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Abstract. Schrödinger perturbations of transition densities by singular potentials may fail to be comparable
with the original transition density. For instance, this is so for the transition density of a subordinator
perturbed by any time-independent unbounded potential. In order to estimate such perturbations, it is
convenient to use an auxiliary transition density as amajorant and the 4G inequality for the original transition
density and the majorant.We prove the 4G inequality for the 1/2-stable and inverse Gaussian subordinators,
discuss the corresponding class of admissible potentials and indicate estimates for the resulting transition
densities of Schrödinger operators. The connection of the transition densities to their generators is made
via the weak-type notion of fundamental solution.

1. Introduction and preliminaries

Schrödinger perturbation consists of adding to a given operator an operator of
multiplication by a function q. On the level of inverse operators the addition results
in the perturbation series. We focus on transition densities p perturbed by functions
q ≥ 0. Ourmain goal is to give pointwise estimates for the resulting perturbation series
p̃ under suitable integral conditions on p and q. For instance, bounded potentials q
produce transition densities p̃ comparable with the original p in finite time. In a
series of recent papers, integral conditions leading to comparability of p̃ and p were
proposed which allow for rather singular potentials q, if p satisfies the 3G Theorem
[2,4]. The integral conditions compare the second term in the perturbation series (that
which is linear in q) with p (the first term of the series). The comparison is meant to
prevent the instantaneous blowup and to control the long-time accumulation of mass.
The first property may be secured by smallness conditions, like 0 ≤ η < 1 below,
and the second is accomplished by using a subadditive function Q. The results render
p an approximate majorant for p̃ in finite time [4]. They may also be considered as
analogues of theGronwall inequality [3].We note that similar estimates forGreen-type
kernels were recently obtained in [10,11,13].
The 3GTheorem, which is related to the quasi-metric condition [10], is common for

transition densities with power-type decay, e.g., the transition density of the fractional
Laplacian. However, many transition densities fail to satisfy 3G, for instance, the
Gaussian kernel. In [5] and [3], a more flexible majorization technique is proposed,
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motivated by earlier results of [19]. Namely, another transition density p∗ serves as
an approximate majorant for the perturbation series. Introducing p∗ is not merely a
technical device: For unbounded q, p̃ may fail to be comparable with p in finite time.
Finding an appropriate p∗ is essentially tantamount to estimating p̃, cf. (1.12), and
may be hard, but in some cases, including ours, it is sufficient to chose p∗ being a
dilation of p. The p∗ majorization technique further involves an integral smallness
condition for p, q and p∗, which is implied by the familiar Kato-type conditions if p
and p∗ satisfy the 4G inequality.

In this paper, we prove a 4G inequality for the transition density p of the inverse
Gaussian subordinator, including the 1/2-stable subordinator.We reveal awide class of
unbounded Schrödinger potentials admissible for this p and estimate the Schrödinger
perturbations series for p using the framework of [5]. We thus extend the scope of
the p∗ majorization technique for Schrödinger perturbations, beyond the transition
densities of diffusion processes discussed in [5]. We expect 4G to be valid quite
generally, but at present it is even open for the α-stable subordinators with α �= 1/2.
We note that the methods of [4], which make assumptions on potentials q in terms of
bridges (see also [2]), fail for unbounded q in this case. Namely, if p is the transition
density of a subordinator and q is time independent and unbounded, then p and p̃
are never comparable, as proved in Sect. 3. The results explain why we propose 4G
and the framework of [5] as a viable general approach to Schrödinger perturbations
of transition densities by unbounded functions q.

The structure of the paper is as follows. Below, in this section, we give notation
and preliminaries. In Sect. 2, we present 4G inequality and applications to Kato-type
perturbations for the 1/2-stable subordinator and the inverse Gaussian subordinator. In
Sect. 3, we discuss unbounded perturbations q of general subordinators. In Lemma 2.1
and in Sect. 4, we discuss the connection of the considered integral operators to
generators, with focus on Lévy-type generators. In Remark 4.8, we indicate extensions
of our results to the case of signed q.

Let X be an arbitrary set with a σ -algebraM and a (nonnegative) σ -finite measure
m defined onM. To simplify the notation, we write dz for m(dz) in what follows. We
also consider the σ -algebra B of Borel subsets of R, and the Lebesgue measure, du,
defined on R. The space time, R× X , is equipped with the σ -algebra B ×M and the
product measure du dz = du m(dz). We consider a measurable transition density p
on space time, i.e., we assume that p : R× X ×R× X → [0,∞] is B×M×B×M-
measurable and the following Chapman–Kolmogorov equations hold for all x, y ∈ X
and s < u < t :

∫
X

p(s, x, u, z)p(u, z, t, y) dz = p(s, x, t, y). (1.1)

All the functions considered below are assumed measurable on their respective do-
mains. We consider a (nonnegative and B × M-measurable) function q : R × X →
[0,∞]. The Schrödinger perturbation p̃ of p by q is defined as
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p̃(s, x, t, y) =
∞∑

n=0

pn(s, x, t, y), (1.2)

where p0(s, x, t, y) = p(s, x, t, y) and, for n = 1, 2, . . .,

pn(s, x, t, y) =
∫ t

s

∫
X

p(s, x, u, z)q(u, z)pn−1(u, z, t, y) dzdu. (1.3)

The above is an explicit method of constructing new transition densities. In particular,
p̃ satisfies the Chapman–Kolmogorov equations [2, Lemma 2]. From (1.3) and the
perturbation series (1.2), we get the perturbation formula:

p̃(s, x, t, y) = p(s, x, t, y) +
∫ t

s

∫
X

p(s, x, u, z)q(u, z) p̃(u, z, t, y) dzdu. (1.4)

We similarly get the following variant,

p̃(s, x, t, y) = p(s, x, t, y) +
∫ t

s

∫
X

p̃(s, x, u, z)q(u, z)p(u, z, t, y) dzdu. (1.5)

Since q ≥ 0, we trivially have p̃ ≥ p, so we focus on the upper bounds for p̃. These
may be obtained under suitable conditions on p1. In [4] (see also [2,15] and [20,
Lemma 3.1]), the authors assume that for all s < t , x, y ∈ X ,
∫ t

s

∫
X

p(s, x, u, z)q(u, z)p(u, z, t, y) dzdu ≤ [η + Q(s, t)]p(s, x, t, y), (1.6)

where 0 ≤ η < ∞ and Q is superadditive: 0 ≤ Q(s, u) + Q(u, t) ≤ Q(s, t). The
following estimates follow: for all s < t , x, y ∈ X ,

p̃(s, x, t, y) ≤ p(s, x, t, y)

(
1

1 − η

)1+Q(s,t)/η

, (1.7)

provided 0 < η < 1, and for η = 0, we even have

p̃(s, x, t, y) ≤ p(s, x, t, y)eQ(s,t). (1.8)

The condition (1.6) may be considered as property of relative boundedness of q, or
Miyadera-type condition for bridges [2,16]. It is convenient to use (1.6), e.g., for the
transition density of the isotropic α-stable Lévy process with α ∈ (0, 2), because the
so-called 3G inequality holds in this case:

p(s, x, u, z) ∧ p(u, z, t, y) ≤ c p(s, x, t, y), s < u < t, x, y, z ∈ R
d .

3G simplifies the verification of (1.6) allowing for a simple description of the accept-
able growth of q, cf. [2, Corollary 11], [4, Section 4]. In general, however, condition
(1.6) may be troublesome. For instance, the transition density of the Brownian motion
fails to satisfy 3G and (1.6) is difficult to characterize in a simpler way. Moreover, as
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we see below, for some transition densities, (1.6) holds for q(u, z) = q(z) (i.e., time-
independent q) only if q is bounded. This explains the need for modifications of [4].
The approach of [5] is based on the assumption that for all s < t , x, y ∈ X ,
∫ t

s

∫
X

p(s, x, u, z)q(u, z)p∗(u, z, t, y) dzdu ≤ [η + Q(s, t)
]

p∗(s, x, t, y). (1.9)

Here it is furthermore assumed that 0 ≤ η < ∞, Q(s, t) is superadditive, right-
continuous in s and left-continuous in t (in short: regular superadditive), and p∗ is a
majorizing transition density, i.e., there is a constant C ≥ 1 such that for all s < t and
x, y ∈ X ,

p(s, x, t, y) ≤ Cp∗(s, x, t, y). (1.10)

The above assumptions are abbreviated to q ∈ N (p, p∗, C, η, Q). By [5, Theo-
rem 1.1], if q ∈ N (p, p∗, C, η, Q) with η < 1, then for every ε ∈ (0, 1 − η),

p̃(s, x, t, y) ≤ p∗(s, x, t, y)

(
C

1 − η − ε

)1+ Q(s,t)
ε

, s < t, x, y ∈ X. (1.11)

For instance, p∗(s, x, t, y) = p(s/c, x, t/c, y) = cd p(cs, cx, ct, cy) with c ∈ (0, 1)
is convenient for the Gaussian kernel inRd [5], and Q(s, t) = β(t −s)with a constant
β ≥ 0 is a common choice. In this work, we use similar dilations to produce p∗.
In principle, (1.9) relaxes (1.6) and allows for more functions q. This is seen in [5]

and again in Sect. 3 below, where we consider applications to transition densities of
subordinators.We should note that the flexibility comes at the expense of the sharpness
of the resulting estimate, as seen when comparing (1.7) and (1.8) with (1.11). Also,
the methods of [5] and the present paper are restricted to transition densities, while
the methods of [4] handle the more general so-called forward integral kernels. Last
but not least, it may be cumbersome to point out p∗ suitable for p and q, because this
essentially requires guessing the rate of inflation of p̃. In this connection, we note that
(1.5) trivially yields

∫ t

s

∫
X

p(s, x, u, z)ηq(u, z) p̃(u, z, t, y) dz du ≤ η p̃(s, x, t, y). (1.12)

Thus, for perturbations of p by ηq ≥ 0 with 0 ≤ η < 1, one may take p∗ = p̃; hence,
estimating p̃ and finding an appropriate majorant p∗ are closely related problems.
Comparing to the approach of [4], we finally note that p∗ should reflect the growth
patterns of p̃, which p is not always able to do.
We say that q satisfies the parabolic Kato condition for p if

lim
h→0+ sup

s∈R,x∈X

∫ s+h

s

∫
X

p(s, x, u, z)q(u, z) dzdu = 0, (1.13)

and

lim
h→0+ sup

t∈R,y∈X

∫ t

t−h

∫
X

p(u, z, t, y)q(u, z) dzdu = 0, (1.14)
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cf. [2, (29), (30)]. The relations between (1.13), (1.14), 3G and (1.6) are discussed in [2,
Lemma 9 and Corollary 11] and [2, (40), (7) and Lemma 5]. Similar connections exist
for (1.9), parabolic Kato conditions and 4G, but we leave the details to the interested
reader (see also the proof of Proposition 2.4).

Of particular interest here is the special case of convolution semigroups of probabil-
ity measures {pt }t≥0 on X = R

d , which are defined by the generating (Lévy) triplets
(A, b, ν) [17] and correspond to the generators

L f (x) =1

2

d∑
j,k=1

A j,k
∂2 f

∂x j∂xk
(x) +

d∑
j=1

bi
∂ f

∂x j
(x)

+
∫
Rd

⎛
⎝ f (x + y) − f (x) −

d∑
j=1

y j
∂ f

∂x j
(x)1|y|≤1(y)

⎞
⎠ ν(dy). (1.15)

Namely, we let Pt f (x) = ∫
Rd f (z + x)pt (dz), t ≥ 0 and recall that (Pt )t≥0 form a

strongly continuous semigroup on (C0(R
d), || · ||∞), whose infinitesimal generator L

satisfies (1.15) for f ∈ C2
0 (R

d) and x ∈ R
d . Furthermore, for all s ∈ R, x ∈ R

d and
φ ∈ C∞

c (R × R
d) (smooth compactly supported functions on space time R × R

d ),
we have

∫ ∞

s

∫
Rd

[
∂uφ(u, x + z) + Lφ(u, x + z)

]
pu−s(dz)du = −φ(s, x). (1.16)

The identity is essentially a consequence of the fundamental theorem of calculus. It
is proved in Sect. 4 in the generality of strongly continuous operator semigroups. We
also provide a uniqueness result there. A special case of L is the Weyl derivative of
order 1/2 on the real line:

∂1/2 f (x) = π−1/2
∫ ∞

x
f ′(z)(z − x)−1/2 dz, f ∈ C1

c (R). (1.17)

We then have

pt (dz) = (4π)−1/2t z−3/2 exp
{
−t2/(4z)

}
1z>0 dz, (1.18)

the distribution of the 1/2-stable subordinator [17] (also called the Lévy subordinator).
More generally, we let λ ≥ 0, δ > 0, z ∈ R, t > 0, and

p(t, z) = (4π)−1/2δt z−3/2 exp

{
− (δt − 2

√
λz)2

4z

}
1z>0. (1.19)

We note that p(t, z) is the density function of the distribution of the inverse Gauss-
ian subordinator ξt = inf{s > 0 : Bs + √

2λs = tδ/
√
2}, where B is the standard

one-dimensional Brownianmotion, cf. [1, Example 1.3.21] and [7, Table 4.4]. Alterna-
tively, p may be obtained from the density function of the 1/2-stable subordinator by
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the Esscher transform and time rescaling (see [17, Example 33.15] or [7, Sec. 4.4.2]).
Accordingly, the Lévy measure μ of the inverse Gaussian subordinator is obtained by
the exponential tilting of the Lévy measure ν of the 1/2-stable subordinator, where

ν(dy) = 1

2
√

π
y−3/21y>0 dy and μ(dy) = δe−λyν(dy).

The generator corresponding to the inverse Gaussian subordinator is calculated for
f ∈ C1

c (R) as

L f (x) = δ

2
√

π

∫ ∞

x
f ′(z) Γλ(−1/2, z − x) dz. (1.20)

Here Γλ(a, z) = ∫∞
z e−λy ya−1 dy for λ, z > 0, a ∈ R, is the incomplete gamma

function. For the readers’s convenience, we prove (1.17) and (1.20) in Sect. 4. Some
further discussion can be found in [6]. We also note that the Laplace exponent of ξt is
u �→ δ(

√
u + λ−√

λ) (see, e.g., [1, Example 1.3.21], [17, Example 8.11 and 33.15]).

2. 4G inequality for the inverse Gaussian subordinator

Our main goal is to give conditions for and discuss consequences of (1.11). Let
λ ≥ 0 and δ > 0. Using (1.19) we define

p(s, x, t, y) = p(t − s, y − x),

if s < t and x, y ∈ R, and we let p = 0 otherwise. It is a transition density on X = R

with respect to the Lebesgue measure. We observe that 3G inequality does not hold
for p. Indeed, if u − s = t − u = z − x = y − z = θ , then

p(s, x, u, z) ∧ p(u, z, t, y) = (4π)−1/2δ θ−1/2 exp
{
− θ(δ − √

λ)2/4
}

,

p(s, x, t, y) = (4π)−1/2δ (2θ)−1/2 exp
{
−2 θ(δ − √

λ)2/4
}

,

and the second expression decays exponentially faster as θ → ∞. For c > 0, we
consider auxiliary (inverse Gaussian) transition density

ρc(s, x, t, y) := cp(c(t − s), c(y − x)). (2.1)

In view toward (1.10), we note that for 0 < a < b,

ρb(s, x, t, y) ≤ (b/a)1/2 ρa(s, x, t, y). (2.2)

We shall consider the Schrödinger perturbation p̃ of p = ρ1 by q. Clearly, if q ∈
N (ρ1, ρa, (1/a)1/2, Q, η), with 0 < a < 1, η ∈ [0, 1), then p̃ is finite; in fact, it
satisfies (1.11). Here is a connection to generators.
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LEMMA 2.1. If q ∈ N (ρ1, ρa, (1/a)1/2, Q, η), where 0 < a < 1, η ∈ [0, 1), then

∫ ∞

s

∫
R

p̃(s, x, u, z)
[
∂uφ(u, z) + Lφ(u, z) + q(u, z)φ(u, z)

]
dzdu = −φ(s, x),

for φ ∈ C∞
c (R × R), where L is given by (1.20).

Proof. We will follow the proof of [4, Lemma 4] with some modifications. We define
integral operators

P f (s, x) =
∫ ∞

s

∫
R

p(s, x, t, y) f (t, y)dydt,

q f (s, x) = q(s, x) f (s, x),

P̃ f (s, x) =
∫ ∞

s

∫
R

p̃(s, x, t, y) f (t, y)dydt,

P∗ f (s, x) =
∫ ∞

s

∫
R

ρa(s, x, t, y) f (t, y)dydt,

for s, x ∈ R and jointlymeasurable and nonnegative or absolutely integrable functions
f : R × R → R. By (1.4) and (1.5),

P̃ = P + Pq P̃ = P + P̃q P; (2.3)

hence, P̃q P = Pq P̃ . Let φ ∈ C∞
c (R × R) and ψ = ∂sφ + Lφ. By (1.16),

∫ ∞

s

∫
R

p(s, x, u, z)
[
∂uφ(u, z) + Lφ(u, z)

]
dzdu = −φ(s, x).

In short, Pψ = −φ. For clarity, since ψ is bounded [17, p. 211] and ψ(s, x) = 0 if
|s| is large, we have P|ψ | < ∞. By (2.3) and Fubini’s theorem,

P̃(ψ + qφ) = (P + P̃q P)ψ + P̃qφ = −φ + P̃q Pψ + P̃q(−Pψ) = −φ.

The identity is precisely the claim of the lemma, but we need to verify the absolute
convergence of the integrals above. Since q ∈ N (ρ1, ρa, (1/a)1/2, Q, η), we have
Pq P∗ ≤ cP∗ and P̃ ≤ cP∗, when applied to nonnegative functions in a bounded
time horizon, cf. (1.9) and (1.11). It follows that in bounded time,

P̃q P|ψ | = Pq P̃|ψ | ≤ cPq P∗|ψ | ≤ cP∗|ψ | < ∞.

Since |φ| ≤ P|ψ |, we get P̃q|φ| < ∞. The proof is complete. �

Following [8, Theorem 1.1] and [5], the identity in the statement of Lemma 2.1
is interpreted by saying that p̃ is a fundamental solution of ∂s + L + q or, in short,
for L + q. The identity also means that p̃ as integral operator is the left inverse of
∂s + L + q. We refer to [5, Remark 4.10] for further discussion.
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We point yet another aspect of the relationship between p̃ and L +q. By Lemma 2.1
and Chapman–Kolmogorov, for φ ∈ C∞

c (R × R), we obtain
∫ t

s

∫
R

p̃(s, x, u, z)
[
∂u + L + q(u, z)

]
φ(u, z) dzdu

=
∫ ∞

s

∫
R

p̃(s, x, u, z)
[
∂u + L + q(u, z)

]
φ(u, z) dzdu

−
∫ ∞

t

∫
R

p̃(s, x, u, z)
[
∂u + L + q(u, z)

]
φ(u, z) dzdu

= −φ(s, x) −
∫
R

p̃(s, x, t, w)

∫ ∞

t

∫
R

p̃(t, w, u, z)

×
[
∂u + L + q(u, z)

]
φ(u, z) dzdudw

= −φ(s, x) +
∫
R

p̃(s, x, t, w)

[
−
∫ ∞

t

∫
R

p̃(t, w, u, z)

×
[
∂u + L + q(u, z)

]
φ(u, z) dzdudw

]

=
∫
R

p̃(s, x, t, w)φ(t, w)dw − φ(s, x), s < t, x ∈ R,

and by choosing φ constant in time on (s, t), for ϕ ∈ C∞
c (R), we get

∫
R

p̃(s, x, t, z)ϕ(z) dz − ϕ(x) =
∫ t

s

∫
R

p̃(s, x, u, z)
[

Lϕ(z) + q(u, z)ϕ(z)
]
dzdu.

The identity is an analogue of classical formulas for strongly continuous operator
semigroups, and so is (1.5). Further discussion of the connection to generators is
given in Sect. 4.
We now investigate the classN (ρb, ρa, (b/a)1/2, η, Q), where 0 < a < b; namely,

we propose conditions sufficient for (1.9). We first recall results of [5, Section 3] on
the Gaussian kernel

gc(s, x̄, t, ȳ) := [4π(t − s)/c]−d/2 exp
{
−|ȳ − x̄ |2/[4(t − s)/c]

}
, (2.4)

where c > 0, 0 < s < t , x̄, ȳ ∈ R
d and d ∈ N. We denote

l(α) = max
τ≥α∨1/α

[
ln(1 + τ) − τ − α

1 + τ
ln(ατ)

]
,

and for 0 < a < b we let M =
(

b
b−a

)d/2
exp
[
d
2 l( a

b−a )
]
. Then, we have

gb(s, x̄, u, z̄)ga(u, z̄, t, ȳ)

ga(s, x̄, t, ȳ)
≤ M[gb−a(s, x̄, u, z̄) ∨ ga(u, z̄, t, ȳ)], (2.5)

where s < u < t and x̄, z̄, ȳ ∈ R
d [5, Theorem 1.3 and Remark 3.2]. Moreover, M is

the optimal constant in (2.5), and if b/a ≤ 1+e−1/2, then M = (1−a/b)−d . This 4G
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inequality is used in [5] to obtain Gaussian estimates for Schrödinger perturbations of
transition densities of the second-order parabolic differential operators. In this section,
we prove a similar inequality for the transition density ρc defined in (2.1).

THEOREM 2.2 (4G). Let 0 < a < b. For all s < u < t and x < z < y,

ρb(s, x, u, z)ρa(u, z, t, y) ≤ D
[
ρb−a(s, x, u, z) ∨ ρa(u, z, t, y)

]
ρa(s, x, t, y) (2.6)

holds with D =
(

b
b−a

)3/2
exp
[
3
2 L
(

a
b−a

)]
.

Proof. We denote r̄ = (r, 0, 0) ∈ R
3 for r ∈ R. For c > 0, s < t , x < y,

ρc(s, x, t, y) = (4πδ(t − s)/c) gc(x, δs̄ − 2
√

λx̄, y, δt̄ − 2
√

λȳ).

By (2.5) for all s < u < t and x < z < y, we have

ρb(s, x, u, z)ρa(u, z, t, y) = (4πδ)2(u − s)(t − u)

ab

× gb(x, δs̄ − 2
√

λx̄, z, δū − 2
√

λz̄)ga(z, δū − 2
√

λz̄, y, δt̄ − 2
√

λȳ)

≤ (4πδ)2(u − s)(t − u)

ab
D ga(x, δs̄ − 2

√
λx̄, y, δt̄ − 2

√
λȳ)

× [gb−a(x, δs̄ − 2
√

λx̄, z, δū − 2
√

λz̄) ∨ ga(z, δū − 2
√

λz̄, y, δt̄ − 2
√

λȳ)]
= D

[(
t − u

t − s

b − a

b

)
ρb−a(s, x, u, z) ∨

(
u − s

t − s

a

b

)
ρa(u, z, t, y)

]
ρa(s, x, t, y)

≤ D
[
ρb−a(s, x, u, z) ∨ ρa(u, z, t, y)

]
ρa(s, x, t, y).

�

We are ready to give sufficient conditions for (1.9). First comes an immediate
consequence of Theorem 2.2.

COROLLARY 2.3. Assume that for all s < t , x < y,

D
∫ t

s

∫
R

[
ρb−a(s, x, u, z) + ρa(u, z, t, y)

]
q(u, z) dzdu ≤ η + Q(s, t).

Then, q ∈ N (ρb, ρa, (b/a)1/2, η, Q).

Motivated by (1.13) and (1.14) for c, h > 0, we next define

N c
h (q) = sup

s,x

∫ s+h

s

∫
R

ρc(s, x, u, z)q(u, z) dzdu

+ sup
t,y

∫ t

t−h

∫
R

ρc(u, z, t, y)q(u, z) dzdu.
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PROPOSITION 2.4. Let 0 < a < b and D′ =
(

b−a
a ∨ a

b−a

)1/2
D. If

N (b−a)∧a
h (q) ≤ η/D′ (2.7)

for some 0 < h ≤ ∞, 0 ≤ η < ∞, then for Q(s, t) = η(t − s)/h we have

q ∈ N (ρb, ρa, (b/a)1/2, η, Q).

Proof. Follow [5, p. 165]. �

The condition limh→0 N c
h (q) = 0 defines the parabolic Kato class for ρc, cf. Sect. 1,

and if it is satisfied, then Proposition 2.4 applies. A thorough discussion of the Kato
condition for arbitraryLévy processes onRd is given in [12]. For the considered inverse
Gaussian subordinator (1.19), including the 1/2-stable subordinator, if q(u, z) = q(z)
is time independent, then the Kato condition is equivalent to

lim
r→0+ sup

x∈R

∫ x+r

x−r
q(z)|z − x |−1/2dz = 0.

We refer to [12, Example 3] for the result. A characteristic example here is q(z) =
|z|ε−1/2 for ε ∈ (0, 1/2].

In the remainder of this section, we focus on the case λ = 0 and δ = 1 in (1.19),
i.e., on the density of the 1/2-stable subordinator, with emphasis on honest constants
in estimates.

EXAMPLE. We consider q(u, z) = q(z) onR. Let r > 2 and q ∈ Lr (R). Observe
that for all s < u, x ∈ R and c > 0,

∫
R

ρc(s, x, u, z)σ dz = c′
σ

cσ−1 (u − s)−2(σ−1), σ ≥ 1,

where c′
σ = (4π)−σ/2(4/σ)3σ/2−1Γ (3σ/2 − 1) ≤ [

(4π)−1/2(6/e)3/2
]σ−1. By

Hölder’s inequality, for h > 0,

sup
s,x

∫ s+h

s

∫
R

ρc(s, x, u, z)q(z) dzdu

≤ sup
s,x

∫ s+h

s
(u − s)−2/r du

(
c′

r/(r−1)

)(r−1)/r

c1/r
||q||r

= h1−2/r
[(

c′
r/(r−1)

)(r−1)/r
c−1/r ||q||r/(1 − 2/r)

]
.

Thus, for every c > 0,

N c
h (q) ≤ h1−2/r 2

⎡
⎢⎣
(

c′
r/(r−1)

)(r−1)/r

(1 − 2/r) c1/r
||q||r

⎤
⎥⎦→ 0, if h → 0+. (2.8)
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Notice also that
(

c′
r/(r−1)

)(r−1)/r ≤ [(4π)−1/2(6/e)3/2
]1/r . Finally, by Proposition

2.4 for all 0 < a < b, we obtain

q ∈ N (ρb, ρa, (b/a)1/2, η, Q),

with arbitrary η > 0 and Q(s, t) = η(t − s)/h, provided h satisfies

h1−2/r
2D
(

b−a
a ∨ a

b−a

)1/2
(1 − 2/r)

[
(4π)−1/2(6/e)3/2

(b − a) ∧ a

]1/r

||q||r = η.

Indeed, (2.8) implies (2.7).

We keep investigating the classN (ρb, ρa, (b/a)1/2, η, Q) by estimating N c
h (q) for

time-independent q(u, z) = q(z). We first prove an auxiliary lemma for the general
α-stable subordinator, with α ∈ (0, 1). Let

Iε(q) = sup
x∈R

∫
|x−z|<ε

q(z)

|x − z|1−α
dz, ε > 0.

Let γ (t, z) be the density of the α-stable subordinator, in particular, γ (t, z) = 0 for
z ≤ 0 and ∫ ∞

0
e−uzγ (t, z) dz = e−tuα

, u ≥ 0, t > 0.

LEMMA 2.5. For all c, r, τ > 0 and 0 < α < 1,

sup
s∈R,x∈R

∫ s+τ

s

∫
R

γc(s, x, u, z)q(z) dzdu ≤
(

1

c1−αΓ (α)
+ 2τ

rα

)
Ir (q),

where γc(s, x, t, y) = c γ (c(t − s), c(y − x)) = γ (c1−α(t − s), y − x).

Proof. Let c > 0, k(x) = ∫ τ

0 γc(0, 0, u, |x |)du, K (x) = ∫∞
0 γc(0, 0, u, |x |)du =

|x |α−1/(c1−αΓ (α)), c1 = ∫
R

k(x)dx = 2τ and c2 = r K (r) = rα/(c1−αΓ (α)).
By scaling, γc(0, 0, u, |x |) = |x |−1γc(0, 0, |x |−αu, 1). By a change in variables, k is
symmetrically decreasing. The result then follows from [5, Lemma 4.2]. �

A direct consequence is that for every α-stable subordinator and for all s < t , x < y
and h > 0, we have∫ t

s

∫
R

[
γb−a(s, x, u, z) + γa(u, z, t, y)

]
q(z) dzdu

≤ Ih1/α (q)

[
1

Γ (α)

a1−α + (b − a)1−α

[a(b − a)]1−α
+ 4(t − s)

h

]
.

For α = 1/2, we may use Theorem 2.2 to get for all s < t , x < y and h > 0,∫ t

s

∫
R

ρb(s, x, u, z)q(z)ρa(u, z, t, y) dzdu

≤ DIh2(q)

[
1

Γ (1/2)

√
a + √

b − a√
a(b − a)

+ 4(t − s)

h

]
ρa(s, x, t, y).
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COROLLARY 2.6. Let q : R → R be such that Ih2(q) < ∞ for some h > 0.
Then, q ∈ N (ρb, ρa, (b/a)1/2, η, Q) with

η = DIh2(q)
(√

a + √
b − a

)
/
(
Γ (1/2)

√
a(b − a)

)
,

Q(s, t) = 4DIh2(q)(t − s)/h.

Summarizing this section, we see that 4G for the inverse Gaussian subordinator
yields (1.9) for a large class of functions q characterized by simpler Kato-type condi-
tions, and then, p̃ satisfies (1.11) and Lemma 2.1.

3. Relative boundedness for subordinators with transition density

In this section, we consider a general subordinator with transition density p. Thus,
p is space time homogeneous, p(s, x, t, y) = 0 whenever t ≤ s or y ≤ x , and
p(s, x, t, y) > 0 otherwise. We first discuss time-independent functions q, aiming at
the condition (1.6).

We denote, as usual, || f ||∞ = ess supx∈R | f (x)|. Let functions (φ j ) j∈N be an
approximation to identity in L1(R), that is real-valued on R with the following prop-
erties:

φ j ≥ 0 and
∫
R

φ j (z)dz = 1, (3.1)

∀δ>0∃ j0∈N∀ j≥ j0 supp(φ j ) ⊂ (−δ, δ). (3.2)

LEMMA 3.1. Let f ∈ L1
loc(R). If supn∈N ||φn ∗ f ||∞ < ∞, then f ∈ L∞(R).

Proof. Let 0 < δ < R and M = supn∈N ||φn ∗ f ||∞. Choose j0 ∈ N according to
(3.2). Since the functions f 1|z|<R ∗ φn converge to f 1|x |<R ∈ L1(R) in the L1 norm,
a subsequence f 1|z|<R ∗ φnk converges almost surely to f 1|x |<R . For nk ≥ j0,

f 1|z|<R ∗ φnk (x) = f ∗ φnk (x), if |x | < R − δ.

Thus, for almost all |x | < R − δ,

| f (x)| = lim
k→∞ | f ∗ φnk | ≤ M.

Therefore, | f (x)| ≤ M for almost all x ∈ R. �

LEMMA 3.2. Assume that for some s < t and all x ∈ R,

∫ t

s

∫
R

p(s, x, u, z)q(z) dzdu ≤ M.

Then, q ∈ L1
loc(R).
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Proof. Let ϕ ∈ C0(R) be such that ϕ ≥ 0, ϕ = 1 on [0, 1/2] and ∫
R

ϕ(x) dx = 1.
For arbitrary fixed x0 ∈ R, we have

M ≥
∫ t

s

∫
R

∫
R

ϕ(x0 − x)p(s, x, u, z)dx q(z) dzdu

=
∫ t

s

∫
R

Pu−s ϕ(x0 − z)q(z) dzdu ≥ (ε/2)
∫ x0

x0−1/2
q(z) dz,

where 0 < ε ≤ t − s is such that ||Puϕ − ϕ||∞ ≤ 1/2 for u ≤ ε. �

Lemma 3.2 is generalized to arbitrary Lévy processes in R
d [12, Lemma 3.7].

THEOREM 3.3. Assume that for some s < t ,

sup
x<y

∫ t

s

∫
R

p(s, x, u, z)p(u, z, t, y)

p(s, x, t, y)
q(z) dzdu < ∞.

Then, q ∈ L∞(R).

Proof. By the assumption, there is M ′ > 0 such that for some fixed s < t ,
∫ t

s

∫
R

p(s, x, u, z)p(u, z, t, y)

p(s, x, t, y)
q(z) dzdu ≤ M ′, x < y.

By Lemma 3.2, q ∈ L1
loc(R). For s < t and n ∈ N, we let

φn(z) = 1

t − s

∫ t

s

p(s,−1/n, u,−z)p(u,−z, t, 1/n)

p(s,−1/n, t, 1/n)
du, |z| < 1/n,

and φn(z) = 0 for |z| ≥ 1/n. Clearly, φn satisfies conditions (3.1) and (3.2). Further-
more, for all x ∈ R,

φn ∗ q(x) = 1

t − s

∫ t

s

∫
R

p(s, x − 1/n, u, z)p(u, z, t, x + 1/n)

p(s, x − 1/n, t, x + 1/n)
q(z) dzdu.

Thus, supn∈N ||φn ∗ q||∞ ≤ M ′/(t − s) = M < ∞. Lemma 3.1 ends the proof. �

COROLLARY3.4. Let q(u, z) = q(z). Then, q satisfies (1.6) if and only if ||q||∞ <

∞. If there are s < t and C < ∞ such that p̃(s, x, t, y) ≤ C p(s, x, t, y) for all x < y,
then ||q||∞ < ∞.

Corollary 3.4 shows that the methods of [4] cannot deliver estimates of Schrödinger
perturbations of transition densities p of subordinators by unbounded time-indepen-
dent q. In contrast, we saw in Sect. 2 that the methods based on majorants p∗ and 4G
inequality handle such situations.
If we allow q to depend on time, the statements of the corollary are no longer valid.

Indeed, let q(u, z) = u−1/2
+ , where u+ = u ∨ 0. Then, for all s < t and x < y and

transition densities p,
∫ t

s

∫
X

p(s, x, u, z)q(u, z)p(u, z, t, y) dzdu ≤ 2(t+ − s+)1/2 p(s, x, t, y).
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We see that this unbounded q yields (1.6) and (1.7) for every p.
The next example builds on the ideas proposed in [15, Example 4].

EXAMPLE. Consider the second term p1 of the perturbation series (1.2) for p̃. Let

sup
s≤u≤t
x≤z≤y

q(u, z) ≤ η/(t − s),

for some η ≥ 0 and for all s < t , x < y such that (s, x), (t, y) ∈ F := {(u, z) :
q(u, z) > 0}. Then, we claim that for all s < t and x < y,

p1(s, x, t, y) ≤ η p(s, x, t, y). (3.3)

For the proof, we consider a Borel nondecreasing function ω : [s, t] → R, s < t , such
that ω(s) = x < y = ω(t), and let T (ω) = {u : s ≤ u ≤ t, (u, ω(u)) ∈ F}. If T (ω)

is empty, then

∫ t

s
q(u, ω(u)) du = 0 ≤ η.

Otherwise, we consider σ = inf{u : u ∈ T (ω)} and τ = sup{u : u ∈ T (ω)}. There
are sn ≤ tn such that (sn, ω(sn)), (tn, ω(tn)) ∈ F , sn ↓ σ and tn ↑ τ , hence

∫ t

s
q(u, ω(u)) du =

∫ τ

σ

q(u, ω(u)) du = lim
n→∞

∫ tn

sn

q(u, ω(u)) du

≤ lim
n→∞(tn − sn) sup

sn≤u≤tn
ω(sn)≤z≤ω(tn)

q(u, z) ≤ η.

Finally, let {Yu}u≥0 be the subordinator. Given s < t , x < y we denote by {Zu}s≤u≤t

the bridge corresponding to {Yu}u≥0, which starts from x at time s and reaches y at
time t . Since the trajectories of {Zu}u≥0 are almost surely nondecreasing, we have for
all s < t , x < y,

p1(s, x, t, y)/p(s, x, t, y) = E
t,y
s,x

[∫ t

s
q(u, Zu)

]
du ≤ E

t,y
s,x
[
η
] = η,

as claimed.
Typical applications are q(u, z) = ηz1(0,1/u)(z), cf. [15, Example 4] and q(u, z) =

ηz21F (u, z), where F = ⋃∞
n=1 (1/(n + 1), n) × (n − 1, n). Both functions tend to

infinity when time goes to zero and the space variable grows correspondingly.

We next show that the estimate (3.3) cannot be improved.

EXAMPLE. We define q(u, z) = ηz1(0,1/u)(z), η > 0. Let ε < η. We claim that
there is no superadditive Q such that

p1(s, x, t, y) ≤ [ε + Q(s, t)
]

p(s, x, t, y). (3.4)
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Indeed, by [5, Lemma 5.3], wemay assume that Q is regular superadditive. Thus, there
is t such that

[
ε+ Q(0, t)

]
< (ε+η)/2. On the other hand, for x := (1+ε/η)/(2t) <

y := 1/t , we have

p1(s, x, t, y) =
∫ t

0

∫ y

x
p(s, x, u, z)q(u, z)p(u, z, t, y) dzdu

≥ ηx
∫ t

0

∫ y

x
p(s, x, u, z)p(u, z, t, y) dzdu

≥ ηxt p(s, x, t, y) = [(η + ε)/2
]

p(s, x, t, y),

which is a contradiction.

4. Auxilary results

In this section, we prove (1.16) and its analogues in the setting of general semigroup
theory.We consider aBanach space (Y, ||·||). Let T = (Tt )t≥0 be a strongly continuous
semigroup of linear operators on Y . Let L be the corresponding infinitesimal generator
with domain D(L) [18, IX].

THEOREM 4.1. Let ξ : R → D(L) be such that

t �→ ξ(t) is differentiable in (Y, || · ||), (4.1)

t �→ ξ ′(t) is continuous in (Y, || · ||), (4.2)

t �→ Lξ(t) is continuous in (Y, || · ||), (4.3)

t �→ ξ(t) has compact support in R. (4.4)

Then ∫ ∞

s
Tu−s

[
ξ ′(u) + Lξ(u)

]
du = −ξ(s), s ∈ R, (4.5)

where the integral is the Riemann integral of a Banach space valued function.

Theorem 4.1 applies, e.g., to ξ(t) = f (t)ξ0 with ξ0 ∈ D(L) and f ∈ C1
c (R).

Theorem 4.1 follows from two auxiliary lemmas.

LEMMA 4.2. If ξ satisfies (4.1), then t �→ Ttξ(t) is differentiable in (Y, || · ||) and

d

dt
Ttξ(t) = Ttξ

′(t) + Tt Lξ(t), t ≥ 0.

For t = 0, the derivative is understood as the right-hand derivative. The lemma is a
version of the differentiation rule for products.

Proof of Lemma 4.2. Let h �= 0 (h > 0 if t = 0) and h → 0. Clearly,

Tt+hξ(t + h) − Ttξ(t)

h

= Tt+hξ ′(t) + Tt+h

(
ξ(t + h) − ξ(t)

h
− ξ ′(t)

)
+
(

Tt+h − Tt

h

)
ξ(t).
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For some M, ω ≥ 0, we have ||Tt || ≤ Meωt , t ≥ 0 [18]. The lemma follows:
∥∥∥∥Tt+h

(
ξ(t + h) − ξ(t)

h
− ξ ′(t)

)∥∥∥∥ ≤ Meω(t+h)

∥∥∥∥ξ(t + h) − ξ(t)

h
− ξ ′(t)

∥∥∥∥→ 0.

�

Let a, b ∈ R, a < b. We write ξ ∈ C1([a, b], Y ) if ξ : [a, b] → Y and (4.1) and
(4.2) hold, with one-sided derivatives at the endpoints a and b. Here is the fundamental
theorem of calculus for Riemann-type Banach space integrals (see [9, Lemma 1.1.4]
or [14, Lemma 2.3.24]).

LEMMA 4.3. If ψ ∈ C1([a, b], Y ), then
b∫

a

d
du [ψ(u)] du = ψ(b) − ψ(a).

Proof of Theorem 4.1. Let s ∈ R. By Lemma 4.2, assumptions (4.2), (4.3) and (4.4),
and by Lemma 4.3, we obtain the result:
∫ ∞

0
Tu

[
ξ ′(u + s) + Lξ(u + s)

]
du =

∫ ∞

0

d

du
[Tuξ(u + s)] du = −ξ(s). (4.6)

In fact, if s is fixed, the assumptions on ξ(t) only need to hold in [s,∞). �

We shall give a partial converse to Theorem 4.1 by showing that the infinitesimal
generator of T is the only operator L that makes (4.5) true.

THEOREM 4.4. Let A be a linear operator on a linear space D(A) ⊂ Y with
values in Y . Assume that ξ : R → D(A) is such that

t �→ ξ(t) is differentiable in (Y, || · ||), (4.7)

t �→ ξ ′(t) is continuous in (Y, || · ||), (4.8)

t �→ Aξ(t) is continuous in (Y, || · ||), (4.9)

t �→ ξ(t) has compact support in R, (4.10)

∫ ∞

s
Tu−s

[
ξ ′(u) + Aξ(u)

]
du = −ξ(s), s ∈ R. (4.11)

Then ξ(t) ∈ D(L) and Lξ(t) = Aξ(t) for all t ∈ R.

Proof. Let t ∈ R and h > 0. By (4.11),
∫ ∞

t+h
Tu−t

[
ξ ′(u) + Aξ(u)

]
du =

∫ ∞

t+h
Tu−(t+h)Th

[
ξ ′(u) + Aξ(u)

]
du

= −Thξ(t + h).

Subtracting this from (4.11) with s = t , we get

∫ t+h

t
Tu−t

[
ξ ′(u) + Aξ(u)

]
du = Thξ(t + h) − ξ(t).
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We get
(

Th − I

h

)
ξ(t) = 1

h

∫ t+h

t
Tu−t

[
ξ ′(u) + Aξ(u)

]
du − Th

(
ξ(t + h) − ξ(t)

h

)
.

By (4.7)–(4.9), the limit on the right-hand side exists as h → 0+ and equals

Lξ(t) = T0
(
ξ ′(t) + Aξ(t)

)− T0ξ
′(t) = Aξ(t).

In fact, the assumptions (4.7)–(4.11) only need to hold on [t, t + ε), ε > 0. �

REMARK 4.5. We call ξ satisfying (4.7)–(4.10) a path for A. Define

D(A, T ) = {ξ(t) : such that t ∈ R, and ξ is a path for A satisfying (4.11)}.
If A is the infinitesimal generator of a strongly continuous semigroup S = (St )t≥0 on
Y and D(A, T ) contains the cores of L and A, then L ≡ A and T ≡ S. Indeed, by the
comment following Theorem 4.1, for the infinitesimal generator L of T = (Tt )t≥0,
we have D(L , T ) = D(L). Theorem 4.4 means that D(A, T ) ⊆ D(A) ∩ D(L), and
A = L on D(A, T ). This identifies L with A and T with S.

We now focus on Lévy semigroups discussed in the Introduction.

Proof of (1.16). Recall that C∞
c (Rd) ⊂ C2

0 (R
d) ⊂ D(L). We shall verify the as-

sumptions of Theorem 4.1 for ξ(t) = φ(t, ·). It suffices to justify (4.3). Recall that
(1.15) holds for f ∈ C2

0 (R
d) and L is continuous fromC2

0 (R
d) toC0(R

d) [17, p. 211].
We note that t �→ φ(t, ·) is continuous in C2

0 (R
d). Therefore, t �→ Lφ(t, ·) is contin-

uous in (C0(R
d), || · ||∞). By Theorem 4.1,

−ξ(s) =
∫ ∞

s
Pu−s

[
ξ ′(u) + Lξ(u)

]
du

in C0(R
d). Recall that the Riemann integrals converge in norm. Evaluation at a point

is continuous on (C0(R
d), || · ||∞); therefore, the above identity holds pointwise, i.e.,

(1.16) holds. We note in passing that the integral in (1.16) may be interpreted as
Lebesgue integral on R × R

d . �

THEOREM4.6. (Uniqueness). Let C∞
c (Rd) be a core of a closed linear operator A

with domain D(A) ⊂ (C0(R
d), ||·||∞). If for all s ∈ R, x ∈ R

d and φ ∈ C∞
c (R×R

d),
∫ ∞

s

∫
Rd

[
∂uφ(u, x + z) + Aφ(u, x + z)

]
pu−s(dz)du = −φ(s, x), (4.12)

then A ≡ L.

Proof. Forϕ ∈ C∞
c (Rd) and f ∈ C1

c (Rd), we let ξ(t) = f (t)ϕ. Then, ξ is a path for A
and ζ(t) := ∫∞

t Pu−t
[
ξ ′(u) + Aξ(u)

]
du ∈ C0(R

d) converges in norm. By continuity
of evaluations and (4.12) with φ(t, x) = f (t)ϕ(x), we have ζ(t)(x) = −ξ(t)(x),
t ∈ R, x ∈ R

d . By Theorem 4.4, A = L on the common core C∞
c (Rd). This ends the

proof. �
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REMARK 4.7. If the Lévy process {Xt } has a (transition) density function, i.e.,
pt (dy) = p(t, y)dy for t > 0, then (1.16) reads as∫ ∞

s

∫
Rd

p(u − s, z − x)
[
∂uφ(u, z) + Lφ(u, z)

]
dzdu = −φ(s, x).

We shall focus on the case when d = 1 and {Xt } is a subordinator, i.e., a nonde-
creasing Lévy process. The Lévy measure ν of Xt is concentrated on (0,∞). Since∫
(x ∧ 1)ν(dx) < ∞ and L is a closed operator, (1.15) may be rearranged: We obtain

C1
0(R) ⊂ D(L) and

L f (x) = b
d f

dx
(x) +

∫ ∞

0

(
f (x + y) − f (x)

)
ν(dy), f ∈ C1

0(R).

Here b ≥ 0 is the drift coefficient. Furthermore, for f ∈ C1
c (R) we obtain∫ ∞

0

(
f (x + y) − f (x)

)
ν(dy) =

∫ ∞

0

∫ y

0
f ′(x + z) dz ν(dy)

=
∫ ∞

0
f ′(x + z)

(∫ ∞

z
ν(dy)

)
dz.

Let ν(z) = ∫∞
z ν(dy). We thus have

L f (x) = b f ′(x) +
∫ ∞

x
f ′(z) ν(z − x) dz, f ∈ C1

c (R). (4.13)

EXAMPLE. Let α ∈ (0, 1) and {Xt } be the α-stable subordinator, i.e.,

b = 0 and ν(dy) = α

Γ (1 − α)
y−α−11y>0 dy.

We then see that the generator of {Xt } coincides on C1
c (R) with the Weyl fractional

derivative (cf. (1.17) for the case α = 1/2). The potential operator for {Xt } is theWeyl
fractional integral

W −α f (x) =
∫ ∞

0
Tt f (x) dt = 1

Γ (α)

∫ ∞

x
f (z)(z − x)α−1 dz, f ∈ Cc(R).

Wenote in passing that−W −α∂α = I (the identity operator) onC1
c (R). Schrödinger

perturbations of W −α were discussed in [4, Example 2 and 3]. The discussion was
facilitated by the fact that the 3G Theorem holds for (y − x)α−1+ /Γ (α).

EXAMPLE. Since the inverse Gaussian subordinator is obtained by the Esscher
transform (tempering) and time rescaling of the 1/2-stable subordinator (cf. [7],
Sec. 4.4.2), for f ∈ C1

c (R), the generator of the inverse Gaussian subordinator is
given by (1.20).

REMARK4.8. For (signed)q : R×X → R,wedefine theSchrödinger perturbation
p̃ of p by q by exactly the same formulas (1.2) and (1.3).We get (1.4), (1.5), Chapman–
Kolmogorov, provided the perturbation series for |q|, which gives an upper bound for
p̃, is finite. Under this condition, Lemma 2.1 remains valid, too. For lower bounds of
p̃ for signed q, we refer to [2,5].
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