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Abstract. We describe singular diffusion in bounded subsets � of Rn by form methods and characterize
the associated operator. We also prove positivity and contractivity of the corresponding semigroup. This
results in a description of a stochastic process moving according to classical diffusion in one part of �,
where jumps are allowed through the rest of �.

1. Introduction

The aim of this paper was to present a treatment of multidimensional “singular”
diffusion in the framework of Dirichlet forms. Singular diffusion (sometimes called
gap diffusion) in one dimension goes back at least to Feller [6] and has a long history,
see, e.g., [14] and references therein.
To describe singular diffusion, we consider a suitable measure μ on an open and

bounded subset� ⊆ R
n , and let particles move in� according to “Brownianmotion”,

where the particles may only be located in the support sptμ of μ. Furthermore, the
particles are accelerated or slowed down by the “speed measure” μ. If μ is supported
only on a proper subset of �, in terms of the stochastic process describing the motion
of a particle, this yields a time-changed process (on sptμ), see [10, Section 6.2]. In
terms of the Dirichlet form, we may also see that as a trace of the corresponding
Dirichlet space [10, Section 6.2].
We want to treat the evolution by constructing the corresponding Dirichlet form.

Since the particles moving according to Brownianmotion are only located in sptμ, we
will interpret the classical Dirichlet form in L2(�,μ). There is an abstract generating
theorem to find generators associated with forms defined in different spaces in [2];
however, our approach is different in thatwe consider the form itself in theHilbert space
L2(�,μ) (where the generator should act in).Wewill characterize the generating self-
adjoint operator and show that the correspondingC0-semigroup is submarkovian. The
associated process is a jump-diffusion process, with a diffusion part on sptμ and jumps
through �\sptμ.
Such singular diffusions in one dimension and the form approach were described

in [8,9,17–19], see also, e.g., [16] for form methods. As it turns out in one dimension,
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functions in the domain of the form (and hence also the operator) have to be affine
on the complement of sptμ. Since in one dimension affine functions are exactly the
harmonic functions, this will be the right condition occurring in higher dimensions.
In higher dimensions, there are only few results in the literature, see [12,15,17],

focussing on the construction of the operator (however under somewhat different
assumptions; we will work with capacities).
In Sect. 2, we describe the setup and interpret the classical Dirichlet form in

L2(�,μ). The generator is characterized in Sect. 3, where also properties of the
associated semigroup are proven. In Sect. 4, we apply our result to two different sit-
uations. First, we consider singular diffusion supported on a subset of codimension
1. Then we apply our results to diffusion on a fractal domain (we choose the Koch’s
snowflake here).

2. Dirichlet forms for singular diffusion

Let K ∈ {R, C} denote the field of scalars. We write λn for the n-dimensional
Lebesgue measure on R

n .
Let � ⊆ R

n be open and bounded. We define the classical Dirichlet form τ0 on �

by

D(τ0) := W 1
2,0(�),

τ0(u, v) :=
∫

�

grad u · grad v (u, v ∈ D(τ0)).

The corresponding form norm ‖·‖τ0
:= (

τ0(·) + ‖·‖2L2(�,λn)

)1/2 is just the usual W 1
2 -

norm on �, where τ0(u) := τ0(u, u).
We will provide some notions from potential theory, which will be needed in the

following. For an open subset V ⊆ �, we define

cap(V ) := inf
{
‖u‖2τ0; u ∈ D(τ0), u � 1 λn- a.e. on V

}
.

For arbitrary A ⊆ �, we set

cap(A) := inf {cap(V ); V ⊆ � open, A ⊆ V }.
Then cap(A) is called the capacity of A. We say that a property holds true quasi
everywhere (q.e.) if there exists N ⊆ � of zero capacity such that the property is
satisfied on �\N .
Let (Fk)k∈N be a sequence of closed subsets of � satisfying Fk ⊆ Fk+1 for all

k ∈ N. Then (Fk) is called a nest if cap(�\Fk) → 0. If (Fk) is a nest, then we set

C((Fk)) := {
u : � → K; u|Fk ∈ C(Fk) (k ∈ N)

}
.

A function u : � → K is said to be quasi-continuous if there exists a nest (Fk) such
that u ∈ C((Fk)). Note that this is equivalent to saying that for any ε > 0, there exists
an open subset U ⊆ � such that cap(U ) < ε and u|�\U ∈ C(�\U ).
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PROPOSITION 2.1. (See [10, Theorem 2.1.3]) Every u ∈ D(τ0) admits a q.e.
uniquely defined quasi-continuous representative ũ.

We set (writing B(�) for the Borel subsets of �)

M0(�) := {
μ : B(�) → [0,∞]; μ σ -additive,

μ(N ) = 0 for any Borel set N ⊆ � of zero capacity
}
.

It is easy to see that μ ∈ M0(�) if μ is absolutely continuous with respect to the
Lebesgue measure λn(· ∩ �) on �. As shown in [4, Theorem 4.1], also the (n − 1)-
dimensionalHausdorffmeasure on (n−1)-dimensionalC1-submanifolds of�belongs
to M0(�).
Let μ ∈ M0(�) be a finite measure and U := �\sptμ. The measure μ may be

considered as a “speed measure”. Furthermore, we will assume

W 1
2,0(U ) =

{
u ∈ W 1

2,0(�); ũ = 0 μ-a.e.
}

, (1)

where ũ is a quasi-continuous representative of u. Note that “⊆” is trivial; however,
“⊇” does not hold in general, as the following example due to Voigt [20] shows.

EXAMPLE 2.2. We start with a claim: Let n � 2, ε > 0 and r0 > 0. Then there
exist 0 < r < r ′ � r0 and ϕ ∈ C1

c (R
n) such that spt ϕ ⊆ B(0, r ′), 1B[0,r ] � ϕ � 1

and ‖ϕ‖2,1 � ε. Here B(y, ρ) and B[y, ρ] denote the open and closed balls around y
with radius ρ, respectively.

Let B+ := {x ∈ B(0, 1); x1 > 0}. Using the claim, there exist (xk) in B+, (rk)
and (r ′

k) in (0,∞) satisfying rk < r ′
k for all k ∈ N and (ϕk) in C1

c (R
n) such that

spt ϕk ⊆ B(xk, r ′
k) ⊆ B+, 1B[xk ,rk ] � ϕk � 1 such that

• the set of accumulation points of (xk) is exactly {x ∈ B(0, 1); x1 = 0},
• B(xk, r ′

k) ∩ B(x j , r ′
j ) = ∅ for all k, j ∈ N, k 
= j ,

• ∑∞
k=1 ‖ϕk‖2,1 < ∞.

Let K := ⋃
k∈N B[xk, r ′

k], � ⊇ K be open and bounded andμ the Lebesguemeasure
on K . Let ϕ := ∑

k∈N ϕk and ψ ∈ C1
c (R

n) such that ψ = 1 in a neighborhood of
K . Then ψ − ϕ is quasi-continuous and ψ − ϕ = 1 on {x ∈ B(0, 1); x1 = 0}, a set
with positive capacity. On the other hand, ψ − ϕ = 0μ-a.e., since ψ − ϕ = 0 on⋃

k∈N B[xk, rk] and the set

K
∖ ⋃

k∈N
B

[
xk, rk

]
= {x ∈ B(0, 1); x1 = 0}

has μ-measure zero. Hence, ψ − ϕ ∈
{
u ∈ W 1

2,0(�); ũ = 0 μ-a.e.
}
, but

ψ − ϕ /∈
{
u ∈ W 1

2,0(�); ũ = 0 q.e. on K
}

.

By [11, Theorem 1.13], we observe{
u ∈ W 1

2,0(�); ũ = 0 q.e. on K
}

= W 1
2,0(�\K ).

Thus, ψ − ϕ /∈ W 1
2,0(�\K ).
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Since � is bounded, by Poincaré’s inequality we can equip W 1
2,0(�) with the inner

product

(u, v) �→ τ0(u, v) =
∫

�

grad u · grad v,

inducing a norm, namely τ0(·)1/2 = ‖|grad(·)|‖2, which is equivalent to the usual
norm ‖·‖2,1. We will always equip W 1

2,0(�) with this inner product.

PROPOSITION 2.3. Let � ⊆ R
n be open and bounded, U ⊆ � open. Then

W 1
2,0(�) = W 1

2,0(U ) ⊕ D1
2,0(U ), where

D1
2,0(U ) :=

{
u ∈ W 1

2,0(�); 
(u|U ) = 0
}

.

Proof. Let u ∈ W 1
2,0(�). We show that there exists a unique v ∈ W 1

2,0(U ) such that

0 =
∫
U
u
ϕ −

∫
v
ϕ (ϕ ∈ C∞

c (U )).

Then Ju := u − v ∈ D1
2,0(U ) and this implies the assertion.

By Poincaré’s inequality, we observe that

( f, g) �→ ( f | g)0 :=
∫
U
grad f · grad g

defines an inner product on W 1
2,0(U ) such that this space becomes a Hilbert space.

Since∣∣∣∣
∫
U
u
ϕ

∣∣∣∣ =
∣∣∣∣
∫
U
grad u · grad ϕ

∣∣∣∣ � ‖|grad u|‖L2(�)‖ϕ‖0
(
ϕ ∈ C∞

c (U )
)
,

the mapping ϕ �→ − ∫
U u
ϕ is a continuous linear functional onW 1

2,0(U ). By Riesz’

representation theorem, there exists a unique v ∈ W 1
2,0(U ) such that

(ϕ | v)0 = −
∫
U
u
ϕ

(
ϕ ∈ C∞

c (U )
)
. �

Let J : W 1
2,0(�) → D1

2,0(U ) be the orthogonal projection. Then J̃ u = ũ μ-a.e.
by (1).

Let D :=
{
u ∈ L2(�,μ); ∃ v ∈ W 1

2,0(�) : ṽ=u μ-a.e.
}
. Then ι : D → D1

2,0(U ),

ι(u) := Jv, where v ∈ W 1
2,0(�) such that ṽ = u μ-a.e., is a well-defined linear

mapping (again by (1)).
Define

D(τD) := D,

τD(u, v) :=
∫

�

grad ι(u)(x) · grad ι(v)(x) dx = τ0(ι(u), ι(v)) (u, v ∈ D(τD)).
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REMARK 2.4. In fact, we do not need condition (1). One can always work with
the decomposition

W 1
2,0(�) =

{
u ∈ W 1

2,0(�); ũ = 0 μ-a.e.
}

⊕
{
u ∈ W 1

2,0(�); ũ = 0 μ-a.e.
}⊥

,

and define J : D →
{
u ∈ W 1

2,0(�); ũ = 0 μ-a.e.
}⊥

as the orthogonal projection. As

the previous proposition shows, if (1) is satisfied, the subspace{
u ∈ W 1

2,0(�); ũ = 0 μ-a.e.
}⊥

can be described more explicitly as the space of

W 1
2,0(�)-functions, which are harmonic on �\sptμ.
THEOREM 2.5. τD is densely defined in L2(�,μ), symmetric, nonnegative and

closed.

Proof. τD is densely defined sinceC∞
c (�) ⊆ D(τD) is dense in L2(�,μ). Symmetry

and nonnegativity is clear by definition. To show closedness, let (un) in D(τD) be a
τD-Cauchy sequence, i.e., τD(un−um) → 0, and un → u in L2(�,μ). Since (ι(un))n
is a Cauchy sequence in W 1

2,0(�), there exists v ∈ W 1
2,0(�) such that ι(un) → v in

W 1
2,0(�). For ϕ ∈ C∞

c (U ), we compute

0 =
∫
U

ι(un)
ϕ →
∫
U

v
ϕ,

i.e., v ∈ D1
2,0(U ).

There exists a subsequence (unk ) such that ι̃(unk ) → ṽ q.e. and hence also μ-a.e.

Since ι̃(un) = un μ-a.e., we observe ṽ = u μ-a.e. Hence, u ∈ D(τD), ι(u) = v and

τD(un − u) = τ0(ι(un) − v) → 0. �
LEMMA 2.6. The form τD is real, i.e., u ∈ D(τD) implies Re u ∈ D(τD), and

τD(u, v) ∈ R for all real u, v ∈ D(τD).

We omit the obvious proof of the lemma.

THEOREM 2.7. Let F : R → R, F(x) := (0 ∨ x) ∧ 1 for all x ∈ R, where ∨
and ∧ denote the maximum and minimum, respectively. Let u ∈ D(τD) be real. Then
F ◦ u ∈ D(τD) and τD(F ◦ u) � τD(u).

Proof. Since F(x) � |x | for all x ∈ R, we have F ◦ u ∈ L2(�,μ). There exists
v ∈ W 1

2,0(�) such that ṽ = u μ-a.e. Clearly, v can be chosen to be real. Then F ◦ u ∈
W 1

2,0(�) by the lattice properties ofW 1
2,0(�). Since F is continuous, by Proposition 2.1

we obtain F̃ ◦ v = F ◦ ṽ q.e. and hence also μ-a.e. Thus, F̃ ◦ v = F ◦ u μ-a.e. and

therefore, F ◦ u ∈ D(τD). Since F̃ ◦ v = F ◦ ṽ = F ◦ J̃v = F̃ ◦ Jv μ-a.e., by (1)
we obtain J (F ◦ v) = J (F ◦ Jv). Therefore, since J is an orthogonal projection and
hence a contraction for the norm τ0(·)1/2, we obtain

τD(F ◦ u) = τ0(ι(F ◦ u)) = τ0(J (F ◦ v)) = τ0(J (F ◦ Jv)) � τ0(F ◦ Jv)

� τ0(Jv) = τ0(ι(u)) = τD(u),
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where we used the fact that τ0(F ◦ w) � τ0(w) for any w ∈ W 1
2,0(�). �

THEOREM 2.8. C∞
c (�) is a core for τD.

Proof. Note that [10, Theorem 1.4.2 (ii)] states that D(τD) ∩ L∞(�,μ) is a core
for τD . Thus, it suffices to approximate u ∈ D(τD) ∩ L∞(�,μ). There exists a
sequence (ϕl) in C∞

c (�) such that ϕl → ι(u) in W 1
2,0(�) (i.e., τD(ϕl − u) → 0),

ϕl → ι̃(u) q.e. and M := sup
{‖ϕl‖∞,sptμ; l ∈ N

}
< ∞. Since μ ∈ M0(�), we

also have ϕl → ι̃(u) μ-a.e., and since ι̃(u) = u μ-a.e. also ϕl → u μ-a.e. Since
|ϕl | � M1� ∈ L2(�,μ), Lebesgue’s dominated convergence theorem yields ϕl → u
in L2(�,μ), and therefore, ϕl → u in DτD = (D(τD), ‖·‖τD

). �

REMARK 2.9. In view of Theorem 2.5, Lemma 2.6 and Theorem 2.7, the form τD

is a symmetric Dirichlet form. Theorem 2.8 assures that τD is even regular.

3. Characterization of the operator

Let H be the self-adjoint operator in L2(�,μ) associated with τD , where � and μ

are as in the previous section.

DEFINITION. Let F ∈ L1,loc(�; K
n), g ∈ L1(�,μ). Then g is called the distri-

butional divergence of F with respect to μ, denoted by divμ F = g, if

∫
�

F(x) grad ϕ(x) dx = −
∫

�

g(x)ϕ(x) dμ(x)
(
ϕ ∈ C∞

c (�)
)
.

THEOREM 3.1. We have

D(H) = {
u ∈ D(τD); divμ grad ι(u) ∈ L2(�,μ)

}
,

Hu = − divμ grad ι(u) (u ∈ D(H)).

Proof. First note that for u ∈ D(τD) and ϕ ∈ C∞
c (�), we have

τ0(ι(u), ϕ) =
∫

�

grad ι(u) · grad ϕ =
∫

�

grad ι(u) · grad ι(ϕ) = τD(u, ϕ).

Indeed, since ι(ϕ) = Jϕ and ϕ − Jϕ ∈ W 1
2,0(U ), we obtain

∫
�

grad ι(u) · grad(ϕ − Jϕ) = 0.

Let H1 be the operator defined by the right-hand side in the theorem. Let u ∈ D(H1)

and ϕ ∈ C∞
c (�). Then by the above, we have

τD(u, ϕ) =
∫

�

grad ι(u) · grad ϕ = −
∫

�

divμ grad ι(u)ϕ dμ = (H1u | ϕ).
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By continuity and Theorem 2.8, we obtain

(H1u | v) = τD(u, v) (v ∈ D(τD)).

Thus, u ∈ D(H) and Hu = H1u.
To show the converse inclusion, let u ∈ D(H) ⊆ D(τD) and ϕ ∈ C∞

c (�). Then
∫

�

grad ι(u) · grad ϕ =
∫

�

grad ι(u) · grad ι(ϕ) = τD(u, ϕ) = (Hu | ϕ)

=
∫

�

Huϕ dμ.

Hence, divμ grad ι(u) exists and divμ grad ι(u) = −Hu ∈ L2(�,μ). Thus, u ∈
D(H1) and H1u = Hu. �

REMARK 3.2. The operator H is the multidimensional analog of the operator
−∂μ∂ι with Dirichlet boundary conditions, see [13,17,18] and also [8,9].

We now focus on properties of the semigroup (e−t H )t�0. A C0-semigroup
T : [0,∞) → L(L2(�,μ)) of bounded linear operators in L2(�,μ) is called positive,
if T (t) f � 0 for all 0 � f ∈ L2(�,μ), t � 0. The semigroup is called submarkov-
ian, if it is positive and L∞-contractive, i.e., f ∈ L2(�,μ), 0 � f � 1 implies
0 � T (t) f � 1 for all t � 0.

THEOREM 3.3. The C0-semigroup (e−t H )t�0 is submarkovian.

Proof. By Lemma 2.6, the form τD is real. Hence, also the associated operator H
and the semigroup (e−t H )t�0 is real. By Theorems 2.5, 2.7 and the Beurling–Deny
criteria, the semigroup (e−t H )t�0 is submarkovian. �

REMARK 3.4. In [10, Section 6.2], the traces of Dirichlet forms and associated
processes were considered. Our result characterizes the corresponding generating
operator H in case of (suitably scaled) Brownian motion on a bounded domain sptμ,
where μ is the corresponding volume measure (i.e., Lebesgue measure). The process
may jump through �\sptμ however (due to the Dirichlet boundary condition at ∂�)
gets killed on ∂�.

REMARK 3.5. Let us compare our description of the form τD and the operator

H with the theory of [2]. To this end, let V :=
{
u ∈ W 1

2,0(�); ũ ∈ L2(�,μ)
}
and

equip V with the norm defined by

‖u‖V :=
( ∫

�

|grad u|2 +
∫

�

|ũ|2 dμ
)1/2

(u ∈ V ).

Let j : V → L2(�,μ) be defined by j (u) := ũ. Let a : V × V → K be defined by

a(u, v) :=
∫

�

grad u · grad v (u, v ∈ V ),
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i.e., a is the restriction of the classical Dirichlet form τ0 to V . Then H is also associated
with (a, j) as in [2, Theorem 2.1]. One may ask where the projection J of our setup
appears in this framework. This may be answered by [2, Proposition 2.3], see also [3,
Theorem 8.11].

4. Applications

We will now show two applications. Note that by Remark 2.4, in fact we only need
to prove μ ∈ M0(�). However, we will also show “⊇” in (1) (so that equality in (1)
holds).
Note that for an open subset V ⊆ R

n , we have

W 1
2,0(V ) =

{
u|V ; u ∈ W 1

2 (Rn), ũ = 0 q.e. on ∂V
}

,

see, e.g., [7, Theorem 2.5] and [5, Theorem 4.2].

EXAMPLE 4.1. Let n � 2, � := (−1, 1)n ⊆ R
n, 
 := � ∩ (Rn−1 × {0})

and μ := λn−1(· ∩ 
) be the (n − 1)-dimensional Lebesgue measure on 
. Then
μ ∈ M0(�) by [4, Theorem 4.1]. We will show the equality in (1). Write �+ :=
� ∩ (Rn−1 × (0,∞)) and �− := � ∩ (Rn−1 × (−∞, 0)) (Fig. 1).
Let u ∈ W 1

2,0(�), ũ = 0μ-a.e. There exists (ϕk) in C∞
c (�) such that ϕk → u in

W 1
2 (�) and ϕk → ũ q.e. Thus, also ϕk(·, 0) → ũ(·, 0) = 0 λn−1-a.e.
For v ∈ L2(�), let

Ev(x) :=
{

v(x) x ∈ �,

0 R
n\�

be the extension of v by zero, and v+ := (Ev)|Rn−1×(0,∞).
We obtain ϕk+ → u+ in W 1

2 (Rn−1 × (0,∞)). By [1, Theorem 5.36], there exists a
bounded linear trace operator tr : W 1

2 (Rn−1 × (0,∞)) → L2(R
n−1). Hence, tr ϕk+ →

tr u+ in L2(R
n−1). Since also tr ϕk+ = ϕk(·, 0) → ũ+(·, 0) = 0 λn−1-a.e. we

obtain tr u+ = 0. By [1, Theorem 5.37], we obtain u+ ∈ W 1
2,0(R

n−1 × (0,∞)).

Two applications of [1, Theorem 5.29] finally yield u|�+ ∈ W 1
2,0(�+). Analogously,

u|�− ∈ W 1
2,0(�−), and hence, u ∈ W 1

2,0(�).
Thus, the corresponding stochastic process describes a particle diffusing in the

hyperplane and jumping through �.

−

+

Figure 1. The hypercube � divided into two parts �+ and �− by
the hyperplane 
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U D

D

Figure 2. The square � and the snowflake D

EXAMPLE 4.2. Let D be the filled (open) Koch’s snowflake centered at the origin
and � ⊆ R

2 be a large open square centered at the origin such that D ⊆ �. Let
μ := λ2(· ∩ D) be the Lebesgue measure on D (Fig. 2).
Then μ ∈ M0(�). We show equality in (1). Let u ∈ W 1

2,0(�), ũ = 0μ-a.e. By [1,

Theorem 5.29], the extension of u by zero yields u ∈ W 1
2 (R2). By [7, Theorem 2.5],

we observe ũ = 0 q.e. on ∂�.
Since u|D = 0 λ2-a.e., we have tr(u|D) = 0Hd -a.e. on the boundary of D by [21,

Theorem 2], where Hd is the d-dimensional Hausdorff measure with d = log 4
log 3 . By

[5, Corollary 4.5], we thus obtain ũ = 0 q.e. on ∂D.
Hence, for U := �\D we obtain ũ = 0 q.e. on ∂U , which by [7, Theorem 2.5]

yields u ∈ W 1
2,0(U ).

We can thus describe jump diffusion, where the diffusion takes part on the snowflake
D and jumps may occur along its boundary ∂D.
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