tk+1]×�(tk))

for any ε > 0. Let us choose ε so that c/(p′ε p′
) = α/2. Collecting all the estimates,

we obtain

1

2

∫

�(tk)
(u�(tk+1) − ψ)2 dx + α

2

∫ tk+1

tk

∫

�(tk)
|∇u�|p dxdt

≤ 1

2

∫

�(tk)
(u�(tk) − ψ)2 dx + 2C̄

∫ tk+1

tk

∫

�(tk)
|ψt | dxdt+ cε p

p
‖∇ψ‖pL p([tk ,tk+1]×�(tk))

+ 1

p
‖∇ψ‖pL p([tk ,tk+1]×�(tk))

+ 1

p′ ‖b‖
p
L p′ ([tk ,tk+1]×�(tk))

+
∫ tk+1

tk

∫

�(tk)
|d(t, x)| dxdt.

By summing up the previous inequalities from k = 0 to k = N − 1, we get

1

2

∫

�(tN−1)

(u�(tN ) − ψ)2 dx + α

2

N−1
∑

k=0

∫ tk+1

tk

∫

�(tk)
|∇u�(t)|p dxdt

≤ 1

2

∫

�(0)
(u�(0) − ψ)2 dx + 1

p′
N−1
∑

k=0

‖b‖p

L p′ ([tk ,tk+1]×�(tk))

+ 1

p

(

1 + c

(

2c

αp′

)
p
p′

)

N−1
∑

k=0

‖∇ψ‖p
L p([tk ,tk+1]×�(tk))

+ 2C̄
N−1
∑

k=0

∫ tk+1

tk

∫

�(tk)
|ψt | dxdt +

N−1
∑

k=0

∫ tk+1

tk

∫

�(tk )
|d(t, x)| dxdt.
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With the aid of Lemma 3.5, the thesis follows. �

Recalling the definition of ũ� and the assumptions onψ , fromLemma 3.6we obtain
the following result:

COROLLARY 3.7. There exists C > 0 depending only on ˜�, on ψ and on the
structural constants in Assumption 2.3, such that

‖ũ�‖L p(0,T ;W 1,p(Q0))
≤ C.

In particular, the sequence {ũ�} is weakly relatively compact in L p(0, T ;W 1,p(Q0)).

3.4. Time compactness of ũ�

We now show a stronger compactness property of u�. For this aim, we need the
following result, proved in [32].

THEOREM 3.8. Let X, B,Y be three Banach spaces such that X ⊂ B ⊂ Y .
Assume that X is compactly embedded in B and

F is a bounded set in L1(0, T ; X), (3.8)

‖τh f − f ‖L1(0,T−h;Y ) → 0 as h → 0, uniformly for f ∈ F, (3.9)

where (τh f )(t) = f (t + h) for h > 0. Then F is relatively compact in L1(0, T ; B).

Let

ψ�(t, x) :=
N−1
∑

k=0

χ[tk ,tk+1)(t)ψ(t, x)χQ0\�(tk)(x) = ψ(t, x)χQT \��(t, x),

so that we have ũ�(t, x) = u�(t, x) + ψ�(t, x).

LEMMA 3.9. Let 0 < k ≤ N be fixed. Then ukt (t)χ�(tk) ∈ L p′
(tk, tk+1,W−1,p′

(�(tk))) and the following estimate holds:

‖ukt (t)χ�(tk)‖L p′ (tk ,tk+1,W−1,p′ (�(tk)))
≤ c‖u�‖p−1

L p(tk ,tk+1,W 1,p(�(tk)))

+‖b‖L p(tk ,tk+1,L p′ (�(tk)))
.

Proof. We show the estimate by duality. Define Bk := L p(tk, tk+1,W
1,p
0 (�(tk))) and

let φ ∈ Bk . We compute

〈ukt (t)χ�(tk), φ〉B′
k−Bk = −

∫ tk+1

tk

∫

�(tk)
A(tk, x, u

k,∇uk(t)) · ∇φ dxdt.

Hence, using (2.3)
∣

∣

∣〈ukt χ�(tk), φ〉B′
k−Bk

∣

∣

∣ ≤
∫ tk+1

tk

∫

�(tk)
(c|∇u�(t)|p−1 + b(t, x))|∇φ|dxdt

≤
∫ tk+1

tk

(

c‖u�(t)‖p−1
W 1,p(�(tk))

+ ‖b(t)‖L p′ (�(tk))

)

‖φ‖
W 1,p

0 (�(tk))
dt.

The result follows. �
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LEMMA 3.10. The sequence {ũ�} is relatively compact in L1
loc(

˜�).

Proof. Weconsider a cylinderC := [t1, t2]×K ⊂⊂ ˜�.Wewant to applyTheorem3.8
with f = ũ�|C = u�|C , X = W 1,p(K ), B = L1(K ) and Y = W−1,p′

(K )+ L1(K ).
Here Y is a Banach space equipped with the norm

‖y‖Y := inf{‖y1‖W−1,p′ (K )
+ ‖y2‖L1(K ) : y1 + y2 = y}.

Then X ⊂ B ⊂ Y and X is compactly embedded in B.
Notice that, since C ⊂⊂ ˜�, we have

ũ�
t |C = u�

t |C =
N−1
∑

k=0

χ[tk ,tk+1)(t)u
k
t (t, x)χ�(tk )(x)|C for N large enough.

Estimate (3.8) directly follows from Lemma 3.5. In order to prove (3.9), we notice
that (with a slight abuse of notation)

ũ�(t + h) − ũ�(t) =
∫ t+h

t
ũ�
t (s) ds

=
∫ t+h

t

N−1
∑

k=0

χ[tk ,tk+1)(t)u
k
t (s, x)χ�(tk )(x) ds := u�

1 (t, h).

We claim that
∫ t2−h

t1
‖u�

1 (t, h)‖W−1,p′ (K )
dt → 0 as h → 0+ (3.10)

uniformly in N ; this would imply (3.9). To prove it, we sumup all the estimates coming
from Lemma 3.9 for different values of k in order to cover the cylinder C . We obtain
that there exist C̃ > 0 independent of N and t ∈ [t1, t2] such that ‖u1(t, h)�‖Y ≤ C̃h,
which implies (3.10). Hence, ũ� is strongly compact in L1(C). Now any compact
set in ˜� can be covered by a finite number of open cylinders. To conclude, we take a
countable sequence of compact sets embedded in ˜� whose increasing union exhausts
˜� and apply a diagonal procedure. �

COROLLARY 3.11. There exists a subsequence of {ũ�} which converges strongly
in L1(QT ).

Proof. We can combine Lemma 3.10 with the uniform bound provided by Lemma
3.5 to use Lebesgue’s dominated convergence theorem. Note that the functions are
constantly equal to ψ outside �� and that Lemma 3.4 applies. �

4. Existence of solutions

In this section, we prove the existence of weak solutions of (2.1).
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4.1. Convergence of the approximate solutions

LEMMA 4.1. There are functions ũ, u such that the following statements hold (up
to extracting a subsequence) for N → ∞:

(1) ũ� ⇀ ũ weakly in L p(0, T,W 1,p(Q0)) ∩ L∞(QT ),
(2) ũ� → ũ in L1(QT ) and a.e. in QT ,
(3) ψ� → ψχQT \˜� in L1(QT ) and a.e. in QT ,

(4) u� → u in L1(˜�),
(5) ũ = u + ψχQT \˜� and u = ũχ

˜�.

Proof. The first statement follows from Lemma 3.5 and Corollary 3.7. The second
statement follows from Corollary 3.11. To prove the third statement we write

‖ψ� − ψχQT \˜�‖L1(QT ) ≤ ‖ψ‖L∞(QT )‖χQT \�� − χQT \˜�‖L1(QT ) → 0

as N → ∞, thanks to Lemma 3.4. It follows that

u� = ũ� − ψ� → u := ũ − ψχQT \˜� in L1(˜�).

Since �� → ˜� by Lemma 3.4, we get that ũ� → ψ a.e. in QT \˜�, so that u is
supported on ˜�. �

Recalling Lemma 3.5 it follows that, up to a subsequence, ũ� → ũ in L p(QT ) and
u� → u in L p(˜�), for all 1 ≤ p < ∞.
We now discuss the convergence of the time derivatives.

LEMMA 4.2. There exists ˜� ∈ D′(QT ) such that, up to extraction of a sub-
sequence, ũ�

t ⇀ ˜� in D′(QT ). In fact, ˜� agrees as a distribution over QT with
the time derivative (in distributional sense) of the function ũ defined in Lemma 4.1.
Moreover, given any cylinder C := (ta, tb) × K ⊂⊂ ˜�, there holds that ˜�|C ∈
L p′

(0, T ;W−1,p′
(K )) and ũ�

t |C ⇀ ˜�|C in L p′
(0, T ;W−1,p′

(K )).

Proof. Let us denote by 〈·, ·〉 the pairing between D′(QT ) and D(QT ). Given φ ∈
D(QT ), we compute

〈ũ�
t , φ〉 = −〈ũ�, φt 〉 = −

∫ T

0

∫

Q0

ũ�φt dxdt.

We may now use Corollary 3.11 to pass to the limit, so that

−
∫ T

0

∫

Q0

ũφt dxdt = lim
N→∞〈ũ�

t , φ〉 = 〈˜�,φ〉

up to a subsequence. This shows the first and second statements.
Our last statement is a consequence of Lemma 3.9, which provides uniform bounds

on the time derivative over cylinders contained in ˜� as in Lemma 3.10. �
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COROLLARY 4.3. Let �t1,t2 := [t1, t2] × K such that �t1,t2 ∩ ∂˜� = ∅. Then
ũ ∈ C(t1, t2; L2(K )).

Proof. Let φ ∈ D(�t1,t2). By previous considerations, we know that (φũ)t ∈ L p′

(t1, t2;W−1,p′
(K )) and also (φ ũ)(t) ∈ W 1,p

0 (K ) for a.e. t1 < t < t2. Using Lemma
3.3, we deduce that φ ũ ∈ C(t1, t2; L2(K )). Being φ and K arbitrary, the thesis
follows. �

COROLLARY 4.4. There holds that ˜�|˜� ∈ V∗.

Proof. Let φ ∈ C1
c (

˜�). Thanks to Lemma 3.9, we have that

|〈˜�,φ〉V∗−V | ≤ ||φ||V
(

c‖ũ‖p−1
L p(0,T,W 1,p(Q0))

+ ‖b‖L p(0,T,L p′ (Q0))

)

.

Our claim follows by a duality argument. �

4.2. Recovery of the limit equation

Our next aim is identifying the limit equation. Let us define

A�(t, x) :=
N−1
∑

k=0

χ[tk ,tk+1)(t)A(tk, x, u
k,∇uk)χ�(tk)(x).

LEMMA 4.5. There exists a function Ā ∈ L p′
(QT )d such that A� ⇀ Ā in

L p′
(QT )d as N → ∞, up to a subsequence. Moreover, Ā is supported in ˜�.

Proof. This follows directly from (2.3) and Lemma 3.6. �

To identify Ā, we will require a number of auxiliary results.

LEMMA 4.6. Let φ be smooth and such that supp φ ⊂ �� ∩ ˜�. Given τ > 0 we
define

ρτ := 1

τ

∫ t

t−τ

((φ(t) − φ(s))u(s) ds

(we set ρτ := 0 when the previous formula does not make sense), being u the function
defined in Lemma 4.1. Then ρτ ∈ V for any τ > 0 and ρτ → 0 in V as τ → 0.

Proof. Since supp ρτ ⊂ �� ∩ ˜� for small τ , we can approximate ρτ in the norm of
V by functions in C1

c (
˜�) convolving with a mollifying sequence, so that ρτ ∈ V .

Let now K ⊂ R
d be an open set such that K ⊂ ��(t) a.e. t ∈ (ta, tb) for some

values 0 ≤ ta < tb ≤ T . Thanks to [16, Ch. 2, Th. 9], we get that ρτ → 0 in
L p(ta, tb;W 1,p(K )) as τ → 0. Covering suppφ with a finite collection of cylinders
of the form (ta, tb) × K yields the desired result. �

LEMMA 4.7. Let φ be smooth and such that supp φ ⊂ �� ∩ ˜�. Then

lim sup
N→∞

∫ T

0

∫

��(t)
A� · ∇u�φ dxdt ≤

∫ T

0

∫

�(t)
Ā · ∇u φ dxdt. (4.1)
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Proof. Let τ > 0 and define

uτ (t) = 1

τ

∫ t

t−τ

u(s) ds.

By multiplying the equation for u� by (u� − uτ )φ and integrating by parts, we get

∫ T

0

∫

��(t)
(u� − uτ )u�

t φ dxdt =
∫ T

0

∫

��(t)

(

u� − uτ
)

divA�φ dxdt

= −
∫ T

0

∫

��(t)
A� · ∇u�φ dxdt −

∫ T

0

∫

��(t)
A� · ∇φ u� dxdt

+
∫ T

0

∫

��(t)
A� · ∇uτ φ dxdt +

∫ T

0

∫

��(t)
A� · ∇φ uτ dxdt

:= I + I I + I I I + I V .

Let us elaborate on the left hand side of the previous equality. We compute

∫ T

0

∫

��(t)
u�u�

t φ dxdt =
∫ T

0

∫

��(t)
φ

∂

∂t

[

(u�(t))2

2

]

dxdt

= −
∫ T

0

∫

��(t)

(u�(t))2

2
φt dxdt → −

∫ T

0

∫

�(t)

u2

2
φt dxdt

as N → ∞, thanks to Lemma 4.1. Next, we have that

−
∫ T

0

∫

��(t)
uτu�

t φ dxdt = −
∫ T

0

∫

��(t)
u�
t

φ

τ

∫ t

t−τ

u(s) ds dxdt

= −
∫ T

0

∫

��(t)
u�
t

{

(φ u)τ + 1

τ

∫ t

t−τ

((φ(t) − φ(s))u(s) ds

}

dxdt

=
∫ T

0

∫

��(t)
(φu)τt u

� dxdt −
∫ T

0

∫

��(t)
ρτu�

t dxdt

=
∫ T

0

∫

��(t)

φ(t)u(t) − φ(t − τ)u(t − τ)

τ
u� dxdt

−
∫ T

0

∫

��(t)
ρτu�

t dxdt

=: A + B.

Thanks to our assumptions on φ, we have that

B = −
∫ T

0

∫

��(t)
ρτ

N−1
∑

k=0

χ[tk ,tk+1)u
k
t χ�(tk) dxdt

for τ small enough. We then pass to the limit in B by Lebesgue’s dominated conver-
gence theorem. Indeed, if τ is small enough Lemma 4.2 enables to get a.e. convergence
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of the integrand, domination follows as the duality product is uniformly bounded. To
deal with the limit of A as N → ∞ we may use Lemma 4.1(4) together with the fact
that the incremental ratio is essentially bounded (after Lemma 3.5). Gathering all the
previous and letting N → ∞, we find that

−
∫ T

0

∫

��(t)
uτu�

t φ dxdt →
∫ T

0

∫

�(t)

φ(t)u(t) − φ(t − τ)u(t − τ)

τ
u dxdt

−
∫

QT

ρτ
˜� dxdt,

which is bounded from below by

∫ T

0

∫

�(t)

φ(t) − φ(t − τ)

τ

u2(t)

2
dxdt −

∫

QT

ρτ
˜� dxdt.

Letting τ → 0+ and using Lemma 4.6, we obtain

∫ T

0

∫

�(t)
φt

u2(t)

2
dxdt,

so that lim infτ→0+ lim infN→∞(I + I I + I I + I V ) ≥ 0.
We are now ready to compute the limit of I + I I + I I I + I V when N → ∞. First,

we find out that

II → −
∫ T

0

∫

�(t)
Ā∇φ u dxdt

using Lemmas 4.1(4) and 4.5. We also have

III →
∫ T

0

∫

�(t)
Ā∇uτ φ dxdt

as N → ∞ (clearly ∇uτ ∈ L p(QT )d ). Note that ∇uτ = (∇u)τ → ∇u in L p
loc(

˜�)d ,
as in the proof of Lemma 4.6. Taking limit τ → 0, the above integral converges to

∫ T

0

∫

�(t)
Ā∇u φ dxdt.

Finally, arguing as before we get that

I V →
∫ T

0

∫

�(t)
Ā∇φ uτ dxdt

as N → ∞, which converges to

∫ T

0

∫

�(t)
Ā∇φ u dxdt
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after taking the limit τ → 0. Hence,

lim sup
N→∞

∫ T

0

∫

�(t)
A�∇u�φ dxdt ≤

∫ T

0

∫

�(t)
Āφ∇u dxdt

and the result follows.
�

LEMMA 4.8. There holds Ā(t, x) = A(t, x, u,∇u) a.e. in ˜�.

Proof. We use Minty–Browder’s technique. Let 0 ≤ φ ∈ C1
0(QT ) with suppφ ⊂

�� ∩ ˜�, and let g ∈ C1(QT ). Thanks to the monotonicity assumption (2.5), we have
∫ T

0

N−1
∑

k=1

∫

�(tk)
(A(tk, x, u

�,∇u�) − A(tk, x, u
�,∇g))(∇u�(t) − ∇g)φ dxdt ≥ 0.

From Lemma 4.7 we get

lim sup
N→∞

∫ T

0

N−1
∑

k=1

∫

�(tk)
A(tk, x, u

�,∇u�)∇u�φ dxdt ≤
∫ T

0

∫

�(t)
Ā∇uφ dxdt.

We now show that
∫ T

0

N−1
∑

k=1

∫

�(tk)
A(tk, x, u

�,∇g)∇u�φ dxdt →
∫ T

0

∫

�(t)
A(t, x, u,∇g)∇u φ dxdt,

(4.2)
as N → ∞. Indeed, recalling (2.6) we have
∣

∣

∣

∣

∣

A(t, x, u,∇g)−
N−1
∑

k=1

A(tk, x, u
�,∇g)χ[tk ,tk+1)

∣

∣

∣

∣

∣

≤
N−1
∑

k=1

χ[tk ,tk+1)(w(|t − tk |)

+C |u(t, x)−u�(t, x)|)|∇g|p−1.

Note that the right-hand side above converges to zero a.e. in ˜� and also in L p(˜�) for
all p < ∞ as N → ∞. On the other hand, ∇u� ⇀ ∇u weakly in L p

loc(
˜�)d thanks

to Lemma 4.1, which yields (4.2). In a similar way we show that
∫ T

0

N−1
∑

k=1

∫

�(tk)
A(tk, x, u

�,∇g)∇g φ dxdt →
∫ T

0

∫

�(t)
A(t, x, u,∇g)∇g φ dxdt.

Finally we obtain that
∫ T

0

N−1
∑

k=1

∫

�(tk)
A(tk, x, u

�,∇u�)∇g φ dxdt →
∫ T

0

∫

�(t)
Ā∇g φ dxdt

thanks to Lemma 4.5. Summing up, we obtain
∫ T

0

∫

�(t)
( Ā − A(t, x, u,∇g))(∇u(t) − ∇g)φ dxdt ≥ 0.

This implies that Ā = A(t, x, u,∇u) for a.e. (t, x) ∈ suppφ, by means of Minty–
Browder’s method (see, for instance, [18, Ch. 9.1]). �
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4.3. Recovery of boundary and initial conditions

PROPOSITION 4.9. The function u defined in Lemma 4.1 is a weak solution of
problem 2.1 in the sense of Definition 2.6. Furthermore, u(t) → u0 a.e. as t → 0.

Proof. Let φ ∈ C∞
0 (QT )with suppφ ⊂ ��∩˜�.We fix a value of k ∈ {1, . . . , N−1}

and test the approximating problem in [tk, t) × �(tk) with t < tk+1. That is,
∫

�(tk)
u�(t)φ(t) dx +

∫ t

tk

∫

�(tk)
A� · ∇φ dxds

=
∫

�(tk)
u�(tk)φ(tk) dx +

∫ t

tk

∫

�(tk)
u�(s)φs dxds

for any t ∈ [tk, tk+1). By adding these contributions from 0 to t ∈ (t j , t j+1], j ∈
{1, . . . , N − 1}, we get

∫

��(t)
u�(t)φ(t) dx +

∫ t

0

∫

��(s)
A� · ∇φ dxds

=
∫

�(0)
u0φ(0) dx +

∫ t

0

∫

��(s)
u�(s)φs dxds

+
j

∑

k=1

(∫

�(tk )
u�(tk+)φ(tk) dx −

∫

�(tk−1)

u�(tk−)φ(tk) dx

)

. (4.3)

Since suppφ ⊂ ��, we also have
∫

�(tk)
u�(tk+)φ(tk) dx −

∫

�(tk−1)

u�(tk−)φ(tk) dx

=
∫

�(tk )\�(tk−1)

ψ(tk)φ(tk) dx −
∫

�(tk−1)\�(tk)
u�(tk−)φ(tk) dx = 0.

Thanks to Lemma 4.1(4), u� converges strongly to u in L1(suppφ). Hence, we can
pass to the limit in (4.3) and obtain

∫

�(t)
u(t)φ(t) dx +

∫ t

0

∫

�(s)
A(t, x, u,∇u) · ∇φ dxds

=
∫

�(0)
u0φ(0) dx +

∫ t

0

∫

�(s)
u(s)φs dxds

for a.e. 0 < t ≤ T , which holds for any φ ∈ C∞
0 (QT ) with suppφ ⊂ ˜�. This can be

stated as

ut = divA(t, x, u,∇u) in D′(˜�).

Furthermore, since ũ ∈ L p(0, T ;W 1,p(Q0)) and ũ = ψ a.e. QT \˜�, we get that
u(t) − ψ(t) ∈ W 1,p

0 (�(t)) for almost any t ∈ (0, T ). Hence, we also recover the
boundary conditions at ∂l˜� in the limit.
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Let us deal next with the initial condition. Note that for t small enough we have
∫

�(t)
u(t)φ(t) dx =

∫

�(0)
u0φ(0) dx + C(φ)t

for some C(φ) > 0. Here we use that we assume condition 4 on the time slicing (and
specifically on t0 = 0) as specified at the beginning of Sect. 3. Hence,

lim
t→0

∫

�(t)
u(t)φ(t) dx =

∫

�(0)
u0φ(0) dx .

Now let K ⊂⊂ �(0) such that ũ ∈ C(0, t1, L2(K )) for some t1 > 0 (which exists
as ˜� is Lipschitz). Then u(t) converges in L2(K ) to some ū0 as t → 0. This limit ū0
must agree with the distributional limit u0 over K . Hence, u(t) → u0 in L2

loc(�(0))
as t → 0. In particular, we get a.e. convergence to the initial condition. Note that this
works in the same way for any relatively open subset of ∂−1˜�.
Finally we justify that u−ψ ∈ V . Oncewe have shown that the boundary conditions

on ∂l˜� are fulfilled, it is easy to construct a sequence ηn belonging to C1
c (

˜�) and
satisfying‖(u−ψ)−ηn‖V → 0 asn → ∞. For instance,wemay considerG ∈ C1(R)

such that |G(t)| ≤ |t |, G(t) = 0 if |t | ≤ 1 and G(t) = t if |t | ≥ 2. We also consider
ρn to be a standard mollifying sequence. Then ηn = G(nρn ∗ (u − ψ))/n has the
desired properties. �

The argument above also shows that, given a cylinder [t1, t2] × K ⊂⊂ ˜�, the
map t �→ u|K is L2-continuous in [t1, t2]. As a consequence, if we fix t > 0 then
u(s) → u(t) as s → t a.e. in �(t). In this sense, we can claim that t �→ u(t) ∈
C(0, T, L2(�(t))).

5. Uniqueness of solutions

We start with a technical result which can be proved as in [28, Proposition 2.6].

PROPOSITION 5.1. Let Assumptions 2.1–2.4 and 2.8 be satisfied. Then the fol-
lowing integration by parts formula holds:

∫ t2

t1
〈ut , v〉s + 〈vt , u〉s ds =

∫

�(t2−)

u(t2−)v(t2−) dx −
∫

�(t1+)

u(t1+)v(t1+) dx,

(5.1)
for any 0 ≤ t1 < t2 ≤ T and any u, v ∈ V , where 〈·, ·〉t indicates the pairing between
W−1,p′

(�(t)) and W 1,p
0 (�(t)).

Proof of Theorem 2.9. Let ũ1, ũ2 be two solutions of (2.1). Let ε > 0 and define

gε(x) :=
{

sign(x)
(

− 5|x |4
16ε4

− 2|x |3
ε3

− 9|x |2
2ε2

+ 4|x |
ε

)

|x | < 2ε,

sign(x) |x | ≥ 2ε
∈ C2(R),
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which is a regularization of the sign function that converges pointwise as ε → 0. Note
also that we have gε(ũ1 − ũ2) ∈ L p(0, T,W 1,p

0 (Q0)). Besides, supp gε(ũ1 − ũ2) lies
in the closure of ˜�. Then, with a slight abuse of notation, gε(ũ1 − ũ2) = gε(u1 − u2).

We pick {φn}n ∈ D(QT ) such that φn → gε(u1 − u2) strongly in L p(0, T,W 1,p
0

(Q0)) and supp φn ⊂ ˜�. Note that the pairing

〈(u1 − u2)t , φn〉V∗−V

makes sense and is bounded independently of n. Then we substitute φn in (2.13). On
one hand, when n → ∞ we get

∫

˜�

φn(u1 − u2)t dxdt →
∫

˜�

gε(u1 − u2)(u1 − u2)t dxdt.

On the other hand, integrating by parts and using (2.3),
∫

˜�

φn(u1 − u2)t dxdt = −
∫

˜�

∇φn (A(t, x, u1,∇u1) − A(t, x, u2,∇u2)) dxdt

→ −
∫

˜�

∇gε(u1 − u2) (A(t, x, u1,∇u1) − A(t, x, u2,∇u2)) dxdt as n → ∞.

Thus, we have shown that

〈(u1 − u2)t , gε(u1 − u2)〉V∗−V = −
∫

˜�

g
′
ε(u1 − u2)∇(u1 − u2)[A(t, x, u1,∇u1)

−A(t, x, u2,∇u2)] dxdt.
Using the fact that

[gε(u1 − u2)]t = g′
ε(u1 − u2) · (u1 − u2)t in D′(˜�)

and denoting

pε(x) :=
⎧

⎨

⎩

xg′
ε(x) x ∈ (−2ε, 2ε)

0 |x | ≥ 2ε
∈ C1(R)

we may argue as before to obtain that

〈[gε(u1 − u2)]t , u1 − u2〉V∗−V = −
∫

˜�

∇[pε(u1 − u2)][A(t, x, u1,∇u1)

−A(t, x, u2,∇u2)] dxdt.
In such a way,

〈(u1 − u2)t , gε(u1 − u2)〉V∗−V + 〈[gε(u1 − u2)]t , u1 − u2〉V∗−V

= −
∫

˜�

∇(u1 − u2)[A(t, x, u1,∇u1) − A(t, x, u1,∇u2)]
× {

g′
ε(u1 − u2) + p′

ε(u1 − u2)
}

dxdt

−
∫

˜�

∇(u1 − u2)[A(t, x, u1,∇u2) − A(t, x, u2,∇u2)]

×
{

2g′
ε(u1 − u2) + (u1 − u2)g

′′
ε (u1 − u2)

}

dxdt
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The first term above is less or equal than zero due to (2.5) and the fact that g′
ε + p′

ε ≥ 0;
hence,we can neglect it. As regards the second term,we notice that there is someC > 0
such that

|g′
ε(x)| ≤ C/ε, |xg′′

ε (x)| ≤ C/ε ∀x ∈ −(2ε, 2ε).

Then we use (2.6) to write

II ≤ 2C

ε

∫

˜�

χ{|u1−u2|<2ε}|∇(u1 − u2)||∇u2|p−1|u1 − u2| dxdt

≤ 4C
∫ T

0

∫

|u1−u2|≤2ε
|∇(u1 − u2)||∇u2|p−1 dxdt := θ(ε),

which is uniformly bounded with respect to ε. In fact this term vanishes in the limit
ε → 0 given that ∇(u1 − u2) = 0 almost everywhere on the set of points such that
u1 − u2 = 0. Then, thanks to (5.1) we obtain that

∫

�(T−)

gε(u1 − u2)(T−)(u1 − u2)(T−) dx

−
∫

�(0)
gε(u1 − u2)(0)(u1 − u2)(0) dx ≤ θ(ε)

and thus taking the limit ε → 0 we find
∫

�(T−)

|u1 − u2|(T−) dx ≤
∫

�(0)
|u1 − u2|(0) dx

for any T > 0. This implies our uniqueness result. �

REMARK 5.2. This proof can be considerably simplified if the operator A does
not depend explicitly on u, as we can choose gε(x) = x in the previous computations
and all the proof boils down to the monotonicity property (2.5).

REMARK 5.3. Let us note that the same uniqueness proof can be extended to
the case in which there exists a finite number of times t0 := 0 < t1 < · · · <

tN−1 < tN := T such that ((ti , ti+1) × Q0) ∩ ˜� verifies Assumption 2.8 for each
i = 0, . . . , N −1. Namely, the former proof would show that any two solutions u1, u2
with the same initial datum agree on ((0, t1) × Q0) ∩ ˜�. Taking traces at t1−, we find
that u1 = u2 a.e. on �(t1−). Thus, u1 = u2 a.e. on �(t1+) and we can repeat the
former uniqueness proof to obtain that u1 agrees with u2 on ((t1, t2) × Q0) ∩ ˜� and
hence on (0, t2) × Q0 ∩ ˜�. We can continue in this way until we reach uniqueness in
the whole of ˜�.

REMARK 5.4. We observe that Assumption 2.8 could be replaced by the more
general requirement that the domain ˜� satisfies (5.1). In fact, it suffices to have (5.1)
with a “≥” instead of “=,” and only for functions u, v ∈ V such that u v ≥ 0.
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