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Abstract. We consider a simple nonlinear hyperbolic system modeling the flow of an inviscid fluid. The
model includes as state variable the mass density fraction of the vapor in the fluid, and then, phase transitions
can be taken into consideration; moreover, phase interfaces are contact discontinuities for the system. We
focus on the special case of initial data consisting of two different phases separated by an interface. We find
explicit bounds on the (possibly large) initial data in order that weak entropic solutions exist for all times.
The proof exploits a carefully tailored version of the front-tracking scheme.

1. Introduction

We consider the following nonlinear model for the one-dimensional flow of an
inviscid fluid, where different phases can coexist:

⎧
⎨

⎩

vt − ux = 0,

ut + p(v, λ)x = 0,

λt = 0.

(1.1)

Here, t > 0 and x ∈ R; moreover, v > 0 is the specific volume, u the velocity, and
λ the mass density fraction of vapor in the fluid. Then, we have λ ∈ [0, 1] and λ = 0
characterizes the liquid phase while λ = 1 the vapor phase. The pressure p is given
by

p(v, λ) = a2(λ)

v
, (1.2)

where a is a C1 function defined on [0, 1] and satisfying a(λ) > 0 for every λ ∈ [0, 1].
We denote U = (v, u, λ) ∈ �

.= (0,+∞) × R × [0, 1].
System (1.1) is the homogeneous case of a more general model that was first intro-

duced in [14]. If λ is constant, then (1.1) reduces to the isothermal p-system, where the
global existence of weak solutions holds for initial data with arbitrary total variation
[5,18]. The global existence of weak solutions to the initial value problem for (1.1)
was proved in [1] under a suitable condition on the total variation of the initial data
and the assumption a′ > 0; a different proof of an analogous result has been recently
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provided in [6]. The condition on the initial data was also stated in a slightly different
way in [3] and requires, roughly speaking, that the total variation of both pressure and
velocity is suitably bounded by the total variation of λ; then, it reminds of the famous
condition introduced in [19] (see also [13]) for the system of isentropic gas dynamics.

A model analogous to (1.1) is also studied in [15,16], where the pressure is v−γ

and the state variable λ is replaced by the adiabatic exponent γ > 1; also in this case,
the global existence of solutions is proved under a condition that has the same flavor
of that discussed above.

In this paper, we focus on a particular class of initial data for (1.1): the state variable
λ is constant both for x < 0 and for x > 0. More precisely, for x ∈ R, we consider
initial data

U (x, 0) = Uo(x) = (vo(x), uo(x), λo(x)), (1.3)

where

λo(x) =
{

λ� if x < 0,

λr if x > 0,
(1.4)

for two constant values λ� �= λr ∈ [0, 1]. Phase interfaces are stationary in model
(1.1); then, the assumption (1.4) reduces the study of the initial value problem for (1.1)
to that of two initial value problems for two isothermal p-systems, which are coupled
through the interface at x = 0. In other words, the flow remains in the two phases
characterized by the values λ� and λr as long as a solution exists.

The problem we are dealing with can be understood in a different way as follows.
Phase interfaces are contact discontinuities for system (1.1); then, in a sense, we fall
into the general framework of the perturbation of a Riemann solution. For this subject,
we refer to [9–12,21], where however the perturbation is small in the BV norm. In our
case, the perturbation leaves unchanged the initial datum for λ, but it is not necessarily
small in the other state variables. The problem of a small perturbation of a Riemann
solution and the related existence of globally defined solutions was thoroughly studied
in [17].

The main result of this paper concerns the global existence of weak solutions to
the initial value problem (1.1), (1.3), (1.4), provided that (1.2) holds and the initial
data satisfy suitable conditions. The focus is precisely on weakening as much as
possible such conditions, allowing for large initial data: the result in [1] mentioned
above clearly applies to the present situation, but it is here greatly improved. The proof
follows the same steps as that of Theorem 2.2 there. However, several novelties have
been introduced here:

− a Glimm functional that better accounts for nonlinear interactions with the phase
wave;

− refined interaction estimates on the amplitude of the reflected waves;
− an original treatment of non-physical waves in the front-tracking algorithm;
− a simpler proof of the decay of the reflected waves at a geometric rate, as the

number of reflections increases.
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In particular, as a consequence of this new approach, we require no conditions on the
maximal amplitude of the phase wave, differently from [1, (2.8)] and the equivalent
formulation in [3, (3.6)].

In spite of the fact that initial data (1.4) seem to reduce system (1.1) to two systems
of two conservation laws, we cannot avoid the introduction of non-physical waves
[8] in the scheme, as a formal example in [2] shows. Nevertheless, we can obtain an
immediate bound on the number of non-physical fronts in the (x, t)-plane by attaching
them to the front x = 0 (which carries the contact discontinuity) in a sense that will
be specified later: this represents a remarkable algorithmic advantage and the main
feature of the front-tracking used here. On the other hand, we recall that if λ is constant,
then non-physical waves need not to be introduced, see [5,7].

The plan of the paper is the following. In Sect. 2, we state our main result, while in
Sect. 3, we first provide some information on the Riemann problem and then show how
to treat non-physical waves by introducing a composite wave together with the phase
wave. Consequently, we introduce two solvers to be used in the front-tracking scheme,
which shows up in Sect. 4. Section 5 deals with interactions, while in the last Sect. 6,
we prove the convergence and consistency of the algorithm and make a comparison
with the result in [1]. In a final short appendix, we show how the damping coefficient
c introduced in (5.15), which plays a key role in the paper, is also fundamental in the
stability analysis of Riemann problems in the sense of [21].

2. Main result

In this section, we state our existence theorem. First, we define ar = a(λr ), a� =
a(λ�), and

δ2 = 2
ar − a�

ar + a�

. (2.1)

Notice that δ2 ranges over (−2, 2) as soon as ar , a� range over R+. The quantity δ2

measures the strength of the contact discontinuity located at x = 0, and it does not
change by interactions with waves of the other families.

We denote po(x)
.= p (vo(x), λo(x)).

THEOREM 2.1. Assume (1.2) and consider initial data (1.3), (1.4) with vo(x) ≥
v > 0, for some constant v. Let δ2 be as in (2.1).
There exists a strictly decreasing function K defined for r ∈ (0, 2) and satisfying

lim
r→0+K(r) = +∞, lim

r→2−K(r) = 2

3
log

(
2 + √

3
)

, (2.2)

such that if δ2 �= 0 and the initial data satisfy

TV (log(po)) + 1

min{ar , a�}TV(uo) < K(|δ2|), (2.3)



702 D. Amadori et al. J. Evol. Equ.

then the Cauchy problem (1.1), (1.3), has a weak entropic solution (v, u, λ) defined
for t ∈ [0,+∞). If δ2 = 0, the same conclusion holds with K(|δ2|) replaced by +∞
in (2.3).
Moreover, the solution is valued in a compact set of �, and there is a constant

C = C(δ2) such that for every t ∈ [0,+∞), we have

T V (v(·, t), u(·, t)) ≤ C. (2.4)

The properties listed in (2.2) can be directly deduced from the analytical expression
of K, that is,

K(r) = 2

1 + r
log

(
2

r
+ 1 + 2

r

√
1 + r

)

. (2.5)

Therefore, condition (2.3) is explicit. We recall that related results of global existence
of solutions with large data [13,15,16,19] do not precise the threshold of smallness
of the initial data.

Moreover, we observe that condition (2.3) is trivially satisfied if

TV (log(po)) + 1

min{ar , a�}TV(uo) ≤ 2

3
log

(
2 + √

3
)

, (2.6)

because of (2.2). Then, problem (1.1), (1.3), has a global solution if (2.6) is satisfied
and vo(x) ≥ v > 0 holds. This is a striking difference with respect to the results
in [1,3], where the corresponding bound in the right-hand side vanishes at a critical
threshold. Moreover, Theorem 2.1 improves the main result in [1], when restricted
to the case of a single contact discontinuity. At last, we point out that if δ2 = 0, we
recover the result of [18].

It is left open the question of whether the global existence of solutions to (1.1), (1.3)
for any BV initial data vo, uo occurs, opposite to the possibility of the blowup in finite
time for certain BV data.

3. The Riemann problem and the composite wave

In this section, we first briefly recall some basic facts about system (1.1), its wave
curves, and the solution to the Riemann problem; we refer to [1] and the literature
cited therein for more details. Next, we introduce a composite wave which sums up
the effects of the contact discontinuity and the non-physical waves. We then show two
Riemann solvers that make use of the composite wave.

Under assumption (1.2), system (1.1) is strictly hyperbolic in � with eigenvalues
e1 = −√−pv(v, λ), e2 = 0, e3 = √−pv(v, λ); the eigenvalues e1 and e3 are
genuinely nonlinear, while e2 is linearly degenerate.

For i = 1, 3, the right shock–rarefaction curves through the pointUo = (vo, uo, λo)
for (1.1) are

v 
→ (v, uo + 2a(λo)h(εi ), λo) , v > 0, i = 1, 3, (3.1)

where the strength εi of an i-wave is defined as
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ε1 = 1

2
log

(
v

vo

)

, ε3 = 1

2
log

(vo

v

)
(3.2)

and the function h is defined by

h(ε) =
{

ε if ε ≥ 0,

sinh ε if ε < 0.
(3.3)

Then, rarefaction waves have positive strengths, and shock waves have negative
strengths. The wave curve through Uo for i = 2 is defined by

λ 
→
(

vo
a2(λ)

a2(λo)
, uo, λ

)

, λ ∈ [0, 1].

Then, the pressure is constant along a 2-curve; the strength of a 2-wave is defined by

ε2 = 2
a(λ) − a(λo)

a(λ) + a(λo)
.

Now, we consider the Riemann problem for (1.1) with initial condition

(v, u, λ)(0, x) =
{

(v�, u�, λ�) = U� if x < 0,

(vr , ur , λr ) = Ur if x > 0,
(3.4)

for U� and Ur in �. We write pr = a2
r /vr , p� = a2

�/v�.

PROPOSITION 3.1. ([1]) The Riemann problem (1.1), (3.4) has a unique�-valued
solution in the class of solutions consisting of simple Lax waves, for any pair of states
U�, Ur in �.

Moreover, if εi is the strength of the i-wave, i = 1, 2, 3, then

ε3 − ε1 = 1

2
log

(
pr
p�

)

, 2 (a�h(ε1) + arh(ε3)) = ur − u�,

ε2 = 2
ar − a�

ar + a�

.

(3.5)

The proof of Theorem 2.1 relies on a wave-front-tracking algorithm that introduces
non-physical waves [8], which, however, are only needed to solve some Riemann
problems involving interactions with the 2-wave. Following [1], two states U� and Ur

as in (3.4) can be connected by a non-physical wave if v� = vr and λ� = λr ; the
strength of a non-physical wave is defined as

δ0 = ur − u�. (3.6)

Then, a non-physical wave changes neither the side values of v nor those of λ, while
a 2-wave does not change the side values of u. This suggests to define a new wave by
composing the 2-wave with a non-physical wave, with the condition that we assign
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(a) (b)

Figure 1. a Interaction with the (2, 0)-wave solved with the pseudo-
accurate solver, case i = 1; b the auxiliary problem. Here and in
the following interaction diagrams, the horizontal and vertical axes
are x and t , respectively

zero speed to non-physical waves and we locate them at x = 0. The order of com-
position does not matter, because a 2-wave and a non-physical wave act on different
state variables. This procedure differs from the one used in [1]. Then, we define the
composite (2, 0)-wave curve through a point Uo = (vo, uo, λ�) by

u 
→
(
(a2

r /a
2
� )vo, u, λr

)
(3.7)

and its strength by

δ2,0 = u − uo.

The above definition of strength is motivated by the fact that the quantity δ2 remains
constant at any interaction with 1- or 3-waves [1]. Clearly, a (2, 0)-wave reduces to the
2-wave as long as non-physical waves are missing. At last, we notice that the pressure
does not change across a (2, 0)-wave.

In this way, we are left to deal with waves of family 1, 3, and a single composite
(2, 0)-wave, which is no more entropic. A Riemann solver analogous to that provided
in Proposition 3.1 is needed; however, since we have a single contact discontinuity δ2,
and we are going to use the Riemann solver only to solve interactions, we state the
following result into such a form.

PROPOSITION 3.2. (Pseudo-Accurate Solver) Consider the interaction at time t
of a δ2,0-wave with an i-wave of strength δi , i = 1, 3. Then, the Riemann problem at
time t has a unique �-valued solution, which is formed by waves ε1, δ2,0, ε3, where
ε1, ε3 belong to the first and the third family, respectively. Moreover, we have

ε3 − ε1 = 1

2
log

(
pr
p�

)

, 2 (a�h(ε1) + arh(ε3)) = ur − u� − δ2,0. (3.8)

Proof. We only consider the case i = 1 and refer to Fig. 1; the other case is analogous.
Consider the auxiliary problem in Fig. 1b, where V ′

� = U� + (0, δ2,0, 0). We simply
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(a) (b)

Figure 2. a Interaction with the (2, 0)-wave solved with the pseudo-
accurate solver, case i = 1; b the auxiliary problem

(a) (b)

Figure 3. Interactions with the (2, 0)-wave solved with the pseudo-
simplified solver. a From the right (i = 1); b from the left (i = 3)

shifted the left state in order to be able to solve the interaction as if it was with an
actual 2-wave. Indeed, by Proposition 3.1, we uniquely find ε1, ε3 and states V ′

p, V ′
q

such that (3.8) holds. Then, the interaction in Fig. 1a is solved by the same waves ε1,
ε3 and by statesU ′

p = V ′
p−(0, δ2,0, 0),U ′

q = V ′
q . Finally, (3.8) holds by construction.

Notice that we get the same result by shifting the other two states at the right.
Indeed, consider the auxiliary problem in Fig. 2b, where V ′′

r = Ur − (0, δ2,0, 0) and
V ′′
m = Um − (0, δ2,0, 0).
By Proposition 3.1, we uniquely find ε1, ε3 (the same as before, since u′′

r − ul =
ur − u′

l = ur − ul − δ2,0) and states V ′′
p , V ′′

q . Then, the interaction in Fig. 2a is solved
by the same waves ε1, ε3 and by states U ′′

p = V ′′
p and U ′′

q = V ′′
q + (0, δ2,0, 0). It is

then straightforward to check that U ′
p = U ′′

p and U ′
q = U ′′

q . �

Another solver is used below. We introduce it in the same framework of Proposition
3.1.

PROPOSITION 3.3. (Pseudo-Simplified Solver) Consider the interaction at time
t of a δ2,0-wave with an i-wave of strength δi , i = 1, 3. Then, the Riemann problem
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at time t can be solved by an i-wave of the same strength δi and a unique wave ε2,0,
where

ε2,0 =
{

δ2,0 + 2(ar − a�)h(δ1) if i = 1,

δ2,0 − 2(ar − a�)h(δ3) if i = 3.
(3.9)

Proof. We refer to Fig. 3. We recall that the commutation of a 1-wave (or a 3-wave)
with the 2-wave δ2 only modifies the u component.

In the case when a 1-wave interacts, it is easy to check that uq = u� +2a�h(δ1) and
um = u�+δ2,0; then, we compute ε2,0 by u�+2a�h(δ1)+ε2,0 = u�+δ2,0 +2arh(δ1).
The other case is analogous. �

4. Approximate solutions

We use Propositions 3.2 and 3.3 to build up the piecewise constant approximate
solutions to (1.1) that are needed for the wave-front-tracking scheme. We first approx-
imate the initial data (1.3): for any ν ∈ N, we take a sequence (vν

o , u
ν
o) of piecewise

constant functions with a finite number of jumps such that denoting pν
o = a2(λo)/v

ν
o ,

1. TV log(pν
o) ≤ TV log(po), TVuν

o ≤ TVuo;
2. limx→−∞(vν

o , u
ν
o)(x) = limx→−∞(vo, uo)(x);

3. ‖(vν
o , u

ν
o) − (vo, uo)‖L1 ≤ 1/ν.

We introduce two strictly positive parameters: η = ην that controls the size of
rarefactions, and a threshold ρ = ρν that determines which of the two pseudo-Riemann
solver is to be used. Here follows a description of the scheme that improves the
algorithm of [1] and adapts it to the current situation.

(i) At time t = 0, we solve the Riemann problems at each point of jump of
(vν

o , u
ν
o, λo)(·, 0+) as follows: shocks are not modified, while rarefactions are

approximated by fans of waves, each of them having size less than η. More
precisely, a rarefaction of size ε is approximated by N = [ε/η] + 1 waves
whose size is ε/N < η; we set their speeds to be equal to the characteristic
speed of the state at the right. Then, (v, u, λ)(·, t) is defined until some wave
fronts interact; by slightly changing the speed of some waves, we can assume
that only two fronts interact at a time.

(ii) When two wave fronts of the families 1 or 3 interact, we solve the Riemann
problem at the interaction point. If one of the incoming waves is a rarefaction,
after the interaction, it is prolonged (if it still exists) as a single discontinuity
with speed equal to the characteristic speed of the state at the right. If a new
rarefaction is generated, we employ the Riemann solver described in step (i)
and split the rarefaction into a fan of waves having size less than η.

(iii) When a wave front of family 1 or 3 with strength δ interacts with the composite
wave at a time t > 0, we proceed as follows:

• if |δ| ≥ ρ, we use the Pseudo-Accurate solver introduced in Proposition 3.2,
partitioning the possibly new rarefaction according to (i);

• if |δ| < ρ, we use the Pseudo-Simplified solver of Proposition 3.3.
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Figure 4. A general interaction pattern

5. Interactions

In this section, we analyze the interactions of waves. If δ2 = 0, i.e., if a(λ�) = a(λr ),
then the initial data (1.3) reduce (1.1) to a p-system where the pressure p only depends
on v. The results of [1,5] apply, and we recover the famous result of [18]. Then, we
assume from now on that δ2 �= 0. For simplicity, we focus on the case

a(λ�) < a(λr ).

As a consequence, we have δ2 > 0; the other case is entirely similar.
For t > 0 at which no interactions occur, and for ξ ≥ 1, Knp > 0, K ≥ 1 to be

determined, we introduce the functionals

L =
∑

i=1,3
γi>0

|γi | + ξ
∑

i=1,3
γi<0

|γi | + Knp|γ2,0|, (5.1)

V =
∑

i=1,3
γi>0,A

|γi | + ξ
∑

i=1,3
γi<0,A

|γi |, Q = δ2V,

F = L + K Q. (5.2)

By γi , we mean the strength of a generic i-wave (i = 1, 3) located at some point x
and by γ2,0 the strength of the composite wave. The summation in V is performed
only over the set A of waves approaching the front carrying the composite wave,
namely the waves of the family 1 (and 3) located at the right (left, respectively) of
x = 0. The term Q is then the “usual” quadratic interaction potential due to the contact
discontinuity at x = 0. We also introduce

L̄ =
∑

i=1,3

|γi | = 1

2
TV (log p(t, ·)).

REMARK 5.1. The functional defined in (5.2) differs from [1, (5.1)] because of
the presence of the parameter ξ in V and, consequently, in the interaction potential
Q, leading to better estimates and a more general result.

Under the notation of Fig. 4, we shall make use of the identities [20]
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ε3 − ε1 = α3 + β3 − α1 − β1, (5.3)

a�h(ε1) + arh(ε3) = a�h(α1) + amh(α3) + amh(β1) + arh(β3). (5.4)

5.1. Interactions with the composite wave

We first consider the interactions of a 1- or 3-wave with a (2, 0)-wave. We notice
that they give rise to the following pattern of solutions:

(2, 0) × 1R → 1R + (2, 0) + 3R, (2, 0) × 1S → 1S + (2, 0) + 3S,

3R × (2, 0) → 1S + (2, 0) + 3R, 3S × (2, 0) → 1R + (2, 0) + 3S.
(5.5)

In the following, we often assume that, for some fixed m > 0, any interacting i-wave,
i = 1, 3, with strength δi , satisfies

|δi | ≤ m. (5.6)

We usually denote with δk (and εk) the interacting waves (respectively, the waves
produced by the interaction).

LEMMA 5.2. Assume that a wave δi , i = 1, 3, interacts with a δ2,0-wave.
If the Riemann problem is solved by the pseudo-accurate solver, then the strengths

εi of the outgoing waves satisfy ε2,0 = δ2,0 and

|εi − δi | = |ε j | ≤ 1

2
δ2|δi |, i, j = 1, 3, i �= j, (5.7)

|ε1| + |ε3| ≤
{ |δ1| + δ2|δ1| if i = 1,

|δ3| if i = 3.
(5.8)

If the Riemann problem is solved by the pseudo-simplified procedure and we assume
(5.6), then there exists Co = Co(m) such that

|ε2,0 − δ2,0| ≤ Co δ2|δi |. (5.9)

Proof. The estimates (5.7) and (5.8) easily follow from Proposition 3.2. The proof of
the second part relies on the estimates of [1, Proposition 5.12]; we have

|ε2,0 − δ2,0| = 2|ar − a�| |h(δi )| ≤ 2ar
sinhm

m
δ2 |δi |,

whence (5.9) immediately follows once we set Co(m)
.= 2ar sinhm/m. �

PROPOSITION 5.3. Assume that a wave δi , i = 1, 3, interacts with a δ2,0-wave at
time t.
In the cases where the pseudo-accurate procedure is used, then �F(t) = F(t+) −
F(t−) < 0 if it holds

K > max

{
ξ − 1

2
, 1

}

. (5.10)

In the cases where the pseudo-simplified procedure is used, then�F(t) < 0 if it holds

Knp <
K

Co
. (5.11)
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Figure 5. Interactions of 1- and 3-waves

Proof. We first consider the case where the pseudo-accurate solver is used and use
the notation of Fig. 1. By (5.3) and Lemma 5.2, we have

{
ε1 − δ1 = ε3, |ε1| − |δ1| = |ε3|, if i = 1,

ε1 + δ3 = ε3, |δ3| − |ε1| = |ε3|, if i = 3.

i = 1. If the interacting wave is a rarefaction, then �L = 2|ε3| ≤ δ2|δ1| and �V =
−|δ1|. Therefore, by (5.10), we deduce

�F = �L + K δ2�V ≤ {1 − K } δ2|δ1| < 0. (5.12)

If the interacting wave is a shock, we have the same estimates with ξ as a factor.

i = 3. If the interacting wave is a shock, then �L = |ε1| + ξ |ε3| − ξ |δ3| =
−(ξ − 1)|ε1| ≤ 0, �V = −ξ |δ3| < 0 and

�F = −(ξ − 1)|ε1| − K δ2ξ |δ3| ≤ −K δ2ξ |δ3| < 0. (5.13)

If the wave is a rarefaction, then �L = ξ |ε1| + |ε3| − |δ3| = (ξ − 1)|ε1| ≤
(ξ − 1) δ2|δ3|/2 and �V = −|δ3|. By (5.10), we obtain again

�F = �L + K δ2 �V ≤ δ2|δ3|
{

ξ − 1

2
− K

}

< 0. (5.14)

If the pseudo-simplified solver is used, then �V ≤ −|δi | (i = 1, 3) and �L =
Knp|ε2,0| − Knp|δ2,0| ≤ KnpCoδ2|δi | by (5.9). Hence, by (5.11), we get

�F ≤ δ2|δi |(KnpCo − K ) < 0.

�

5.2. Interactions between 1- and 3-waves

In this subsection, we analyze the interactions between 1- and 3-waves, see Fig. 5.

LEMMA 5.4. For the interaction patterns in Fig. 5, the following holds.

(i) Two interacting waves of different families cross each other without changing
strengths.
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(ii) Let αi , βi be two interacting waves of the same family and ε1, ε3 the outgoing
waves.

(ii.a) If both incomingwaves are shocks, then the outgoingwave of the same family is
a shock and satisfies |εi | > max{|αi |, |βi |}; the reflected wave is a rarefaction.

(ii.b) If the incoming waves have different signs, then the reflected wave is a shock;
both the amounts of shocks and rarefactions of the i-family decrease across
the interaction. Moreover, for j �= i and αi < 0 < βi , one has

|ε j | ≤ c(αi ) · min{|αi |, |βi |}, c(z)
.= cosh z − 1

cosh z + 1
. (5.15)

REMARK 5.5. The inequality (5.15) generalizes the one stated in [1, Lemma B.1]
for the case SR, RS → SS; moreover, in that case, we provide below a simpler proof.

Proof of Lemma 5.4. We only need to prove (5.15), the rest being already proved in
[1, Lemmas 5.4–5.6]. For simplicity, we assume i = 3 and distinguish between two
cases according to the outgoing wave ε3. Indeed, we remark that there exists a function
xo(·) such that ε3 is a rarefaction iff β3 ≥ xo(|α3|); see [1, Lemma B.1]. In the limiting
case β3 = xo(|α3|), the shock and the rarefaction cancel each other and ε3 = 0; the
interaction gives only rise to the reflected wave ε1. By setting x = |β3| and z = |α3|,
from (5.3) and (5.4), we find the equation valid for ε3 = 0, namely

sinh(x − z) − sinh z + x = 0,

which implicitly defines the function x = xo(z).
SR, RS → SR The starting point is to specialize (5.3) and (5.4) to the present

case:

|ε1| + |ε3| = −|α3| + |β3|, (5.16)

sinh(|ε1|) − |ε3| = sinh(|α3|) − |β3|. (5.17)

By summing up (5.16) and (5.17), we find that

sinh(|ε1|) + |ε1| = sinh(|α3|) − |α3|. (5.18)

To prove (5.15), it is enough to prove that

|ε1| ≤ c(α3)|α3|. (5.19)

Indeed, from (5.16), we infer that |α3| < |β3| and therefore (5.19) implies (5.15).
To prove (5.19), we introduce the notation |ε1| = y and |α3| = z, so that (5.18)

rewrites as

G(y, z)
.= sinh y + y − sinh z + z = 0.

By a simple application of the Implicit Function Theorem, there exists a function
y = y(z) ≥ 0, defined for all z ≥ 0, such that G (y(z), z) = 0.
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Since Gy(y, z) = cosh y + 1 > 0, in order to prove that y(z) ≤ c(z)z, it is enough
to prove that g(z)

.= G(c(z)z, z) > 0, that is,

g(z) = (c(z) + 1)z + sinh(c(z)z) − sinh z > 0. (5.20)

Using the fact that c(z)z < z, the Mean Value Theorem, and the simple identity

1 + c(z) = (1 − c(z)) cosh z,

we find that

g(z) = (c(z) + 1) z + (c(z)z − z) cosh ζ > z [c(z) + 1 + (c(z) − 1) cosh z] = 0,

for c(z)z < ζ < z. Hence, we have proved (5.20).
SR, RS → SS Again, we start from (5.3) and (5.4) that can now be rewritten as

|ε1| − |ε3| = −|α3| + |β3|, (5.21)

sinh(|ε1|) + sinh(|ε3|) = sinh(|α3|) − |β3|.
Set x = |β3|, y = |ε1|, z = |α3| and define the function

F(x, y; z) = sinh y + sinh(y − x + z) − sinh z + x,

which is subject to the constraints

z ≥ 0, 0 ≤ x < xo(z), max{0, x − z} < y < min{x, z}.
By the Implicit Function Theorem, there exists a function y = y(x; z) such that
F (x, y(x; z); z) ≡ 0. Moreover, by denoting with y′ the derivative of y with respect
to x and so on, we have

y′ = − Fx
Fy

, y′′ = − Fxx + 2Fxy y′ + Fyy(y′)2

Fy
,

where

Fx = 1 − cosh(y − x + z) < 0, Fy = cosh(y − x + z) + cosh y > 0,

Fxx = −Fxy = sinh(y − x + z) > 0, Fyy = sinh(y − x + z) + sinh y > 0.

Therefore, y′ > 0 and

y′′(x; z) = − sinh (y − x + z) (1 − y′)2 + sinh (y) (y′)2

Fy
< 0.

Hence, x 
→ y(x; z) is concave down and thus

y(x; z) ≤ y′(0; z)x = c(z)x .
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To complete the proof of (5.15), it remains to prove that y(x; z) ≤ c(z)z. To do this,
simply recall that y′ > 0 and then

y(x; z) ≤ y (xo(z); z) ≤ c(z)z,

where the last inequality holds because it coincides with (5.19) in the limiting case
β3 = xo(z), z = |α3|. �

REMARK 5.6. Under the notation of the proof of case (ii.b) in Lemma 5.4, i.e.,
x = βi , z = |αi |, we see that the size of the reflected shock is

|ε j | =
{
y(x; z) if x ≤ xo(z),
y(z) if x > xo(z).

(5.22)

The strength ε j is a continuous function of x since y (xo(z); z) = y(z) for every z.
In particular, assume that βi > xo(|αi |), so that εi is a rarefaction. For βi in this
range, the size of ε j does not change by (5.22), and the part of βi exceeding xo(|αi |)
is entirely propagated along εi . This holds since the interaction only affects that part
of βi whose amplitude is exactly xo(|αi |). We refer to Fig. 6 for a graph of |ε j | as a
function of βi .
We notice that this behavior of ε j is mimicked by the damping coefficient c in (5.15),

which only depends on the size of αi .

REMARK 5.7. In case (ii.a) of Lemma 5.4, one can prove for the reflected rarefac-
tion that

|ε j | ≤ d (max{|αi |, |βi |}) min {|αi |, |βi |}, (5.23)

for a suitable function d(z) > c(z); see [1, Lemma 5.6]. Estimate (5.23) is analo-
gous to (5.15), but the damping coefficient d (max{|αi |, |βi |}) cannot be replaced by
c (max{|αi |, |βi |}). This easily follows by a second-order expansion of the function
τ(a, b) in [1, Lemma 5.6] or simply by arguing as in the proof of case (ii.b). However,
we shall see in the following proposition that the decreasing of the functional F only
depends on the coefficient c and not on d.

PROPOSITION 5.8. Consider the interactions of twowave fronts of the same family
1 or 3 and assume (5.6). Then, �F ≤ 0 if

1 < ξ ≤ 1

c(m)
and K ≤ ξ − 1

δ2
. (5.24)

Proof. The proof takes into account the possible wave configurations. We use the
notation of Lemma 5.4 and assume i = 3.
SS → RS We start by proving that

�L + |ε1|(ξ − 1) = 0, (5.25)

that holds for all ξ ≥ 1. Indeed, in this case, one has �L̄ = 0 by (5.3) and then,

�L + (ξ − 1)|ε1| = ξ(|ε1| + |ε3| − |α3| − |β3|) = 0.



Vol. 15 (2015) Global weak solutions for a model of two-phase 713

-0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

-0,5

0,5

1

1,5

2

2,5

3

3,5                 y=y(x;3)
                  y=c(3)x
                  y=c(3)3
                  x=x_o(3)

Figure 6. Reflected shock in case (ii.b) of Lemma 5.4. The solid
curve is the graph of |ε j | = y as a function of βi = x ; for |αi | =
z = 3, see (5.22). The vertical line marks the passage of εi from
shock to rarefaction; on its right, |ε j | assume the constant value
y(xo(z); z). The two remaining dashed lines refer to the bounds in
(5.15); in particular, since limz→+∞ (c(z)z − y(xo(z); z)) = 0, the
horizontal bound becomes asymptotically accurate

If �V > 0, then �V = |ε1|; hence, by (5.24) and (5.25), we obtain

�F ≤ |ε1| {−(ξ − 1) + K δ2} ≤ 0.

SR, RS → SR, SS Assume α3 < 0 < β3. We now prove the stronger inequality

�L + |ε1|ξ(ξ − 1) ≤ 0. (5.26)

If ε3 is a shock, then we use (5.21) , (5.15), and (5.24)1 to obtain

�L + |ε1|ξ(ξ − 1) = ξ2|ε1| + ξ(|ε3| − |α3|) − |β3|
= ξ2|ε1| + ξ(|ε1| − |β3|) − |β3|
= (ξ + 1)(ξ |ε1| − |β3|) ≤ 0.

Therefore, (5.26) holds in this case.
On the other hand, if ε3 is a rarefaction, then the left-hand side of (5.26) turns out

to be

ξ2|ε1| + |ε3| − ξ |α3| − |β3|.
From (5.16), we have |ε3| < |β3|, while (5.15) and (5.24)1 imply ξ |ε1| ≤ |α3|. This
completely proves (5.26).
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If �V > 0, then �V = ξ |ε1|, and hence,

�F ≤ ξ |ε1| {−(ξ − 1) + K δ2} ≤ 0 (5.27)

by (5.24)2. This concludes the proof of the lemma. �

5.3. Decreasing of the functional F and control of the variations

In order that �F ≤ 0 at any interaction, we need K to satisfy both (5.10) and
(5.24)2:

max

{
ξ − 1

2
, 1

}

< K ≤ ξ − 1

δ2
. (5.28)

This is possible if 1 + δ2 < ξ ; hence, by (5.24)1, we require that ξ satisfies

1 + δ2 < ξ ≤ 1

c(m)
. (5.29)

In turn, this is possible if

c(m) <
1

1 + δ2
. (5.30)

We notice that inequality (5.30) is certainly satisfied if c(m) ≤ 1/3 because δ2 < 2.
Therefore, we choose the parameters m, ξ , and K as follows:

1. We determine the maximum size m of the waves in the approximate solution by
assuming (5.30); we recall that c is a strictly increasing function of m, and then,
it is invertible.

2. We choose ξ in the non-empty interval defined by (5.29) and then choose K to
satisfy (5.28) with strict inequalities:

max

{
ξ − 1

2
, 1

}

< K <
ξ − 1

δ2
. (5.31)

The strict inequality on the right of (5.31) is needed both for the control on the
number of interactions [1, Lemma 6.2] and for the decay of the reflected waves
as the number of interactions increases, see (6.3) and Proposition 6.4.

3. We choose Knp so that (5.11) holds.

We collect the results of the previous subsection into a single proposition.

PROPOSITION 5.9. (Local decreasing) Consider the interaction of any two waves
at time t. Let m > 0 be such that (5.30) holds and Co = Co(m) as in Lemma 5.2. If
ξ , K , Knp satisfy (5.29), (5.31), and (5.11), respectively, then

�F(t) ≤ 0. (5.32)
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6. The convergence and consistency of the algorithm

In this section, we finally conclude the proof of Theorem 2.1, focusing on the
convergence and consistency of the front-tracking algorithm.

For the algorithm to be well defined, one has to verify that the total number of
wave fronts and interactions is finite, besides the fact that the size of rarefaction waves
remains small. We already anticipated in the introduction that the algorithm used here
to construct the approximate solutions offers the advantage of getting quickly a bound
on the total number of wave fronts. As a matter of fact, at every interaction producing
more than two outgoing waves, the interaction potential F decreases by a fixed positive
amount; hence, as in [1, Lemma 6.2], one can prove that for large times, any interaction
involves only two incoming and two outgoing fronts. The other two requirements are
accomplished as in [1, Proposition 6.3] and [1, Lemma 6.1], respectively. In particular,
the size ε of any rarefaction wave is bounded by

0 < ε < η

(

1 + δ2

2

)

< 2η. (6.1)

The convergence follows from a standard application of Helly’s Theorem, while for
the consistency we need refined estimates to control the total size of the composite
wave.

6.1. Control of the total size of the composite wave

The wave-front-tracking scheme exploits the notion of generation order of a wave
to prove that the strength of the composite wave tends to zero as the approximation
parameter ν tends to infinity: this means that the (2, 0)-wave becomes an entropic
2-wave in the limit. More specifically, for a physical wave γ of family 1 or 3, we
define its generation order kγ as in [1, §6.2]; on the other hand, for the (2, 0)-wave, we
proceed as follows. We assign order 1 to the (2, 0)-wave generated at t = 0+; then,
we keep its order unchanged in the cases where the pseudo-accurate solver is used,
while we set it to be equal to kγ + 1 when the pseudo-simplified solver is used with a
physical wave γ .

For any k = 1, 2, . . ., we define

Lk =
∑

γ>0
kγ =k

|γ | + ξ
∑

γ<0
kγ =k

|γ | + Knp L
0
k,

Vk =
∑

γ>0,A
kγ =k

|γ | + ξ
∑

γ<0,A
kγ =k

|γ |, Qk = δ2Vk,

Fk = Lk + K Qk,

where γ ranges over the set of 1- and 3-waves, as for (5.1). Above we denoted

L0
k =

∑

τk<t

|ε2,0 − δ2,0|(τk), (6.2)
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with τk denoting the interaction times where the outgoing composite wave has order of
generation k. As a consequence, only the times τk where the pseudo-simplified solver
is used give positive summands in (6.2): when the pseudo-accurate solver is used, we
have ε2,0 = δ2,0.

For k ∈ N, we introduce:

• Ik = set of times when two waves α, β of the same characteristic family interact,
with max{kα, kβ} = k;

• Jk = set of times when a 1- or a 3-wave of order k interacts with the (2, 0)-wave.

We set Tk = Ik ∪ Jk and define

μ
.= max

{
1

2K − 1
,

ξ

2K + 1
,
K δ2 + 1

ξ
,
KnpCo

K

}

. (6.3)

We notice that 0 < μ < 1 by (5.31) and (5.11).

PROPOSITION 6.1. Let m, ξ , K , and Knp satisfy the assumptions of Proposition
5.9 and assume that (5.6) for every wave. Then, the following holds, for τ ∈ Th, h ≥ 1:

�Fh < 0, �Fh+1 > 0, (6.4)

�Fk = 0 if k ≥ h + 2. (6.5)

Moreover,

[�Fh+1]+ ≤ μ

(

[�Fh]− −
h−1∑

�=1

�F�

)

. (6.6)

REMARK 6.2. Notice that Proposition 6.1 let us improve Proposition 5.9. Indeed,
recalling that Th = Ih ∪ Jh, Proposition 6.1 implies, for τ ∈ Ih,

�F =
h−1∑

�=1

�F� − [�Fh]− + [�Fh+1]+ ≤ −(1 − μ)[�Fh]− < 0,

while for τ ∈ Jh, being
∑h−1

�=1 [�F�]+ = 0, it gives

�F = −[�Fh]− + [�Fh+1]+ ≤ −(1 − μ)[�Fh]− < 0.

Then, estimate (6.6) quantifies the decrease in the functional F and thus improves
(5.32).

Proof of Proposition 6.1. If k ≥ h + 2, no wave of order k is involved and then (6.5)
holds. To prove (6.4) and (6.6), we distinguish between two cases.
τ ∈ Ih (Interactions between waves of 1-, 3-family).

Clearly, the Fks do not vary when a 1-wave interacts with a 3-wave. Then, we
consider interactions of waves of the same family, see Fig. 7a.

Since τ ∈ Ih , then �Lh+1 > 0 and 0 ≤ �Qh+1 ≤ δ2�Lh+1. Also, �Fh =
�Lh + K�Qh < 0, since both terms in the sum are negative or zero. This proves
(6.4).
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(a) (b)

Figure 7. Interactions of waves; h and � denote generation orders.
a Interaction of 3-waves with h ≥ �; b interaction between a 1-wave
and the (2, 0)-wave solved by the pseudo-accurate solver

By (5.25) and (5.26) (see also [1, (6.10)]), we have that

[�Lh+1]+ ≤ 1

ξ

(

[�Lh]− −
h−1∑

�=1

�L�

)

. (6.7)

By (6.7), the estimate 0 ≤ �Qh+1 ≤ δ2�Lh+1, and (6.3), we deduce that

0 < �Fh+1 ≤ (1 + K δ2)[�Lh+1]+ ≤ μ

(

[�Lh]− −
h−1∑

�=1

�L�

)

. (6.8)

We now prove that

[�Qh]− −
h−1∑

�=1

�Q� ≥ 0, (6.9)

for which we only have to consider the case when �Q� > 0 for an � ≤ h − 1. In this
case, [�Qh]− − ∑h−1

�=1 �Q� = −δ2 �V ≥ δ2(−�L + |ε1|) ≥ 0 because of (5.25),
(5.26); this proves (6.9). Therefore, for τ ∈ Ih , estimate (6.6) follows from (6.8) and
(6.9).
τ ∈ Jh (Interactions with the (2, 0)-wave).

Since no wave of order ≤ h − 1 interacts, then (6.6) reduces to

[�Fh+1]+ ≤ μ[�Fh]−. (6.10)

To prove (6.10), we first consider the case where the pseudo-accurate solver is used,
see Fig. 7b. Assume that a 1-wave δ1 of order h interacts with the (2, 0)-wave. By (5.5),
the reflected wave ε3 is of the same type of the interacting wave and the transmitted
one ε1. If δ1 > 0, then ε1 > 0 and ε3 > 0; by Lemma 5.2, this leads to

�Fh = �Lh + K�Qh ≤ δ2|δ1|
2

− K δ2|δ1| = −(2K − 1)
δ2|δ1|

2
< 0

by (5.28) and then, because of (6.3), to

[�Fh+1]+ = �Lh+1 = |ε3| ≤ δ2|δ1|
2

≤ 1

2K − 1
[�Fh]− ≤ μ[�Fh]−.
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The last estimate is also valid when δ1 < 0 (the only difference is that in the previous
computations, there is a factor ξ both in �Fh and in �Fh+1).

On the other hand, if we consider the interaction with a wave δ3 of order h belonging
to the third family, then the reflected wave ε1 will be of a type different from that of
δ3 and ε3. In this case, we first suppose δ3, ε3 > 0; then, ε1 < 0. As a consequence,
we have

�Fh = −|ε1| − K δ2|δ3| ≤ −(1 + 2K )|ε1|

and, therefore,

[�Fh+1]+ = ξ |ε1| = ξ

1 + 2K
[(1 + 2K )|ε1|] ≤ ξ

1 + 2K
[�Fh]− ≤ μ[�Fh]−,

because of (6.3). In the other case, i.e., when δ3, ε3 < 0 and ε1 > 0, we have

�Fh = −ξ |ε1| − K ξδ2|δ3| ≤ −ξ(1 + 2K )|ε1|

and

[�Fh+1]+ = |ε1| ≤ 1

ξ(1 + 2K )
[�Fh]− ≤ μ[�Fh]−.

Now, we consider the case when the interacting wave has strength |δ| < ρ, and
then, the pseudo-simplified solver is used. In this case, a non-physical error of size
|ε2,0 − δ2,0| and order h + 1 appears. Thus, again by Lemma 5.2,

0 < �Fh+1 = Knp�L0
h+1 ≤ KnpCoδ2|δ|, �Lh = 0, �Qh ≤ −δ2|δ|.

Consequently, [�Fh]− ≥ K δ2|δ| and

[�Fh+1]+ ≤ KnpCo

K
[�Fh]− ≤ μ[�Fh]−.

Then, (6.10) is proved. Finally, we notice that, in all the above cases for τ ∈ Jh , (6.4)
holds. �

Now, we proceed similarly as in [1, Proposition 6.7] to obtain a recursive estimate
for Fk . Indeed, the functional Fk increases at times τ ∈ Tk−1, it decreases at τ ∈ Tk ,
while it has not a definite sign for times τ ∈ Th with h ≥ k + 1. For F1, we have:

F1(t) = F1(0) −
∑

T1

[�F1]− +
∑

h>1

∑

Th

�F1, (6.11)

while for Fk with k ≥ 2, we use that Fk(0) = 0 to obtain

Fk(t) =
∑

Tk−1

[�Fk]+ −
∑

Tk

[�Fk]− +
∑

h>k

∑

Th

�Fk . (6.12)
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Here above, we assumed that summations are done over interaction times τ < t ; the
same notation is used in the following. We consider now the last terms in (6.11), (6.12):

∑

h>k

∑

Th

�Fk, k ≥ 1.

The above contribution is different from zero (and then possibly positive) only if the
interaction involves two waves of the same family, one of order k and the other of
order h, with h > k. We denote by Th,k the set of times at which an interaction of this
type occurs. Clearly, Th,k ⊂ Th .

Moreover, we define the quantity

αk(t) =
∑

τ∈Tk−1,τ<t

[�Fk(τ )]+, k ≥ 2, (6.13)

that is, the first term on the right-hand side of (6.12). Hence, we rewrite (6.11), (6.12)
as

0 ≤ F1(t) = F1(0) −
∑

T1

[�F1]− +
∑

h>1

∑

Th,1

�F1, (6.14)

0 ≤ Fk(t) = αk −
∑

Tk

[�Fk]− +
∑

h>k

∑

Th,k

�Fk, k ≥ 2. (6.15)

PROPOSITION 6.3. For k ≥ 2, one has

αk ≤ μk−1F1(0) +
∑

h≥k

k−1∑

�=1

∑

Th,�

�F�. (6.16)

Proof. For k = 2, we use (6.6) and the positivity of F1 to get

α2 =
∑

T1

[�F2]+ ≤ μ
∑

T1

[�F1]− ≤ μ

⎧
⎨

⎩
F1(0) +

∑

h>1

∑

Th,1

�F1

⎫
⎬

⎭

≤ μF1(0) +
∑

h≥2

∑

Th,1

�F1,

which is (6.16) for k = 2.

By induction, assume that (6.16) holds for some k ≥ 2. Since Fk ≥ 0, from (6.15),
we get

∑

Tk

[�Fk]− ≤ αk +
∑

h>k

∑

Th,k

�Fk .

Now, by definition (6.13), by estimate (6.6), and the previous inequality, we find

αk+1 =
∑

Tk

[�Fk+1]+ ≤ μ
∑

Tk

[�Fk]− − μ
∑

�<k

∑

Tk,�

�F�

≤ μαk + μ
∑

h>k

∑

Th,k

�Fk − μ
∑

�<k

∑

Tk,�

�F�.
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By using the induction hypothesis (6.16), we get

αk+1 ≤ μk F1(0) + μ
∑

h,�
h≥k>�

∑

Th,�

�F�

︸ ︷︷ ︸
(I )

+μ
∑

h>k

∑

Th,k

�Fk − μ
∑

�<k

∑

Tk,�

�F�

︸ ︷︷ ︸
(II )

.

Notice that

(I ) = (II ) +
∑

h,�
h>k>�

∑

Th,�

�F�,

so that

αk+1 ≤ μk F1(0) + μ
∑

h,�
h>k>�

∑

Th,�

�F� + μ
∑

h>k

∑

Th,k

�Fk

= μk F1(0) + μ
∑

h,�
h>k≥�

∑

Th,�

�F�

from which we deduce (6.16) for k + 1, since μ < 1. �

PROPOSITION 6.4. For k ≥ 2, one has

F̃k(t) =̇
∑

j≥k

Fj (t) ≤ μk−1F1(0). (6.17)

Proof. For k ≥ 2, we have F̃k(0) = 0. Moreover, we also deduce:

• �F̃k(τ ) = 0 for τ ∈ Th , h ≤ k − 2, by (6.5);
• �F̃k(τ ) = �Fk(τ ) > 0 for τ ∈ Tk−1, by (6.4);
• at last, for all τ ∈ Th , h ≥ k,

�F̃k(τ ) ≤ −
k−1∑

�=1

�F�(τ ),

by the property �F(τ ) < 0, see Remark 6.2.

As a consequence of the above properties, using also (6.13) and (6.16), we find

F̃k(t) = αk +
∑

h≥k

∑

Th

�F̃k

≤ μk−1F1(0) +
∑

h≥k

k−1∑

�=1

∑

Th,�

�F� −
∑

h≥k

k−1∑

�=1

∑

Th,�

�F� = μk−1F1(0).

�
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We can now proceed to determine parameters ρ and η as in [1]. Fix η > 0 such that
η = ην → 0 as ν → ∞ and estimate the total number of waves of order < k. Then,
for the strength of the composite wave, it holds

|γ2,0|(t) ≤ L̃k(t) +
∑

h<k
τh<t

|ε2,0 − δ2,0|(τh)

≤ μk−1 · L(0) · (1 + K δ2) + Coρ δ2 [number of fronts of order < k] <
1

ν
,

by choosing k sufficiently large to have the first term ≤ 1/(2ν) and, then, ρ = ρν

small enough to have the second term also ≤ 1/(2ν).

REMARK 6.5. Proposition 6.3 improves Lemma 6.6 in [1], because of �F� on
the right-hand side of (6.16) in place of [�F�]+. This is obtained under the same
local interaction estimates (6.4)–(6.6). Moreover, Proposition 6.4 is only based on
Proposition 6.3 and on �F < 0. Hence, the same argument could be applied to the
general case treated in [1] and improve the related result by avoiding some technical
assumptions due to the presence of non-physical waves.

Finally, we prove the global decrease in F .

PROPOSITION 6.6. (Global decreasing) We choose parameters m, ξ , K , Knp as
in Proposition 5.9, that is, that satisfy (5.30), (5.29), (5.31), and (5.11), respectively.
Moreover, we assume that

L̄(0+) ≤ mc(m) (6.18)

and that the approximate solution is defined in [0, T ]. Then, we have that (5.6) is
satisfied and therefore that �F(t) ≤ 0 for every t ∈ (0, T ]. In particular, every shock
wave of size δi and generation order k ≥ 1 satisfies

|δi | ≤ μk−1m. (6.19)

Proof. By Propositions 5.3 and 5.8, we know that �F ≤ 0 if (5.6) holds.
Recalling that the maximum size of a rarefaction is smaller than 2η, see (6.1), we

need to check (5.6) only for shocks. Hence, once that m is chosen, it is enough to
assume η < m/2.

By (6.18), we deduce that L(0+) ≤ m, and by a recursion argument, we find that
for every t ≤ T

F(t) ≤ F(0+) ≤ L(0+)(1 + K δ2) ≤ ξ2 L̄(0+).

This implies that the size δi of a shock, at time t , satisfies

|δi | ≤ 1

ξ
F(t) ≤ 1

ξ
F(0) ≤ ξ L̄(0+) ≤ 1

c(m)
L̄(0+) ≤ m

and in particular (5.6), which is (6.19) for k = 1.
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Moreover, recalling (6.17) in Proposition 6.4, for k ≥ 2, we have

|δi | ≤ 1

ξ
Fk(t) ≤ μk−1

ξ
F1(0+) = μk−1

ξ
F(0+) ≤ μk−1m

which is (6.19). �

REMARK 6.7. As an example of choice of the parameters, we can take ξ = 3, so
that the left-hand side of (5.29) is satisfied for every δ2 (remind that 0 < δ2 < 2).
Then, K , m will satisfy

1 < K <
2

δ2
, c(m) ≤ 1/3 (6.20)

which gives coshm ≥ 2, that is,

m ≥ m̄ = cosh−1(2) = log
(

2 + √
3
)

. (6.21)

Therefore, if L̄(0+) ≤ 1
3 log

(
2 + √

3
)

and for any δ2, the functional F with ξ = 3

and K as in (6.20) is decreasing on R+.

6.2. Proof of Theorem 2.1 and a comparison

In this last section, we accomplish the proof of Theorem 2.1 and compare the result
we obtain with that proved in [1,3].

Proof of Theorem 2.1. It only remains to reinterpret the choice of the parameter m in
terms of the assumption (2.3) on the initial data. Recalling Proposition 6.6, (5.30) and
since

L̄(0+) ≤ 1

2
TV (log(po)) + 1

2 inf ao
TV(uo),

we look for m satisfying

|δ2| <
1

c(m)
− 1 = 2

coshm − 1
=̇ w(m), (6.22)

TV (log(po)) + 1

min{ar , a�}TV(uo) < 2mc(m) =̇ z(m). (6.23)

Notice that w(m) is strictly decreasing fromR+ toR+, while z(m) is strictly increasing
on the same sets. Since |δ2| < 2, we restrict the choice of the parameter to have
w(m) ∈ (0, 2), that is, coshm > 2, and then m > m̄, where m̄ is given in (6.21).

We can now define

K(r) =̇ z
(
w−1(r)

)
= 2

1 + r
c−1

(
1

1 + r

)

, r ∈ (0, 2), (6.24)

which is explicitly given in (2.5). Hence, if the assumption (2.3) holds, namely

TV (log(po)) + 1

min{ar , a�}TV(uo) < K(|δ2|),
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it is easy to prove that one can choose m > m̄ such that (6.22), (6.23) hold. Finally,
in order to pass to the limit and prove the convergence to a weak solution, one can
proceed as in [8]. Theorem 2.1 is, therefore, completely proved. �

Now, we make a comparison between Theorem 2.1 and the main result in [1],
which was proved to be equivalent to Theorem 3.1 of [3]. Condition (3.7) of the latter
theorem, when applied to the current problem, can be written as

TV (log(po)) + 1

min{ar , a�}TV(uo) < H(|δ2|), (6.25)

where the function H(r) is only defined for r < 1/2 by

H(r)
.= 2(1 − 2r)k−1(r), k(m) = 1 − √

d(m)

2 − √
d(m)

. (6.26)

Here above, d(m) is the damping coefficient introduced in [1, Lemma 5.6], see
Remark 5.7.

Hence, the result of Theorem 2.1 is new for 1/2 ≤ |δ2| < 2, including the case
where the 2-wave may be arbitrarily large, i.e., |δ2| close to 2. In order to compare
(6.25) with (2.3) in the common range |δ2| < 1/2, we set r = |δ2| ∈ (0, 1/2) and
rewrite H as

H(r) = 2(1 − 2r) d−1

((
1 − 2r

1 − r

)2
)

.

Comparing this expression with (2.5), we notice that 1/(1+r) > (1−2r). Moreover,
we have

1

1 + r
>

(
1 − 2r

1 − r

)2

;

since c < d and c is strictly increasing, we have also that c−1 (1/(1 + r)) > k−1(r).
We deduce that K(r) > H(r) for 0 ≤ r < 1/2; see Fig. 8. Then, the conditions on
the initial data obtained here considerably improve the ones required in the previous
works [1,3], albeit the latter were given for a more general case.

Appendix. Another interpretation of the damping coefficient c

The function c introduced in (5.15) plays a fundamental role in controlling the size
of the weight ξ assigned to shock waves in the front-tracking scheme, see Proposition
5.8. In this appendix, we show that the same coefficient c also appears in the stability
analysis of the Riemann problems of system (1.1), see [4,21].

In [21], Schochet proves that if the solution of a Riemann problem satisfies some
finiteness conditions (also called BV -stability conditions), then small perturbations of
bounded variation of its initial data give rise to a solution defined globally in time. The
analysis for system (1.1) was done in [4], where it was proved that there are solutions
to suitable Riemann problems that do not satisfy such conditions.
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Figure 8. Functions H (dashed line) and K (solid line). The hori-
zontal dotted line gives the asymptotic value 2

3 log(2 + √
3) of K

for r → 2−

PROPOSITION A.1. Let us consider the pattern formed by a 1-shock ε1, a contact
discontinuity ε2, and a 3-shock ε3 as in Fig. 9. Then, the finiteness condition of [21]
for this pattern can be written as

c(ε1)c(ε3)ε
2
2 − (c(ε1) + c(ε3)) |ε2| + 2 (1 − c(ε1)c(ε3)) > 0. (A.1)

This condition makes explicit the analogous one provided in [4, (14)]. We remark
that condition (A.1) is satisfied for every shock ε3 (for example) if it holds in the
degenerate case c(ε3) = 1, [4]; in such a case, it simply reduces to 1+|ε2| ≤ 1/c(ε1),
which reminds of (5.29).

Proof of Proposition A.1. Maintaining the notation of [4, Lemma 1.2], we denote the
states lying between the waves byU0,U1,U2,U3, from left to right; see Fig. 9. We use
c1 = a1/v1 and c2 = a2/v2 to indicate the characteristic speeds, and s− = −a1/

√
v1v0

and s+ = a2/
√

v2v3 to indicate the speeds of the shocks of the first and third family,

Figure 9. States for the Riemann problem
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respectively. Finally, we write L±, R± for the left and right eigenvectors of the first
and third family, while we let [U ]± be the variation of U along the 1- and 3-shocks.

Let us introduce the following quantities

A = |R(−)| =
∣
∣
∣
∣
c1 + s−
c1 − s−

· L+(U1) · [U ]−
L−(U1) · [U ]−

∣
∣
∣
∣ , B = |R(+)| =

∣
∣
∣
∣
c2 − s+
c2 + s+

· L−(U2) · [U ]+
L+(U2) · [U ]+

∣
∣
∣
∣ ,

which represent some coefficients of the reflection matrices R(−)
>,≤ and R(+)

<,≥ appearing
in [4]. By performing simple computations, we find that A = c(ε1) and B = c(ε3).
Indeed, we have

L+(U1) · [U ]−
L−(U1) · [U ]− = −c1(v1 − v0) + (u1 − u0)

c1(v1 − v0) + (u1 − u0)

and, recalling that along a shock of the first family it holds u1 − u0 = −s−(v1 − v0),
the previous quantity becomes (−c1 − s−)/(c1 − s−). Therefore,

A = (c1 + s−
c1 − s−

)2 =
(

v0/v1 − √
v0/v1

v0/v1 + √
v0/v1

)2

.

By definition (3.2), we get v0/v1 = exp(−2ε1), and consequently,

A = (exp(−ε1/2) − exp(ε1/2)

exp(−ε1/2) + exp(ε1/2)

)2 = tanh2(ε1/2) = cosh(ε1) − 1

cosh(ε1) + 1
= c(ε1).

Analogous calculations hold for B = (cosh(ε3) − 1)/(cosh(ε3) + 1) = c(ε3). By
substituting such A, B in [4, (14)], we obtain (A.1), and the proposition is proved. �
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