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On the trivial solutions for the rotating patch model
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Abstract. In this paper, we study the clockwise simply connected rotating patches for Euler equations. By
using the moving plane method, we prove that Rankine vortices are the only solutions to this problem in
the class of slightly convex domains. We discuss in the second part of the paper the case where the angular
velocity Ω = 1

2 , and we show without any geometric condition that the set of the V-states is trivial and
reduced to the Rankine vortices.

1. Introduction

We shall study in this paper some aspects of the vortex motion for the two-
dimensional incompressible Euler system which can be written with the vorticity–
velocity formulation in the form,

⎧
⎪⎪⎨

⎪⎪⎩

∂tω + v · ∇ω = 0, x ∈ R
2, t > 0,

v = ∇⊥�−1ω,

ω(0, x) = ω0(x).

(1)

Here, ∇⊥ = (−∂2, ∂1), v = (v1, v2) is the velocity field, and the ω its vorticity given
by the scalar ω = ∂1v2 − ∂2v1. The classical theory dealing with the local\global
well-posedness of smooth solutions is well developed, and we refer for instance to
[1,3].
According to Yudovich result [10], the vorticity equation has a unique global solu-

tion in the weak sense provided the initial vorticity ω0 belongs to L1∩ L∞. This result
allows to deal rigorously with the so-called vortex patches which are initial vortices
uniformly distributed in a confined region D, that is, ω0 = χD the characteristic func-
tion of D. Since the vorticity is transported along trajectories, we conclude that the
vorticity preserves the vortex patch structure for any positive time. This means that
for any t ≥ 0, ω(t) = χDt , with Dt = ψ(t, D) is the image of D by the flow ψ which
satisfies the ordinary differential equation

∂tψ(t, x) = v(t, ψ(t, x)), ψ(0, x) = x . (2)

The dynamics of the boundary of Dt is in general complex and very difficult to
follow. By using the contour dynamics method, we may parametrize the boundary
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by a function γt : T → ∂Dt satisfying a nonlinear and non-local equation of the
following type

∂tγt = − 1

2π

∫

∂Dt

log |γt − ξ |dξ.

There are few examples known in the literature with explicit dynamics. The first one
is Rankine vortex where D is a disc; in this case, the particle trajectories are circles
centered at the origin, and therefore, Dt = D, ∀ t ≥ 0. The second example is
a remarkable one and discovered by Kirchhoff [8] is the ellipses. In this case, the
domain Dt does not change its shape and undergoes a perpetual rotation around its
barycenter with uniform angular velocity Ω related to the semi-axes a and b through
the formula Ω = ab/(a + b)2. See, for instance, [1, p. 304].

It seems that the ellipses are till now the only explicit example with such properties
but whether or not other non-trivial implicit rotating patches exist has been discussed
in the last few decades from numerical and theoretical point of view. To be more
precise about these structures, we say that ω0 = χD is a V-state or a rotating patch if
there exists a real number Ω called the angular velocity such that the support of the
vorticity ω(t) = χDt is described by

Dt = Rx0,Ωt D, ∀t ≥ 0,

with Rx0,Ωt being the planar rotation with center x0 and angleΩt.Deem and Zabusky
[4] were the first to reveal numerically the existence of simply connected V-states with
the m-fold symmetry for the integer m = 3, 4, 5. Recall that a domain D is said to be
m-fold symmetric if it is invariant by the dihedral group Dm which is the symmetry
group of a regular polygon of m sides. A few years later, Burbea [2] gave an analytic
proof by using the bifurcation theory showing the existence of a countable family
of V-states with the m-fold symmetry for any m ≥ 2. They can be identified to one-
dimensional branches bifurcating from the Rankine vortex at the simple “eigenvalues”
{
Ω = m−1

2m ,m ≥ 2
}
. See also [6], where theC∞ boundary regularity of the bifurcated

V -states close to the disc was proven. It seems that close to the disc, the bifurcating
branches rotate with bounded angular velocities, Ω ∈]0, 1

2 [. It is important to know
whether all the V-states possess an angular velocity in this strip. From the implicit
function theorem, we know that close to the disc there are no non-trivial V-states
associated with Ω /∈ [0, 1

2 ].
In this paper, we give a partial answer to this problem. We shall first show that there

is no clockwise rotating patches, that is, Ω ≤ 0, but with some geometric constraints.
WhenΩ = 0, this corresponds to stationary patches, and we know from a recent result
of Fraenkel [5] in gravitational theory that the discs are the only stationary patches. He
used the techniques of moving plane method which can be adapted to our framework
only when Ω ≤ 0. More precisely, we obtain the following result.

THEOREM 1. Let D be a C1 bounded simply connected domain convex or more
generally being in the class 
arccos 1√

5
introduced in the Definition 2. Assume that χD
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is a V-state satisfying the Eq. (1) with the angular velocity Ω < 0. Then, necessarily
D is a disc.

The proof uses the moving plane method in the spirit of the papers [5,9]. We start
first with reformulating the equation in an integral form by using the strong maximum
principle. This can be done by noticing that the stream function ψ associated with the
vorticity χD is a V-state if and only if the following equation holds true

ϕ � μ + 1

2
Ω|x |2 − ψ(x) = 0, ∀ x ∈ ∂D, (3)

with μ a constant. From the maximum principle applied to ϕ in the domain D, one
deduces that D ⊂ {ϕ > 0}.To get the equality between the latter sets which is essential
for our approach, we need to prove that ϕ(x) < 0 for any x /∈ D. It is not clear how
to get this result without any geometric constraint on the domain because the function
ϕ is only superharmonic in the complement of D and going to −∞ at infinity and
therefore the associated minimum principle is not conclusive. Thus, we should put
some geometric constraints on the domain in order to get the desired result. Notice
that this kind of problem does not appear when Ω = 0 because the function ϕ is
harmonic, and the maximum principle can be applied. Now, once the domain is fully
described by ϕ, the V-state equation can be reduced to a nonlinear integral equation
on ϕ,

ϕ(x) = μ + 1

2
Ω|x |2 − 1

2π

∫

R2
log |x − y| H(ϕ(y)) dy, ∀x ∈ R

2.

with H = χ[0,+∞[ being the Heaviside function. The second step consists in applying
the techniques of the moving plane method in order to show that any solution ϕ is
radial and strictly decreasing. Therefore, the conclusion follows from the fact that the
boundary ∂D is a level set of ϕ, and it must be a circle.

When Ω ≥ 0, there is a competition between the quadratic potential describing the
rotation effect and the gravitational potential. This competition is fruitful in the strip
Ω ∈]0, 1

2 [ and leads to non-trivial examples as we have previously quoted concerning
the existence of the m-folds. The approach of moving plane method fails for Ω ≥ 1

2
because we are still in the region where there is an active competition between the
two potentials, and we lose the monotonicity of the nonlinear functional. Our second
purpose in this paper was to establish a global result for the end point Ω = 1

2 which is
very special.We shall prove a similar result to Theorem 1 by using different techniques
from complex analysis. Our result reads as follows.

THEOREM 2. Let D be a C1 bounded simply connected domain. Assume that χD

is a V-state satisfying the Eq. (1) with the angular velocity Ω = 1
2 . Then, necessarily

D is a disc.

According to the definition (3), we can see that the value Ω = 1
2 is very special

because in this case, ϕ is harmonic inside the domain D and vanishes on its boundary.
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This leads to an explicit formula for the Newtonian potential in D which is quadratic
and turns out to be that of a circle. This is a kind of inverse problem solved in a more
general framework in [6]. The proof in our particular situation is more easier, and for
the convenience of the reader, we shall give a complete proof of this fact.

REMARK 1. In Theorem 2, we do not assume any geometric property for the
V-states, and therefore, it is interesting to see whether we can get rid of the geometric
constraints in Theorem 1. In the last section, we shall deal with the case Ω = 1

2 and
give a proof for Theorem 2.

REMARK 2. In our results, we require the boundary to be at least of class C1.
This appears when we move from the equation of the vorticity to the stream function
formulation. The regularity could be relaxed to rectifiable boundaries.

REMARK 3. Whether there are V-states rotating faster than 1
2 remains open.

The paper is organized as follows. In Sect. 2, we shall discuss the mathematical
model of the V-states. Section 3 is devoted to the clockwise rotating patches and
where we prove Theorem 1.

2. Model

Recall that a rotating patch, called also V-state, for Euler equations written in the
form (1) is a solution of the type ω(t) = χDt where the domain Dt rotates uniformly
with an angle velocity Ω around its barycenter assumed to be zero, that is,

Dt = R0,Ωt D,

with R0,Ωt being the rotation of center 0 and angle Ωt. According to [2,6] when the
boundary of the patch is smooth, this holds true if and only if

(
v(x) − Ωx⊥) · �n(x) = 0, ∀x ∈ ∂D, (4)

with �n(x) be the outward-pointing normal unit vector to the boundary, and v be the
induced velocity by the patch χD which can be recovered from Biot-Savart law in its
complex form as follows:

v(z) = i

2π

∫

D

1

z − y
dA(y), z ∈ C.

Integrating the Eq. (4) yields

ψ(z) − 1

2
Ω|z|2 = Cte � μ, ∀z ∈ ∂D, (5)

with ψ the stream function associated with the patch χD and defined by

ψ(z) = 1

2π

∫

D
log |z − y| dA(y), z ∈ C.
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Recall the identity

∂zψ(z) = 1

2
iv(z)

= 1

4π

∫

D

1

z − y
dA(y).

From the Cauchy-Pompeiu formula, one can write

1

2π i

∫

�

z − ξ

ξ − z
dξ = 1

π

∫

D

1

z − y
dA(y), z ∈ C.

Consequently,

4∂zψ(z) = 1

2π i

∫

�

z − ξ

ξ − z
dξ, ∀z ∈ C. (6)

Thus, the Eq. 4 can be written in the following complex form

Re
{(

2Ωz + 1

2iπ

∫

∂D

ξ − z

ξ − z
dξ

)
�τ(z)

}
= 0, ∀ z ∈ ∂D,

with �τ(z) being a tangent unit vector to the boundary at the point z.

3. Clockwise rotating patches

Now, we shall prove the main result stated in Theorem 1. The caseΩ = 0 was done
in [5], and therefore, we shall focus only on Ω < 0. It will be done in several steps
in the spirit of the paper [9]. Firstly, we shall transform the V-states equation into an
integral one. To do so, we need some strong geometric conditions on the domains.
Secondly, we use themoving planemethod to prove that all the solutions of the integral
equation are radial symmetric and strictly decreasing. From this result, we can deduce
easily Theorem 1.

3.1. Integral equation

Our first goal was to transform the V-states equation into an integral form. This will
be done under some geometric constraints on the domains of the V-states. We shall
for this purpose need some definitions.

DEFINITION 1. Let D be aC1 simply connected domain. Let x0 ∈ ∂D, α ∈ [0, π
2 ]

and define the sector

Secx0,α =
{
x ∈ R

2\{x0}; cosα ≤ x − x0
‖x − x0‖ · �ν(x0)

}

with �ν(x0) the outward-pointing normal unit vector to the boundary at x0. We also
define the sets

D+
x0 =

{
x ∈ D; (x − x0) · �ν(x0) ≥ 0

}
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and

D−
x0 =

{
y = x − 2

[
(x − x0) · �ν(x0)

]�ν(x0); x ∈ D+
x0

}
.

Note that the set D+
x0 is the part of D located above the tangent line to the boundary

at the point x0 (the orientation is with respect to �ν). As to the set D−
x0 , it is the reflection

of the set D+
x0 with respect to this tangent.

DEFINITION 2. Let D be a C1 simply connected bounded domain with zero as
barycenter. We say that D belongs to the class 
α with α ∈ [0, π

2 ] if
(1) For each x0 ∈ ∂D, we have x0 · �ν(x0) ≥ 0.
(2) For each x0 ∈ ∂D, we have Secx0,α ∩ D = ∅.
(3) For each x0 ∈ ∂D, the subset D−

x0 introduced in the Definition 1 is contained in
the domain D.

We shall make some comments.

REMARK 4. (1) The first assumption in the previous definition means that the
barycenter is always below any tangent line to the boundary.

(2) If a domain belongs to the class 
α , then it belongs to the class 
α′ for any
α′ ∈ [0, α].

(3) Any convex domain belongs to 
π
2
.

(4) Roughly speaking, when α is close to π
2 , a domain in 
α is “slightly convex.”

Now, we shall write down an integral equation for ϕ.

PROPOSITION 1. Let D be a C1 simply connected domain belonging to the class

arccos 1√

5
introduced in the Definition 2. Assume that χD is a V-state rotating with

a negative angular velocity Ω < 0. Let ψ be the stream function of χD; then, there
exists a constant μ previously defined in (5) such that

ϕ(x) = μ + 1

2
Ω|x |2 − 1

2π

∫

R2
log |x − y| H(ϕ(y)) dy, ∀x ∈ R

2. (7)

with H = χ[0,+∞[ being the Heaviside function and

ϕ(x) � μ + 1

2
Ω|x |2 − ψ(x).

The proof is an immediate consequence of the next lemma which allows to write

ψ(x) = 1

2π

∫

R2
log |x − y| H(ϕ(y)) dy.

The lemma reads as follows.

LEMMA 1. Let Ω < 0 and D be a domain as in the Proposition 1, then

D = {
x ∈ R

2, ϕ(x) > 0
}
, ∂D = {

x ∈ R
2, ϕ(x) = 0

}
.

In particular,

∀x ∈ R
2, χD(x) = H(ϕ(x)).
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Proof. The proof will be done in two steps. In the first one, we show that D ⊂ {
x ∈

R
2, ϕ(x) > 0

}
which does not require any geometric constraint on the domain, andwe

use only the maximum principle applied to ϕ. However, the converse inclusion is more
subtle, and it is not clear whether it can be proven without any additional geometric
properties for the domain. To get the first inclusion, we observe that ϕ satisfies in the
distribution sense

�ϕ = 2Ω − χD ≤ 0, in R
2. (8)

Taking the restriction of this equation to the domain D, we get in the classical sense
the Dirichlet problem

{
�ϕ < 0 in D
ϕ = 0, ∂D.

(9)

Applying the strong maximum principle, we find

∀x ∈ D, ϕ(x) > 0

and therefore, we obtain the inclusion

D ⊂ {
x ∈ R

2, ϕ(x) > 0
}
. (10)

We should now prove the converse which follows from

R
2\D ⊂ {

x ∈ R
2, ϕ(x) < 0

}
. (11)

To get this inclusion, we shall first give an elementary proof when the domain D is
assumed to be convex which is in fact belongs to the class 
α and come back later to
the general case. Since ψ has a logarithmic growth at infinity and Ω < 0, then

lim|x |→+∞ ϕ(x) = −∞.

To get the inclusion, it suffices to show that ϕ has no critical points outside D. Assume
that there exits x0 /∈ D such that ∇ϕ(x0) = 0. It is easy to see that

∇ϕ(x0) = Ωx0 − 1

2π

∫

D

x0 − y

|x0 − y|2 dy
= 0.

As D is convex, one canfind, using the separation theorem, a unit vector e (for example,
the outward-pointing normal unit vector) such that

(x0 − y) · e > 0, ∀y ∈ D.

Consequently, we get

∇ϕ(x0) · e = Ω x0 · e − 1

2π

∫

D

(x0 − y) · e
|x0 − y|2 dy

< Ω x0 · e
< 0,



808 T. Hmidi J. Evol. Equ.

where we have used in the last line the fact that 0 ∈ D and x0 · e > 0. This gives the
desired result in the case of convex domains. Now, let us discuss the general case of
domains belonging to the class
arccos 1√

5
. We claim that for any x0 ∈ ∂D, the function

g : [0,+∞) → R defined by

g(t) � ϕ
(
x0 + t�ν(x0)

)

= μ + 1

2
Ω|x0 + t�ν(x0)|2 − ψ

(
x0 + t�ν(x0)

)

is strictly decreasing. Indeed, by differentiation, we find

g′(t) = Ω(t + x0 · �ν(x0)) − ∇ψ
(
x0 + t�ν(x0)

) · �ν(x0).

Using the assumption (1) of the Definition 2 and the fact that Ω < 0, we obtain

∀t ≥ 0, g′(t) < −∇ψ
(
x0 + t�ν(x0)

) · �ν(x0). (12)

By straightforward computations, we get

∇ψ
(
x0 + t�ν(x0)

) · �ν(x0) = 1

2π

∫

D

(
x0 + t�ν(x0) − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy

= t

2π

∫

D

1

|x0 + t�ν(x0) − y|2 dy

+ 1

2π

∫

D

(
x0 − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy. (13)

From the Definition 2, we get the partition D = D−
x0 ∪ D+

x0 ∪ D̂x0 with D̂x0 the
complement of D−

x0 ∪ D+
x0 in D. Therefore, the last integral term may be written in

the form
∫

D

(
x0 − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy =
∫

D̂x0

(
x0 − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy

+
∫

D−
x0∪D+

x0

(
x0 − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy

≥
∫

D−
x0∪D+

x0

(
x0 − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy � Ix0 , (14)

where we have used the fact that
(
x0 − y

) · �ν(x0) ≥ 0 for any y ∈ D̂x0 . We shall use
the change in variables

z ∈ D−
x0 �→ y = z − 2

[
(z − x0) · �ν(x0)

]�ν(x0) ∈ D+
x0

which is a diffeomorphism preserving Lebesgue measure, and therefore,

∫

D+
x0

(
x0 − y

) · �ν(x0)

|x0 + t�ν(x0) − y|2 dy = −
∫

D−
x0

(
x0 − z

) · �ν(x0)

|x0 − t�ν(x0) − z|2 dz.
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Consequently,

Ix0 =
∫

D−
x0

(
x0 − y

) · �ν(x0)

(
1

|x0 + t�ν(x0) − y|2 − 1

|x0 − t�ν(x0) − y|2
)

dy

= −4t
∫

D−
x0

[(
x0 − y

) · �ν(x0)
]2

|x0 + t�ν(x0) − y|2|x0 − t�ν(x0) − y|2 dy.

Putting together the preceding identity with (14) and (13), we obtain

∇ψ
(
x0 + t�ν(x0)

) · �ν(x0)

≥ t

2π

∫

D−
x0

1

|x0 + t�ν(x0) − y|2
(

1 − 4

[(
x0 − y

) · �ν(x0)
]2

|x0 − t�ν(x0) − y|2
)

dy.

Easy computations show that

inf
t≥0

|x0 − t�ν(x0) − y|2 = |x0 − y|2 − [
(x0 − y) · �ν(x0)

]2
,

and therefore,

∇ψ
(
x0 + t�ν(x0)

) · �ν(x0)

≥ t

2π

∫

D−
x0

|x0 − y|2
|x0 + t�ν(x0) − y|2

⎛

⎝
1 − 5

[ x0−y
|x0−y| · �ν(x0)

]2

|x0 − y|2 − [
(x0 − y) · �ν(x0)

]2

⎞

⎠ dy.

Recall that for y ∈ D−
x0

x0 − y

|x0 − y| · �ν(x0)= z − x0
|z − x0| · �ν(x0), with z= y − 2

[
(y − x0) · �ν(x0)

]�ν(x0) ∈ D+
x0 .

According to the definition of D+
x0 and the condition (2) of the Definition 2, one sees

that

0 ≤ (z − x0)

|x0 − z| · �ν(x0) ≤ 1√
5

and therefore,

∀y ∈ D−
x0 , 0 ≤ (x0 − y)

|x0 − y| · �ν(x0) ≤ 1√
5
·

This implies that

∀t ≥ 0, ∇ψ
(
x0 + t�ν(x0)

) · �ν(x0) ≥ 0.

Combining this inequality with (12), one gets

∀t ≥ 0, g′(t) < 0.
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It follows that g is strictly decreasing, and

∀t > 0, g(t) < g(0) = 0.

In the last equality, we have used the equation of the V-states, that is, ϕ(x) = 0, ∀ x ∈
∂D. Coming back to the definition of g, this proves that

∀t > 0, ϕ(x0 + t�ν(x0)) < 0.

According to the condition (2) of the Definition 2, we get

R
2\D = ∪t>0,x0∈∂D]x0, x0 + t�ν(x0)].

This allows to conclude that

∀x ∈ R
2\D, ϕ(x) < 0,

and therefore, we get the desired inclusion (11). The proof of the lemma is now
complete. �

3.2. Moving plane method

We shall now discuss the symmetry property of any solution of the integral equation
(7). This may be done by using the moving plane method in the spirit of the papers
[5,9]. Our result reads as follows.

PROPOSITION 2. Let Ω < 0 and ϕ be a solution of (7). Then, ϕ is radial and
strictly decreasing with respect to the radial variable r.

The result of Theorem 1 follows easily from this proposition because the level sets
of ϕ are circles centered at zero and ∂D ⊂ ϕ−1({0}). As shown, Proposition 2 is
nothing but the second part (2) of Proposition 5.
Next, we shall establish a list of auxiliary results needed later in the proof of
Proposition 5.

Notation: For λ > 0, we introduce the sets

Hλ =
{
x = (x1, x2) ∈ R

2, x1 < λ
}
, Tλ =

{
x = (λ, x2) ∈ R

2, x2 ∈ R

}

, and we define for any x = (x1, x2) ∈ R
2

xλ � (2λ − x1, x2), ϕλ(x) � ϕ(x) − ϕ(xλ).

Our main goal now was to prove the following result.

PROPOSITION 3. There exists λ� > 0 such that for any λ ≥ λ�,

ϕλ(x) > 0, ∀x ∈ Hλ.

In addition, ∀ λ0 > 0 there exists R(λ0) > 0 such that ∀ λ ≥ λ0

∀ x ∈ Hλ, |x | ≥ R(λ0) �⇒ ϕλ(x) > 0.
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Proof. Using Lemma 6 of [9] together with the fact that 0 is the barycenter of D, one
may write

∀x ∈ R
2\{0}, ϕ(x) = μ + 1

2
Ω|x |2 − 1

2π
|D| log |x | + h(x),

with h being a smooth function outside D and satisfies the asymptotic behavior: There
exists R > 0 large enough such that

∀|x | ≥ R, |h(x)| ≤ C |x |−2; |∇h(x)| ≤ C |x |−3.

From the elementary fact |xλ| > |x | for x ∈ Hλ, we shall get

ϕλ(x) = 1

2
Ω(|x |2 − |xλ|2) + 1

2π
|D| log (|xλ|/|x |

) + h(x) − h(xλ)

> −2λΩ(λ − x1) + h(x) − h(xλ).

Using the mean value theorem, we obtain for |x | ≥ R,

|h(x) − h(xλ)| ≤ |x − xλ| sup
y∈[x,xλ]

|∇h(y)|

≤ C(λ − x1)|x |−3

≤ C(λ − x1)R
−3.

Hence, we get for x ∈ Hλ with |x | ≥ R

ϕλ(x) > (λ − x1)
( − CR−3 − 2λΩ

)
.

We shall now see how to deduce from this inequality the second claim of the propo-
sition, and the first claim is postponed later to the end of the proof. Let λ0 > 0 and
λ ≥ λ0 and take x ∈ Hλ with |x | ≥ R. Then, it is plain that

ϕλ(x) > (λ − x1)
( − CR−3 − 2λ0Ω

)
.

Now, we choose R such that

λ0 = − C

2Ω
R−3

which guarantees that ϕλ(x) > 0, and this concludes the proof of the second part of
Proposition 3. Now, let us come back to the proof of the first claim of the proposition.
For this aim, it suffices to check in the preceding claim that the inequality ϕλ(x) > 0
remains true for any x ∈ Hλ provided that λ is sufficiently large. Now, let |x | ≤ R
and set

M � sup
|x |≤R

|ϕ(x)|.

From the asymptotic behavior of ϕ, we see that

lim|x |→∞ ϕ(x) = −∞.
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In particular, there exists A > 0 such that

|x | ≥ A �⇒ ϕ(x) < −2M.

It is easy to find λ1 depending only on R and A such that

∀λ ≥ λ1, ∀|x | ≤ R �⇒ |xλ| ≥ A

�⇒ ϕλ(x) > M.

Set λ� = max{λ0, λ1}; then for any λ ≥ λ�, we obtain

∀x ∈ Hλ, ϕλ(x) > 0.

This concludes the proof of Proposition 3. �

The next result deals with a continuation principle very useful to prove the strictly
monotonicity of ϕ.

PROPOSITION 4. Let λ > 0 and assume that ϕλ ≥ 0 in Hλ. Then,

ϕλ > 0 in Hλ and ∂x1ϕλ(x) < 0, ∀ x ∈ Tλ.

Proof. First, recall that the stream function can be written in the form

ψ(x) = 1

2π

∫

R2
log |x − y| H(ϕ(y)) dy.

By using the change in variables y �→ yλ which preserves Lebesgue measure, one
gets

ψ(x) = 1

2π

∫

Hλ

log |x − y| H(ϕ(y)) dy + 1

2π

∫

Hc
λ

log |x − y| H(ϕ(y)) dy

= 1

2π

∫

Hλ

log |x − y| H(ϕ(y)) dy + 1

2π

∫

Hλ

log |x − yλ| H(ϕ(yλ)) dy.

Since the reflection with respect to Tλ is an isometry, we get

ψ(xλ) = 1

2π

∫

Hλ

log |xλ − y| H(ϕ(y)) dy + 1

2π

∫

Hλ

log |xλ − yλ| H(ϕ(yλ)) dy

= 1

2π

∫

Hλ

log |x − yλ| H(ϕ(y)) dy + 1

2π

∫

Hλ

log |x − y| H(ϕ(yλ)) dy.

This implies according to the definition of ϕλ

ϕλ(x) = −2λΩ(λ − x1)+ 1

2π

∫

Hλ

log
(
|x − yλ|/|x − y|

) [
H(ϕ(y)) − H(ϕ(yλ))

]
dy.

Since H is increasing, and according to the assumption ϕλ ≥ 0 in Hλ, one gets

H(ϕ(y)) − H(ϕ(yλ)) ≥ 0, ∀ y ∈ Hλ.
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We combine this with the obvious geometric fact: for λ > 0,

|x − yλ| ≥ |x − y|, ∀ x, y ∈ Hλ.

Consequently,

ϕλ(x) ≥ −2λΩ(λ − x1) > 0, ∀x ∈ Hλ.

It remains to check that ∂x1ϕλ < 0 on Tλ. Straightforward computations give for
x ∈ Tλ corresponding to λ = x1,

∂x1 log
(
|x − yλ|/|x − y|

)
= x1 − (2λ − y1)

|x − yλ|2 − x1 − y1
|x − y|2

= 2
y1 − λ

|x − y|2
which implies

∂x1 log
(
|x − yλ|/|x − y|

)
< 0, ∀y ∈ Hλ.

Therefore, we get for x ∈ Tλ

∂x1ϕλ(x) = 2λΩ + 1

2π

∫

Hλ

∂x1 log
(
|x − yλ|/|x − y|

) [
H(ϕ(y)) − H(ϕ(yλ))

]
dy

< 0.

This concludes the proof of Proposition 4. �

Now, we discuss a more precise statement of Proposition 2.

PROPOSITION 5. The following claims hold true.

1. For any λ > 0, we have

ϕλ(x) > 0, ∀x ∈ Hλ.

2. The function ϕ is radial and satisfies for any r > 0

∂rϕ(r) < 0.

Proof. (1) Define the set

I �
{
λ > 0, ϕλ > 0 in Hλ

}
.

According to Proposition 3, this set is nonempty and contains the interval
[λ�,∞[. Let (α,∞[ be the largest interval contained in I and assume by con-
tradiction that α > 0. First, observe that by a continuation principle ϕα ≥ 0 in
Hα , and therefore, Proposition 4 implies that

∀x ∈ Hα, ϕα(x) > 0.
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This means that α belongs to this maximal interval, and thus, it coincides with
the closed interval [α,∞[. By the maximality of the interval [α,+∞[, there
exist two sequences (αn) and (xn) with the following properties

0 < αn < α, lim
n→∞ αn = α; xn ∈ Hαn and ϕαn (xn) ≤ 0.

According to Proposition 3, the sequence (xn) is bounded, and therefore, up to
an extraction, we can assume that this sequence converges to some point x ∈
Hα ∪Tα . By passing to the limit using the continuity of the map (α, x) �→ ϕα(x)
it is easy to check that

ϕα(x) ≤ 0

and consequently x ∈ Tα because ϕα(x) > 0 in Hα . Using Proposition 4, we
get ∂x1ϕα(x) < 0.This contradicts the assumption ϕαn (xn) ≤ 0 because it yields

ϕ(x1n , x
2
n ) − ϕ(2αn − x1n , x

2
n )

2(αn − x1n)
≤ 0.

By passing to the limit as n goes to∞, we find ∂x1ϕ(x) ≥ 0, which is impossible.
(2) By passing to the limit as λ → 0 in the first point of the proposition and using

the continuity of ϕ, one gets

ϕ(−x1, x2) ≥ ϕ(x1, x2), ∀x1 ≥ 0.

By changing the orientation, we get the reverse inequality, and therefore, we get
the equality ϕ(−x1, x2) = ϕ(x1, x2). This can be implemented for any moving
plane (line), and consequently, the solution ϕ will be invariant by reflection with
respect to any line passing by the origin. This means that ϕ is radial. Now, we
can use Proposition 4 by taking λ = x1 > 0, leading to

∂x1ϕ(x1, 0) < 0.

Since ϕ is radial, we get ∂rϕ(r) < 0 for any r > 0, and therefore, the proof of
Proposition 5 is now complete.

�

4. Case Ω = 1
2

In this section, we shall be concerned with the proof of Theorem 2 dealing with
the special angular velocity Ω = 1

2 . We will prove the nonexistence of non-trivial
V-states rotating with this angular velocity.

Proof. Recall that the boundary of any V-state is described by the equation

ϕ � μ + 1

4
|x |2 − ψ(x) = 0, ∀x ∈ ∂D.



Vol. 15 (2015) On the trivial solutions for the rotating patch model 815

It is easy to see that

�ϕ = 1 − χD, x ∈ R
2

and therefore, {
�ϕ = 0 in D
ϕ = 0, ∂D.

(15)

By the uniqueness property of the Cauchy problem, we obtain

∀x ∈ D, ϕ(x) = 0.

This implies that

ψ(x) = μ + 1

4
|x |2, ∀x ∈ D

and consequently,

4∂zψ(z) = z, ∀z ∈ D.

By the extension principle for continuous functions, we get

C(χD)(z) = −z, ∀z ∈ D.

with

C(χD)(z) � 1

π

∫

D

1

ξ − z
dA(ξ)

being the Cauchy transform of the domain D. We claim that necessarily the domain
is a disc. This was proved in a general framework in [7], and for the convenience of
the reader, we shall give a proof in the few next lines. Set

G(z) � z C(χD)(z) and H � ImG(z),

defined in C\D. The function G is analytic in this domain and has a continuous
extension up to the boundary of Ĉ\D. Note that limz→∞ G(z) ∈ R, and consequently,
the harmonic function H vanishes on the boundary ∂D ∪ {∞}. By the maximum
principle, this implies that H vanishes everywhere in C\D. Therefore, G is constant
everywhere and in particular in ∂D, that is,

|z|2 = Cte, ∀ z ∈ ∂D.

This proves that ∂D is a disc. �
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