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Abstract. We show the equivalence of two notions, namely honesty of a semigroup and stochastic com-
pleteness of a graph. Honesty occurs in the study of positive perturbations of substochastic semigroups,
while stochastic completeness occurs in the study of the heat equation on graphs. We then look at some
applications of honesty theory to graphs.

1. Introduction

The two notions of honesty of a semigroup and stochastic completeness of a graph
occur in two different areas. Honesty is linked to the study of positive perturbations
of substochastic semigroups, i.e. positive semigroups which are contractions on the
positive cone of the ordered Banach space they act in, while stochastic completeness
occurs in the study of the heat equation on graphs.
In this paper, we are interested in the honesty theory of additive perturbations in the

framework ofKato’s PerturbationTheorem [2,10,17]. Themain idea inKato’s original
work in [10] tells us that if A is the generator of a substochastic semigroup on �1 and B
is a positive operator satisfying certain conditions, then there is an extensionG of A+B
that generates a perturbed substochastic semigroup. The term ‘honesty’ then occurs in
the study of the properties of the perturbed semigroup in Kato’s Theorem.Wewill give
the precise technical definition of honesty in Sect. 2; for now, we can simply think of
honesty theory as the study of the consistency between the perturbed semigroup and
the system it describes in the following sense. A substochastic semigroup on L1(μ)

is often used to model the time evolution of the states of a system. The nature of
the modelled process often requires that the described quantity should be preserved,
i.e. the semigroup describing the evolution is conservative (stochastic). However, in
some cases, the semigroup turns out not to be conservative even though the modelled
system should have this property. This phenomenon is what we will call dishonesty.
For a system modelled by a strictly substochastic semigroup, we have a loss term
representing the loss due to the system. Dishonesty in this case would mean that the
described quantity is lost from the system faster than predicted by the loss term.
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The honesty of the perturbed semigroup in Kato’s Theorem has been extensively
studied, with results going back to Kato’s seminal paper [10] where Kato studied the
stochasticity of the perturbed semigroup on �1. Early results include [1] and [17].
More recently, Voigt and Mokhtar-Kharroubi in [13] introduced a more systematic
approach to studying the problem on L1(μ), that is, via functionals involving resolvent
operators. Arlotti et al. in [2] then extended their work to abstract state spaces (real,
ordered Banach spaces with generating positive cone on which the norm is additive)
and introduced an alternative approach using functionals which are defined using the
Dyson–Phillips series representation of the perturbed semigroup instead.

Kato’s Theorem on L1(μ) and the corresponding honesty theory have applications
to many biological problems such as birth and death problems and fragmentation
problems. See [3, Chapters 7–9] for an introductory survey of the results in these
areas. The theory can also be applied to the transport equation or kinetic theory, for
example in [1] and [3, Chapters 10–11]. The extension of Kato’s Theorem to abstract
state spaces then enabled the application of honesty theory to a non-commutative
setting in [2,12].

The concept of stochastic completeness on the other hand occurs in the study of the
heat equation on a variety of geometric objects including manifolds [9] and graphs
[6,11]. Our paper, however, will only focus on the case involving symmetric weighted
graphs.

Stochastic completeness is related to the loss or conservation of heat in the system.
The loss of heat is attributed to two reasons: heat loss within the graph from internal
factors and heat loss by transport to ‘infinity’. The notion of stochastic completeness
occurs when we try to differentiate between the two methods of heat loss. More
precisely, we say that a graph is stochastically complete if there is no loss of heat to
infinity. This study of heat loss is encapsulatedmathematically in terms of a Laplacian,
L , on the weighted sequence space �2(V,m) and the heat semigroup it generates,
(e−t L)t≥0.

Stochastic completeness for graphs has been studied in various settings. For exam-
ple, Dodziuk and Mathai in [6] studied the bounded Laplacian by assuming a uniform
bound on the vertex degree of the graph.Wojciechowski in [18] on the other hand stud-
ied locally finite graphs by generalising the approach for the corresponding notion of
stochastic completeness on Riemannian manifolds. Keller and Lenz then generalised
these results by studying stochastic completeness at infinity of graphs which include
a killing term via non-local, regular Dirichlet forms on discrete sets [11]. It is this
particular notion of stochastic completeness at infinity which we will investigate in
this paper.

These two notions of stochastic completeness and honesty were introduced sepa-
rately and as far as we know have been studied independently to date. Although Keller
and Lenz in [11] acknowledge the strong relation between the work on stochastic
completeness of graphs and the work on Markov processes by Feller in [8] and Reuter
in [15], which is in fact, where the term honesty originated, there has been no formal
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attempt so far to link these two concepts together. In this paper, we will show the
equivalence of the two notions. It turns out that the heat semigroup is a substochastic
semigroup and the Laplacian on graphs can be reformulated as the sum of two oper-
ators. This allows us to rephrase the theory of heat equations on graphs in terms of
additive perturbations of substochastic semigroups and thus show the equivalence of
stochastic completeness and honesty. We will give more precise definitions in Sect. 2,
but for now we simply note that (SC∞) denotes stochastic completeness at infinity
and (e−t L1)t≥0 the heat semigroup on �1(V,m). Then our main result is the following:

THEOREM 1.1. (SC∞) of the weighted graph (V, b, c) is equivalent to honesty
of the semigroup (e−t L1)t≥0 on �1(V,m).

To prove the theorem, we will begin by introducing honesty and stochastic com-
pleteness independently in Sect. 2. We then demonstrate how the theory of Laplacians
on graphs fits into the framework of Kato’s Theorem in Sect. 3. The main aim of this
section is to show that the Kato semigroup is in fact equal to the heat semigroup on
�1. This result is in fact the most difficult step towards proving Theorem 1.1. The
main difficulty stems from the fact that the Laplacian acts on �2, while Kato’s Theory
considers semigroups on �1. In Sect. 4, we complete the proof of Theorem 1.1. Finally,
in Sect. 5, we will discuss some implications of the equivalence we have proven and
describe some applications of honesty theory to some examples of graphs.

2. The independent notions of honesty and stochastic completeness

In this paper, a few different notions of positivity will occur. Let X be an ordered
Banach space with positive cone X+. We say that the linear operator A is positive if
Au ∈ X+ for all u ∈ D(A) ∩ X+. If H is a Hilbert space and A a linear operator
in H , we say that A is H-positive if 〈Au, u〉 ≥ 0 for all u ∈ D(A) ⊆ H . Finally, if
Q : D(Q) × D(Q) ⊆ H × H → R is a quadratic form, we say that Q is positive if
Q(u, u) ≥ 0 for all u ∈ D(Q).
Let X be a Banach space and A a linear operator in X . Throughout the paper, wewill

use A∗ to denote the dual of A. A set of operators (Ap) with each operator Ap acting
on the Banach space X p, respectively, will be said to be consistent if they coincide on
the intersection of the spaces X p.

2.1. Honesty theory

In this paper, we will be interested solely in the study of honesty theory of additive
perturbations in the framework of Kato’s Perturbation Theorem in AL-spaces. The
theory we present here will be mostly based on [13].
Let (�,μ) be ameasure space and X := L1(�,μ). In [10, Theorem1],Kato proved

the following theorem (see also [17], [3, Theorem 5.2, Proposition 5.7, Corollary
5.17]).
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THEOREM 2.1. Suppose that the operators A and B with D(A) ⊆ D(B) ⊆ X
satisfy:

(i) A generates a substochastic semigroup (UA(t))t≥0,
(ii) Bu ≥ 0 for u ∈ D(A)+ := D(A) ∩ X+,
(iii)

∫
�
(A + B)u dμ ≤ 0 for all u ∈ D(A)+.

Then there exists an extension G of A+B that generates a substochastic C0-semigroup
(V (t))t≥0 on X. The generator G satisfies, for all λ > 0 and x ∈ X,

R(λ,G)x =
∞∑

k=0

R(λ, A)(BR(λ, A))k x .

Moreover, (V (t))t≥0 is the minimal substochastic C0-semigroup whose generator
is an extension of (A + B)|D, where D is any core of A.

Henceforth, we will refer to Theorem2.1 as Kato’s Theorem.
To study the honesty of the perturbed semigroup (V (t))t≥0, we consider again the

operators from Theorem2.1. We are interested in the functional

a0 : D(G) → R, a0(u) = −
∫

�

Gu dμ.

It is easy to see that 0 ≤ a0(u) ≤ ‖Gu‖ for all u ∈ D(G)+. We denote the restriction
of a0 to D(A) by a, i.e.

a0|D(A) = a : D(A) → R, a(u) = −
∫

�

Au + Bu dμ. (2.1)

We nowuse a to define our second functional. Fixλ > 0 and u ∈ X+. Since R(λ, A)

and BR(λ, A) are positive, the sequence R(n)u := ∑n
k=0 R(λ, A)(BR(λ, A))ku,

n ∈ N is non-decreasing and in fact converges to R(λ,G)u. Therefore, we have
a(R(n)u) = a0(R(n)u) ≤ a0(R(λ,G)u) for all n ∈ N, i.e. (a(R(n)u))n is a bounded,
monotone real sequence, which must then be convergent. Taking u = u+ − u− ∈ X ,
u+, u− ∈ X+, we see that this convergence holds for any u ∈ X . Therefore, we can
define a new functional on D(G) by

āλ(R(λ,G)u) =
∞∑

k=0

a(R(λ, A)(BR(λ, A))ku), u ∈ X.

It can be shown [13, Proposition 1.1] that āλ|D(A) = a and that the definition of
āλ is independent of λ. Thus we define ā := āλ. From the inequality a(R(n)u) ≤
a0(R(λ,G)u) for u ∈ X+, it follows that ā(R(λ,G)u) ≤ a0(R(λ,G)u). This allows
us to define a positive functional, �λ ∈ X∗ which will be key in characterising the
honesty of the semigroup,

〈�λ, u〉 = a0(R(λ,G)u) − ā(R(λ,G)u), u ∈ X. (2.2)
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To see this,weneed the technical definitionof honesty as given in [2]. Tomotivate the
definition, consider the following: for any u ∈ X+ and t ≥ 0, we have

∫ t
0 V (s)u ds ∈

D(G) with V (t)u − u = G
∫ t
0 V (s)u ds. Since the semigroup is positive, we have

‖V (t)u‖ − ‖u‖ = −a0

(∫ t

0
V (s)u ds

)

. (2.3)

We define honesty to be the following:

DEFINITION 2.2. ([2, Definition 3.8]) The perturbed semigroup (V (t))t≥0 in
Kato’s Theorem is said to be honest if and only if

‖V (t)u‖ − ‖u‖ = −ā

(∫ t

0
V (s)u ds

)

for all t ≥ 0, u ∈ X+. (2.4)

Otherwise, the semigroup is said to be dishonest.

REMARK 2.3. Note that if we have equality in condition (iii) in Kato’s Theorem,
then ā = 0. Hence, an honest semigroup in this case is simply a stochastic semigroup.

Note that Definition 2.2 tells us that the semigroup is honest if and only if the

difference ‖u‖ − ‖V (t)u‖, u ∈ X+ is given by ā
(∫ t

0 V (s)u ds
)
, which is bounded

by a0
(∫ t

0 V (s)u ds
)
so ā is in some sense the ‘minimal’ functional. Comparing (2.3)

and (2.4), we see that (V (t))t≥0 is honest if and only if for all u ∈ X+,

a0

(∫ t

0
V (s)u ds

)

= ā

(∫ t

0
V (s)u ds

)

for all t ≥ 0. (2.5)

Further calculations (see for example [2, Theorem 3.11]) show that (2.5) holds if and
only if a0(R(λ,G)u) = ā(R(λ,G)u) for some λ > 0. Therefore (V (t))t≥0 is honest
if and only if �λ = 0, i.e. no loss occurs.
With these calculations, we see that the functional �λ is a loss functional in the

sense that it measures ‘how far’ a trajectory deviates from an honest one. In fact, this
describes the equivalence of (i) and (ii) in Theorem 2.4, which states somewell-known
characterisations of honesty. The result as stated below can be derived by combining
[13, Lemma 1.4, Remarks 1.7] and Definition 2.2.

THEOREM 2.4. Let X = L1(�,μ), (V (t))t≥0 be the perturbed semigroup in
Kato’s Theorem and λ > 0. The following are equivalent.

(i) (V (t))t≥0 is honest.
(ii) �λ = 0.
(iii) limn→∞ ‖[BR(λ, A)]nu‖ = 0 for all u ∈ X+.
(iv) G = A + B.

The final result we present in this section is an important property of �λ which will
be required later.

PROPOSITION 2.5. ([13, Corollary 1.5]) Fix λ > 0. If �λ = 0, then �λ is the
maximal element of {ψ ∈ X∗ : ψ ≤ 1, (BR(λ, A))∗ψ = ψ}.
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2.2. Stochastic completeness

In this section, we will present the theory of stochastic completeness on graphs by
considering regular Dirichlet forms on discrete sets as carried out by Keller and Lenz
in [11]. We begin by introducing Laplacians on graphs.

Let V be a countable set and m a measure on V with full support. We will consider
the spaces �

p
m := �p(V,m), 1 ≤ p < ∞ defined by

{

u : V → R

∣
∣
∣

∑

x∈V
m(x) |u(x)|p < ∞

}

.

We will denote by �∞ the space of bounded functions on V equipped with the supre-
mum norm ‖·‖∞ and Cc := Cc(V ) the space of finitely supported functions on V . We
will also denote the duality between �1m and �∞ by 〈u, v〉m = ∑

x m(x)u(x)v(x) for
all u ∈ �∞, v ∈ �1m .

A symmetric weighted graph over V is a pair (b, c) consisting of a map c : V →
[0,∞) and a map b : V × V → [0,∞) satisfying:

(i) b(x, x) = 0 for all x ∈ V ,
(ii) b(x, y) = b(y, x) for all x, y ∈ V ,
(iii)

∑
y∈V b(x, y) < ∞ for all x ∈ V .

(V, b, c) then represents a weighted graph with vertex set V and b(x, y) the weight
on the edge connecting the point x and y. If c(x) > 0, we think of x as connected to
the point ‘infinity’ by an edge with weight c(x) and heat can flow out of the graph to
‘infinity’ but not vice versa. The map c is also known as the killing term.

For each graph (V, b, c), consider the closed form QM = QM
b,c,m defined on �2m×�2m

to [0,∞] with diagonal given by

QM (u) = 1

2

∑

x∈V

∑

y∈V
b(x, y)(u(x) − u(y))2 +

∑

x∈V
c(x)u(x)2.

We denote its restriction to Cc by QC := QC
b,c, i.e. Q

C = QM |Cc . Since QM is

closed, QC is closable. We will denote its closure by Q = Qb,c,m and its domain
by D(Q) which is the closure of Cc under the norm ‖·‖Q := (‖·‖22 + Q(·))1/2. It is
easy to see that Q is also positive. Hence, there exists a uniqueH-positive, self-adjoint
operator L = Lb,c,m with domain D(Q) = D(L1/2) and Q(u) = 〈

L1/2u, L1/2u
〉

for u ∈ D(Q) [5, Theorem 1.2.1]. It turns out that Q is in fact a regular Dirichlet
form [11, Theorem 7]. This implies that L generates a positive, contractive semigroup
on �2m which gives rise to positive, contractive semigroups (e−t L p )t≥0 on �

p
m for all

p ∈ [1,∞], strongly continuous for p ∈ [1,∞), with generators denoted L p and
L2 := L . From the construction of Q, we can describe the action of the operator L
explicitly.
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Define the formal Laplacian L̃ on the vector space

F̃ :=
⎧
⎨

⎩
u : V → R

∣
∣
∣

∑

y∈V
|b(x, y)u(y)| < ∞ for all x ∈ V

⎫
⎬

⎭

by

L̃u(x) := 1

m(x)

∑

y∈V
b(x, y)(u(x) − u(y)) + c(x)

m(x)
u(x)

for all x ∈ V . Then for any p ∈ [1,∞], L p f = L̃ f for all f ∈ D(L p) [11, Theorem
9].
The notion of subgraphs and their relation to the original graphs will play an im-

portant role in this paper. Let (V, b, c) be the weighted graph with measure m and
W ⊂ V with measure mW the restriction of m to W . A subgraph (W, bW , cW ) of a
weighted graph (V, b, c) is given by a subset W of V and the restriction bW of b to
W × W and the restriction cW of c to W . The subgraph (W, bW , cW ) then gives rise

to a regular Dirichlet form QbW ,cW ,mW := QC
bW ,cW

‖·‖QbW ,cW ,mW on �2(W,mW ) with
associated operator LbW ,cW ,mW .
Let iW : �2(W,mW ) → �2(V,m) be the canonical embedding and pW : �2(V,m)

→ �2(W,mW ) the canonical projection. We will see later that it will be more useful
to consider the form (defined on Cc(W ))

QC
W (u) = Q(iW u)

= QC
bW ,cW (u) +

∑

x∈W
dW (x)u2(x)

where dW (x) := ∑
y∈V \W b(x, y), with corresponding formal operator

L̃W u(x) = 1

m(x)

⎛

⎝
∑

y∈W
b(x, y)(u(x) − u(y)) +

⎛

⎝
∑

y∈V \W
b(x, y) + c(x)

⎞

⎠ u(x)

⎞

⎠ ,

x ∈ W.

Alternatively, one can view QW := QC
W

‖·‖QW as the form associatedwith theweighted
graph (W, bDW , cDW ) where bDW = bW and cDW = cW + dW . Hence, a similar argument
as above shows that QW is a regular Dirichlet form and thus is associated with the
operator LW and the semigroup (e−t LW )t≥0 on �2(W,mW ). For simplicity of notation,
for f ∈ �2(V,m), we will write e−t LW f to mean iW e−t LW (pW f ) and similarly for
the resolvent operators.
The following proposition which tells us that the heat semigroup on a graph can be

approximated by heat semigroups on its subgraphs will play an important role in the
next section.
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PROPOSITION 2.6. Let (V, b, c) be the weighted graph with measure m and (Wn)

an increasing sequence of subsets of V satisfying V = ⋃∞
n=1 Wn. Then for any t ≥ 0

and f ∈ �2(V,m),

e−t LWn f
�2(V,m)−−−−→
n→∞ e−t L f.

Proof. Fix 0 ≤ f ∈ �2(V,m). Then [11, Theorem 11(a)] and the dominated con-

vergence theorem implies that R(λ, LWn ) f
�2(V,m)−−−−→
n→∞ R(λ, L) f . Since the resolvent

operators are positive and every f ∈ �2(V,m) has a decomposition, f = f + − f −
with f +, f − ≥ 0, this convergence holds for all f ∈ �2(V,m). The strong con-
vergence of the semigroups then follows from a Trotter approximation theorem for
C0-semigroups on approximating sequences of Banach spaces [16, Theorem 5.1]. �

Finally, we introduce the concept of stochastic completeness. We begin by intro-
ducing a function, formally defined as

Mt (x) := e−t L1(x) +
∫ t

0

(
e−sL c

m

)
(x) ds, x ∈ V . (2.6)

Note that this function is well defined if c
m ∈ �

p
m for some p ∈ [1,∞] (which may

not necessarily hold) and it satisfies 0 ≤ Mt ≤ 1. For each x ∈ V , the function
t �→ Mt (x) is continuous and even differentiable. We would like to determine when
the function Mt is equal to 1.

THEOREM 2.7. ([11, Theorem 1]) Let (V, b, c) be a weighted graph and m a
measure on V of full support. Then, for any λ > 0, the function

wλ :=
∫ ∞

0
λe−λt (1 − Mt ) dt

satisfies 0 ≤ wλ ≤ 1, solves (L̃ + λ)wλ = 0 and is the largest non-negative f ≤ 1

with (L̃ + λ) f ≤ 0. Moreover, the following are equivalent:

(i) For any λ > 0, there exists f ∈ �∞\{0} with (L̃ + λ) f = 0.
(ii) wλ = 0 for any λ > 0.
(iii) Mt (x) < 1 for some x ∈ V and some t > 0.

This now allows us to define stochastic completeness.

DEFINITION2.8. ([11,Definition 1.1]) Theweighted graph (V, b, c)withmeasure
m of full support is said to satisfy stochastic incompleteness at infinity (SI∞) if it
satisfies one (and thus all) of the equivalent assertions of Theorem 2.7. Otherwise
(V, b, c) is said to satisfy stochastic completeness at infinity (SC∞).

Note that if c = 0, i.e. the case of vanishing killing term, then Mt is simply e−t L1.
Thus stochastic completeness of the graph is equivalent to the semigroup being sto-
chastic or conservative in this case. The function Mt tells us in fact that a graph is
stochastically complete if there is no heat loss to ‘infinity’. For full details about the
physical interpretation of Mt , see [11, p. 195, Section 7].
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3. Laplacians on graphs in Kato’s framework

The first step towards showing the equivalence of honesty and stochastic complete-
ness is to demonstrate that the theory of Laplacians on graphs fits into the framework
of Kato’s Theorem. We begin by reformulating the theory of Laplacians on graphs
in terms of Kato’s Theorem. Since Kato’s Theorem is a result on perturbations, we
consider −L̃ as the sum of two operators A, B on �1m with

Au(x) = − 1

m(x)

⎛

⎝
∑

y∈V
b(x, y) + c(x)

⎞

⎠ u(x) with D(A) = {u ∈ �1m : Au ∈ �1m}
(3.1)

and

Bu(x) = 1

m(x)

∑

y∈V
b(x, y)u(y) with D(B) = D(A). (3.2)

Note that for u ∈ D(A)+ the inequality

‖Bu‖1 =
∑

x∈V

∑

y∈V
b(x, y)u(y) =

∑

y∈V
u(y)

∑

x∈V
b(x, y) ≤ ‖Au‖1

shows that the element Bu defined in (3.2) belongs to �1m . For u ∈ D(A), there exist
u± ∈ D(A) such that u = u+ − u−, and therefore, (3.2) defines an element Bu ∈ �1m .
Finally, we observe that it follows easily from elementary calculations that A = A|Cc .

The main result of this section is the following:

THEOREM 3.1. Let A, B be defined by (3.1) and (3.2), respectively. Then the
heat semigroup on �1m, (e

−t L1)t≥0 coincides with the perturbed semigroup (V (t))t≥0

derived from A and B in Kato’s Theorem.

First, we show that the decomposition of A, B satisfies Kato’s Theorem.

PROPOSITION 3.2. A and B satisfy the hypotheses of Kato’s Theorem, and hence,
there exists G ⊇ A+ B that generates a C0-semigroup (V (t))t≥0 of positive contrac-
tions on �1m.

Proof. The operator A is the operator of multiplication with the function a(x) :=
− 1

m(x)

(∑
y∈V b(x, y) + c(x)

)
, and hence, it generates the substochastic semigroup

of multiplication with the function (eat )t≥0 on �1m (see [7, Section 2.9]).
It remains to consider the operator B. By definition, we have that D(B) = D(A).

Moreover, b(x, y) ≥ 0 for all x, y ∈ V ; hence, it follows immediately that B is a
positive operator. Additionally, for all u ∈ D(A)+

〈1, (A + B)u〉m =
〈
1,−L̃u

〉

m
= −

∑

x∈V
c(x)u(x) ≤ 0.

Therefore, we can conclude that A and B satisfy the hypotheses of Kato’s Theorem
and the result follows. �
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We now have (potentially) two semigroups on �1m , one of which comes from Kato’s
Theorem, (V (t))t≥0,while the other originates fromconsidering the theory ofDirichlet
forms, (e−t L1)t≥0. We will show next that the two semigroups coincide.

We begin with some auxiliary information on subgraphs. The reformulation of the
set-up of the Laplacian on graphs in terms of Kato’s framework allows us to derive new
information about the subgraphs of (V, b, c) which will be required later. We begin
with the following lemma which gives a condition which ensures that an operator B̃
satisfies the hypotheses of Kato’s Theorem.

LEMMA 3.3. Suppose A, B satisfy the hypotheses of Kato’s Theorem and let B̃
with D(B̃) ⊇ D(B) satisfy 0 ≤ B̃u ≤ Bu for all u ∈ D(A)+. Then A, B̃ also satisfy
the hypotheses of Kato’s Theorem.

Let A, B denote the operators in Kato’s Theorem associated with the weighted
graph (V, b, c) and L̃W the operator associated with the weighted graph (W, bDW , cDW )

as defined in Sect. 2.2. Note that since L̃W is associated with the weighted graph
(W, bDW , cDW ), it follows from Proposition 3.2 that the operators

AWu(x) = − 1

m(x)

⎛

⎝
∑

y∈V
b(x, y) + c(x)

⎞

⎠ u(x), x ∈ W with

D(AW ) = {u ∈ �1(W,mW ) : AWu ∈ �1(W,mW )} (3.3)

and

BWu(x) = 1

m(x)

∑

y∈W
b(x, y)u(y), x ∈ W with domain D(BW ) = D(AW )

(3.4)
satisfy the hypotheses of Kato’s Theorem on �1(W,mW ) with the associated Kato
subgraph semigroup denoted (VW (t))t≥0 and generator GW .

The following extension of the Kato subgraph semigroup (VW (t))t≥0 to �1(V,m)

will turn up repeatedly later. Let B̃W be the extension of BW to �1(V,m) defined by

B̃W u = iW BW (pWu). (3.5)

By definition, B̃W is positive and B̃W u ≤ Bu for all u ∈ D(A)+. Hence it follows
from Lemma 3.3 that A, B̃W also satisfy Kato’s Theorem on �1(V,m) with perturbed
semigroup denoted (ṼW (t))t≥0 and generator G̃W . We will refer to this semigroup as
the extended Kato semigroup associated with the subgraph (W, bDW , cDW ).

(ṼW (t))t≥0 is an extension of (VW (t))t≥0 in the following sense: From the defini-
tions of A, AW , BW , B̃W , it follows that for all u ∈ �1(W,mW ),

R(λ, A)iW u = iW R(λ, AW )u, B̃W R(λ, A)iW u = iW BW R(λ, AW )u. (3.6)
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Hence by Theorem 2.1 and the continuity of iW , we have that

R(λ, G̃W )iW u =
∞∑

k=0

R(λ, A)(B̃W R(λ, A))kiW u

= iW

( ∞∑

k=0

R(λ, AW )(BW R(λ, AW ))ku

)

= iW R(λ,GW )u

or equivalently,
ṼW (t)(iW u) = iW VW (t)u. (3.7)

Wewill also need the following auxiliary lemma. Recall that if T is associatedwith a
Dirichlet form, it generates semigroups of contractions on �

p
m , p ∈ [1,∞] [5, Theorem

1.3.3], which we will denote (Up(t))t≥0 with generators Tp or simply (U (t))t≥0 and
T wherever they coincide. The following lemma can be proven by simply comparing
the Dyson–Phillips series of the perturbed semigroups (S1(t))t≥0 and (S2(t))t≥0.

LEMMA 3.4. Suppose T : D(T ) ⊂ �2m → �2m is an operator associated with a
Dirichlet form and generates the semigroup (U (t))t≥0. Let H1 ∈ L(�1m), H2 ∈ L(�2m)

such that H1|�1m∩�2m
= H2|�1m∩�2m

. Then the perturbed semigroups generated by T1+H1

on �1m, (S1(t))t≥0 and T2 + H2 on �2m, (S2(t))t≥0 coincide on �1m ∩ �2m.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Choose an increasing sequence of finite subsets Fn ⊆ V , n ∈
N, such that

⋃
n Fn = V . Define bn(x, y) = (χFn×Fnb)(x, y) where χW denotes the

indicator function for the set W . Then the operators Bn, n ∈ N, defined by

Bnu(x) = 1

m(x)

∑

y∈V
bn(x, y)u(y) for all x ∈ V

are bounded operators in �1m and �2m . Taking A2 to be the multiplication operator with
maximal domain, i.e.

A2u(x)=− 1

m(x)

⎛

⎝
∑

y∈V
b(x, y)+c(x)

⎞

⎠ u(x) with D(A2)={u∈�2m : A2u∈�2m},

similar arguments to those in the proof of Proposition 3.2 show that A2 generates a
positiveC0-semigroup of contractions and is self-adjoint. Hence A2 is associated with
a Dirichlet form with consistent set of generators denoted by Ap. Now fix n ∈ N and
consider the operators T = T2, T1 and H in Lemma 3.4. Taking T2 = A2, T1 = A1 and
H1 = H2 = Bn , we see that A1, A2, Bn satisfy the conditions of Lemma 3.4. Hence,
for each n ∈ N, t ≥ 0 and u ∈ �1m ∩�2m ,U

(1)
n (t)u = U (2)

n (t)u where (U (1)
n (t))t≥0 is the

semigroup generated by A1 + Bn on �1m and (U (2)
n (t))t≥0 is the semigroup generated

by A2 + Bn on �2m .
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Let us consider first the semigroups (U (1)
n (t))t≥0, n ∈ N, on �1m . Let A and B

denote the operators in (3.1) and (3.2). Then clearly, A1 = A. It also follows from
the definitions that Bnu ≤ Bu for all u ∈ D(A)+, n ∈ N. Hence by Lemma 3.3,
(U (1)

n (t))t≥0 is a contractive semigroup for each n ∈ N. Moreover, for u ∈ D(A)+,

‖Bu − Bnu‖�1m
=

∑

x∈Fn

∑

y∈V \Fn
b(x, y)u(y)+

∑

x∈V \Fn

∑

y∈V
b(x, y)u(y)→ 0 as n → ∞.

Therefore, it follows from [17, Proposition 1.6] that for all t ≥ 0, U (1)
n (t) converges

strongly to V (t) on �1m where (V (t))t≥0 is the semigroup from Kato’s construction in
Proposition 3.2.

Now consider the semigroups (U (2)
n (t))t≥0, n ∈ N, on �2m . We will show that for

each t ≥ 0, the sequence (U (2)
n (t))n∈N converges strongly in �2m to e−t L . Fix u ∈ �2m

and t ≥ 0. We have
∥
∥
∥U (2)

n (t)u − e−t Lu
∥
∥
∥
2

≤
∥
∥
∥U (2)

n (t)(u − χFnu)

∥
∥
∥
2
+

∥
∥
∥U (2)

n (t)(χFnu) − e−t Lu
∥
∥
∥
2
.

Note that
∥
∥
∥U (2)

n (t)(u − χFnu)

∥
∥
∥
2

≤ ∥
∥u − χFnu

∥
∥
2 → 0 as n → ∞, so it remains to

consider
∥
∥
∥U (2)

n (t)(χFnu) − e−t Lu
∥
∥
∥
2
. We begin by noting that since Fn is finite for all

n, χFnu ∈ �1m ∩�2m . HenceU
(2)
n (t)(χFnu) = U (1)

n (t)(χFnu). Now for fixed n, consider

once again the semigroup (U (1)
n (t))t≥0. By construction, it follows that (U (1)

n (t))t≥0

is the extended Kato semigroup associated with the subgraph (Fn, bDFn , c
D
Fn

) described
above. Hence by (3.7),

∥
∥
∥U (2)

n (t)(χFnu) − e−t Lu
∥
∥
∥
2

=
∥
∥
∥iFn VFn (t)(pFnu) − e−t Lu

∥
∥
∥
2
.

Finally, since Fn is finite for every n, it follows that VFn (t) = e−t LFn . Hence
∥
∥
∥U (2)

n (t)(χFnu) − e−t Lu
∥
∥
∥
2

=
∥
∥
∥iFn e

−t LFn (pFnu) − e−t Lu
∥
∥
∥
2

and this converges to 0 by Proposition 2.6. Therefore
∥
∥
∥U (2)

n (t)u − e−t Lu
∥
∥
∥
2

→ 0 as

n → ∞ for all u ∈ �2m .
To complete the proof, we need the following fact which follows from elementary

measure theory, namely if ( fn) ⊂ �1m ∩�2m, g1 ∈ �1m, g2 ∈ �2m such that fn → g1 in �1m

and fn → g2 in �2m , then g1 = g2. Applying this fact with fn = U (1)
n (t)u = U (2)

n (t)u,
u ∈ �1m ∩ �2m and g1 = V (t)u, g2 = e−t Lu for all t ≥ 0, we can conclude that
V (t)u = e−t Lu for all u ∈ �1m ∩ �2m and t ≥ 0. �

One can also prove Theorem 3.1 by applying some results from the theory of
quadratic forms instead of approximations by finite subgraphs. We outline briefly this
alternative proof.
By applying the fact that the generator G of the Kato semigroup of the graph

(V (t))t≥0 is symmetric and the Riesz–Thorin Interpolation Theorem, we see that
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(V (t))t≥0 can be extended to a set of consistent semigroups on �
p
m , denoted

(V (p)(t))t≥0, with generators Gp. Moreover, QG2 , the form associated with the gen-
erator G2 is a Dirichlet form. It can then be deduced from [4, Lemma I.4.2.1.1] that
Cc ⊆ D(QG2) and so Q ⊆ QG2 . The reverse inclusion can be deduced from a result
relating form domains to the domination of semigroups [14, Proposition 2.23] by using
the minimality of the Kato semigroup (V (t))t≥0.
In contrast to the general case considered in Theorem 3.1, if we impose an extra

geometric condition on the space, i.e.

For any sequence (xn) ⊆ V with b(xn, xn+1) > 0 for all n ∈ N, we have∑

n∈N
m(xn) = ∞, (GP)

then the proof that the Kato semigroup coincides with the heat semigroup simplifies
considerably. One of the results which enables this simplification is the theorem that
gives the precise form of the generator in this case. In particular, Keller and Lenz
show in [11, Theorem 5] that −L1 is in fact the maximal operator in this case, i.e.
−L1 = −Lmax

1 where D(Lmax
1 ) = {u ∈ �1m : L̃u ∈ �1m}. To complete the proof,

simply apply the fact that G is a restriction of the maximal operator −Lmax
1 (see

[10, Lemma 10], [3, Theorem 6.20]) and the fact that if T is the generator of a C0-
semigroup on a Banach space X and A is a closed extension of T that also generates
a C0-semigroup, then A = T .

4. The equivalence of stochastic completeness and honesty

We can now prove Theorem 1.1. In particular, we will show thatwλ = �λ for some,
or equivalently, all λ > 0, where �λ is the functional defined by (2.2) and wλ is as
defined in Theorem 2.7. To do so, we must first give a precise description of (A+ B)∗.
For notational simplicity, let us denote Gmin := (A + B)|Cc = −L̃|Cc .

LEMMA 4.1. Let (V, b, c) be a weighted graph and m a measure with full support.
Suppose A, B, L̃, and Gmin are as defined above. Then (A + B)∗ = G∗

min = −Lmax∞
where

Lmax∞ u = L̃u for all u ∈ D(Lmax∞ ) = {u ∈ �∞ : L̃u ∈ �∞}.
Proof. The main step in the proof is to show that G∗

min = −Lmax∞ . By definition,
v∗ ∈ D(G∗

min) if and only if there exists u
∗ ∈ �∞ such that 〈Gminu, v∗〉m = 〈u, u∗〉m

for all u ∈ D(Gmin) and then G∗
minv

∗ is defined to be u∗. Since D(Gmin) = Cc and
Cc is the span of the family (ex )x∈V of standard basis vectors, it suffices to consider
the vectors ex , x ∈ V . Now for all x ∈ V ,

〈
Gex , v

∗〉
m = −

⎛

⎝
∑

y∈V
b(x, y) + c(x)

⎞

⎠ v∗(x) +
∑

y∈V
b(x, y)v∗(y) = −m(x)L̃v∗(x).
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So v∗ ∈ D(G∗
min) if and only if −L̃v∗ ∈ �∞ and in this case, G∗

minv
∗ = −L̃v∗. Since

we require that −L̃v∗ ∈ �∞, this can be restated as v∗ ∈ D(G∗
min) if and only if

v∗ ∈ D(Lmax∞ ) and in this case G∗
minv

∗ = −Lmax∞ v∗. Therefore G∗
min = −Lmax∞ .

To complete the proof, we show that Gmin = A + B. In other words, we show
that Cc is a core for A + B. However, this follows since Cc is a core for A and B is
an A-bounded operator. The lemma now follows from G∗

min = Gmin
∗ = A + B

∗ =
(A + B)∗. �

The second result we require gives an alternative description of Ker(λ− (A+ B)∗)
for fixed λ > 0.

LEMMA 4.2. Suppose A, B satisfy the conditions of Kato’s Theorem and fix λ > 0.
Then Ker(λ − (A + B)∗) = Ker(I − (BR(λ, A))∗).

Proof. Recall first that Ker(λ−(A+B)∗) is the annihilator of Im(λ − (A + B)). Sim-
ilarly, Ker(I − (BR(λ, A))∗) is the annihilator of Im(I − BR(λ, A)). Since Im(λ −
(A + B)) = Im((λ − (A + B))R(λ, A)) = Im(I − BR(λ, A)), it follows that
Ker(λ − (A + B)∗) = Ker(I − (BR(λ, A))∗). �

Proof of Theorem 1.1. Fix λ > 0. We begin by showing that wλ satisfies the eigen-
value problem (λ − (A + B)∗)wλ = 0 while �λ satisfies (L̃ + λ)�λ = 0. From
Theorem 2.7, we know that wλ satisfies (L̃ + λ)wλ = 0. But wλ is bounded and
Lmax∞ ⊂ L̃ , so this can be equivalently rewritten as (Lmax∞ + λ)wλ = 0. By Lemma
4.1, this is equivalent to saying (λ − (A + B)∗)wλ = 0. Noting that Proposition 2.5
and Lemma 4.2 imply that �λ satisfies (λ − (A + B)∗)�λ = 0, we can reverse this
argument with �λ replacing wλ to prove the second assertion.
Combining Lemma 4.2 and Proposition 2.5, we see that �λ is the maximal element

in { f ∈ �∞+ : f ≤ 1} that satisfies (λ − (A + B)∗) f = 0 and so wλ ≤ �λ.
Similarly, Theorem 2.7 states that wλ is the largest non-negative f ≤ 1 such that
(Lmax∞ + λ) f ≤ 0. Hence �λ ≤ wλ and so �λ = wλ. Therefore, Theorem 2.4 and
Theorem 2.7 imply that stochastic completeness at infinity is equivalent to honesty of
the Kato semigroup (V (t))t≥0, which is equal to the heat semigroup (e−t L1)t≥0 on �1m
by Theorem 3.1. �

REMARK 4.3. The proof of Theorem 1.1 tells us in fact that (SC∞) is equivalent to
honesty of the Kato semigroup (V (t))t≥0 described in Proposition 3.2, independently
of Theorem 3.1. The role of Theorem 3.1 is to connect (SC∞) of the given graph to
its associated heat semigroup.

Finally, we observe that in order to prove Theorem 1.1, we showed that condition
(ii) of Theorem 2.4 is equivalent to the negation of condition (ii) of Theorem 2.7. It
turns out that condition (iii) in Theorem 2.7 also follows directly from the definition
of honesty as given in Definition 2.2. This follows since standard manipulations show
that the functionMt defined in (2.6) can be stated in terms of the functionals of honesty
theory as
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〈Mt , u〉 = 〈1, V (t)u〉 + ā

(∫ t

0
V (s)u ds

)

, u ∈ �1m .

5. Applications of honesty in weighted graphs

The equivalence of honesty and stochastic completeness shown in Theorem 1.1
allows us to derive new characterisations of stochastic completeness from Theorem
2.4.

COROLLARY 5.1. Let (V, b, c) be a weighted graph. If A, B are as defined in
(3.1) and (3.2), the following are equivalent:

(i) (V, b, c) satisfies (SC∞).
(ii) limn→∞ ‖[BR(λ, A)]nu‖ = 0 for all u ∈ �1(V,m)+, some λ > 0.
(iii) −L1 = A + B.

We demonstrate how condition (ii) of Corollary 5.1 may be applied to a graph. This
example covers the case studied in [18] where infinite but locally finite graphs are
considered, under the counting measure and with no killing term.

EXAMPLE 5.2. Consider the infinite but locally finite connected graph (V, b, 0),
with m the counting measure and b(x, y) = 1 if x is connected to y by an edge and 0
otherwise. We will use x ∼ y to denote that x is connected to y by an edge and dx to
denote the degree of x , i.e. the number of edges emanating from x . In this case

L̃u(x) =
∑

y∼x

(u(x) − u(y)), x ∈ V .

PROPOSITION 5.3. The graph (V, b, 0) is stochastically complete if and only if

lim
n→∞

1

λ + dy

∑

x∈V

∑

(i1,...,in−1)∈V n−1

x∼i1∼···∼in−1∼y

n−1∏

k=1

1

λ + dik
= 0

for all y ∈ V and some λ > 0.

Proof. From Corollary 5.1, we have that (V, b, 0) is stochastically complete if and
only if limn→∞ ‖[BR(λ, A)]nu‖ = 0 for all u ∈ (�1m)+. Since BR(λ, A) is power-
bounded [3, p. 147], it suffices to check that limn→∞ ‖[BR(λ, A)]nu‖ = 0 for all u
in a dense subset of (�1m)+. In particular, �1m is the closed linear span of the standard
basis (ex )x∈V , and hence, (V, b, 0) is stochastically complete if and only if

lim
n→∞

∥
∥[BR(λ, A)]nex

∥
∥ = 0 for all x ∈ V . (5.1)

Since BR(λ, A) is a positive operator, (5.1) is equivalent to

lim
n→∞

∑

x∈V
c(n)
xy = 0 for all y ∈ V

where c(n)
xy = 〈

ex , (BR(λ, A))ney
〉
, x, y ∈ V .
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It remains to calculate c(n)
xy . Since b(x, y) = 1 if and only if x ∼ y, and R(λ, A)u(x)

= u(x)
λ+dx

, we have

cxy := c(1)
xy =

{
1

λ+dy
if x ∼ y,

0 otherwise.

Using the fact that c(n+1)
xy = ∑

i∈V cxi c
(n)
iy and induction, we find that

c(n)
xy = lim

n→∞
1

λ + dy

∑

(i1,...,in−1)∈V n−1

x∼i1∼···∼in−1∼y

n−1∏

k=1

1

λ + dik
= 0

and the result follows. �

The characterisation of (SC∞) in Proposition 5.3 is fairly complicated and not easy
to apply. Consider for example the special case of model trees, namely trees whose
vertex degree is constant on spheres of radius r from a fixed root vertex x0 (see [18,
Section 3.2] for more details). Wojciechowski shows that a model tree satisfies (SC∞)

if and only if
∑∞

r=1
1

dr−1 diverges where dr is the degree of vertices of distance r from
x0 [18, Theorem 3.2.1]. Even in this simple case, it is not clear how the condition in
Proposition 5.3 simplifies to this form.

As a second example, let us look at the case when the Laplacian is bounded. Keller
and Lenz [11, Remark (a) p. 195] note that if L̃ gives rise to a bounded operator on
�∞(V ), then the graph is stochastically complete. Their justification for this is that
condition (i) in Theorem 2.7 must fail for λ large enough whenever L̃ is bounded.
Corollary 5.1 allows us to derive an alternative proof of this statement. To see this,
note first that if L̃ is bounded on �∞, then by duality, L̃ is bounded on �1m . Moreover,
the operator A is simply multiplication with a bounded function, and hence, A and B
are bounded operators. Thus A + B generates a C0-semigroup, and so, condition (iii)
of Corollary 5.1 implies that the graph satisfies (SC∞).

Finally, we show that the criteria for (SC∞) involving subgraphs in [11, Theorem
4] can be derived from the following simple condition for dishonesty.
Recall from Lemma 3.3 that if A, B satisfy Kato’s Theorem and B̃ satisfies 0 ≤

B̃u ≤ Bu for all u ∈ D(A)+, then A, B̃ also satisfy Kato’s Theorem. Under these
assumptions, we can derive the following sufficient condition for dishonesty.

PROPOSITION 5.4. Suppose A, B satisfy Kato’s Theorem with perturbed semi-
group (V (t))t≥0. Let B̃ with D(B̃) ⊇ D(B) satisfy 0 ≤ B̃u ≤ Bu for all u ∈ D(A)+
with perturbed semigroup (Ṽ (t))t≥0. If the semigroup (V (t))t≥0 is honest, then so is
(Ṽ (t))t≥0.

Proof. Fix λ > 0. Since both B and B̃ are positive on D(A) and B̃u ≤ Bu for all
u ∈ D(A)+, we have by positivity of R(λ, A) that B̃ R(λ, A) ≤ BR(λ, A). Iterating,

we have for all n ∈ N, (B̃ R(λ, A))n ≤ (BR(λ, A))n and so
∥
∥
∥(B̃ R(λ, A))nu

∥
∥
∥ ≤
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‖(BR(λ, A))nu‖ for all u ∈ X+. The result now follows since from Theorem 2.4, we
have that (V (t))t≥0 (resp. (Ṽ (t))t≥0) is honest if and only if for some λ > 0 and all
u ∈ X+, ‖(BR(λ, A))nu‖ → 0 (resp. ‖(B̃ R(λ, A))nu‖ → 0). �

If we consider the extended Kato semigroup associated with the subgraph (W, bDW ,

cDW ) with operators A, B̃W and (ṼW (t))t≥0 as defined in Sect. 3 and observe that from

(3.6), for all u ∈ �1(W,mW ),
∥
∥
∥(B̃W R(λ, A))niW u

∥
∥
∥

�1(V, m)
= ‖(BW R(λ, AW ))n

u‖�1(W, mW ), we can derive [11, Theorem 4] as a corollary.

COROLLARY 5.5. Let (V, b, c) be a weighted graph and m a measure on V with
full support. If (SC∞) holds for (V, b, c), then (SC∞) holds for the weighted graphs
(W, bDW , cDW ) for all W ⊆ V .
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