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Abstract. We prove energy estimates for linear p-evolution equations in weighted Sobolev spaces under
suitable assumptions on the behavior at infinity of the coefficients with respect to the space variables. As a
consequence, we obtain well posedness for the related Cauchy problem in the Schwartz spaces S(R) and
S ′(R).

1. Introduction

Let us start by considering the Cauchy problem{
P(t, x, Dt , Dx )u(t, x) = f (t, x) (t, x) ∈ [0, T ] × R,

u(0, x) = g(x) x ∈ R,
(1.1)

D = −i∂ , where P(t, x, Dt , Dx ) is a differential evolution operator of the form

P(t, x, Dt , Dx ) = Dt + ap(t)D
p
x +

p−1∑
j=0

a j (t, x)D
j
x , (1.2)

with p ∈ N, p ≥ 2, ap ∈ C([0, T ];R) and a j ∈ C([0, T ];B∞), whereB∞ stands for
the class of complex valued C∞(Rx ) functions with uniformly bounded derivatives.
Operators of the form above are usually referred to as “p-evolution operators”;

the condition that ap(t) is real valued means that the principal symbol of P (in the
sense of Petrowski) has the real characteristic τ = −ap(t)ξ p; by the Lax-Mizohata
theorem, this is a necessary condition to have a unique solution in Sobolev spaces of
the Cauchy problem (1.1) in a neighborhood of t = 0, for any p ≥ 1. Notice that in
the case p = 1, operator (1.2) is strictly hyperbolic; in the case p = 2, operators of
the form (1.2) with real characteristics are usually called “Schrödinger-type evolution
operators,” being the Schrödinger operator the most relevant model in the class.
A wide literature concerning the well posedness of problem (1.1) in Sobolev spaces

exists for p = 1, 2. For general p ≥ 2, many results are known when the coefficients
a j (t, x) are real valued, see for instance [1–3,11,13,15].When the coefficients a j (t, x)
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are complex valued for some1 ≤ j ≤ p−1, thenweknow from [8,20] that somedecay
conditions for |x | → ∞ must be required on the imaginary part of the coefficients
in order to obtain H∞ well posedness. In the papers [20,21], Ichinose has given
necessary and sufficient conditions for the case p = 2, x ∈ R. Kajitani and Baba [22]
then proved that, for p = 2 and a2(t) constant, x ∈ R

n , the Cauchy problem (1.1) is
H∞ well posed if

Im a1(t, x) = O(|x |−σ ), σ ≥ 1, as |x | → ∞, (1.3)

uniformly with respect to t ∈ [0, T ]. Second-order equations with p = 2 and decay
conditions as |x | → ∞ have been considered, for example, in [12,16]. Cicognani
and Colombini [14] treated the case p = 3 proving H∞ well posedness under the
conditions

| Im a2| ≤ Ca3(t)〈x〉−1,

| Im a1| + |Re ∂xa2| ≤ Ca3(t)〈x〉−1/2.
(1.4)

Recently, Ascanelli et al. [6] extended the results of [14] and [22] to the case p ≥ 4,
giving sufficient conditions for H∞ well posedness of the Cauchy problem for the
operator (1.2); results in [6] have then been generalized to pseudo-differential systems
in [5] and to higher order equations in [4]; semi-linear three-evolution equations have
been then studied in [7]. Recently, in [8], a necessary condition of decay at infinity for
the coefficients of (1.2) with arbitrary p ≥ 2 has been given.

In this paper, we want to consider the Cauchy problem (1.1) when P(t, x, Dt , Dx )

is an evolution operator of the form

P(t, x, Dt , Dx ) = Dt + ap(t, Dx ) +
p−1∑
j=0

a j (t, x, Dx ), (1.5)

p ∈ N, p ≥ 2, where a j are pseudo-differential operators with symbols a j of order
j for 0 ≤ j ≤ p, and for every t ∈ [0, T ], x, ξ ∈ R we have: ap(t, ξ) ∈ R,
a j (t, x, ξ) ∈ C for 0 ≤ j ≤ p − 1.

In [5], it has been proved the following:

THEOREM1.1. The Cauchy problem (1.1) for the operator (1.5) is H∞ well posed
under the assumptions:

|∂ξap(t, ξ)| ≥ Cp|ξ |p−1 ∀t ∈ [0, T ], |ξ | � 1, (1.6)

for some Cp > 0 and

| Im ∂α
ξ a j (t, x, ξ)| ≤ Cα〈x〉− j

p−1 〈ξ 〉 j−α
h , 1 ≤ j ≤ p − 1 (1.7)

| Im ∂α
ξ Dxa j (t, x, ξ)| ≤ Cα〈x〉− j−1

p−1 〈ξ 〉 j−α
h , 2 ≤ j ≤ p − 1 (1.8)

| Im ∂α
ξ D

β
x a j (t, x, ξ)| ≤ Cα〈x〉− j−[β/2]

p−1 〈ξ 〉 j−α
h , 1 ≤

[
β

2

]
≤ j − 1, 3 ≤ j ≤ p − 1

(1.9)
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for all (t, x, ξ) ∈ [0, T ] × R
2 and for some Cα > 0, where 〈·〉h = √

h2 + | · |2,
h ≥ 1. More precisely, there exists σ > 0 such that for all f ∈ C([0, T ]; Hs) and
g ∈ Hs, there is a unique solution u ∈ C([0, T ]; Hs−σ ) of (1.1), (1.5) which satisfies
the following energy estimate:

‖u(t, ·)‖2s−σ ≤ Cs

(
‖g‖2s +

∫ t

0
‖ f (τ, ·)‖2s dτ

)
∀t ∈ [0, T ], (1.10)

for some Cs > 0.

Formula (1.10) shows that the Cauchy problem (1.1), (1.5) is H∞ well posed with
loss of σ derivatives, in the sense that the solution is less regular than the Cauchy data.
This phenomenon, which is usual in the theory of degenerate hyperbolic equations,
appears so also in the theory of non-degenerate p-evolution equations for p ≥ 2
and has been yet observed in [13,21,22]. Notice that assumptions (1.6)–(1.9) are
consistent with the conditions in (1.3), (1.4). The loss of derivatives appearing in
(1.10) for the solution of (1.1) is explicitly computed in [5], and it can be avoided
by slightly strengthening the sole assumption (1.7) for j = p − 1. Formula (1.10)
gives so an accurate information about the regularity of the solution, but, in spite of
the very precise decay conditions on the coefficients, it does not say anything about
the behavior of the solution as |x | → ∞.
This suggests us to change the setting of the Cauchy problem (1.1) to gain the

possibility of giving similar precise information on the behavior of the solution for
|x | → ∞; namely, one could try to obtain energy estimates in suitable weighted
Sobolev spaces and well posedness in the Schwartz spaces S(R),S ′(R).

Results of the above type have been proved for strictly hyperbolic equations (p = 1)
by Cordes [17]; we also recall similar results when the coefficients are not Lipschitz
continuous in t , see [9,10]. The natural framework consists in dealing with pseudo-
differential operators with symbols in the classes SGm1,m2 = SGm1,m2(R2), with
m j ∈ R, j = 1, 2, defined as the class of all functions p(x, ξ) ∈ C∞(R2) satisfying
the following estimates:

‖p‖α,β := sup
(x,ξ)∈R2

〈ξ 〉−m1+α〈x〉−m2+β |∂α
ξ ∂β

x p(x, ξ)| < ∞ (1.11)

for every α, β ∈ N. We refer to [17,18,24,25] for a detailed calculus for this class.
In the following, we shall prove energy estimates in the weighted Sobolev spaces
Hs1,s2(R), s j ∈ R, j = 1, 2, defined as the space of all u ∈ S ′(R) satisfying the
following condition:

‖u‖s1,s2 = ‖〈x〉s2〈D〉s1u‖L2 < ∞, (1.12)

where we denote by 〈D〉s1 the Fourier multiplier with symbol 〈ξ 〉s1 . It is worth to
recall that for s2 = 0 we recapture the standard Sobolev spaces and that the following
identities hold: ⋂

s1,s2∈R
Hs1,s2(R) = S(R),

⋃
s1,s2∈R

Hs1,s2(R) = S ′(R). (1.13)
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Moreover, we recall that S(R) is dense in Hs1,s2(R) for any s1, s2 ∈ R.

The main result of the paper is the following.

THEOREM 1.2. Let P(t, x, Dt , Dx ) be an operator of the form (1.5) and assume
that the following conditions hold:

ap ∈ C([0, T ]; SG p,0), (1.14)

|∂ξap(t, ξ)| ≥ Cp|ξ |p−1 ∀t ∈ [0, T ], |ξ | � 1, with Cp > 0, (1.15)

a j ∈ C([0, T ]; SG j,− j/(p−1)), j = 0, . . . , p − 1. (1.16)

Then, the Cauchy problem (1.1) is well posed in S(R),S ′(R). More precisely, there
exists σ > 0 such that for all s1, s2 ∈ R, f ∈ C([0, T ]; Hs1,s2(R)) and g ∈ Hs1,s2(R),
there is a unique solution u ∈ C([0, T ]; Hs1,s2−σ (R)) which satisfies the following
energy estimate:

‖u(t, ·)‖2s1,s2−σ ≤ C

(
‖g‖2s1,s2 +

∫ t

0
‖ f (τ, ·)‖2s1,s2 dτ

)
∀t ∈ [0, T ], (1.17)

for some C = C(s1, s2) > 0.

REMARK 1.3. The energy estimate (1.17) shows that under our assumptions, we
can obtain well posedness in S(R) and S ′(R) without any loss of derivatives for the
solution u of (1.1), paying this with a modification of the rate of decay/growth at
infinity of the solution with respect to the Cauchy data. The solution of (1.1) has so
the same regularity as the Cauchy data; but, if we start from data with a prescribed
decay at infinity, then a loss of decay appears in the solution; similarly, if the data have
a fixed polynomial growth at infinity, then the solution presents a stronger growth.
Moreover, the solution exists uniquely and the precise value of σ is computed, see
formulas (3.4) and (3.13). We address the reader to Remark 3.8 and to the examples
at the end of Sect. 3 for further comments on the phenomenon of the loss with respect
to the second Sobolev index.

REMARK 1.4. The proof of Theorem 1.2 is in part inspired by [6], but it takes
advantage of the fact that, in the new framework we are considering, we can admit
initial data with polynomial growth with respect to the space variable. On the other
hand, the assumptions on the coefficients given in our paper are stronger than the ones
used in [5,6]. Hence, one can modify the approach and define the functions λp−k in
the following by (2.14) for 1 ≤ k ≤ p − 1 (hence also for k = 1) as in [6] and repeat
readily the argument of the proof using the estimates of Lemma 2.1 in [6] instead of
Lemma 2.5 in the case k = 1. In this way, we are able to prove that there exists σ ′ > 0
such that for all s1, s2 ∈ R, f ∈ C([0, T ]; Hs1,s2(R)) and g ∈ Hs1,s2(R), there is
a unique solution u ∈ C([0, T ]; Hs1−σ ′,s2(R)) which satisfies the following energy
estimate:

‖u(t, ·)‖2s1−σ ′,s2 ≤ Cs

(
‖g‖2s1,s2 +

∫ t

0
‖ f (τ, ·)‖2s1,s2 dτ

)
∀t ∈ [0, T ], (1.18)



Vol. 15 (2015) Well posedness of the Cauchy problem for p-evolution equations... 587

for some C = C(s1, s2) > 0. We do not prove here this alternative result, the proof
being a repetition of the one of Theorem 1.1 in [6] in our functional setting.

REMARK 1.5. If the condition (1.16) with j = p − 1 is strengthened into

ap−1 ∈ C([0, T ]; SG p−1,−(1+ε)),

for any ε > 0, then the Cauchy problem (1.1) is well posed in S(R), S ′(R) without
loss of derivatives and without modification of the behavior at infinity.

REMARK 1.6. We observe that the assumption (1.16) in Theorem 1.2 can be
slightlyweakenedwithout changing the argument of the proof. Namely,we can replace
the condition (1.16) with the following

Re a j ∈ C([0, T ]; SG j,0), Im a j ∈ C([0, T ]; SG j,− j/(p−1)), 0 ≤ j ≤ p − 1.

(1.19)

The argument of the proof remains essentially the same, but it involvesmore complicate
notation. For this reason, we prefer to present our main result using the more simple
assumption (1.16). We refer to Remark 3.7 at the end of the paper for some comments
on the more refined result. Finally, we observe that if a j (t, x, Dx ) are differential
operators, assumptions (1.14), (1.15), (1.19) are consistent with the ones given in
[6,14,22] for the corresponding case ap(t) > Cp > 0 ∀t ∈ [0, T ].

2. Preliminaries

In this section, we collect some basic notions on SG classes of pseudo-differential
operators and prove some preliminary results which will be used in the proof of
Theorem 1.2 in the next section.

2.1. SG-pseudo-differential operators

We first recall that SG classes can be regarded as a particular case of general
Hörmander classes, see [19, Chapter XVIII]. A specific calculus in different functional
settings can be found in [17,18,24,25].Here,we recall only somebasic factswhichwill
be used in the proof of our result. In general, fixed d ∈ N\{0}, the space SGm1,m2(R2d)

is the space of all functions p(x, ξ) ∈ C∞(R2d) satisfying the following estimates:

‖p‖α,β := sup
(x,ξ)∈R2d

〈ξ 〉−m1+|α|〈x〉−m2+|β||∂α
ξ ∂β

x p(x, ξ)| < ∞ (2.1)

for every α, β ∈ N. We can associate with every p ∈ SGm1,m2(R2d) a pseudo-
differential operator defined by

Pu(x) = p(x, D)u(x) = (2π)−d
∫
Rd

ei〈x,ξ〉 p(x, ξ)û(ξ) dξ. (2.2)
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The operator p(x, D) is a linear continuous map S(Rd) → S(Rd) which extends to
a continuous map S ′(Rd) → S ′(Rd). Concerning the action of these operators on
weighted Sobolev spaces, we have that if p ∈ SGm1,m2(R2d), then the map

p(x, D) : Hs1,s2(R
d) → Hs1−m1,s2−m2(R

d)

is continuous for every s1, s2 ∈ R, where the space Hs1,s2(R
d) is obviously defined

in arbitrary dimension as the space of all u ∈ S ′(Rd) satisfying (1.12). We also recall
the following result concerning the composition and the adjoint of SG operators.

PROPOSITION 2.1. Let p ∈ SGm1,m2(R2d) and q ∈ SGm′
1,m

′
2(R2d). Then, there

exists a symbol s ∈ SGm1+m′
1,m2+m′

2(R2d) such that p(x, D)q(x, D) = s(x, D) + R
where R is a smoothing operator S ′(Rd) → S(Rd). Moreover, s has the following
asymptotic expansion

s(x, ξ) ∼
∑
α

α!−1∂α
ξ p(x, ξ)Dα

x q(x, ξ)

i.e., for every N ≥ 1, we have

s(x, ξ) −
∑

|α|<N

α!−1∂α
ξ p(x, ξ)Dα

x q(x, ξ) ∈ SGm1+m′
1−N ,m2+m′

2−N (R2d).

PROPOSITION 2.2. Let p ∈ SGm1,m2(R2d) and let P∗ be the L2-adjoint of
p(x, D). Then, there exists a symbol p∗ ∈ SGm1,m2(R2d) such that P∗ = p∗(x, D)+
R′, where R′ is a smoothing operator S ′(Rd) → S(Rd). Moreover, p∗ has the fol-
lowing asymptotic expansion

p∗(x, ξ) ∼
∑
α

α!−1∂α
ξ D

α
x p(x, ξ)

i.e., for every N ≥ 1, we have

p∗(x, ξ) −
∑

|α|<N

α!−1∂α
ξ D

α
x p(x, ξ) ∈ SGm1−N ,m2−N (R2d).

We also recall the definition of the class Sm(R2d),m ∈ R, defined as the space of
all symbols p(x, ξ) ∈ C∞(R2d) satisfying

|∂α
ξ ∂β

x p(x, ξ)| ≤ Cαβ〈ξ 〉m−|α|, (x, ξ) ∈ R
2d

for every α, β ∈ N
d . It is important for the sequel to notice that

SGm1,m2(R2d) ⊂ Sm1(R2d) (2.3)

for anym1,m2 ∈ Rwithm2 ≤ 0 and that the operators with symbols in S0(R2d) map
continuously Hs1,s2(R

d) to itself for every s1, s2 ∈ R.
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In the proof of Theorem 1.2, we shall also use the sharp Gårding inequality applied
to SG operators. This result is known as a particular case of [19, Theorem 18.6.14].
However, for our purposes,we also need a precise estimate of the order of the remainder
with respect to ξ , which has been proved only for symbols in the Hörmander classes
Sm(R2d), see [23, Theorem 4.2]. Nevertheless, we have to observe that the operators
we shall consider have negative order with respect to x . Hence, in view of the inclusion
(2.3), we can base the proof of this result on the classical sharp Gårding inequality
for standard Hörmander symbols and estimate the order of the remainder term with
respect to ξ by looking at its classical asymptotic expansion. Namely, we have the
following result.

THEOREM 2.3. Let m1 ≥ 0,m2 ≤ 0, a ∈ SGm1,m2(R2d) with Re a(x, ξ) ≥ 0.
Then, there exist pseudo-differential operators Q = q(x, D), R̃ = r̃(x, D) and R0 =
r0(x, D) with symbols, respectively, q ∈ SGm1,m2(R2d), r̃ ∈ SGm1−1,m2(R2d) and
r0 ∈ S0(R2d) such that

a(x, D) = q(x, D) + r̃(x, D) + r0(x, D) (2.4)

Re〈q(x, D)u, u〉 ≥ 0 ∀u ∈ S(Rd). (2.5)

Proof. Sincem2 ≤ 0, then SGm1,m2(R2d) ⊂ Sm1(R2d). Hence, the classical Gårding
inequality gives the existence of two symbols q and r such that a(x, D) = q(x, D) +
r(x, D) and q(x, D) satisfies (2.5). Let us now consider the asymptotic expansion of
the remainder term r(x, D). By Theorem 4.2 in [23], we have that

r(x, ξ) ∼ ψ1(ξ)Dxa(x, ξ) +
∑

|α+β|≥2

ψα,β(ξ)∂α
ξ D

β
x a(x, ξ), (2.6)

for some real-valued functions ψ1, ψα,β with ψ1 ∈ SG−1,0(R2d) and ψα,β ∈
SG(|α|−|β|)/2,0(R2d). In particular, we have that

r(x, ξ) = ψ1(ξ)Dxa(x, ξ) +
∑

2≤|α+β|≤2m1−1

ψα,β(ξ)∂α
ξ D

β
x a(x, ξ) + r0(x, ξ),

for a symbol r0 ∈ S0(R2d). Moreover, it is easy to verify that ψ(ξ)Dxa(x, ξ) ∈
SGm1−1,m2−1(R2d) and that∑

2≤|α+β|≤2m1−1

ψα,β(ξ)∂α
ξ D

β
x a(x, ξ) ∈ SGm1−1,m2(R2d).

Then, we have that

r̃(x, ξ) := ψ1(ξ)Dxa(x, ξ) +
∑

2≤|α+β|≤2m1−1

ψα,β(ξ)∂α
ξ D

β
x a(x, ξ)∈ SGm1−1,m2(R2d).

This concludes the proof. �
REMARK 2.4. In the sequel of the paper, we will often replace the weight function

〈ξ 〉 with 〈ξ 〉h = (h2 + |x |2)1/2 for some h ≥ 1 to prove our results. It is clear that
this modification does not change the definition of the class SGm1,m2(R2d) and of the
spaces Hs1,s2(Rd), and their properties.
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2.2. Changes of variables and conjugations

The idea of the proof of Theorem 1.2 is to prove an energy estimate in L2(R) for
the operator

i P = ∂t + iap(t, Dx ) +
p−1∑
j=0

ia j (t, x, Dx ) = ∂t + A(t, x, Dx ). (2.7)

We have
d

dt
‖u‖20 = 2Re〈∂t u, u〉 = 2Re〈i Pu, u〉 − 2Re〈Au, u〉

≤ ‖ f ‖20 + ‖u‖20 − 2Re〈Au, u〉. (2.8)

Notice that 2 Re〈Au, u〉 = 〈(A+A∗)u, u〉, with A∗ the formal adjoint of A, and A+A∗
is an operator with symbol in SG p−1,−1, hence with positive order with respect to ξ .
This implies that the desired energy estimate is not straightforward, and in order to
obtain it, we need to transform the Cauchy problem (1.1) into an equivalent one of the
form {

Pλuλ = fλ

uλ(0, x) = gλ,
(2.9)

where Pλ = Dt − i Aλ and Re Aλ(t, x, ξ) ≥ 0; then, we apply Theorem 2.3 to obtain
the estimate from below

Re〈Aλv, v〉 ≥ −c||v||20
for v ∈ S(R) and for some positive constant c. This, computing as in (2.8), will
give an L2 energy estimate for the solution uλ of the Cauchy problem (2.9). The
operator Pλ will be the result of p − 1 conjugations of P with operators of the form
eλp−k (x,Dx ), k = 1, . . . , p − 1, namely:

(i P)λ := (eλ1(x,Dx ))−1 · · · (eλp−2(x,Dx ))−1(eλp−1(x,Dx ))−1(i P)eλp−1(x,Dx )eλp−2(x,Dx )

· · · eλ1(x,Dx ). (2.10)

Here and in the following, we shall denote by e±λp−k (x,Dx ), k = 1, · · · , p − 1, the
operators with symbols e±λp−k (x,ξ) and the functions λp−k will be chosen such that:

• λp−k(x, ξ) are real valued, 1 ≤ k ≤ p − 1;
• eλp−1(x,ξ) ∈ SG0,Mp−1 for some Mp−1 > 0 and eλp−k (x,ξ) ∈ SG0,0 for 2 ≤ k ≤

p − 1;
• the operator eλp−k (x,Dx ) is invertible for every 1 ≤ k ≤ p − 1 and the principal

part of (eλp−k (x,Dx ))−1 is e−λp−k (x,Dx );
• the operator

Aλ := (eλ1(x,Dx ))−1 · · · (eλp−2(x,Dx ))−1(eλp−1(x,Dx ))−1

(i A)eλp−1(x,Dx )eλp−2(x,Dx ) · · · eλ1(x,Dx )

is such that Re〈Aλv, v〉 ≥ −c||v||20 ∀v(t, ·) ∈ S(R).
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After the transformation of the problem (1.1) into (2.9) with Pλ defined by (2.10) and
fλ and gλ given by

fλ = (eλ1(x,Dx ))−1 · · · (eλp−1(x,Dx ))−1 f, gλ = (eλ1(x,Dx ))−1 · · · (eλp−1(x,Dx ))−1g,
(2.11)

we will obtain an energy estimate in L2(R) for the new variable

uλ(t, x) = (eλ1(x,Dx ))−1 · · · (eλp−2(x,Dx ))−1(eλp−1(x,Dx ))−1u(t, x) (2.12)

which will yield to an estimate of the form (1.17) for the solution u of (1.1).
Let us now define the functions λ j . We set

λp−1(x, ξ) := Mp−1ω

(
ξ

h

) ∫ x

0

1

〈y〉dy, (2.13)

and for 2 ≤ k ≤ p − 1

λp−k(x, ξ) := Mp−kω

(
ξ

h

)
〈ξ 〉−k+1

h

∫ x

0
〈y〉− p−k

p−1 ψ

(
〈y〉

〈ξ 〉p−1
h

)
dy , (2.14)

where Mp−1, Mp−2, . . . , M1 are positive constants to be chosen later on,ω ∈ C∞(R)

is such that

ω(ξ) =
{
0 |ξ | ≤ 1

sgn(∂ξap(t, ξ)) |ξ | ≥ R
(2.15)

for some R > 1, and ψ ∈ C∞
0 (R) is such that 0 ≤ ψ(y) ≤ 1 ∀y ∈ R, ψ(y) = 1 for

|y| ≤ 1
2 , ψ(y) = 0 for |y| ≥ 1. Notice that assumption (1.15) ensures the existence

of R > 0 such that for every fixed ξ with |ξ | > R the sign of the function ∂ξap(t, ξ)

remains constant for every t ∈ [0, T ], then ω is well defined and does not depend on
t .

Definition (2.14) is in part inspired by [5,6]; more precisely, the symbols λp−k

in (2.14) are exactly the same as in [5], while the symbol λp−1 in (2.13) is new. It
can be considered only in the framework of the SG calculus, where symbols with
polynomial growth in x can be handled. The setting we are using allows to construct a
transformation with a “stronger” λp−1 with respect to [5] still remaining in (weighted)
Sobolev spaces.

LEMMA2.5. The functionλp−1 defined by (2.13) satisfies the following estimates:

|λp−1(x, ξ)| ≤ Mp−1(1 + ln〈x〉) (2.16)

|∂α
ξ ∂β

x λp−1(x, ξ)| ≤ Mp−1Cα,β〈x〉−β〈ξ 〉−α
h α ≥ 0, β ≥ 1, (2.17)

|∂α
ξ λp−1(x, ξ)| ≤ Mp−1C

′
α,R〈ξ 〉−α

h

(
1 + ln〈x〉χEh,R (ξ)

)
, α ≥ 1, (2.18)

with positive constants C,Cα,β,C ′
α,R , where χEh,R is the characteristic function of

the set Eh,R = {ξ ∈ R| h ≤ |ξ | ≤ hR}.
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Proof. A simple explicit computation of the integral in (2.13) gives

|λp−1(x, ξ)| ≤ Mp−1 log(2〈x〉) < Mp−1(1 + ln〈x〉). (2.19)

For β ≥ 1, we have

|∂β
x λp−1(x, ξ)| = Mp−1

∣∣∣∣ω
(

ξ

h

)
∂β−1
x 〈x〉−1

∣∣∣∣ ≤ Mp−1Cβ〈x〉−β, (2.20)

and for α, β ≥ 1:

|∂α
ξ ∂β

x λp−1(x, ξ)| = Mp−1

∣∣∣∣ω(α)

(
ξ

h

)
h−α∂β−1

x 〈x〉−1
∣∣∣∣ ≤ Mp−1Cα,βh

−α〈x〉−β

≤ Mp−1Cα,β〈ξ 〉−α
h 〈x〉−β.

(2.21)

Finally, for α ≥ 1:

|∂α
ξ λp−1(x, ξ)| = Mp−1

∣∣∣∣ω(α)

(
ξ

h

)
h−α

∫ x

0

1

〈y〉dy
∣∣∣∣

≤ Mp−1Cαh
−α ln〈x〉χEh,R (ξ)

≤ Mp−1Cα,R〈ξ 〉−α
h ln〈x〉χEh,R (ξ), (2.22)

since h−1 ≤ 〈R〉〈ξ 〉−1
h on Eh,R . �

LEMMA 2.6. Let λp−k, k = 2, . . . , p − 1 be defined by (2.14). Then, for every
α, β ∈ N, there exists a constant Ck,α,β > 0 such that

|∂α
ξ ∂β

x λp−k(x, ξ)| ≤ Ck,α,βMp−k〈x〉
k−1
p−1−β〈ξ 〉−α−k+1

h χξ (x)

≤ Ck,α,βMp−k〈x〉−β〈ξ 〉−α
h , (2.23)

where χξ (x) denotes the characteristic function of the set
{
x ∈ R | 〈x〉 ≤ 〈ξ 〉p−1

h

}
. In

particular, we have that λp−k ∈ SG0,0 for 2 ≤ k ≤ p − 1.

Proof. See [6, Lemma 2.1]. �

From the estimates proved in Lemma 2.5 and 2.6, we obtain, by simply applying
the Faà di Bruno formula, the following estimates for the symbols e±λp−k (x,ξ). We
leave the details of the proof to the reader.

LEMMA 2.7. Let λp−k, k = 1, . . . , p − 1 be defined by (2.13) and (2.14). Then,

|e±λp−1(x,ξ)| ≤ K 〈x〉Mp−1 , (2.24)

|∂α
ξ e

±λp−1(x,ξ)| ≤ Cα[1 + ln〈x〉χEh,R (ξ)]α〈ξ〉−α
h e±λp−1(x,ξ), α ≥ 1, (2.25)

|∂β
x e

±λp−1(x,ξ)| ≤ Cβ 〈x〉−βe±λp−1(x,ξ), β ≥ 1, (2.26)
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|∂α
ξ ∂β

x e
±λp−1(x,ξ)| ≤Cα,β

[
1+ln〈x〉χEh,R (ξ)

]α 〈x〉−β 〈ξ〉−α
h e±λp−1(x,ξ), α, β ≥1, (2.27)

|∂α
ξ ∂β

x e
±λp−k (x,ξ)| ≤ Cα,β,k〈x〉−β 〈ξ〉−α

h e±λp−k (x,ξ), 2 ≤ k ≤ p − 1, α, β ∈ N,

(2.28)

for some positive constants K ,Cα,Cβ,Cα,β,Cα,β,k .

The next two results state the invertibility of the operators eλp−k (x,Dx ) for k =
1, . . . , p − 1.

LEMMA 2.8. Let λp−1(x, ξ) be defined by (2.13). Then, there exists h1 ≥ 1 such
that for h ≥ h1 the operator eλp−1(x,D) is invertible and

(eλp−1(x,Dx ))−1 = e−λp−1(x,Dx )(I + Rp−1) (2.29)

where I is the identity operator and Rp−1 has principal symbol given by

rp−1,−1(x, ξ) ∈ SG−1,0.

Proof. By Proposition 2.1, it follows that

eλp−1(x,Dx )e−λp−1(x,Dx ) = I − rp−1,−1(x, D) + rp−1,−2(x, D),

where

rp−1,−1(x, ξ) = ∂ξλp−1(x, ξ)Dxλp−1(x, ξ)

and

rp−1,−2(x, ξ) ∼
∑
m≥2

1

m!∂
m
ξ eλp−1(x,ξ)Dm

x e
−λp−1(x,ξ).

By (2.17) and (2.18)

rp−1,−1(x, ξ) ∈ SG−1,−1+ε for every ε > 0

and

rp−1,−2(x, ξ) ∈ SG−2,−2+ε for every ε > 0.

More precisely,

|∂α
ξ D

β
x rp−1,−1(x, ξ)| ≤

∑
α1+α2=α

(
cα1,α2,β |∂α1+1

ξ λp−1| · |∂α2
ξ Dβ+1

x λp−1|

+
∑

β1+β2=β, β1 �=0

cα1,α2,β1,β2 |∂α1+1
ξ Dβ1

x λp−1| · |∂α2
ξ Dβ2+1

x λp−1|
⎞
⎠
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≤ Cα,β,R〈ξ 〉−α
h 〈x〉−β〈ξ 〉−1

h (ln〈x〉 + 1)〈x〉−1

≤ 2Cα,β,R · h−1〈ξ 〉−α
h 〈x〉−β, ∀α, β ≥ 0. (2.30)

Setting rp−1(x, ξ) := rp−1,−1(x, ξ) − rp−1,−2(x, ξ), we have also

|∂α
ξ D

β
x rp−1(x, ξ)| ≤ C ′

α,β,R · h−1〈ξ 〉−α
h 〈x〉−β, ∀α, β ≥ 0 (2.31)

and for some C ′
α,β,R > 0; this means that for h large enough, operator I − Rp−1 is

invertible by Neumann series and
∑+∞

n=0 R
n
p−1 is the inverse operator. Similar consid-

erations hold for e−λp−1(x,Dx )eλp−1(x,Dx ); thus, e−λp−1
∑+∞

n=0 R
n
p−1 is a left and right

inverse for eλp−1(x,Dx ). The lemma is then proved. �

LEMMA 2.9. Let λp−k(x, ξ), k = 2, . . . , p − 1 be defined by (2.14). Then, for
every k, there exists hk ≥ 1 such that for h ≥ hk the operator eλp−k (x,D) is invertible
and

(eλp−k (x,Dx ))−1 = e−λp−k (x,Dx )(I + Rp−k) (2.32)

where I is the identity operator and Rp−k has principal symbol

rp−k,−k(x, ξ) = ∂ξλp−k(x, ξ)Dxλp−k(x, ξ) ∈ SG−k,− p−k
p−1 .

Proof. The construction of the inverse is completely analogous to the one of Lemma
2.8. Moreover, by (2.23), we have that

|rp−k,−k(x, ξ)| = |∂ξλp−k(x, ξ)Dxλp−k(x, ξ)| ≤ CkM
2
p−k〈x〉2

k−1
p−1−1〈ξ 〉−2k+1

h χξ (x)

≤ CkM
2
p−k〈x〉−

p−k
p−1 〈ξ 〉−k

h

≤ CkM
2
p−kh

−1 (2.33)

since on the support of χξ (x), we have 〈x〉 ≤ 〈ξ 〉p−1
h . The derivatives of rp−k,−k can

be estimated similarly. Thus, for h large enough, we obtain (2.32), and from (2.33),

we have rp−k,−k ∈ SG−k,− p−k
p−1 . �

3. The proof of Theorem 1.2

The proof of Theorem 1.2 needs some preparation. As announced in Section 2, we
shall reduce the Cauchy problem (1.1) to the problem (2.9), where the operator Pλ is
defined by (2.10) and the functions fλ, gλ and uλ are given, respectively, by (2.11)
and (2.12). We first prove the following result.

PROPOSITION 3.1. Let Pλ be defined by (2.10). Then, we have:

(i P)λ = ∂t + iap(t, Dx ) +
p−1∑
�=1

Qp−�(t, x, Dx ) + r0(t, x, Dx ),
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for some operators Qp−� with symbols Qp−�(t, x, ξ) ∈ SG p−�,0, satisfying

Re〈Qp−�v, v〉 ≥ 0 v ∈ S(R), 1 ≤ � ≤ p − 1

and for some operator r0 with symbol in S0.

Proposition 3.1 will be proved in p − 1 steps each of them corresponding to a
conjugation with an operator of the form eλp−k , k = 1, . . . , p − 1. We know by
(2.23) and (2.24) that the operators e±λp−1(x,Dx ) have order (0, Mp−1), while the
other operators e±λp−k (x,Dx ) have order (0, 0) for k = 2, . . . , p − 1. In the proof
of the energy estimate (1.17), the first conjugation will play an essential role since
it determines the loss of Hs1,s2 regularity; the others all work similar to each other.
This is the reason why we shall organize the proof of Proposition 3.1 as follows. We
present in detail the first two transformations, and then, we argue by induction. Each
of these steps corresponds to a different lemma. Before this, we give a preliminary
result which states for an operator with symbol a(x, ξ) ∈ SGm1,0 the form of the
composed operator e−λi (x,Dx )a(x, Dx )eλi (x,Dx ), i = 1, . . . , p − 1, with λi defined as
in the previous section.

LEMMA 3.2. Let a ∈ SGm1,0 and let λi , i = 1, . . . , p − 1 be defined by (2.13),
(2.14). Then, the symbol of e−λi (x,Dx )a(x, Dx )eλi (x,Dx ), i = 1, . . . , p − 1 is given
by:

(
e−λi aeλi

)
(x, ξ) = a +

m1−1∑
α=1

1

α!∂
α
ξ a · e−λi · Dα

x e
λi +

m1−1∑
γ=1

1

γ !∂
γ
ξ e

−λi Dγ
x (aeλi )

+
m1−2∑
γ=1

m1−1∑
α=1

1

α!γ !∂
γ
ξ e

−λi Dγ
x (∂α

ξ a · Dα
x e

λi ) + r0 (3.1)

with r0 ∈ SG0,0. Moreover, the symbol

r(x, ξ) =
m1−1∑
γ=1

1

γ !∂
γ
ξ e

−λi Dγ
x (aeλi )

+
m1−2∑
γ=1

m1−1∑
α=1

1

α!γ !∂
γ
ξ e

−λi Dγ
x (∂α

ξ a · Dα
x e

λi ) ∈ SGm1−1,0.

Proof. The proof easily follows by Proposition 2.1. �

REMARK 3.3. If we assume that a ∈ Sm1 instead of a ∈ SGm1,0, then Lemma
3.2 still holds with r ∈ Sm1−1.

LEMMA 3.4. Let h be as in Lemma 2.8 and consider, for h ≥ h1, the opera-
tor (i P)1 = (eλp−1(x,Dx ))−1(i P)eλp−1(x,Dx ). There exist operators Qp−1(t, x, Dx ),
a j,1(t, x, Dx ) and r1(t, x, Dx )with symbols Qp−1(t, x, ξ) ∈ SG p−1,−1, a j,1(t, x, ξ)

∈ SG j,− j/(p−1), 1 ≤ j ≤ p − 2 and r1(t, x, ξ) ∈ S0 such that
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(i P)1 = ∂t + iap(t, Dx ) + Qp−1(t, x, Dx ) +
p−2∑
j=1

ia j,1(t, x, Dx ) + r1(t, x, Dx ),

and

Re〈Qp−1(t, x, Dx )v, v〉 ≥ 0, ∀v ∈ S(R).

Proof. We first notice that by Lemma 2.8, we have

(i P)1(t, x, Dx ) = ∂t +
p∑

j=0

(eλp−1(x,Dx ))−1ia j e
λp−1(x,Dx )

= ∂t +
p∑

j=0

e−λp−1(x,Dx )ia j e
λp−1(x,Dx )

+
p∑

j=0

e−λp−1(x,Dx )i Rp−1a j e
λp−1(x,Dx )

= ∂t + e−λp−1(x,Dx )iape
λp−1(x,Dx )

+
p−1∑
j=1

e−λp−1(x,Dx )i(a j + Rp−1a j+1)e
λp−1(x,Dx ) + s0

= ∂t + e−λp−1(x,Dx )iape
λp−1(x,Dx )

+
p−1∑
j=1

e−λp−1(x,Dx )i ã j e
λp−1(x,Dx ) + s0 (3.2)

for some s0(t, x, Dx ) of order (0, 0), and with new operators ã j = a j + Rp−1a j+1

having symbol ã j (t, x, ξ) ∈ SG j,− j/(p−1). We now apply formula (3.1), observing
that in the case i = p − 1, the term r vanishes for |ξ | ≥ hR since it is a sum of
products with at least one ξ -derivative of λp−1 appearing in each factor, see (2.18).
Then, in particular, the term r has order (0, 0) since it is compactly supported in ξ and
with order 0 in x . Hence, we obtain for the related operators:

(i P)1 = ∂t + iap +
p−1∑
α=1

1

α!∂
α
ξ iap · e−λp−1 · Dα

x e
λp−1

+
p−1∑
j=1

⎛
⎝i ã j +

j−1∑
α=1

1

α!∂
α
ξ i ã j · e−λp−1 · Dα

x e
λp−1

⎞
⎠ + s0

= ∂t + iap + ∂ξap∂xλp−1 + i ãp−1 +
p−1∑
α=2

1

α!∂
α
ξ iap · e−λp−1 · Dα

x e
λp−1

+
p−2∑
j=1

i ã j +
p−1∑
j=1

j−1∑
α=1

1

α!∂
α
ξ i ã j · e−λp−1 · Dα

x e
λp−1 + s̃0 (3.3)
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for a term s̃0 with symbol in SG0,0. Nowwe consider the real part of the terms of order
p − 1 with respect to ξ in (3.3) and use (1.15), (1.16), (2.15), (2.20) for |ξ | ≥ hR to
get:

Re
(
i ãp−1 + ∂ξap∂xλp−1

) = − Im ãp−1 + ∂ξap∂xλp−1

= − Im ap−1 + Mp−1|∂ξap(t, ξ)|〈x〉−1

≥
(
2−(p−1)/2CpMp−1 − C

)
〈ξ 〉p−1

h 〈x〉−1,

where we used that ã j = a j for |ξ | > hR, and we used also the inequality: 〈a〉h ≤√
2|a| for a ∈ R, |a| ≥ h. We thus obtain

Re
(
i ãp−1 + ∂ξap∂xλ1

) ≥ 0

if we choose the constant Mp−1 large enough:

Mp−1 ≥ 2(p−1)/2C/Cp. (3.4)

We can then apply Theorem 2.3 to the operator i ãp−1 + ∂ξap∂xλp−1 and obtain that
there exist pseudo-differential operators Qp−1(t, x, Dx ), R̃p−2(t, x, Dx ) and R0 with
symbols Qp−1(t, x, ξ) ∈ SG p−1,−1, R̃p−2(t, x, ξ) ∈ SG p−2,−1, R0(t, x, ξ) ∈ S0

such that

Re〈Qp−1(t, x, Dx )v, v〉 ≥ 0, ∀v ∈ S(R)

and

i ãp−1 + ∂ξap∂xλp−1 = Qp−1 + R̃p−2 + R0.

Finally, we estimate the last three terms in the right-hand side of (3.3). We observe
that for 2 ≤ α ≤ p − 1, we have

|∂α
ξ ap · e−λp−1 · Dα

x e
λp−1 | ≤ C ′

p〈ξ 〉p−α
h 〈x〉−1−α ≤ C ′

p〈ξ 〉p−2
h 〈x〉− p−2

p−1 , (3.5)

since α + 1 ≥ 3 > (p − 2)/(p − 1). Similarly, we can estimate the derivatives of the
above symbol observing that the worst case occurs when ξ derivatives of order γ fall
on the term e−λp−1 . By (2.27), this produces a term of type (ln〈x〉)γ in the estimates
but since

(ln〈x〉)γ 〈x〉−1−α ≤ (ln〈x〉)γ 〈x〉−3 ≤ C〈x〉− p−2
p−1

for every γ > 0, we conclude that ∂α
ξ ap · e−λp−1 · Dα

x e
λp−1 ∈ SG p−2,−(p−2)/(p−1).

By similar arguments, we obtain for 1 ≤ α ≤ j − 1 that ∂α
ξ ã j · e−λp−1 · Dα

x e
λp−1 ∈

SG j−1,−( j−1)/(p−1). Hence, we can gather the last three terms in the right-hand side
of (3.3) and the remainder term R̃p−2 obtained from the application of Theorem 2.3
and conclude that

(i P)1 = ∂t + iap(t, Dx ) + Qp−1(t, x, Dx ) +
p−2∑
j=1

ia j,1(t, x, Dx ) + r1(t, x, D)

for some a j,1 ∈ SG j,− j/(p−1) and r1 ∈ S0. Lemma 3.4 is proved. �
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To perform the second transformation, we need to compute the operator

(i P)2 = (eλp−2(x,Dx ))−1(i P)1e
λp−2(x,Dx ).

By Lemma 2.9, for h ≥ h2, there exists an operator Rp−2 with principal symbol

rp−2,−2(x, ξ) = ∂ξλp−2(x, ξ)Dxλp−2(x, ξ) ∈ SG−2,−(p−2)/(p−1)

such that:

(i P)2 = e−λp−2(x,Dx )(I + Rp−2)(i P)1e
λp−2(x,Dx ).

We have the following result.

LEMMA 3.5. Let h1, h2 be as in Lemmas 2.8 and 2.9 and let h ≥ max{h1, h2}.
Then, there exist pseudo-differential operators Qp−2(t, x, Dx ), a j,2(t, x, Dx ) and
r2(t, x, Dx ) with symbols Qp−2(t, x, ξ) ∈ SG p−2,0, a j,2(t, x, ξ) ∈ SG j,− j/(p−1)

for 1 ≤ j ≤ p − 3, r2(t, x, ξ) ∈ S0 such that:

(i P)2 = ∂t + iap(t, Dx ) + Qp−1(t, x, Dx ) + Qp−2(t, x, Dx )

+
p−3∑
j=1

ia j,2(t, x, Dx ) + r2(t, x, Dx ),

and

Re〈Qp−2(t, x, Dx )v, v〉 ≥ 0, ∀v ∈ S(R).

Proof. By Lemma 3.4, we have (omitting the notation (t, x, Dx )):

(i P)2 = ∂t + e−λp−2

⎛
⎝iap + Qp−1 +

p−2∑
j=1

ia j,1 + r1

⎞
⎠ eλp−2

+e−λp−2

⎛
⎝i Rp−2ap + Rp−2Qp−1 +

p−2∑
j=1

i Rp−2a j,1 + Rp−2r1

⎞
⎠ eλp−2 ,

(3.6)

where a j,1(t, x, D) have symbols in SG j,− j/(p−1), and r1 has a symbol in S0. Now
we observe that i Rp−2ap ∈ SG p−2,−(p−2)/(p−1), Rp−2Qp−1 ∈ SG p−3,−(p−3)/(p−1)

and Rp−2ia j,1 ∈ SG j−2,−( j−2)/(p−1) for every j = 1, . . . , p−2. Then, we can write
(3.6) as follows:

(i P)2 = ∂t + e−λp−2(x,Dx )

⎛
⎝iap + Qp−1 +

p−2∑
j=1

i ã j,1

⎞
⎠ eλp−2(x,Dx ) + s0
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for some s0 with symbol in S0 and with new symbols ã j,1 ∈ SG j,− j/(p−1). Here, we
have considered the composition eλp−2(Rp−2r1)eλp−2 usingRemark3.3. It is important
to underline that the operator i ãp−2,1 has the symbol:

i ãp−2,1(t, x, ξ) = iap−2,1(t, x, ξ) + iap(t, ξ)∂ξλp−2(t, x, ξ)Dxλp−2(t, x, ξ),

(3.7)
where the first term in the right-hand side depends only on the constant Mp−1 and the
second only on Mp−2 which will be chosen later on in this second transformation. But
now, by formula (3.1), we get:

(i P)2 = ∂t + iap + Qp−1 + i ãp−2,1 + ∂ξap∂xλp−2 +
p−3∑
j=1

i ã j,1

+
p−1∑
α=2

1

α!∂
α
ξ iap · e−λp−2 · Dα

x e
λp−2 − iap∂ξλp−2Dxλp−2

+
p−1∑
γ=2

1

γ !∂
γ
ξ e

−λp−2 · (
iapD

γ
x e

λp−2
)

+
p−2∑
γ=1

p−1∑
α=1

1

α!γ !∂
γ
ξ e

−λp−2Dγ
x

(
∂α
ξ apD

α
x e

λp−2
)

+
p−2∑
α=1

1

α!∂
α
ξ Qp−1 · e−λp−2 · Dα

x e
λp−2

+
p−2∑
j=1

j−1∑
α=1

1

α!∂
α
ξ i ã j,1 · e−λp−2 · Dα

x e
λp−2

+
p−2∑
γ=1

1

γ !∂
γ
ξ e

−λp−2Dγ
x

(
Qp−1e

λp−2
)

+
p−2∑
α=1

p−3∑
γ=1

1

α!γ !∂
γ
ξ e

−λp−2Dγ
x (∂α

ξ Qp−1D
α
x e

λp−2)

+
p−2∑
j=1

j−1∑
γ=1

1

γ !∂
γ
ξ e

−λp−2Dγ
x (i ã j,1e

λp−2)

+
p−2∑
j=1

j−1∑
α=1

j−2∑
γ=1

1

α!γ !∂
γ
ξ e

−λp−2Dγ
x (∂α

ξ (i ã j,1)D
α
x e

λp−2)

+s0.

By estimating as before the orders of the terms appearing in the above formula, using
(2.23) and by (3.7), we obtain that
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(i P)2 = ∂t + iap + Qp−1 + ∂ξap∂xλp−2 + iap−2,1 +
p−3∑
j=1

i ˜̃a j,1 + s̃0, (3.8)

for some operators ˜̃a j,1(t, x, D) with symbols ˜̃a j,1(t, x, ξ) ∈ SG j,− j/(p−1), and with
a term s̃0 with symbol in S0. Now we want to apply Theorem 2.3 to the operator
iap−2,1 + ∂ξap∂xλp−2, namely to the term of order p − 2 with respect to ξ . We
observe that for |ξ | ≥ hR, we have:

Re(iap−2,1 + ∂ξap∂xλp−2) = −Imap−2,1 + ∂ξap∂xλp−2

= −Imap−2,1 + Mp−2∂ξapω

(
ξ

h

)
〈x〉− p−2

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)
〈ξ 〉−1

h

= −Imap−2,1 + Mp−2|∂ξap(t, ξ)|〈ξ 〉−1
h 〈x〉− p−2

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)

≥ −C〈ξ 〉p−2
h 〈x〉− p−2

p−1 + Mp−2Cp|ξ |p−1〈ξ 〉−1
h 〈x〉− p−2

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)

≥ −C〈ξ 〉p−2
h 〈x〉− p−2

p−1 + Mp−2Cp2
−(p−1)/2〈ξ 〉p−2

h 〈x〉− p−2
p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)

=
(
−C + Mp−2Cp2

−(p−1)/2
)

〈ξ 〉p−2
h 〈x〉− p−2

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)

−C〈ξ 〉p−2
h 〈x〉− p−2

p−1

(
1 − ψ

( 〈x〉
〈ξ 〉p−1

h

))

≥
(
−C + Mp−2Cp2

−(p−1)/2
)

〈ξ 〉p−2
h 〈x〉− p−2

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)
− C ′,

where C = C(Mp−1) is a constant depending on the already chosen Mp−1 > 0 and,
in the last inequality, we used the fact that on the support of 1 − ψ

( 〈x〉
〈ξ〉p−1

h

)
, we have

〈ξ 〉p−2
h 〈x〉− p−2

p−1 ≤ C ′. Choosing the constant Mp−2 ≥ C(Mp−1)2(p−1)/2/Cp, we
obtain that

Re(iap−2,1 + ∂ξap∂xλp−2) ≥ −C ′ for |ξ | ≥ hR.

Then,we can applyTheorem2.3 to the symbol iap−2,1+∂ξap∂xλp−2+C ′ ∈ SG p−2,0.
There exist operators Qp−2(t, x, D), R̃p−3, R0 such that

iap−2,1 + ∂ξap∂xλp−2 + C ′ = Qp−2 + R̃p−3 + R0,

Re〈Qp−2v, v〉 ≥ 0 ∀v ∈ S(R).

It is now crucial to observe that Qp−2(t, x, ξ) ∈ SG p−3,0, R0 ∈ S0, whereas by (2.6)
we have R̃p−3 ∈ SG p−3,−(p−3)/(p−1) since the constant C ′ does not appear in the
expression of the symbol. As a matter of fact, we have
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r̃ p−3(x, ξ) = ψ1(ξ)Dx (iap−2,1 + ∂ξap∂xλp−2)

+
∑

|α+β|≥2

ψα,β(ξ)∂α
ξ D

β
x (iap−2,1 + ∂ξap∂xλp−2),

which is in SG p−3,−(p−3)/(p−1). The proposition is proved. �

We now prove by induction on n ≥ 2 the following:

LEMMA 3.6. Given n ∈ N, n ≥ 2, we can find a constant hn ≥ 1 such that
for h ≥ hn there exist pseudo-differential operators Qp−�(t, x, Dx ), 1 ≤ � ≤ n,
a j,n(t, x, Dx ), 1 ≤ j ≤ p − n − 1, and rn(t, x, Dx ) with symbols Qp−�(t, x, ξ) ∈
SG p−�,0, a j,n(t, x, ξ) ∈ SG j,− j/(p−1), rn(t, x, ξ) ∈ S0 such that the operator

(i P)n =: (eλp−n(x,Dx ))−1 · · · (eλp−2(x,Dx ))−1(eλp−1(x,Dx ))−1

×(i P)eλp−1(x,Dx )eλp−2(x,Dx ) · · · eλp−n(x,Dx )

can be written in the form:

(i P)n = ∂t+ iap(t, Dx )+
n∑

�=1

Qp−�(t, x, Dx )+
p−n−1∑
j=1

ia j,n(t, x, Dx ) + rn(t, x, Dx ),

and
Re〈Qp−�(t, x, Dx )v, v〉 ≥ 0, ∀v ∈ S(R), 1 ≤ � ≤ n. (3.9)

Proof. For n = 2, this is exactly the statement of Lemma 3.5. Let us suppose that for
h ≥ hn−1, it holds

(i P)n−1 = ∂t + iap(t, Dx ) +
n−1∑
�=1

Qp−�(t, x, Dx )

+
p−n∑
j=1

ia j,n−1(t, x, Dx ) + rn−1(t, x, Dx ), (3.10)

for somepseudo-differential operatorsQp−�(t, x, Dx ), 1≤ �≤ n−1,a j,n−1(t, x, Dx ),
1 ≤ j ≤ p − n, and rn−1(t, x, Dx ) with symbols Qp−�(t, x, ξ) ∈ SG p−�,0,
a j,n−1(t, x, ξ) ∈ SG j,− j/(p−1), rn−1(t, x, ξ) ∈ S0 such that

Re〈Qp−�(t, x, Dx )v, v〉 ≥ 0, ∀v ∈ S(R), 1 ≤ � ≤ n − 1,

and consider the operator

(i P)n = (eλp−n(x,Dx ))−1(i P)n−1e
λp−n(x,Dx ).

Lemma 2.9 gives, for h large enough, say h ≥ h̃n , that

(i P)n = e−λp−n(x,Dx )(I + Rp−n)(i P)n−1e
λp−n(x,Dx ),
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with a pseudo-differential operator Rp−n having the principal symbol

rp−n,−n(x, ξ) = ∂ξλp−n(x, ξ)Dxλp−n(x, ξ) ∈ SG−n,−(p−n)/(p−1).

Thus, for h ≥ hn = max{h̃n, hn−1} and by (3.10), we have (omitting (t, x, Dx ) in the
notation):

(i P)n = ∂t + e−λp−n

⎛
⎝iap +

n−1∑
�=1

Qp−� +
p−n∑
j=1

ia j,n−1 + rn−1

⎞
⎠ eλp−n

+ e−λp−n

⎛
⎝i Rp−nap +

n−1∑
�=1

Rp−nQ p−� +
p−n∑
j=1

i Rp−na j,n−1 + Rp−nrn−1

⎞
⎠ eλp−n .

Now we notice that Rp−nQ p−� ∈ SG p−n−�,−(p−n)/(p−1) ⊂ SG p−n,−(p−n)/(p−1)

since 1 ≤ � ≤ n − 1, i Rp−nap ∈ SG p−n,−(p−n)/(p−1), and Rp−nia j,n−1 ∈
SG j−n,−(p−n)/(p−1) ⊂ SG j−n,−( j−n)/(p−1), j = 1, . . . , p − n. So we can write
(i P)n as follows:

(i P)n = ∂t + e−λp−n(x,Dx )

⎛
⎝iap +

n−1∑
�=1

Qp−� +
p−n∑
j=1

i ã j,n−1

⎞
⎠ eλp−n(x,Dx ) + s0

for some s0 with symbol in S0, and with new symbols ã j,n−1 ∈ SG j,− j/(p−1). Again,
we need to notice that at level p − n we get:

i ãp−n,n−1(t, x, ξ) = iap−n,n−1(t, x, ξ) + iap(t, ξ)∂ξλp−n(t, x, ξ)Dxλp−n(t, x, ξ)

where thefirst term in the right-hand sidedependson the constantsMp−1, . . . , Mp−n+1

chosen before and the second one depends only on the constant Mp−n which will be
chosen later on; this does not cause any trouble in the choice of the constant Mp−n

because, again by (3.1), we get:

(i P)n = ∂t + iap +
n−1∑
�=1

Qp−� + i ãp−n,n−1 + ∂ξap∂xλp−n +
p−n−1∑
j=1

i ã j,n−1

+
p−n∑
α=2

1

α!∂
α
ξ iap · e−λp−n · Dα

x e
λp−n − iap∂ξλp−nDxλp−n

+
p−n∑
γ=2

1

γ !∂
γ
ξ e

−λp−n · (iapD
γ
x e

λp−n )

+
p−n∑
γ=1

p−n+1∑
α=1

cα,γ ∂
γ
ξ e

−λp−n∂α
ξ apD

α+γ
x eλp−n

+
n−1∑
�=1

p−�−n∑
α=1

1

α!∂
α
ξ Qp−� · e−λp−n · Dα

x e
λp−n
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+
p−n∑
j=1

j−1∑
α=1

1

α!∂
α
ξ i ã j,n−1 · e−λp−n · Dα

x e
λp−n

+
n−1∑
�=1

p−�∑
γ=1

1

γ !∂
γ
ξ e

−λp−n Dγ
x (Qp−�e

λp−n )

+
n−1∑
�=1

p−n∑
α=1

p−�−1∑
γ=1

1

α!γ !∂
γ
ξ e

−λp−n Dγ
x (∂α

ξ Qp−�D
α
x e

λp−n )

+
p−n∑
j=1

j−1∑
γ=1

1

γ !∂
γ
ξ e

−λp−n Dγ
x (i ã j,n−1e

λp−n )

+
p−n∑
j=1

j−1∑
α=1

j−2∑
γ=1

1

γ !∂
γ
ξ e

−λp−n Dγ
x (∂α

ξ (i ã j,n−1)D
α
x e

λp−n ) + t̃0

= ∂t + iap +
n−1∑
�=1

Qp−� + (
∂ξap∂xλp−n + iap−n,n−1

) +
p−n−1∑
j=1

i ˜̃a j,n−1 + s̃0,

(3.11)

for some operators ˜̃a j,n−1(t, x, Dx ) with symbols ˜̃a j,n−1(t, x, ξ) ∈ SG j,− j/(p−1),
1 ≤ j ≤ p − n − 1, depending on Mp−1, . . . , Mp−n+1 and where s̃0 is a term
containing operators with symbol in S0.
As done in the second transformation, we now look at the real part of the terms of

order p − n with respect to ξ in (3.11); for |ξ | ≥ hR, we have by (1.16),(2.14) and
for a positive constant C = C(Mp−1, . . . , Mp−n+1):

Re(iap−n,n−1 + ∂ξap∂xλp−n) = −Imap−n,n−1

+Mp−n∂ξapω

(
ξ

h

)
〈x〉− p−n

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)
〈ξ 〉−n+1

h

≥ −C〈ξ 〉p−n
h 〈x〉− p−n

p−1 + Mp−nCp|ξ |p−1〈ξ 〉−n+1
h 〈x〉− p−n

p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)

≥ (−C + Mp−nCp2
−(p−1)/2)〈ξ 〉p−n

h 〈x〉− p−n
p−1 ψ

(
〈x〉

〈ξ 〉p−1
h

)
− C ′ ≥ −C ′

if we choose Mp−n ≥ C(Mp−1, . . . , Mp−n+1)2(p−1)/2/Cp. An application of The-
orem 2.3 to the symbol iap−n,n−1 + ∂ξap∂xλp−n + C ′ ∈ SG p−n,0 gives then the
existence of operators Qp−n(t, x, D), R̃p−n−1(t, x, D), R0(t, x, D) with symbols,
respectively, Qp−n(t, x, ξ) ∈ SG p−n,0, R̃p−n−1 ∈ SG p−n−1,−(p−n)/(p−1) , R0 ∈ S0

such that

iap−n,n−1 + ∂ξap∂xλp−n + C ′ = Qp−n + R̃p−n−1 + R0,

Re〈Qp−nv, v〉 ≥ 0 ∀v ∈ S(R).
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Then, from (3.11), we finally obtain

(i P)n = ∂t + iap +
n−1∑
�=1

Qp−� + Qp−n + R̃p−n−1 +
p−n−1∑
j=1

i ˜̃a j,n−1 + s0 + R0

= ∂t + iap +
n∑

�=1

Qp−� +
p−n−1∑
j=1

ia j,n + rn

for some operators a j,n , rn with symbols a j,n ∈ SG j,− j/(p−1), rn ∈ S0 and where
Qp−� satisfy (3.9) for 1 ≤ � ≤ n. The lemma is proved. �

Proposition 3.1 follows directly from Lemmas 3.4, 3.5 and 3.6.

Proof of Theorem 1.2. By the change of variable (2.12), the Cauchy problem (1.1) in
the unknown u(t, x) is reduced to the Cauchy problem (2.9) for the unknown uλ(t, x),
where Pλ is defined by (2.10) and fλ and gλ are defined by (2.11). Now we apply
Proposition 3.1 to derive an energy estimate for the solution to the Cauchy problem
(2.9). For every v ∈ C1([0, T ],S(R)), we have

d

dt
‖v‖20 = 2Re〈∂tv, v〉

= 2Re〈(i Pλ)v, v〉 − 2
p−1∑
�=1

Re〈Qp−�v, v〉 − 2Re〈r0v, v〉

≤ C(‖Pλv‖2L2 + ‖v‖2L2).

By standard arguments from the energy method, we deduce that, for all s = (s1, s2) ∈
R
2 and every v ∈ C1([0, T ],S(R)), the following estimate holds

‖v(t, ·)‖2s1,s2 ≤ c′
(

‖v(0, ·)‖2s1,s2 +
∫ t

0
‖Pλv(τ, ·)‖2s1,s2dτ

)
∀t ∈ [0, T ], (3.12)

for some c′ > 0. The energy estimate (3.12) can be extended by a density argument
to a function v ∈ C1([0, T ], Hs1,s2(R)) for every s1, s2 ∈ R. This implies that if
fλ ∈ C([0, T ], Hs1,s2(R)), gλ ∈ Hs1,s2(R), then the Cauchy problem (2.9) has a
unique solution uλ(t, x) ∈ C1([0, T ], Hs1,s2(R)) ∩C([0, T ], Hs1+p,s2(R)) satisfying
(3.12). By the relation (2.12) between u and uλ and by Lemma 2.7, we obtain existence
and uniqueness of a solution u of (1.1). Moreover, from (2.11), (2.12) and (3.12), we
get

‖u‖2s1,s2−2Mp−1
≤ c1‖uλ‖2s1,s2−Mp−1

≤ c2

(
‖gλ‖2s1,s2−Mp−1

+
∫ t

0
‖ fλ‖2s1,s2−Mp−1

dτ

)

≤ c3

(
‖g‖2s1,s2 +

∫ t

0
‖ f ‖2s1,s2dτ

)
(3.13)

for some c1, c1, c3 > 0. This gives the energy estimate (1.17) and proves well posed-
ness in S, S ′ of the Cauchy problem (1.1). �
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REMARK 3.7. As outlined in the Introduction, Theorem 1.2 can be proved replac-
ing the assumption (1.16) by the weaker condition (1.19) and repeating readily the
argument of the proof above. For the sake of brevity, we leave the details to the reader.
We restrict ourselves to observe that the assumption (1.19) is sufficient for the appli-
cation of Theorem 2.3 in the proofs of Lemmas 3.4, 3.5, 3.6 where only the imaginary
parts of the symbols a j (t, x, ξ) are involved and that every step can be performed
identically with the only difference that the symbols a j,�, � = 1, . . . , p− 1 appearing
in the above lemmas are now such that Re a j,� ∈ SG j,0 and Im a j,� ∈ SG j,− j/(p−1).

Nevertheless, this is sufficient to obtain the assertion of Proposition 3.1.

REMARK 3.8. As usual in this type of problems, it is natural to wonder whether the
loss in the second Sobolev index may really appear or it is due to a lack of sharpness
in the method of the proof. Here, we want to present some examples where this type
of phenomenon appears although we can show a modification of the behavior of the
solution only with respect to either the initial datum g(x) or the function f (t, x). An
example where the solution exhibits a loss of decay/increase of growth with respect
to both g and f seems to be difficult to construct, and at this moment, it is out of
reach. Nevertheless, the examples below show that this behavior of the solution is not
surprising in our setting. We stress the fact that in all the following examples, no loss
of derivatives appears in the solution.

EXAMPLE 1. Consider the Cauchy problem{
Dtu + D2

xu + i
〈x〉 Dxu = f (t, x)

u(0, x) = g(x).
(3.14)

The function u(t, x) = x(1 + t x) solves (3.14) with Cauchy data g(x) = x and

f (t, x) = −i x2 + (1 + 2t x)〈x〉−1 − 2t.

Weobserve that both u and f belong toC([0, T ], Hs1,s2) for every s1 ∈ R, s2 < −5/2,
while g ∈ Hs1,s2 for every s1 ∈ R and for s2 < −3/2. Hence, in this case, we have
a loss in the second Sobolev index with respect to the initial datum: The solution
presents a stronger growth with respect to g.

EXAMPLE 2. The function u(t, x) = (t + x)2 solves the Cauchy problem (3.14)
with Cauchy data g(x) = x2 and

f (t, x) = −2i t − 2i x − 2 + 2t〈x〉−1 + 2x〈x〉−1.

In this example u ∈ C([0, T ], Hs1,s2) and g ∈ Hs1,s2 for every s1 ∈ R, s2 < −5/2,
while f ∈ C([0, T ], Hs1,s2) for every s1 ∈ R, s2 < −3/2. We have so a loss in the
second Sobolev index with respect to f .

EXAMPLE 3. The function u(t, x) = t〈x〉k with k ∈ Z solves the Cauchy problem
(3.14) with Cauchy data g(x) = 0 and

f (t, x) = −i〈x〉k + ktx〈x〉k−3 − kt〈x〉k−2 − k(k − 2)t x2〈x〉k−4.
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We observe that the solution belongs to C([0, T ], Hs1,s2) for every s1 ∈ R, s2 <

−k − 1/2, as well as f . In this case, we have an infinite loss in the second Sobolev
index with respect to the initial datum but the same decay/growth with respect to f as
|x | → ∞.
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