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On the Cauchy problem for the compressible
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Abstract. In this paper, we consider the large time behavior of solutions to the three-dimensional com-
pressible Hall-magneto-hydrodynamics equations. We first establish the uniform estimates of the global
smooth solution with respect to the Hall coefficient €. Then we obtain the optimal decay estimates with
the aid of a negative Sobolev space. We next show that the unique smooth solution of the compressible
Hall-magneto-hydrodynamics system converges globally in time to the smooth solution of the compressible
magneto-hydrodynamics system as € tends to zero. We also give the convergence rate estimates for any
given positive time.

1. Introduction

Spacecraft observations of magnetic and velocity fluctuations in the solar wind
show a distinct steepening of the f -3 power law inertial range spectrum at frequen-
cies above the Doppler-shifted ion cyclotron frequency, where f is the spacecraft
rest frame frequency. This is commonly attributed to dissipation due to wave—particle
interactions. To investigate the extent to which this steepening can be described, the fol-
lowing three-dimensional magneto-hydrodynamic (MHD) formulation that includes
the so-called Hall term has been presented by Ghosh et al. [13]:

on+ V- (nu) =0,
d(nu) +V-(mu®u)+Vphn) =puAu+ (u+v)V(V-u)+ (V xb) xb,
(Vxb)xb

B,b+Vx(bxu)+er(
n

) — _V x(Vxbh).

(1.1)
Here the unknowns n denotes the density of the fluid, u the velocity of the fluid, and
b the magnetic field, respectively. This system is closed by using a polytropic relation
between pressure and density p(n) = an? with positive constants a and y > 1. The
constant viscosity coefficients p and v satisfy the usual physical conditions

uw>0 and 2u+3v > 0.
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The small parameter € := ‘5—? is called Hall coefficient, where w4 is the Alfven
frequency of the lowest wave number and €2; is the ion cyclotron frequency. Hence
the reciprocal of € is the resonant wave number at which the nondispersive Alfven
frequency resonates with the ion cyclotron frequency. In particular, when € = 0,
Eq. (1.1) become the classical compressible MHD equations. Compared with the
classical MHD equations, the Hall-MHD equations (1.1) have the Hall term V x
(VXnM in (1.1)2, which is believed to be the key for understanding the problem
of magnetic reconnection and cannot be described in the framework of ideal MHD,
due to the frozen-field effect. Thus the Hall-MHD system (1.1) is very important in
describing many phenomena such as magnetic reconnection in space plasmas, star
formation, neutron stars and geo-dynamo (see [15,18,19,21] and references therein).

From a mathematical point of view, while the classical compressible and incom-
pressible MHD equations are well understood for quite long time (see e.g., [17]),
the Hall-MHD equations have received little attention from mathematicians. Until
recently, Acheritogaray et al. [1] derived the compressible and incompressible Hall-
MHD equations from either two fluids model or kinetic models in a mathematically
rigorous way. Then for the incompressible cases, the global existence of weak so-
lutions, local well-posedness of classical solution and global existence of smooth
solutions with small initial data are established by Chae et al. [3]. Very recently, tem-
poral decay for the weak solution and smooth solution is established by Chae and
Schonbek [5], and the blow-up criterion and small data global existence are obtained
by Chae and Lee [4]. For more related works on incompressible Hall-MHD, we refer
to [6-8,10,11,20] and references therein. On the other hand, for the compressible
cases (1.1), we only find the paper [9,12], where the authors proved the existence of
global small solutions with small initial data and established some decay estimates.

In the present paper, we study the Cauchy problem of the MHD equations (1.1),
which is supplemented with the following initial data

(n,u,b)(x,0) = (no(x), wo(x), bo(x)) = (1,0,0) as |x] — +o0,

where 7 is a positive constant. We will also assume that V - by = 0. Notice that by
taking the operation div on both sides of (1.1); we have 9;(V - b) = 0. This means
that the divergence-free condition of by can be propagated. Thus we can formulate
our problem as follows:

on+ V- (na) =0,
d(nu) +V-(mu®u)+Vphn) =puAu+ (u+v)V(V-u)+ (V xb) xb,

(Vxb)xb

8,b+Vx(bxu)+er(
n

V-b=0,
(n,u,b)(x, 0) = (o, ug, bo) (x)

):Ah

(1.2)
inR3 x (0, +00).
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We shall establish the global existence and optimal decay estimates of the classical
solution to system (1.2) when the initial data are small perturbations around the given
constant state (12, 0, 0). The novelty is twofold: first, to allow the higher-order deriv-
atives of initial data to be of large oscillations with constant state at far field; second,
to establish the uniform estimates of the global smooth solutions with respect to the
Hall coefficient €. With the help of the latter, we will also investigate the vanishing
Hall limit € — 0 of the global-in-time solutions to equations (1.2).

We introduce the set:

My = {o € H*®) | IV0ll 1 < Mo}

for any k > 3 and My > 1, and state our global existence result as follows.
THEOREM 1.1. (Global existence) Assume that (no — 1, ug, bo) € My ym, and

=112 2 2 2
llno — %1 + ol + Ibol%, < e
for some positive constant €. Then if ¢ is suitable small, the compressible Hall-MHD
equations (1.2) admit a unique global solution (n,u, b) satisfying the uniform esti-
mates:

(1) = 3 + T + b1 )
t
+ /0 (||Vn<r)||§,k,1 + Va2 + ||Vb(r>||§,k)dr
< c(nno — i3 + Il + ||bo||§,k) (1.3)

forallt > 0, where the positive constant C is independent of € and t.

REMARK 1.1. From a physical viewpoint, the Hall term restores the influence of
the electric current in the Lorentz force occurring in Ohm’s law, which was neglected
in conventional MHD models. This term is quadratic in the magnetic field and involves
second-order derivatives, and thus its influence becomes dominant in the cases where
the magnetic shear is large. This intuitively explains why our results are more subtle
than the standard MHD equations even in the classical framework (e.g., for initial data
with small H3 norm).

We next investigate the decay rate of solutions of the Cauchy problem (1.1) around
the steady state (1, 0). Precisely, we will apply the energy method together with the
negative index Sobolev spaces to prove the optimal decay rate of the solution to the
problem (1.2).

THEOREM 1.2. (Decay estimates) Under the assumptions Theorem 1.1, if we
further assume that (ng — n,ug, bg) € H™S for some s € [O, %) then the global
solution (n, u, b) satisfies

In(t) = 713, + @)% + Ib®)5, < C (1.4)
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and

IV =) O3+ Va7 + VDO, < 4+~ @ =0,1,... k=1
(1.5)
forallt > 0, where the positive constant C is independent of € and t.

REMARK 1.2. For € = 1, the corresponding decay estimate has been established
by [9,12] under the assumption that the H> norm of initial data is small and that the
L' norm is finite. Notice that if f € L'(R?) N L*(R3), we have f € H*(R3) for
s € [0, %) by the Littlewood-Payley decomposition. Thus we relaxed the regularity
and smallness conditions on the initial data required in [9, 12].

REMARK 1.3. The key point of our result is that all of our estimates are uniform
in the Hall coefficient € in Theorems 1.1 and 1.2.

We now turn to show that the unique smooth solution of the three-dimensional
compressible Hall-magneto-hydrodynamics system converges globally in time to the
smooth solution of the three-dimensional compressible magneto-hydrodynamics sys-
tem as the Hall coefficient € tends to zero. We also give the convergence rate estimates
for any given positive time.

THEOREM 1.3. (Vanishing Hall limit) Assume that (n€,u¢, b¢) and (n°, u°, b°)
are two solutions to equations (1.2) obtained in Theorem 1.1 corresponding to € > 0
and € = 0, respectively. Then it holds that

n® —n’ u®—u’ and b - b strongly in C(0,1; HII;;G)

with o € (0, %), as € — 0. Moreover, we have the following the convergence rate
estimates:

In€ (1) = n® (1132 + 10 (@) — w@) 1362 + () = bO) |76

< €2 for any 1 € [0, 00).

The rest of this paper is organized as follows. In Sect. 2, we establish the uniform
estimates and global existence of smooth solution with respect to the Hall coefficient
€. Then we obtain the optimal decay estimates with the aid of a negative Sobolev space
in Sect. 3. We next give the convergence rate estimates for any given positive time in
Sect. 4. In Appendix, finally, we state several basic inequalities used in this paper.

Notations: Throughout this paper, V¢ with a nonnegative integer ¢ stands for the
usual spatial derivatives of order £. The letters ¢ and C denote generic positive constants
which may vary in the context.

2. Global existence

In this section, we will investigate the uniform estimate and global existence of
classical solutions to (1.1) around the state (7, 0, 0). Without loss of generality, we
can take n = 1 for simplicity. Then by setting p = n — 1 and
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1

o A= ay((p+ 1772 1),

glp) = p(p) =

_r_
p+1
we can rewrite (1.2) as the following form:
p+V-u=—-—pV-u—u-Vp,
ou— puAu— (u+v)V(V-u)+ayVp
=—u-Vu—pug(p)Au— (u+v)g(p)V(V - u)
1

+¢(0) (b Vb= 3VIbI2) = h(0) V. @1
b — Ab = —eV x ((v % b) x (¢(p)b)) —u-Vb+b-Vu—bV-u,
V.-b=0,
(p1 u, b)(-x1 0) = (no - 17 U, bo)(x)

in R3 x (0, +00). We first state the local well-posedness of system (2.1) as follows.

THEOREM 2.1. (Local well-posedness) Assume that (pg, uo, bo) € H*withk > 3.
Then there exist T > 0 and a unique (p,u,b) € C([0, T1; H*) N L?([0, T]; H*)
solving equations (2.1).

Proof. The proof of Theorem 2.1 is standard, and we refer to [9] for its details. [J
For simplicity, throughout this paper, we will set
£ty = ay (1912 + 19 p12,) + 1V ulZ, + 195wl + Vb1,
+ ||V”1b||%2 + 26/ vy . viu
and

Fo @) =ays| Vo1, + o (IVH i, + 1V, + IV I, + V2012,

=8IV a7, = 8GOV ol 21V a2
Clearly, we can fix a small constant § > 0 such that

oy = (V%013 + 19 012, + 194w, + 19 2, 419 D12, +1V b2, )
(2.2)

and

Fo = (19 012, + IV H i, + 192012, + 195 )2, + V9 2D12,),
2.3)

where A >~ B means thatciB < A < %B for some fixed positive constant cj.
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Then we turn to derive the uniform nonlinear energy estimates for the system (2.1).
Some of our ideas are motivated by [2, 14]. Precisely, we first give an a priori assump-
tion on solutions and then derive the higher-order uniform estimates of solutions.
We shall complete our argument by closing the above a priori assumption. For this

purpose, we assume that
2 2 2 2 2 2 2M§
IV2p @l + IVu@ I + IV = —* (2.4)
1

and
o5 + @5, + bO7,: < & (2.5)

for any ¢ € [0, T']. Without loss of generality, we assume that My > 1,and g9 € (0, 1)
suitably small. Then we immediately obtain

lg(p)| < Clpl, le(@)| <=C, |h(p)| < Clpl|
and
1g® i <c, 1p®Pmi<c, Pl <c

for any k > 1. We now begin to derive a series of a priori estimates.

LEMMA 2.1. Let0 < ¢ < k—1 and (2.4)—~(2.5) hold. Then there exist two positive
constants co and C such that

%%(aynv‘p(z)niz + IV U1, + VDO, )
+ao(IV w2, + 194'b0))2, )
< cMged (IVF ol + IV ull,
+IVEBIZ, + Va2, + Vb, ).

Proof. We first consider the case £ = 0. Multiplying (2.1)1, (2.1)7 and (2.1)3 by ayp,
u and b, respectively, summing up and integrating the resulting equations over R3, we
obtain

1d 2 2 2
53 (@113 + @13 + b))

+ (HIVUOIZ: + @+ DIV w12, + 19012
=/(—eb-V X ((V x b) x (go(,o)b)) +aypu-Vp—u-(u-Vu)
1
—g(p)u- (,uAu +(u+v)V(V- u)) +o(p)u- (b . Vb — §V|b|2)

—h(,o)u-V,o—b-(u-Vb)+b~(b-Vu—bV-u))dx.
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For the Hall term, we have

/b~ (V% ((v xB) x (¢(p)b)) ) dv = /(v % b) - (V x b) x (¢(p)b)dx =0,

which implies that

ld 2 2 2
53 (@ 1o + @13 + 117 )

+ (HIVOOIZ, + (e + VIV w2, + 19b0)]2)
=/ (ay,ou -Vp—u-(u-Vu)—g(p)u- (/LAU+(/L +V)V(V- u))—h(,o)u -Vp
|
+o(p)u- (b Vb — EV|b|2) —b-(u-Vh)

+b- (b~Vu—bV~u))dx.
It then follows from Holder’s inequality and Sobolev embedding that

1d
Ea(m/”/)(f)“iz + ||ll(l‘)||iz + ||b(l)||iz) + C()(||Vu(1‘)||i2 + ||Vb(t)||i2)

= C(Iellsluls I Vol 2+l s lull s Vull 2 + 118/ | ull 1V pll 2 | Vull 2
+ g = IVul: + 5o ellul 51V o1l 2
+ 11Dl o (11all 5 IVB] 2 + 1] 2 [ Va2 ) )

= (Il + Iull s + bl + ol + il (1912 + 1 Val, + 1VbI2)
= C(lolla + Iall g+ b
3 o2 3 3 o2t 2 2 2
+ Vo121Vl 2 + 1Vall 212l ) (V13 + IVl + 1VbIZ,)
11
= C(e0+ Mi &g ) (IVo @12 + VI, + 1VbO)12 ).

Here we also used the facts [g'(p)| < C, [V (h(p))| < |pl. |g(p)| < |p| and |p(p)| <
C.

We now turn to the case 1 < £ < k — 1. Applying v to 2.1, (2.1) and (2.1)3,
multiplying the resulting equations by ay V¢p, Véu and Vb, respectively, summing
up and then integrating the resulting equations over R, we obtain

1d
53 (@19 013 + 191 + 19D0)13)

+(IVH DI, + (1 + IV a2, + 195 D)1

_ —e/Veb vt (v x ((v x b) x ((p(p)b))) - ay/leV£V~ (ou)
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—/ (V‘Zu . Vz(u - Vu)
+V-Vi(u-Vb—b-Vu+bV- u)) — / viu. vt (h(p)Vp)
—/v@u v (g(p)(,uAu (4 V)YV - u)))

|
—i—/Veu : v@(<p(p)(b Vb — EV|b|2))
=D+ +13+ 14 +1s + Ls. (2.6)

We now estimate the terms 71, 7>, . . ., Zg one by one. Firstly, for the Hall term 71, a
direct calculation yields that

I, = —e/v’f(v x b) - V! ((v X b) x (go(,o)b))
=—¢ / ViV x b) - (vf ((v x b) x (w(p)b)) - (V‘(V x b)) x (so(p)b))

< CIV*bl| 2 2.7)

Vi (VD) (¢(p)b)) — (VVb) (¢ (o)D)

L2
To estimate the second factor on the right-hand side of (2.7), we can use the standard
commutator estimates and Lemma 5.1 to obtain
|7 (@) (b)) = (V) (p(o2b) |,
< C[V(e@b) | 1V (VD) s + ClIVDII 3 [V (0(0)b) | 6

= C(IVo@ s Iblzs + o= Vb153 ) IV bl 2 + CIVBIL [V (p(0)b) | 2

1 1
= (VP bl + VB ) 195bl 2 + CIVBIZ IV2bI 2, |V (e(o)b) 2

1 1
= ol + DIVBIL IV (195Dl 2 + [V (b)) 2.8)

It remains to estimate the last term || V¢! ((p(p)b) ||;2. For this purpose, we can use
the product estimates, the boundedness of ¢, Lemma 5.1 and the interpolation to get

[V (@) | 2 = Clle) | IV B2 + ClibllLe |V (0(0) || ,2
< CIVDl 2 + Clbll 2 IV ol 2 (2.9)

Then substituting (2.8) and (2.9) into (2.7), we have

1 1
Ti < Cllpllg2 + Dbl 2 + DIVBIZ 192012 IV 013, + 1V bI2,)

501
= cMged (I 012, + Vb1, ). (2.10)
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For the term 7, we first use the integration by parts and Holder’s inequality to
obtain

T, =ay/V‘“p Vi) < CIIVH o)l 2 VE (o) | 2. 2.11)

Notice that by the product estimates and Sobolev embedding, we have

194 owllz2 = C (19 plelluls + 1V ullsllpll5)

= (V™ pllzlull g + 1Vl 2ol ).

which together with (2.11) gives that

o = (ol + Il ) (19 212, + 19 w2, )

< Cao(IV* 012, + 1V uli2,). 2.12)
Similarly, for the term Z3, we have

T :/(v”‘u.ve’l(u.Vu)+Ve+1b~Vg’l(u-Vb—b-Vu+bV~u))

< CIV*hull 2 [V @ Va2
+CIVb) L (19 @ - Vb 2

IV D Vo)l 2 + [V BV - u>||Lz). (2.13)
It follows from the product estimates and the interpolation that

IV @ - Va2 < CIVE a6l Vall s + Cllall 311Vl 26
< C|IVaull 2 IVull 3 + Cllull g1 [V a2

1 o+1 L
+1 == +1 £+1 +1
< Cllull 3 1V 22 ul 2 VT a2 + Cllull g IV a2

< Clull g IV a2, (2.14)

Similarly, we can deduce that

IVt @ - Vb) 2 + IV b - V)l 2 + VLBV - w2
4 l+1 4 +1
sc(nv ull 2 1Vb s+l 1 IV bl 241V 2 [Vl s+ bl |V u||L2)

= (Il + 101 ) (19 w2 4+ 195 b 2). 2.15)
Substituting (2.14) and (2.15) into (2.13), we obtain

Ty = (Il + Ml ) (19wl + 19D

= Ceo IV ul, + 1V5DI2,). (2.16)
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For the term 74, it follows from the integration by parts and Holder’s inequality that
I, = / V- v (o) Vo) < IVl 219 (R(0) Vo) 2

Noticing that

IV (m(p) Vo)l 2 < CIVE (h(0) 1161V ol 3 + CllRE) 131V pll 16
< CIV ()2 1Vl s + ClE 3 1V ol 2

< CIVpll2VollLs + Cloll s IV pll 2

AL ey

1— [ZS
< Clipl, "IV pl 5TV pllz + Cllpll sV ol 2
<Cllplg IV ol 2.

we have

Ty = Clloll IV 012 + 195 ul2,) < Cao (195 o2 + IV ul2, ).
(2.17)
For 75, it follows from the integration by parts and Holder’s inequality that

Ts = / vitly. vl (g(,o)(,uAu +(u+v)V(V- u)))
< IVl 21V (g () V) | 2. (2.18)
By the product estimates, Lemma 5.1 and the interpolation, we have
IV (g(0)V2u)ll2 < CIV T g(o)llzel V2ull s + Cllig(p) |V~ VPul| 2
< CIV'e( 21Vl s + Clipl IV a2
< CIVpll 2192l 3 + CIV I LIVl 194

e T AR - S - IR bl =
< Clpll . IV pll Sl SV g,

L? L
1 1
+CIVol LIVl 1V ull 2
1 1
= C(lollee + w2 + 1V I LN 920012:) (195 o1l 2

+||VZ+2u||L2). (2.19)

Substituting (2.19) into (2.18), we obtain

11
Ts < CMGe (15 ol + 1V 2ul). (2.20)
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Finally, we investigate the term Zg. We first notice ¢(p) = 1 — g(p) and thus have
1
Ts = /vfu : vf((b . Vb) — 5V|lo|2)
4 ¢ 1 2
— [ V'u- V()b VB) = Zg(p)VIBI)
= Tg1 + Zgp. (2.21)
For Zg1, we can use similar procedure as Z3 to obtain
To1 < Clbll IV all 2195 bl < Coo (IV w2, + 199DIE, ). (222)
For Zgp, by the divergence free of b and the product estimates, we have
1
T = [ V-V ()b @ b) — SVIbP))
= IV ul 2 (197 @) oIV BB s + g (o)l [V (bb)]12).
The by Lemma 5.1 and the product estimates again, we obtain
Tez = CIVull 2 (19 U2 IDVBILs + o]~V (bb)]|2)
= IVl (197l 2 MBI e IVBIL s + ol Vbl o bl )

14 14 1 1
£+1 =7 e+l 1 =7 | ol 14 T o2
< C|v*t ll||L2(||,0||Lz S v ! Ibll, » SV D) VA L2

L? L?
ol 195 bl 2 bl 1)
< (ol + 10l ) (ol + 1612 ) (19 12, + 19wl
+IV bR, (223)
Substituting (2.22) and (2.23) into (2.21), we obtain
To < CMoso (IV* 7 pl2, + 19 uls + IV5DI2,). 224)

Summarily, substituting (2.10), (2.12), (2.16), (2.17), (2.20) and (2.24) into (2.6),
we conclude that there exists a positive constant ¢g such that

%%(aww‘pmniz + V@2, + ||V‘b(r>||iz)
+eo(IVF a2, + 1V1b ) 12)

< cMged (IVF ol + IV ull,
+ IV*bI2, + 1V 2ul2,).

This completes the proof of Lemma 2.1. 0
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LEMMA 2.2, Let0 < € < k—1and (2.4)—~(2.5) hold. Then there exist two positive
constants co and C such that

1d
52 (@ 1V @1 + 1V @ 1, + 1V b))
+ co(nvf”u(r)niz - ||v€+2b(r)||iz)
71
< CMgeq (V7 oI + IV a2+ 1V )2, 1V 2u)2, + V542D, ).

Proof. Similar to (2.6), we can deduce that
%%(ayuvf“pmniz + IV I, + 1V )12,
+(IVFuOI, + (1 + IV a2, + 1V b1,

- —e/V“l(v x b) - v‘“((v x b) x ((p(p)b))
_ay/vulpveﬂ(pv u) —ay/V”‘pV”l(u )
—/ (v“‘u V. Va) + VbV (u- Vb — b Vu 4 bV - u))
- / vitly . v (g(,o)(y,Au T (1 + V)V(V - u)))

+/v4+1u.vf+1(<p(p)(b.vt)— %V|b|2)) —/vf“u.v“l(h(p)v/))
=N+N"h+B+Ta+Ts+Ts+ T7. (2.25)

The estimates of 71, ..., J7 are similar to those of 71, ..., Zg, but we need to be
more careful since the higher-order estimates are involved. Firstly, for the Hall term
J1, a direct calculation yields that

Ji = —€ / VAV xb) - (vm((v xb) x (¢(p)b) )

—(VV x b)) x (¢<p)b))

V(WD) (o)D) ) — (V4 VB) (¢ (o)D) HLZ. (2.26)

IA

CIIVE2Db] .2

By the standard commutator estimates, Sobolev embedding and Lemma 5.1, we have

|5 () ((o)b)) = (VD) (g(o)b)|
< C|V(e@b)] 51V (V) + CUIVDIL [V (0(0)D) |
= C(I99 @11 1bll + 9 ()l Vb2 ) IV52bl) 2
+C[Vb L= |V (@(o)b) |
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< C(IVlsIbls + Vbl 3 ) V74D 2
+CIVBI (I pll 2 bl + 1V bl 2)
< C(lpll g2 + DIVBI L IV2b]2, [ V42D 2
FCIVBIL YD1 (19 ol 2 bl 2 4+ 19 bil2).
which together with (2.26) yields that
T < e ed (197 plZe + 190 bl + IV 2bI2,). @)

For the term 7>, it follows from Holder’s inequality, the product estimates and
Sobolev embedding that

Jo = CIVF pll 2V oVl 2
= CIVH pll (19 ol 2 VWl + ol V2l 2)

1 3 1 1
< C||V‘+1p||Lz(||V‘+‘p||Lz||Vu|| LIVl + Vel LIVl zznvf“unm)
31
= emie] (1IV o1, + 192l ) (2.28)
To estimate the term 73, we rewrite it as
a
T = —ay/V”]p(Ve*](u -Vp)—u- VVHI,O)) + 73// IV 12V - u.
Then by Holder’s inequality and the commutator estimates, we have
Tz < CIVH pll 2V (- Vo) —u- YV o2 + CIIVEF o7, [V oo
= CIV ol (19 w21V ol + IVull= V5 o1l 2)
+ CIVH 7, Val| o
= IVl + IVulle ) (IVF i, + 1V pI12,).
Thus by Sobolev embedding, we obtain
1 3 1 3
F = (VI LIV ol + IVul 193l ) (195l + 1994 011
3 1
= CMgeg (I ulds + 1V pl12,). (2.29)
We now turn to the term 74. we have
T = / (V“‘zu Vi Vu) + Vb Vi(u-Vb—b-Vu+bVv. u))

< CIV*2u) 2V @YW 2+ CIV bl 2 (19 @VB) 2+ [V BT 2.
(2.30)
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It follows from the product estimates and the interpolation that
IV @VW|2 < CIIVull Lol Vull 3 + Clull 31V a6
< CIV* a2 Vull 2, V2l 2, + Clull 1 V2l 2
< CMO%SO% (||vf+1u||L2 + ||V£+2ll||L2). 2.31)
Similarly, we can deduce that

IVE@VD) |2 + [IVE (bYWl 2
= (I ul 219Dl s + g 1992Dl 2 + 1V b2 | Va5

bl 1Vl 2)
< Moy (I ull 2 + 195 bl + 1V 2l 2 4 V52l ). 232)
Substituting (2.31) and (2.32) into (2.30), we obtain
Tu < CMO%SO% (||vf+1u||§2 + VDL, + IV a3, + ||vf+2b||§2). (2.33)

For the term 75, it follows from the integration by parts and Holder’s inequality that

Js = / V2V (g(0) (au + (1 + V(Y- w)) = CIVH2ul 2V (3(0)V20) 2.
(2.34)
By the product estimates, Lemma 5.1 and the interpolation, we have

IVE(2(p)V2u)ll 2 < CIIV ()l L6 IVl 3 + Clig(p)ll oo IV V2ull 2
1 3
< CIVT el 2 IVl 197l + Clipl oo IV ull 2
1 3 1 1
< CIV ol 2 IVl 1V ullE, + CIVal 2, V2ol 2, 1V a2

Thus by (2.34), we obtain
301
Ts = CMed (I oI5 + 19l ). (2.35)
For the term J5, we use ¢(p) = 1 — g(p) to rewrite it as

1
T :/v“lu : V“l((b . Vb) — §V|b|2)

- [V (gob- Vb - Sebe) 33

= Ts1 + Te2.

Similar to J4, we have

11
Jor = CMGeq (I3, + IVH b2, + 199713, ). (237)
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For the term Jg, it follows from the divergence free of b and the product estimates
that

T = [ ¥V (elo) (Vb D) - SibP)
< CIV*2u) 2 (194 D o IV BB 3 + g0 e [V BB 12).
which together with Lemma 5.1 and the product estimates again gives that
Tez = CIV2ull 2 (19 ol 2 BB s + ol V5 (bb) 2 )
= CIV 2l (IV ol 2 1Bl eI VBlL s + ol 1V bl b1
< IV 2ull 2 (19 1l 2 VB2 192Dl 2 + o2 192D 2 bl 1)
< CMozo IV 112, + 1V 2ul, + IV542b]12,). (2.38)
Substituting (2.37) and (2.38) into (2.36), we obtain
To = CMoeo IV pI12: + 195 2ulZ, + IV bIZ, + IV 2b2,). (239)

Finally, for the term 77, we first use the integration by parts and Holder’s inequality
to obtain

Ty = / vV u- Vi (h(p)Vp) < IV 2ull 2]V (h(0) V)l 2 (2.40)

Similar to Jg;, we have
IV (R(0)Vp)ll2 < CIVE(R(0)) s 1 VollLs + ClR() L=V ol 2
< CIVHL (1) 121V 0121201 %5 + Cllll IV pl 2
< CIVAIL IVl LIV ol 2. (2.41)
Substituting (2.41) into (2.40), we obtain
Fr < CMgeg (IV oI 4+ 19 2l ). (2.42)

Summarily, substituting (2.27), (2.28), (2.29), (2.33), (2.35), (2.39) and (2.42) into
(2.25), we conclude that there exists a constant ¢g such that

1d
53 (@ IV o1 + 1V ), + 195 b1 )
+ o (IV a2, + 1V2b)12.)
71
<CMjseg (||v€+‘p||iz + IV, + VBT, + 1V, + ||ve+2b||iz).

This completes the proof of Lemma 2.2. 0
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LEMMA 2.3. Let0 < ¢ < k—1 and (2.4)—(2.5) hold. Then there exist two positive
constants Co and C such that

d
- / ViV Vit ay IV plg, = IV, = Col Vol 2Vl 2

1
< CMoeg IV 12, + 1V w2, + 19512, + 1V 2ul2, + 192b)12, ).
(2.43)

Proof. Applying V¢ to Eq. (2.1), and taking the L? inner product with V¢V p, we
have

/V‘fvp.v‘a,quay||vevp||i2 —/v@vp.v@(MAu+(M+u)V(v.u))
- —/vﬁvp-v‘(u.w)—/vevp-ve(g(p)(,mu+(u+v)V(v-u)))
1
+/v@vp.v@(<p(p)(b-Vb— §V|b|2)) —/VZV,(%Ve(h(p)Vp)).

Similarly, applying V¢*! to Eq. (2.1); and taking the L? inner product with Viu, we
have

/vaatp-v@u+/v“u~v‘3+lv-u= —/vfu-v‘f“v.(pu).
By the above two equalities and the integration by parts, we obtain
d ¢ ¢ e+ 2 41,2
E/V Vo Viutay |V pll}, — [Vl
- / Vi, . vt (,mu T (14 v)V(V - u))
=/V“1p . Vi(u- Vu) —/v‘f“p-v@(g(p)(MAqu(u+v)V(v.u)))
+ [ 95159 (porb- 9
- %V|b|2)) —/v“‘p.v@(h(p)vp)) +/ve+1u.v‘+1(pu).
It then follows from Holder’s inequality that
< [ 90 ka9 i~ 19l - oy ol 9l

= IV ol (IV @YW 2 + IV (8(0) VAW 2 + [V (0 (0) DVB) | .2

HIV V)2 )
+IVE a2 IV (ow) 2, (2.44)
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where Co = 21 + v. Notice that from the estimates of 74, Js5, Jg and J7, we have

IVE@VWIl 2 + IV () VW) I 2 + IV (@) VD)l 2 + IVER(P) V)l 12

1
= CMoeg (IV* ol + IV a2 + 1V bl + 199 2ul 2 + [V42B 2 ).
(2.45)

On the other hand, by the product estimates, we have
IV w2 < IV pll 2o + [l oo |V a2
1 1 1 1
< CIVF ol 2 IVal L IVl 2, 4+ IVel 2 IVl 1V a2
11
< Mg (I pll2 + 195 ul12). (2.46)
Substituting (2.45) and (2.46) into (2.44), we obtain
d
O / ViV - Viu+ay [V )7, — IV )7, — Coll Vol 2V 2l 12

1
= CMoe (19 I, + IV a2, + 195D, + 1V 2ul2, + [ V72b]2,).

This completes the proof of Lemma 2.3. U

PROPOSITION 2.1. Let0 < £ < k — 1 and (2.4)—(2.5) hold. For any given My, if
go > 0 is suitable small, then we have

d
E&g(t) + Fe(t) <0 forany ¢ €0, T]. (2.47)
Proof. By Lemma 2.1, Lemma 2.2 and Lemma 2.3, we have

1d 501
S E0 + Fo) = CMgeg (199 oI5 + 19wl + 19 b1,
HIV a2, + 992D, ).
501
Thus if we choose gg such that C MO2 88 < %cl, we can use (2.3) to conclude that
(2.47) holds. O

Proof of Theorem 1.1. Integrating the inequality (2.47) of Proposition 2.1 from 0 to
t, we obtain
1
&+ [ Fundr =0, rei.r) (248)
0

for any 0 < £ < k — 1. Then by taking £ = 0 in (2.48) and using (2.2)—(2.3), we
conclude that
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(||p(r>||i,l + lu@®ll7,: + ||b(r>||,%,.)

t
+ /0 (IVp @12 + IVu@I, + 19b@) 13, )de

82

1
< g(llpoll?m + llwoll3 + ||bo||§1,) <= forany r€[0.T],  (249)

—

which closes the a priori assumption (2.5) provided that 2 < c%eo. On the other hand,
by summing up (2.48) from £ = 1 to 2 and using (2.2)—(2.3) again, we conclude that

(IVp @1 + IVu@I3 + IVDOI3: )

t
+ /0 (IV22 @12 + VU@, + 1V2b(0) 1%, )de

2 2M?

< S (IVPol + 1Vuollhs + 19Bol3) < =50 forany 1€ 0.7
1

3
(2.50)

which closes the a priori assumption (2.4).
Once we have closed the a priori assumptions (2.4) and (2.5), we can sum the
inequality (2.48) from ¢ = 0 to k — 1 and then complete the proof of Theorem 1.1. [J

3. Decay estimates

In this section, we establish the time decay rates for solutions to Eq. (2.1) with the
help of the global energy estimates (1.3) and negative index Sobolev space. We first
give the following energy-type estimates.

LEMMA 3.1. There exist two positive constants cy and C such that for s € (O, %],
we have

d _ _ _ - -
(1A= oI + 1A w3 + 1ATDIZ.) + <o (1A~ Vulfz + 1A VBIZ, )

= C[[(Vo, Vu VB) [ 21t [ (V. Y 90) [ e e (1A 12
1A ul2 + IATDI 2 ). (3.1)

while for s € (%, %), we have

d ) . . . .
(1A P13 + 1A ul + IATDIZ:) + o (1A~ Vul, + 1A~ VB, )

_1 3_, . . .
= Cllo,w B2 1V G0 w012 (1A pll2 + 1A w2 + ATl 2).
(3.2)
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Proof. Applying A to (2.1)1, (2.1); and (2.1)3, multiplying the resulting equations
by yA™%p, A™%u and A™*b, respectively, summing up and then integrating the re-
sulting equations over R3, we obtain

d _ _ _
< (VIAT O + 1A w1, + 1A DO
HulATVUO T2 + (+ VIATV - u@)|72 + AT Vb@)|7,

- —e/A_Sb~A_SV X ((V x b) x (w(p)b)) —/VA‘SpA_SV - (pu)
—/A‘Su-A‘S(u-Vu)
—/A’Xu “ATY (8(0)(MAU + (+v)V(V- “)))
+ [ 27w A (oprb- Vb~ Jvib)

—/A*Su.A*S(h(p)vp) —/A*Sb.A*S(u.Vb—b.Vqubv-u)
=K+ K+ K+ K4+ Ks + Kg + K. (3.3)

We will estimate the terms Ky, . .., K7 one by one.

For s € (O, %], we have % + % < 1 and % > 6. To estimate the Hall term &, we

can use the estimate for Riesz potential to obtain
K1 < CIATD)2IA™ V ((p)bVD) |l 2
s 2
= CIA~blL (19 (PVEbYBI s+ [0(0) VB e

+ lp(pIbAD] o ).

By the boundedness of ¢, ¢, the interpolation and Sobolev embedding, we deduce
that

K1 = CIATDb (IVobYbI s +IVI? ;o + [bAB] o )
L L2s+3 L2s+3

25+3
1+2s 3-2s

= CIATDl (1Bl Vol 2 IVBI, 3 + Vb1, F IVbI,E -+ bl 1 Ab,2 )

— 3 i Lts Los
<ClA ‘Yanz(||Vb||zz||v2b||zz||Vp||Lz||V2b||zz Vb2,
+ VDI, + 9Bl 1192l 2)

= CIA™bl (19012, + VD12, ).
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Here we used (1.3) and Young’s inequality in the last inequality. For K>, we have
K2 < CIA™pl2IATV - (pu) 2 < CIA™ pll 21V - (pu)

[
< CIA™ ol (19Pl 2l 3 + ol ol Vall s, )
< 1A ol (19N 1VulE IVl 5+ 19 ol 1 Va9 2l ;)
= CIA™ ol (1901 + IVal,).
Similarly, we can deduce that
K3+ K7 = C(IA7ull 2 + 147 bl ) (luvVul o
+uVbl s +[bVal o )
= c(Ia=ule + 1A7bl2) (Il 3 Va2
+ lull 3 Vbl + b3 [ Val2)
< (1A~ ull 2 + 1A~ bl ) (vl
+ Vb1, ).
The term /Cs can be similarly dealt with by noticing that

Ks < CllA™ ]l 2 [lA™* (¢(p)(bVD)) | 12 < CIIA_SUIILZ|I<ﬂ(/))(be)I|L

55
< Cl|A %u|;2|[bVb| 6 .
L2s+3

For the term K4, since

Ka < CIIA ull 2 1A™ (g(p) V)| 12

—s 2 —s 2
< CllA ull2]Ig(p)V llIIL o = ClA T ull 2oV UIIL o
we have

Ka = CIA ull2pV?ull e < CIAT ull 2ol ol Viull

6 3
2543 s+1

—s 2 %'H 3 %—s
< ClIA™ull 2 [Vl 219 2u) 2 [ VPl 2
Similarly, for the term g, we have
-5 —S
Ke < ClIA u”LZHh(p)Vp”L?SL_” <ClA uIlLZII,OV,OIILz_r%j

B B NP
=ClA SU||L2||;0||L6||VPIIL < ClIA  ull 21Vl IVopll;, -

3
s+1

Substituting the above estimates into (3.3), we obtain (3.1).
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Fors € (2 g) we have % + % <land?2 < % < 6. In this case, the estimates are

more subtle. For the Hall termK, we first use the estimates for Riesz potential and
the boundedness of ¢ and ¢’ to obtain

K1 < CIAT D)2l A7V (¢(0)bVDb) |12
—S / 2
= CIA™blL (19 (PVbYBI s+ [¢(0)IVBP| o +lp(o)bAbI o )
< CIAT DI (IVAbYBI o +IVBI> o+ [bAB] o )
Then by the interpolation, Sobolev embedding and (1.3), we can deduce that

4 3
K1 = CIA bl (9ol b1, 3 19bl2 + 19I55 VDI + bl 3 1abi2)

3—s

< cla” Aanz(nanznbn FIVBIL: I 9Bl b
bl Vb 191 )

s 3_
< 1A=l (Vb1 + 9Bl IV2bI + 19b1 51921 2

_ 3
< CIATDl21IVbI 5,
For the term K5, we have

K2 = CIAT pli2IATV - (pu)ll2 < CIAT pll 21V - (pw) Il s

L32s +3

= CIA™ ol (19wl 3 + ol 3 1Vull,2)

q_,

3_s s—1 3_s
= CIAT ol (1ol 2 Il Va2 + ol 2 IV ol 2 I Vall )

5—S

I
< CIA= I (Il IVl + 1Vp15 I Vul,2)
5_, 5_,
< CIA= ol (V15" + 1val?).

The terms K3, ..., K7 can be similarly dealt with. Summarily, we can conclude the
desired estimate (3.2). This completes the proof of Lemma 3.1. O

Proof of Theorem 1.2. For simplicity, we set
Eos() = AT pOII72 + A u@® |7, + 1A b®)]7..

Fors € (O, %], we can integrate inequality (3.1) from O to ¢ and use Holder’s inequality
to obtain

t
E() SE,(0)+C /0 [(Vo. Vu VB[22 [ (Vo Y VD) [, VES (DT

1+2s
2

t
e c( [ 150, 50.95) [y )

1-2s

! =2
([ 199090 setr) ™ s V)

O<t<t
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It then follows from (2.49) and (2.50) that

E () <C+ CM(%*Z"SHZS sup E_g(1),

0<t<t

which implies the desired estimates (1.4). We now deduce the precise decay estimates
for s € (0, %] Notice that for £ =0, 1,2, ...,k — 1, we have

1

- 1+
e+1 — ¢
IV flle = el A Fll 2 VSl

1
L+s
for some ¢ > 0, which together with (1.3) and (1.4) yields that

Folt) = &) 7. (3.4)

1+
Here we also used ||Vt pl[,2 > c||V£+1p||LJ2r”S , which follows from (1.3). Substi-
tuting (3.4) into (2.47), we deduce that

d
SLED + &)\ T < 0. (3.5)

A direct calculation gives that
S <C+n~"  (=0,1,2,....k—1), (3.6)

which implies the desired estimates (1.5).
For s € (%, %) we have (pg, ug, bg) € I-.I_% by H=SNL> c H™ for any
s’ € [0, s). Thus by using the decay estimates (3.6) with £ = 0, 1, 2, we conclude that

_1
lo@72 + @7 + Ib@)[7, < CA+072,
and
3
IV oI5 + IVu@®)13,: + IVb@II7, < C(1+1)72,

which together with (3.1) yields that
d _1 5_,
Es(t) =E5(0) + C/O (o, u, b)(r)||‘222 IV (o, u, D)D) ;1 VE (rydr
t
<C+ c/ 1+ 1) 36D 40 1G9 JE (r)dr
0

t
=c+c/ a4+ G sup Vo0
0 0<t<t
<C+C sup /E_5(7)

0<t<t

bys < % which implies the desired estimates (1.4). Then we may repeat the arguments

to obtain (3.5) and thus (3.6) with s € ( %, %), which leads to the decay estimates (1.5)
fors e (% %) This completes the proof of Theorem 1.2. g
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4. Vanishing Hall limit

In this section, we shall use the basic energy methods to derive the convergence rate
estimates from Hall-MHD equations (2.1) with € > 0 to the classical MHD equations
(2.1) with € = 0 for any given positive time.

Proof of Theorem 1.3. Let (p, u€, b€) and (p°, u®, b?) be two solutions to equations
(2.1) obtained in Theorem 1.1 corresponding to € > 0 and € = 0, respectively. Then
by the proof of Theorem 1.1, we have the uniform estimates with respect to €:

057 + O + D@3 < C (4.1)

and
t
/O (IVof @131 + 19U @ + IV @13 )dr < €. (42)

Moreover, by equations (2.1), we also have
10:0°C, Dl gr1 < €, 13 (, D)l ge—2 < € and 3¢, )] yr—2 < C.

Since the constants C on the right-hand side of the above inequalities are independent
of €, these uniform estimates together with Aubin-Lions lemma yield the existence of
a subsequence (denoted still by (o€, u¢, b)) and (5°, %, b®) such that
pf — ,50 strongly in C(O, t; Hl]f);"),
O strongly in C(0,1; Hk_“),

€ ~
u —u loc

and

b¢ — b’  strongly in C(0,1; Hk_g)

loc

with o € (0, %), as € — 0. Lemmas 5.1 and 5.3 together with the uniform estimates
(4.1) and (4.2) yield that

t bEVbe t
H G0 oedr = | @b Vb, 1) [3dT < C.
0 n¢ 0

which implies that

(V x b¢) x b€

nE

eV x ( ) — 0 strongly in Lz(O, t; Hk’l)
as € — 0. This allows € pass to the zero, and the limit (00, @0, bO) satisfies (2.1)
with zero Hall coefficient € = 0. By the uniqueness of solution to the classical MHD
equations (2.1) with € = 0, we have (5%, @%, b%) = (0°, u®, b?).

We now turn to deriving the convergence rate. For simplicity, we first define

p=p—p° u=u"—u’, and b=b—1b
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and then have

B,p-i-V-u:—(pV~u€+p0V~u+u~Vp€+uO~V,0),
it — pe(0”) Au — (i +v)p(p)V(V - 1) +ayVp
= — (- vur + 0 Var) - (200 — g(") A0S
—(n+ v)(g(pe) - g(po))VV “uf
+ (00 — o) (b° - b° — SvIbeP) 43)
+ so(po)(b Vb +b%. Vb — %V(|b€|2 — |b°|2))
= ((aG* = ") Vot + 1 (") V),

dib — Ab =~V x ((V x b) x (p(p)"))

—(u-be+u°-Vb—b-Vu€—b°-w+bv-u€+b°v-u)

with V - b = 0 and zero initial data.

Multiplying equations (4.3)1, (4.3); and (4.3)3 by ayp, u and b, respectively, sum-
ming up and integrating the resulting equations over R3, we have

1d
53 (avloll + g + 16172
+u/<p(p°)|Vu|2+(M+V)/<ﬂ(p0)|V~u\2+ VB3,
=—/p(pV-u€+p0V~u+u~V,oe)
+%/|p|2V~u0—/u~(u~Vu6+u0-Vu)
—u / u- (86 = 8(0M) Au + V(") - Vi)
=) [ u (209 = D) VT u + VoV -u)
+ / u- (00 = 9(0%) (b - Vb€
1 1
- EV|b€|2) +/u : (p(po)(b Vb 450 Vb — SV (b |b0|2))
— [ (0605 = ) Vo 4 h)0) e [[5:9 x (7 x5) x (b))

—/b-(u~Vb€+u0-Vb—b~Vu€—b0~Vu—|—bV-u€+b0V-u).
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Then we can use the integration by parts and Holder’s inequality to obtain

1d
53 (avlon + nulz + 1617:) + u/¢<p°>|vm2

+(M+V)/¢(00)IV-MI2+ Vb3,
< Clipl2 (ol 2 Vu
+ 1% oo Vel 2 + el 21V o€l 2w + ||p||Lz||Vu°||Loo)
- cnuan(uunLe||Vuf||p + ||u°||Loo||wan)
+ Cllullzs] g(0%) = g0 121Vl .3
+ CIIVe(PO) o< llull 21Vl .2
+ Cllullzs00®) = @0 | 2 161 L6 V| 6
+ Cllull 29Ol (151161 VB 13 + 1Bl VB .2)
+ Cllull s | (0%) = R0 | 21V 051 3
+ ClIVull 218 ) | llpll 2 + Clluell s VR | 3110l 2
+ €l VB 21Vl 2 | @ (0|, D€ I Lo

+ Cll 2 (el o 19D 15+ 0l 2o VB 2

+ 1B 6V s + Do Vel 2.

Thus by Sobolev embedding and the uniform estimates obtained in Theorem 1.1, we
can find two positive constants ¢3 and C such that

li(a 112 + 1ull3 + 16132 ) + c3ll Vull 2 + VB3

2 dr Yipel;2 12 L2 3 L2 12

= (ol + lullz + 16l ) (Nollz + IVl 2 + Vb1 2) + Cel| Vb 2.
4.4)

Now we turn to the higher derivative estimates. To this end, forany 1 < ¢ < k — 2,
applying V* to equations (4.3)1, (4.3), and (4.3)3, and taking the inner product with
vt 0, Vi and Vb, respectively, we can deduce that

1d
Ea||vfp||§2 +/VZ,0VEV~udx

=—/V£p~VE(,0-VuE+p0V-u+u-V,0€)
1
—/v@p-(v‘f(uo-v,o)—uo-vvfp) +§/|VZ,0|2V~UO

:=./\/1 +N2 +N3
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and

1d
SVl + u/go(po)w”‘uﬁ + (ot v)/w(pow‘v uf? +ay/v€u Ve

=/v@+1u V! (- vut 40 Vi)
+ 1 / Vo (VI (2009 — g0) Au) = V! () V20)
+ @)V ) + (u+v) / Ve 9 (909
— g0 VV - uf = VI (0" V)
+ eV i) - / VO (V1 ((900%) — e N bF - bE — VI P))
= / VeV (g0 (b Vb b0 b — %V(|b€|2 - 1)
+ / VLT () — h(e) VS +h(0O)Vp)

=Ng+Ns +Neg+ N7+ Ng+ Ny

as well as

1d
53 IVl + IV b, = —e/v% VIV x ((v x b¢) x (gp(pf)bf))

+/vf+1b.vf—1(u-be+u°-Vb

—b-Vuf—bo.w+bv-u6+b0v-u)
= Nio + M.

Thus we can find a positive constant c3 such that

1d
za(aynvlpniz + IV ull?, + ||V‘5b||iz) + o3| V3, 4+ IV )17,

<ayM +Na+N3) +Ng+ -+ M.

We will estimate the terms N7, ..., N1 one by one for 1 < £ < k — 2. Firstly, for
N1 and NV, we can use Holder’s inequality and the product estimates to obtain

(4.5)

Ny = €IV ol (I - VU2 + IVE "V )l 2 + IV @ - Vo)l 2)
= CIV ol (I pll 2 VU
+1ols IV + 1V 00 s IVl o + 10 e IVl 2
IV ull 21V e + Nl sl V44 2 )
= CIV ol 2 (ol e IV gt + IVl a0l i + el oo )

= (I + 10 + 10 Nt ol e (ol s + Nl g + 1Vl s )
(4.6)
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and

No = CIVpl 2| V(- Vo) —u’ - VVop |

14 0 0 2 (4'7)
< CIV ol 2l gellol g < CluC el ol 3
For N3, it is clear that
N3 < CIVE P71V o < Cllu | el o113 (4.8)

Similarly, for Nz, we have
Na = IV ull 21V @ Va2 + 1V @ Va2
= IVl (19wl o IV N + Dl o190 s+ 195 00 o | Vel o
+ IV a2

< C (a1l + 10 ) 1Vl o2 el e
(4.9)

For N5 and Ng, we can deduce that
Ns+Ng = €IVl (19 (80 — 80" V2u0) 2
HIVE () V20 — p(pOV VRl o)
= CIVHull 2 (19 (800 = ("D sl V20l I
+lg () — 8P s IV e 5
g ()l -2
= IVl (197 (0 = 0°) 2 V20
HIV (0 = o) 2NV 0 o+ 190 el 2 )
< CIV a2 (1ol oo g+ 100l i
< (1l + 10 e ) IVl g2 (1l s + Nl g2 (410)
Similarly, for A7, we have
Ny = CIVHull 2 (197 (00 = 0o )be VB 2
= CIVFull 2 (19 (00 = 9o o 1D Vb5
e (o) = @)l s V7 VD)5

= IVl (194 (0 = 0°) 12 I e [ VB 15
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IV (¢ = p%) 12 1€ | 2 b ||Hk)
< CIbE I3V ull grzllpll a2 (4.11)

Similarly, for the terms Ng and N9, we can obtain
Ny + Ny = CIIVul e (1ol ge + Dbl ez ) (10 D + (1+ 100 )
(14 160 e + ||b€||Hk)). (4.12)
For the Hall term Njq, we have
Ny = e/va x bVt ((v x b) x ((p(,oe)bé))

< el Vb2 1V (90 )bE V) [ 2 “.13)
< €l VBl g2 (1 + 1101 ) IDE 17
Finally, we take a similar procedure as (4.9) to bound the term N7 as follows:
Nit = € (10 gt + 10 g+ 1100 g+ %0 g )1 VB e (il e + 11 ez
(4.14)

Substituting (4.6)—(4.14) into (4.5) and using the uniform estimates obtained in The-
orem 1.1, we can deduce that

1d
53 (@ IV pIZ: + 1Vl + 1B13: ) + sVl + 197 613

< C(Ioll g + Null i + 181 ez (10 gia + 1Vl guc *.15)
i ||Vb||HH) + Ce|| Vb

ford =1,2,...,k — 2. Then summing up (4.15) from £ = 1 to k — 2 and using the
energy estimate (4.4), we have

1d
53 (@71 + 1l + 16102 ) + eI Vul s + 19613,

< C(Iplpr + Null g2 + 1Bl =) (1o 2 + 1Vl e + 19612
+ Ce|| VD] gr—2,

which together with Young’s inequality gives that
d
(1o + Ml + 101 2) + IVl + 1951
= CIp3ps + Il + 1613 2) + Ce2.
Hence, by Gronwall’s inequality, we can conclude that

o + U35 + 1613 < €2 forany t € [0, 00).
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That is,

10(8) = P2 (OlI3 -2 + 10 (1) — W) 1362 + [DE(£) = BE) |74
€2¢C" forany 1 € [0, 00).

This completes the proof of Theorem 1.3. O
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Appendix: Basic inequalities

In this appendix, we state some basic inequalities used in this paper.

d

LEMMA 5.1. Let 1 < p < 400. Assume that ||VF$||L,,(Rd) < 1 and that ¥ (s)
is a smooth function of s with bound derivatives of any order. Then for any integer
m > %,there exists a constant C > 0 such that

v (‘/f@))”Lp(Rd) < CIV"&ll Lo ray-
Proof. Notice that for m > 1, we have
V" (¥ (£)) = a sum of product "1 (E)VVE ... Vg,

where the functions "7 (£) are some derivatives of g(§) and 1 < y; <m (i =
.,n) with y1 + - -- + y, = m. It then follows from Holder’s inequality and the
interpolation that

”an (I/f(g))”LP =< C||VV1§ e VVHSHLP
n mp - .- Vn .
< CIVMEN o - IVPE] me

d =4 m r d |- " Yn
< c(nwsn”m Iv s||£p)-~-(||vﬁs||” "IV sng"p)
d _
= C|V7E IV el L.

d
Since ||V7&|Lr < 1, this completes the proof of Lemma 5.1. O

LEMMA 5.2. (Interpolation Inequality) For any f € S (R3), the Schwartz class,
there exists a constant C > 0 such that

1 @ < CIV S W g IV2F s
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Proof. By using Bernstein’s inequality, we have

o0
Z 1A f 1l oo ey
j=—o00
> 3. .
<C > 2V|Afl,
j=—00
N
=c( > 2H2A fllg, + Z 21224 f 2
j=—00 J=N+1
N al - 1 N 1
=c(25( X 2MNAf Bag) +27 5 ( > 24, 132))

j=—00 j=N+1

N N2
_c@uwfhwm+zznvfhmm)

L . IV2 £l 2g3) .
We optimize in N by taking N of the order log, NZiEyeN and obtain
JIL2®3)
o0
> A fllime < CIVA (R;)nvzfan(R;
j=—00

oo .
Plugging this estimate into the Littlewood-Payley decomposition f = > A f,
j=—00
we obtain the desired estimates. 0

LEMMA 5.3. (Commutator and Product Estimates) (see Lemma 3.1 in [16]). Sup-
pose that s > 0 and p € (1, +00). Forany f, g € S, the Schwartz class, there exists
a constant C > 0 such that

1A°(f9) = FAglLr = C(IV Ll 1A gl + 1A f el los)
and
1 (f@)ller = C(IF e A gl + A o gl )

with p>, p3 € (1, 400) such that

11 1 1 1
+ —.
p P P2 P3 P4
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