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Abstract. We explore attainability for a special class of triangular systems of conservation laws, not neces-
sarily strictly hyperbolic, which includes the system of multi-component chromatography. Roughly speak-
ing, such systems consist of linear continuity equations coupled with a scalar genuinely nonlinear conser-
vation law. The classical Keyfitz–Kranzer system is also included, with minor modifications. We prove that
the backward solutions we construct are appropriate solutions of the system in view of the classical theories
for general conservation laws. In particular, we get isentropic solutions whenever nontrivial entropies for
the system are defined. We give numerical examples of the isentropic backward resolution of such systems
for attainable target data.

1. Introduction

1.1. Statement of the problem and related literature

In this paper, we consider triangular systems of conservation laws of the form{
ut + f (u)x = 0,

(vi )t + (gi (u)vi )x = 0, for i = 1, . . . ,m,
(1.1)

where f and gi , for i = 1, . . . ,m, are functions of class C1(I) and f is a strictly
convex function. Here, I can be a sub-interval of R, but we will assume I = R to
shorten the presentation.
Our aim is to characterize the set AT of profiles UT = (uT , v1,T , . . . , vm,T ) in

L∞(R;Rm+1) that a solution of (1.1) can attain at a fixed time T > 0 starting from
a suitable initial condition. In view of the applications, we are particularly interested
in the explicit construction of a backward solver.
First of all, let us recall what is known whenm = 0. To our knowledge, the problem

of finding states that the solution of a scalar conservation laws with convex flux

ut + f (u)x = 0 (1.2)
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can attain by an initial or boundary data control has been encountered in [1,8,31].

Ancona and Marson, in [8], indagate exact controllability for the initial boundary
value problem. The authors use the theory of generalized characteristics introduced
by Dafermos [18], in the case of general strictly convex flux, and describe, for any
given time t > 0, the set of states which are attainable in time t starting from the initial
condition u0 = 0 by a control on the boundary data alone.

The approximate controllability problem for the Burgers equation has been consid-
ered by Horsin [31], by using the return method introduced by Coron [14].

The recent works by Adimurthi et al. [1,2] (see also [25]) focus on the exact control-
lability problem for Eq. (1.2) in the setting of strictly convex, superlinearly growing
flux. The authors treat the initial value problem and the boundary value problem in the
half-space and in a strip with two boundaries. By using the Lax–Oleinik formula, they
give an elegant algorithm which constructs explicitly the desired initial data control,
and they give a concise characterization of the attainable set which we exploit in the
present work, see Proposition 2.1.

Finally, let us mention that for the viscous Burgers equation, constant states reach-
able by boundary controls have been studied using the Cole–Hopf transformation by
Glass and Guerrero [27], Guerrero and Imanuvilov [30]. More recently, Léautaud
used the vanishing viscosity approach to study the uniform controllability of scalar
conservation laws in [36].

Due to the irreversibility of hyperbolic systems, construction of physically relevant
backward solvers is a very delicate problem and it is widely open in general situa-
tions. Ancona and Coclite [7] characterize the attainable set for strictly hyperbolic,
genuinely nonlinear, systems in the Temple class driven by controls on the boundary
data. Their result is particularly related to our work as the system of two-component
chromatography, see Eq. (3.21), can be studied from the two points of view. The
exact controllability for first-order quasilinear diagonal hyperbolic systems has been
addressed in the work of Yu [45].

Li andRao [39] addressed the problem of exact controllability for quasilinear hyper-
bolic systems in the context of classical solutions. See also [16] for results in that
direction. In the context of entropy solutions, Bressan and Coclite [10] provide a
counter-example to exact controllability in finite time for general nonlinear hyper-
bolic systems, see also the work by Glass [26] for further discussion. Due to this
obstruction, a large part of the literature focuses on the asymptotic stabilization of the
system about a target state; see for example [10,14,15,38].

In the present work, we exploit the special form of (1.1) to prove existence of
backward solutions starting from any profile UT in the attainable set AT . Our results
apply to some well-known examples of systems of conservation laws (the Keyfitz–
Kranzer system; the multi-component chromatography system).

Roughly speaking, the structure of (1.1) (and of theKeyfitz–Kranzer system, treated
analogously) combines the two frameworks in which a backward construction is avail-
able: convex scalar conservation laws and linear continuity equations with sufficiently
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regular coefficients. However, in order to apply the existing theories to our problem,
we have to face two difficulties. First, a backward solution for the scalar conserva-
tion law [the first line of (1.1)] may contain shock discontinuities. Therefore, the
coefficients of the continuity equations [the second line of (1.1)] may be not regular
enough to ensure existence of a backward solution, see [17] for some discussion in
this direction. Second, even when a backward construction can be applied for each
of the scalar equations in system (1.1), it is not clear a priori that the vector function
U = (u, v1, . . . , vm) constructed component-wise is an admissible solution for the
system (1.1).

We recall that weak solutions of systems of conservation laws are not unique in
general. The literature contains different criteria to select physically relevant solutions,
and in particular, whenever a hyperbolic system is endowed with a physical entropy,
solutions are judged physically relevant if and only if they dissipate entropy as time
advances; see, e.g., [13,19,43,44]. An easy consequence of this definition is that
admissible reversible solutions must be isentropic, i.e., they should preserve entropy.
In the scalar case, isentropic solutions are characterized in [33]; continuity is their
essential property. Isentropic solutions will play a key role in order to overcome the
two aforementioned difficulties.

1.2. Main ideas and structure of the paper

Fine description of the attainability property for convex scalar conservation law is
the first essential ingredient of our result for systems (1.1). Therefore, we start by
discussing the issue of backward resolution procedure for scalar conservation laws
ut + f (u)x = 0 with convex flux f . In particular, we highlight the fact that for every
target datum uT in the set AT of states which are attainable at time T , there exists an
isentropic solution (which is, therefore, both forward and backward entropy solution)
on [0, T ].

To be specific, we prove that one can define on AT an L∞-stable and BV -stable,
L1-contractive backward solver S←

T : [0, T ] × AT �→ L∞(R) such that the function
u(t, ·) := S←

T (t)uT is an isentropic solution of{
ut + f (u)x = 0,

u(T, ·) = uT

on the strip [0, T ] × R. With a slight modification of the technique of [1,2], one can
construct explicitly this solution as the limit of a sequence of exact solutions un to
ut + f (u)x = 0 such that each un consists of alternating rarefaction and compression
waves combined in such a way that singularities may appear only at the initial time
t = 0 and at the final time t = T , while the solution is regular on [δ, T − δ] ×R, for
every δ > 0.

Let us stress that the fact that the solution is isentropic opens theway to its numerical
approximation. Indeed, it follows readily from uniqueness of entropy solutions for the
auxiliary forward Cauchy problem
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{
wt + (− f (w))x = 0,

w|t=0 = uT
(1.3)

that S←
T (t)uT = w(T −t). Therefore, the backward isentropic solution can be approx-

imated, e.g., by a standard monotone consistent finite volume numerical scheme for
(1.3). The numerical simulations of this paper are based on this approach (see Sect. 5).
Turning to the analysis of system (1.1), we consider first the situation in which

the system is non-resonant in the range of u (a more precise statement will be given
in Sect. 3). Note that the non-resonance condition can be checked a priori since u
satisfies themaximum principle. In this framework, we are able to completely describe
the entropies of the system. The entropies permit to recast the continuity equations
contained in (1.1) into the form

(A(t, x)v)t + (B(t, x)v)x = 0
with divergence-free field (t, x) �→ (A(t, x), B(t, x))

(1.4)

and A ≥ const > 0. This reduction allows us to exploit another essential technical
ingredient that is the theory of Panov [42] for equations of the special form (1.4). In
the setting of generalized solutions of Panov, we get existence and uniqueness for the
continuity equations, see [42]. Notice that Panov’s generalized solutions are, in par-
ticular, time-reversible and they satisfy a renormalization property that is essential for
the application of our results to the Keyfitz–Kranzer system (cf. [41]). Let us alsomen-
tion the works of De Lellis et al. on the related theory of nearly incompressible vector
fields, which applies in the multi-dimensional setting (see [20] for a self-contained
presentation).
Results on the case of systems endowed with nontrivial entropies, called “non-

resonant,” are presented in Sect. 3. Our result in the setting of non-resonant systems
is optimal in the sense that the attainable set is fully described: One has AT = AT ×
L∞(R;Rm). For any given final stateUT ∈ AT × L∞(R;Rm), there exists a unique
bounded isentropic weak solution U for the system. Attainability for the Keyfitz–
Kranzer system is also treated in Sect. 3, with the same tools. Let us mention in
passing that we obtain a forward well-posedness theory for non-resonant case of (1.1)
which is analogous to the theory of strong entropy solutions for the Keyfitz–Kranzer
system (see [23,41]) but which is restricted to data that give rise to isentropic solutions
(see Remarks 3.6, 3.10).
In order to deal with the resonant case, we develop a second approach, which we

present in details in Sect. 4. Roughly speaking, we introduce the set AT , dense inAT

with respect to the L1-norm, and for uT ∈ AT and under the local uniform convexity
assumption

for all compact K ⊂ I there exists α(K ) > 0 s. t. f ′′|K ≥ α(K ), (1.5)

we find that u(t, x) = S←
T (t)uT (x) belongs to W 1,∞([0, T ] × R). This regularity is

enough to solve backward the continuity equation via the classical method of charac-
teristics. The so obtained solution is the unique weak solution, it is time-reversible,
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and it fits the theory of renormalized solutions of continuity equations with mildly
regular coefficients (see DiPerna and Lions [21]).

By analogy with the theory of Keyfitz–Kranzer system, we fix a notion of solution
by considering that the functionU = (u, v1, . . . , vm) is an admissible solution for the
system if u is an entropy solution for the scalar conservation law and the functions vi

are renormalized solutions of the companion continuity equations. Our result in this
framework can be read as follows: We obtain exact controllability of our system in
finite time T in the setAT ×L∞(R;Rm), and then, by density, we deduce approximate
controllability in the set AT .

Let us stress that, under the non-resonance condition and the above regularity restric-
tions on f and uT , solutions obtained by themethod of Sect. 4 and by the one of Sect. 3
coincide as shown by Panov [42, Sect. 7].

The last part of this paper is devoted to numerical simulations for the problem
obtained by combining a classical monotone finite volume scheme for (1.3) with
upwind-type scheme used by Gosse and James [29] (see also [22]), for the continu-
ity equation with one-side Lipschitz coefficients. Numerical examples are given for
computation of U0 from UT . We also illustrate the results of this paper by comparing
UT to the state obtained at t = T by forward resolution of (1.1) starting from the so
constructed initial control U0.

The structure of the paper is the following. In Sect. 2, we present a slight modifi-
cation of the construction in [1,2] and the associated result on existence of backward
isentropic solution to a convex scalar conservation law known at least since [8]. In
Sect. 3, we discuss the structure of the entropies of a system of the form (3.1), we
briefly recall some results on generalized solutions, see [20,42], and we prove the
exact controllability of all states UT ∈ AT × (L∞(R))m under the assumption that
the system (1.1) admits nontrivial entropies. Analogous results are obtained for the
Keyfitz–Kranzer system. Then in Sect. 4, we prove exact controllability of all states
UT ∈ AT × (L∞(R))m under the assumption (1.5) by using classical results on conti-
nuity equations with Sobolev coefficients, see [21]. In Sect. 5, we discuss a numerical
algorithm for backward resolution of (1.1) and give numerical examples.

2. Attainability revisited

The goal of this section is to recall the characterization of the set AT of states
attainable at time T by solutions of a convex conservation law, to point out simple
relations between AT and AT+δ , δ > 0, and to stress the fact that every attainable
state is attainable by a (unique) isentropic solution.

Recall that the standard notion of solution in this case is entropy solution, charac-
terized by the E-condition [40], Lax shock conditions [35] and by Kruzhkov entropy
inequalities [34]. To distinguish between the scalar equation and the system, we will
refer to these solutions as Kruzhkov entropy solutions.
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2.1. Characterization of the set AT

Let us recall the following fundamental result that can be inferred from [8] and
[1,2].

PROPOSITION 2.1. Consider a scalar conservation law

ut + f (u)x = 0, (2.1)

with convex flux f of class C1.
Let T > 0, and consider the whole ofR as the spatial domain. Then

(i) The set of states in L∞(R) attainable by Kruzhkov entropy solutions of (2.1) at
time T is given by

AT (R, f ) =
{
u ∈ L∞(R) : ∃ρ : R → R, right continuous,

nondecreasing such that f ′(u) = x − ρ(x)

T

}
. (2.2)

(ii) Furthermore, for every uT ∈ AT (R, f ), there exists a unique isentropic solution
u of (2.1) on [0, T ] × R that verifies u(T, ·) = uT .

The explicit and very practical representation (2.2) has been stated in [1,2,25].
Notice that the statement Proposition 2.1(ii), which is not highlighted in the relevant
literature, is in fact essential for the applications we have in mind. The result of
Proposition 2.1 follows from the theory of generalized characteristics of Dafermos
[18,19] (see in particular the arguments developed by Ancona and Marson [8]).
In the preprint [9], we give an elementary constructive proof of Proposition 2.1

that follows closely the original idea of Adimurthi et al. [1,2]. Let us stress that both
approaches [1,2] and [8] were developed in a much more technical context of control
by initial and boundary data in a bounded domain; in our simpler setting, we were
able to drop assumptions such as uniform convexity of f and superlinear growth of
f ′ at infinity.
In [1,2], the authors characterize the set of admissible target profiles for a scalar

conservation law (2.1) with uniformly convex flux f as

AT (J, f ) =
{
u ∈ L∞(J ) : ∃ρ : J → R, right continuous, nondecreasing

such that f ′(u) = x − ρ(x)

T

}
,

(2.3)

for some fixed T > 0 and some bounded interval J = [C1,C2] inR. In the paper, we
write AT for AT (J, f ) whenever the choice of the interval J and the flux function f
is not ambiguous.
A solution u and an initial condition u0 that give rise to the target state uT ∈ AT

at time t = T were obtained in [1] as strong limits in L1
loc of two sequences of
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piecewise continuous functions (un)n and (u0,n)n . Of course, the backward solution
is not unique, but the algorithm presented in [1] allows to construct the approximating
sequences in a very explicit way, and it is possible to infer some qualitative properties
of the limits u and u0. In [9], we present in detail a variation (appeared as a remark in
[25]) of the original algorithm in [1] with the additional important property that the
limit function u is an isentropic solution of (2.1) in ]0, T [×R.

REMARK 2.2. The regularity of the backward solution u is crucial in the next
sections as we aim to solve a continuity equation whose coefficient is g ◦ u. Beyond
the fact that u is isentropic, it is clear that the finer regularity of u is strongly related
to the assumptions we make on the flux function f .

(i) If the flux function f is merely strictly convex, the sequence un is bounded in
L∞([0, T ]×R), uniformly with respect to n. This is a natural consequence of our
hypothesis on f and the definition of AT , see [9] for details. We stress that the
function u will not be Lipschitz in general in a strip of the form (δ, T − δ) × R,
δ > 0. Consider as an example the case f (u) = u4/4 and take as target state
uT the step function χ(−∞,0) − χ(0,∞). The backward solution u will consist of a
compressionwave focusing at (0, T ), andwe can immediately see from its explicit
form

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
1 for x ≤ −(T − t),(

x
T−t

)1/3
for |x | ≤ (T − t),

−1 for x ≥ (T − t),

(2.4)

that u is not a Lipschitz function.
(ii) Under the stronger assumption (1.5), the functions un are Lipschitz continuous

with respect to both variables on [δ, T − δ] × R, for all δ > 0, uniformly in n,
so the limit u is in W 1,∞

loc ([0, T ] × R). This regularity is the maximal one can
reasonably expect, because in general, the functions un contain rarefaction and
compression waves focusing at t = 0 and at t = T , respectively.

2.2. On the structure of the set AT

Let f be a fixed strictly convex flux function, J = [C1,C2] a bounded interval in
R and T > 0 a fixed positive time. In this section, we discuss some fine properties of
the structure of the set AT (J, f ), defined as in (2.3).

LEMMA 2.3. The following statements hold.

(i) AT (J, f ) is a closed set in the strong topology of L1(J ).
(ii) AT+δ(J, f ) ⊂ AT (J, f ), for all δ > 0.
(iii) The set AT+(J, f ) :=

⋃
δ>0

AT+δ(J, f ) is dense in AT (J, f ) in the strong

topology of L1(J ) (if J is bounded) or L1
loc(J ) (if J is unbounded).

Proof. (i) Let (un)n be a sequence in AT (J, f ), converging to ū in the strong
topology of L1(J ). From the definition ofAT (J, f ), (2.3), we infer the existence
of a sequence of nondecreasing, right continuous functions, (ρn)n , given by
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ρn(x) = x − T f ′(un(x)). (2.5)

It is clear that ρn converges in L1 to some nondecreasing function ρ, and with-
out loss of generality, we can choose ρ to be a right continuous function. The
continuity of f ′ and Eq. (2.5) allow us to conclude.

(ii) Let uT+δ ∈ AT+δ(J, f ), then there exists some nondecreasing, right continuous

function ρ(x) such that uT+δ(x) = ( f ′)−1
(
x−ρ(x)
T+δ

)
. Define

ρ̄(x) = x − T f ′(uT+δ(x)) (2.6)

=
(
1 − T

T + δ

)
x + ρ(x)

T

T + δ
, (2.7)

hence ρ̄ is a nondecreasing right continuous function in L∞(J ), which implies
x−ρ̄(x)

T = uT+δ ∈ AT (J, f ).
(iii) From (i) and (ii), it becomes clear that the closure of AT+(J, f ) in the L1-

topology is a subset ofAT (J, f ). Consider the semigroup S→ : R+×L∞(R) →
L∞(R)whose orbits are solutions to Cauchy problems associated to the equation
(2.1).We denote by S→

δ (AT ) the set of profiles whichwe obtain after time δ > 0
by taking the functions in AT (J, f ) as initial data for the Cauchy problem. Let
uT ∈ AT (J, f ), then S→

δ (uT ) is inAT+δ(K , f ), for some interval K such that
J ⊂ K . It is clear from Definition (2.3) thatAT (J1, f ) ⊂ AT (J2, f ) as soon as
J2 ⊂ J1. Therefore, for any positive δ, S→

δ (uT ) is in AT+δ(J, f ). By the L1
loc

continuity in time of the semigroup δ �→ S→
δ , we obtain

lim
δ→0

‖S→
δ (uT ) − uT ‖L1( J̃ )

→ 0 as δ → 0 (2.8)

for all bounded subinterval J̃ of J . Hence, the claim of (iii) follows.

�

REMARK 2.4. For any fixed strictly convex flux function f , any bounded interval
J = [C1,C2] in R, any positive time T and any δ > 0, there exists u ∈ AT (J, f )
such that u /∈ AT+δ(J, f ).

Proof. If the flux function f wasC2 and uniformly convex, then, byOleinik inequality,
we would just need to find a profile u such that 1

(T+δ) f ′′(u)
< ∂xu ≤ 1

T f ′′(u)
. In the

strictly convex case,we exploit the definition of attainable set, (2.3). Let 0 < α < δ
T+δ

,

then define ρ(x) = αx and u = ( f ′)−1
(
x−ρ(x)

T

)
∈ AT . If u was in AT+δ , then

we could find some nondecreasing, right continuous function ρ̄, such that f ′(u) =
x−ρ̄(x)
T+δ

= x−αx
T . Then, ρ̄(x) = x[ δ

T (α − 1) + α], which contradicts the fact that ρ̄ is
nondecreasing. This proves u /∈ AT+δ(J, f ). �
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3. Systems endowed with entropies

In order to keep our presentation as light as possible, we assume that m = 2 in
(1.1); i.e., we will study the system

{
ut + f (u)x = 0,

vt + (g(u)v)x = 0
(3.1)

where v is a scalar unknown. For isentropic solutions of (3.1), we construct a theory
analogous to the theory of strong entropy solutions of the classical Keyfitz–Kranzer
system, see [41], see also [23]; the key points of our analysis are Proposition 2.1(ii),
the calculation of entropies for (3.1) and reduction to the framework of generalized
solutions to continuity equations developed in [42]. The study of multi-component
systems (1.1) (m ≥ 2) can be done in the same way. In conclusion, we will point out
a way to include the Keyfitz–Kranzer system in our analysis.

3.1. Entropies for a system in the form (3.1)

In this section, we describe the structure of the entropies for the system (3.1).
Consider f , g restricted to an interval [a, b]. Computing eigenvalues of the system,
one sees that (3.1) is strictly hyperbolic if f ′ �= g on [a, b]. We have the following
result.

LEMMA 3.1. If the system (3.1) is strictly hyperbolic for (u, v) ∈ [a, b] ×R, then
all its smooth entropies are of the form

E(u, v) = η(u) + e−H(u)μ(veH(u)), (3.2)

where H is a primitive of the function u �→ −g′(u)
f ′(u)−g(u)

and η and μ are arbitrary
smooth functions. The corresponding entropy-flux is given by

Q(u, v) = q(u) + g(u)e−H(u)μ(veH(u)), q(u) =
∫

f ′(u)η′(u) du. (3.3)

REMARK 3.2. We notice that the strict hyperbolicity of system (3.1) ensures that
the map A : u �→ e−H(u) is well defined on the whole range of values of u. The
result above remains true even if the system is not strictly hyperbolic, provided that
the function H is well defined, which means that

u �→ −g′(u)

f ′(u) − g(u)
is integrable in the range of relevant values of u. (3.4)

The latter condition is satisfied if the singularity at a point u∗ arising from resonance
( f ′(u∗) = g(u∗)) in (3.4) is integrable, but also when the range [infR u0, supR u0] of
values of the initial datum u0 does not contain resonance points u∗.
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Proof. We start by computing the Riemann invariants (ω1, ω2) of the system (3.1)
under the assumption that the solution U = (u, v) is smooth. We obtain ω1 = u and
ω2 = veH(u) =: w, so that system rewrites (3.1) as{

ut + λ1(u)ux = 0,
wt + λ2(u)wx = 0,

(3.5)

with eigenvalues λ1(u) = f ′(u), λ2(u) = g(u). The corresponding eigenvectors are

r1 = 1√
1 + (H ′(u)v)2

(
1

−H ′(u)v

)
, r2 =

(
0
1

)
. (3.6)

Due to property (3.4), the change of unknowns (u, v) ↔ (u, eH(u)v) ≡ (u, w) is
bijective, therefore we can look for entropies under the form E(u, v) = Ẽ(u, w).
Finding entropies means deriving from (3.5) the scalar conservation law

Ẽ(u, w)t + Q̃(u, w)x = 0

with some entropy-flux Q̃. This implies that a smooth entropy/entropy-flux pair has
to satisfy the equations

Q̃u(u, w) = λ1(u)Ẽu(u, w), Q̃w(u, w) = λ2(u)Ẽw(u, w). (3.7)

A standard manipulation (differentiate the first equation with respect to w, the second
equation with respect to u and equate themixed second derivatives of the entropy-flux)
shows that the entropy actually satisfies the equation

g′(u)Ẽw(u, w) + (g(u) − f ′(u))Ẽuw(u, w) = 0. (3.8)

It is clear that any function with the structure (3.2) satisfies the equation above. Let
us show that they are the only ones. We call P(u, w) = Ẽw(u, w) and, thanks to the
strict hyperbolicity, we write

Pu(u, w) = −H ′(u)P(u, w), (3.9)

so that we can integrate the equation above. We get Ẽw(u, w) = e−H(u)ν(w), and
then Ẽ(u, w) = η(u) + e−H(u)μ(w), where ν, η are arbitrary smooth functions and
μ is a primitive of ν. Finally, E(u, v) = η(u) + e−H(u)μ(veH(u)), as we claimed.
Formula (3.3) for the associated entropy-flux Q follows from relations (3.7). �

REMARK 3.3. It is interesting to ask under which conditions the entropy E is
convex, even if this is not a central question in the present work, as all the solutions we
consider are isentropic. To answer this question, we consider the products r ti D

2Eri ,
i = 1, 2, where ri denotes, as usual, the i-th right eigenvector of the system, as given
in (3.6). It easy to see that r t2D

2Er2 is strictly positive if and only if μ is a convex
function of ω2. Next, we have

r t1D
2Er1

= 1

1 + (H ′v)2

[
η′′ +

(
(H ′)2 − H ′′) (

μ(veH )e−H − μ′(veH )v
)]

. (3.10)
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By using the convexity of μ and assuming (without loss of generality) that μ(0) = 0,
it is easy to see that the term μ(veH(u))e−H(u) − μ′(veH(u))v is negative. Then, in
order to get a strictly positive quantity, we have to make assumptions on η and H . We
can remark, in particular, that the assumption that η is convex will not be sufficient
alone. A sufficient condition would be η convex and A: u �→ e−H(u) concave, but this
is far from being necessary.

We end this paragraph with the following elementary observation. Assume u, v are
smooth; then function v solves vt + (g(u)v)x = 0 if and only if

v = A(u)w where w solves (A(u)w)t + (g(u)A(u)w)x = 0. (3.11)

The next paragraph contains technical tools needed to extend the reformulation
of (3.11) to weak solutions v, under the assumption that u is an isentropic solu-
tion to scalar conservation law ut + f (u)x = 0 and making the choice w = eH(u)v,
A(u) = e−H(u) inspired by the result of Lemma 3.1.

3.2. Strong generalized solutions for continuity equations

Equation vt + (g(u)v)x = 0 contained in system (3.1) and its reformulation (3.11)
are continuity equations. In both cases, coefficients g(u(t, x)) [respectively, A(u(t, x))
and B(u(t, x)) := g(u(t, x))A(u(t, x))] do not need to be smooth functions of (t, x).
In this paragraph, we explain that the form (3.11) is preferable because, due to the defi-

nition of A, the field
(
A(u(t, x)), B(u(t, x))

)
onR+ ×R is divergence-free whenever

u is an isentropic solution of ut + f (u)x = 0.
Recall that transport equation wt + a(t, x)wx = 0 and its adjoint, the continu-

ity equation wt + (a(t, x)w)x = 0, can be solved by the method of characteristics
provided the coefficient a is Lipschitz continuous; in this case, one has existence and
uniqueness of weak solutions for all L∞ initial (or terminal) data, and the solutions are
time-reversible. To relax regularity assumptions on a without loosing well-posedness
property and time-reversibility property, the notion of renormalized solutions has been
put forward in the classical work by DiPerna and Lions [21]. The uniqueness proof
for renormalized solutions has undergone major extensions in recent years; see, e.g.,
[3,4,6]. Yet in these theories of renormalized solutions, some regularity assumptions
are still needed on a(t, x) and on divxa(t, x) (typically, a W 1,p or a BV regularity
of a, and a uniform bound of the divergence of a). We refer to [20] for an extensive
account on known results in this direction.
When dealing with equations in one space dimension, as we do in this paper, it is

convenient to consider continuity equations of the form (3.11). Indeed, in the paper
[42], Panov considered the problem{

(Aw)t + (Bw)x = 0,

A(0, x)w(0, x) = A(0, x)w0(x),
(3.12)

under the assumptions



514 B. Andreianov et al. J. Evol. Equ.

• A and B in L∞(R+ × R);
• At + Bx = 0 in D′((0,+∞) × R);
• there exists N : R → R such that εN (ε) → 0 as ε tends to zero and for all ε > 0,

|B| ≤ N (ε)(A + ε) a.e. in (0,+∞) × R;
• ess lim

t→0+ A(t, x) = A(0, x) in L1
loc and A(0, x) belongs to L∞(R).

For the sake of simplicity, we will require A ∈ C(R+; L1
loc(R)), which simplifies the

statements concerning existence of strong traces of Aw; in particular, the restrictions
A(t, ·) are well defined for all t ≥ 0. Indeed, we will use the theory of [42] with
A = e−H(u) where u ∈ C(R+; L1

loc(R)) is an entropy solution of a scalar conservation
law.

Panov showed in [42] that for any given bounded initial condition w0 there exists
a bounded function w, called generalized solution of (3.12) such that for any test
function φ in C∞

0 ([0,+∞) × R)

∫ +∞

0

∫
R

(Aw)φt + (Bw)φx dx dt +
∫
R

A(0, x)w0(x)φ(0, x) dx = 0. (3.13)

Moreover, every generalized solution w enjoys the following properties

Strong trace. ess limt→0+ A(t, x)w(t, x) = A(0, x)w0(x) in L1
loc(R); and for all

T > 0, there exists ess limt→T− A(t, x)w(t, x) in L1
loc(R).

Reversibility. if w is a generalized solution of problem (3.12) and the equality
A(T, x)w(T, x) = A(T, x)wT (x) holds in the sense of strong traces, then t �→
w(T − t) is a generalized solution to the same equation with B changed into
−B and with initial datum wT .

Uniqueness. if A(0, x)w0(x) = 0 a.e. on R then A(t, x)w(t, x) = 0 a.e. on
R+ × R.

Renormalization. for any function μ in C(R) the function μ ◦ w satisfies

{
(A(μ ◦ w))t + (B(μ ◦ w))x = 0,

(μ ◦ w) (0, x) = μ (w0(x))
(3.14)

in the sense of (3.13).

This means that in the setting of [42], uniqueness, renormalization and reversibility
properties are automatically guaranteed for all generalized solutions. In particular,
changing t into T − t and B into −B, we have the following corollary.

COROLLARY 3.4. For every bounded terminal datum wT , there exists a unique
solution of {

(Aw)t + (Bw)x = 0,

A(T, x)w(T, x) = A(T, x)wT (x)
(3.15)
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in the sense∫ +∞

0

∫
R

(Aw)φt + (Bw)φx dx dt

+
∫
R

A(0, x)w(0, x)φ(0, x) dx =
∫
R

A(T, x)wT (x)φ(0, x) dx (3.16)

for all φ ∈ C∞
0 ([0, T ] × R), where A(0, ·)w(0, ·) is the strong initial trace of Aw;

this solution possesses the renormalization property, and it is reversible, namely it is
the unique weak solution of (3.12) with initial datum defined by w0 := w(0, ·).
3.3. Main result on non-resonant systems

According to the analysis of Lemma 3.1, isentropic solutions on (0, T ) × R for
non-resonant systems (3.1) are weak solutions which satisfy

E(u, v)t + Q(u, v)x = 0 in D′((0, T ) × R), (3.17)

where E , Q take the form (3.2), (3.3), respectively. According to the standard admis-
sibility paradigm for hyperbolic systems of conservation laws, isentropic solutions
are considered as admissible since they satisfy entropy (in)equalities for all convex
entropy E . Then, if for a fixed time T , the target stateUT is attainable by an isentropic
solution, we know that UT is attainable by an admissible solution.
Thus, a result of attainability by isentropic solutions of (3.1) for a terminal state

UT = (uT , vT ) at given time T would imply attainability by admissible solutions.
Here, we prove such result.

THEOREM 3.5. Assume that f is strictly convex. Assume that the system (3.1) is
non-resonant for the range [a, b] of values of u, i.e., for all u ∈ [a, b], f ′(u) �= g(u).
Given T > 0, take a [a, b]-valued terminal datum uT that belongs to the setAT (R, f )
of states attainable at time T by entropy solutions of ut+ f (u)x = 0; takevT ∈ L∞(R).
Then, there exists a unique initial datumU0 = (u0, v0) such that (3.1) admits a unique
isentropic solution U = (u, v) on (0, T ) × R with U (0, ·) = U0 and U (T, ·) = UT .

On the contrary, whenever uT /∈ AT (R, f ), for any vT ∈ L∞(R) the terminal state
UT = (uT , vT ) is not attainable at time T by any entropy solution of (3.1).

Proof. Recall that since f is strictly convex, according to Proposition 2.1, every uT ∈
AT gives rise to a unique initial datum u0 such that u0 = u(0, ·) and uT = u(T, ·) are
connected by the trajectory u : t ∈ [0, T ] �→ L∞(R) which represents an isentropic,
reversible solution to ut + f (u)x = 0. In addition, u takes values in [a, b] due to the
maximum principle for entropy solutions. Being isentropic solution means that for
any entropy/entropy-flux pair (η, q) (with non-necessarily convex η) we have

η(u)t + q(u)x = 0 in D′((0, T ) × R). (3.18)

The functions η : u �→ A(u) = e−H(u) and q : u �→ B(u) = g(u)A(u)

do constitute such an entropy/entropy-flux pair, thanks to the definition of H in
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Lemma 3.1; therefore, A(u)t + B(u)x = 0 in the sense of distributions. Moreover,
A(u) ≥ const > 0 for all u ∈ [a, b], and |B(u)| ≤ ‖g‖C([a,b])A(u). Therefore, we
are in a simplified version (without degeneracy of A) of the generalized continuity
equation setting considered by Panov [42] and recalled in Sect. 3.2. Applying the
result of Corollary 3.4, we see that for any given terminal condition vT in L∞(R),
there exists a unique function v bounded weak solution of{

vt + (g(u)v)x = 0,

v(T, x) = vT (x),
(3.19)

such that v(t, x) is the product A(t, x)w(t, x), where w solves (3.15) in the sense
(3.16) with terminal condition wT (x) = e−H(uT (x))vT (x).

Consider now the bounded vector valued functionU = (u, v). From the definitions
of u and v, and the renormalization property for w, we immediately obtain that U is
an isentropic solution of the system (3.1) with terminal datum (uT , vT ). Indeed, for
all Lipschitz functions η and μ on [a, b], we have the entropy inequality (3.18) for u
along with the renormalization property

(Aμ(w))t + (B(u)μ(w))x = 0 in D′((0, T ) × R) (3.20)

for w. Combining the two and taking into account the result of Lemma 3.1 and the
definition of A, we readily reach to the property (3.17) for general entropies E of (3.1).
Finally, let us justify the non-attainability result for uT /∈ AT . If U = (u, v) is an

entropy solution of system (3.1), then using the entropy E(u, v) := η(u) with convex
η, we find that u should be an entropy solution of the scalar conservation law. Then,
the fact that dataUT = (uT , vT )with uT /∈ AT are not reachable by entropy solutions
of (3.1) follows readily from Proposition 2.1. �

REMARK 3.6. In this note, we were interested in the attainability problem; but,
naturally,we have treated in passing the existence problem. Indeed, from the arguments
put forward in this section, it follows that, given T > 0, for any datum (u0, v0) ∈
AT (R,− f ) × L∞(R), there exists a unique isentropic solution on [0, T ] × R of the
Cauchy problem (3.1),(u, v)|t=0 = (u0, v0).

EXAMPLE. The systemof two-component chromatography describes the evolution
of the (nonegative) concentrations of two solutes, u1 and u2,⎧⎨

⎩
∂t u1 + ∂x

(
u1

1+u1+u2

)
= 0,

∂t u2 + ∂x

(
u2

1+u1+u2

)
= 0.

(3.21)

Passing to the variables v = u1 + u2 and w = u1 − u2, the system becomes⎧⎨
⎩

∂tv + ∂x

(
v

1+v

)
= 0,

∂tw + ∂x

(
w

1+v

)
= 0,

(3.22)
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which has the form (3.1) with f (v) = v

1 + v
and g(v) = 1

1 + v
, defined on I :=

(−1,+∞). It is easy to check that f is convex and f (v) �= g′(v) on I; therefore,
the result of Theorem 3.5 applies to the system in this form. A detailed study of the
well-posedness for the two-component chromatography system, which exploits the
change of variables above, can be found in [5].

3.4. On the Keyfitz–Kranzer system

Consider the one-dimensional Keyfitz–Kranzer system, i.e., a system of the form

Ut + (φ(|U |)U )x = 0, (3.23)

where φ is a smooth function from R+ to R such that limr→0+ rφ(r) = 0 and
U (t, x) ∈ Rm+1, m ≥ 1. System (3.23) has first been introduced as the prototype of
non-strictly hyperbolic system, see [19,32]. This system does not have form (1.1), but
it can be treated with minor adaptations. Moreover, the general case we treated above
took inspiration from the Keyfitz–Kranzer case: see Remark 3.10.
Indeed, system (3.23) is formally equivalent to the system{

rt + (φ(r)r)x = 0,

(rw)t + (φ(r)rw)x = 0,
(3.24)

under the additional constraint |w| = 1 (being understood that |w0| = 1), where the
variables (r, w) have the sense r = |U | and w = U/|U |. In the Keyfitz–Kranzer
setting, r �→ φ(r)r need not be assumed strictly convex; nonetheless, the latter sys-
tem would be quite similar to systems of our family (1.1) if the constraint |w| = 1
followed automatically from |w0| = 1. Such constraint-preservation property is a par-
ticular kind of renormalization property for continuity equations; for the above system
(3.24), it actually holds true provided the appropriate notion of solution is considered.
Such appropriate notion of strong generalized entropy solution for the Cauchy prob-
lem associated with system (3.23) has been introduced in the papers by Freistühler
[23], and Panov [41]. The Cauchy problem for (3.23) is well posed in the setting of
strong generalized entropy solutions. Here, we give a version of the definition that is
intimately related to the setting of Sect. 3.2.

DEFINITION3.7. LetU0 ∈ L∞(R;Rm)be initial condition imposed to the system
(3.23). A functionU ∈ L∞((0, T )×R;Rm) is a strong generalized entropy solution
for the system (3.23) if

• the function r(t, x) = |U (t, x)| is the Kruzhkov entropy solution of{
rt + (rφ(r))x = 0, (t, x) ∈ (0, T ) × R

r(0, x) = |U0(x)|, x ∈ R; (3.25)

• the function U satisfies U = rw, where w is the solution of (3.12) in the weak
sense (3.13) with initial datum w0 = U0/|U0| and the coefficients A = r(t, x),
B = r(t, x)φ(r(t, x)).
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In the above definition, the value of U0(x)/|U0(x)| can be taken arbitrary (e.g., in
the unit m-dimensional sphere Sm) at the points where U0(x) = 0.

As an outcome of the theory of [42] for weak solutions of (3.12), the definition
above is equivalent to the definition of renormalized entropy solution introduced in
[4,6] and used in [5,24]:

DEFINITION 3.8. The function U ∈ L∞((0, T ) × R;Rm) is a renormalized
entropy solution for the system (3.23) if

• the function r(t, x) = |U (t, x)| is the entropy solution of{
rt + (rφ(r))x = 0, (t, x) ∈ (0, T ) × R

r(0, x) = |U0(x)|, x ∈ R; (3.26)

• for any test function ψ ∈ C∞
0 ([0, T ) × R) and any continuous function μ :

S
m �→ R, Sm-valued function w = U/|U | verifies∫ T

0

∫
R
rμ(w)ψt + φ(r)rμ(w)ψx dx dt

+
∫
R
r(0, x)H(w(0, x))ψ(0, x) dx = 0.

The use of Definition 3.8 is simplified if the data are taken away from the ori-
gin which is the umbilical point for the system, i.e., |U0| ≥ δ > 0 (see [24]). In both
cases, the renormalization property forw = U/|U | (explicitly stated in Definition 3.8,
implicitly contained in Definition 3.7) and the uniqueness of renormalized solutions
for equations of form (Aw)t + (Bw)x = 0 lead to the crucial constraint-preservation
property: |w| = 1 a.e. on {(t, x)|r(t, x) > 0} due to |w0| = 1 (steaming from the def-
inition w0 = U0/|U0|). This property ensures that weak (respectively, renormalized)
solutions constructed for the component w of the transformed system (3.24) give rise
to strong generalized entropy solutions (respectively, renormalized entropy solutions)
of the original system (3.23).
According to the well-posedness results of [42], the question of attainability for the

Keyfitz–Kranzer system (3.23) should be asked in the setting of strong generalized
entropy solutions. For the case of Keyfitz–Kranzer system, the following analogue of
Theorem 3.5 holds.

THEOREM 3.9. Assume that f : r �→ rφ(r) in system (3.23) is strictly convex
on [a, b] ⊂ [0,+∞). Given T > 0, take a terminal datum UT such that |UT | is
[a, b]-valued and belongs to the setAT (R, f ) of states attainable at time T by entropy
solutions of ut+ f (u)x = 0. Then, there exists a unique initial datumU0 such that (3.1)
admits a unique strong generalized entropy solution (or, equivalently, renormalized
entropy solution) U on (0, T ) × R and U (T, ·) = UT .

On the contrary, whenever |UT | /∈ AT (R, f ), the terminal stateUT is not attainable
at time T by any strong generalized entropy solution (or, equivalently, renormalized
entropy solution) of Keyfitz–Kranzer system (3.23).
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Proof. The proof follows the lines of the one of Theorem 3.5, the only difference being
the fact that the isentropic character of r , backward solution of rt + f (r)x = 0 on
[0, T ], becomes not important, while the renormalization property forw is now needed
not in order to justify that U is an entropy (isentropic) solution of system (3.1), but in
order to ensure that if satisfies the constraint |w| = 1 and gives rise to the appropriately
defined solution of the Keyfitz–Kranzer system (3.23). �

REMARK 3.10. The notion of isentropic solution of non-resonant system (3.1) of
the previous paragraph appears as the analogue of the notion of strong entropy solution
for the Keyfitz–Kranzer system (3.23). The main difference is that one has the well-
posedness result for strong entropy solutions of (3.23) with any bounded initial data,
while only data u0 giving rise to an isentropic solution on [0, T ] are suitable in the
existence theory outlined in Remark 3.6.
The reason for this difference lies in the fact that the divergence-free relation A(r)t+

B(r)x = 0, essential for application of the theory of [42], holds in the case of (3.23)
for any weak solution of the conservation law rt + (rφ(r))x = 0, being A(r) = r
and B(r) = rφ(r); while in the case of systems (3.1), the analogous relation A(u)t +
B(u)x = 0 is readily guaranteed only for isentropic solutions of the conservation law
ut + f (u)x = 0, A being a nonlinear function of u.

To make the similarities between (3.1) and (3.23) more apparent, let us recall a
lemma due to Frid [24], on the structure of the entropies for the Keyfiz-Kranzer
system, see also [41, Th.1].

LEMMA 3.11. All smooth entropies of the system (3.24) defined for δ ≤ r ≤ M,
for some positive constants δ and M, are of the form

E(u) = η(r) + rμ(w), (3.27)

with r = |u| and w = u/|u|, for appropriate smooth functions η and μ.

The proof given in [24] for Lemma 3.11 inspired our proof of Lemma 3.1.

4. Resonant systems

In this section,we study the set of attainable states for system (1.1)without enforcing
the non-resonance assumption.

g(u) �= f ′(u) for all u ∈ [a, b], (4.1)

where [a, b] is an interval containing the values of uT . When (4.1) fails, (3.4) fails and
nontrivial (nonlinearly v-dependent) entropies of form (3.1) cannot be defined. Our
result in this setting is weaker than the one we obtained in the non-resonant case, as
we show that the set of states which are exactly attainable in a fixed time T is a dense
subset of AT = AT × L∞(R). Two remarks are here in order



520 B. Andreianov et al. J. Evol. Equ.

• we are not presenting a formal proof of the fact that AT contains states which are
not exactly attainable in the resonant case. In this sense, our result is not optimal.

• Nevertheless, in view of the applications and, in particular, the numerical simula-
tions, we can say that, in the resonant case, AT contains states which are difficult
to treat in practice. This point is highlighted in Sect. 4.3.

As in Sect. 3, for the sake of simplicity, we will restrict our attention to the casem = 1.

4.1. Attainability and approximate attainability result

When system (3.1) is resonant, we cannot rely on the theory outlined in Sect. 3.2
to solve the continuity equation for v. It can be seen from examples given in Sect. 4.3
below that in order to guarantee uniqueness, we have to avoid the situation in which
the u component of the solution of system (3.1) contains rarefaction (respectively,
compression) waves focusing at t = 0 (respectively, at t = T ). For this reason, in the
sequel, we replace the set AT of attainable terminal states for u by the smaller but
L1
loc-dense subset AT defined below. The isentropic backward solutions for uT ∈ AT

do not contain rarefaction of compression waves focusing at times t = 0 or t = T ,
respectively; moreover, under assumption (1.5), it is easily seen that the corresponding
solution u belongs toW 1,∞([0, T ]×R), seeRemark 2.2. It turns out that in this setting,
the continuity equation has Lipschitz velocity field g(u); therefore, it is well posed in
the weak solution setting, for L∞ data.

REMARK 4.1. One can replace the use of characteristics method by the use of
renormalized solutions in the sense of DiPerna and Lions [21]: This also yields well-
posedness for the initial value or terminal value Cauchy problem. Note that the weak
solutions “by characteristics” of the continuity equation are also DiPerna–Lions renor-
malized solutions. Nonetheless, given the special form of velocity field that appears
in our construction, the more general DiPerna–Lions approach actually imposes the
same kind of restrictions as the use of solutions “by characteristics”. Indeed, in order to
guarantee the L1([0, T ];W 1,∞(R)) bound on the velocity field g(u) of the continuity
equation, we still have to avoid the situation in which the u component of the solu-
tion of system (3.1) contains rarefaction (respectively, compression) waves focusing
at t = 0 (respectively, at t = T ). Even the local uniform convexity assumption (1.5)
cannot be omitted using DiPerna–Lions theory [one can see this from example (2.4)
which, for general g, yields g(u) /∈ L1([0, T ];W 1,∞(R))]. Therefore, we do not
exploit DiPerna–Lions theory except in Sect. 4.2 below, where it is used in order to
take advantage of a result of [42].

Then, we have the following result.

THEOREM 4.2. Consider system (3.1) under the local uniform convexity assump-
tion (1.5) on f . Let AT = W 1,∞(R) ∩ (∪δ>0AT+δ( f,R)). Then,

• every state UT ∈ AT × L∞(R) is controllable at time t = T ;
• every state in UT ∈ AT = AT ( f,R) × L∞(R) is approximatively controllable

at time t = T , with respect to L1
loc(R) topology.
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The corresponding backward solutions U = (u, v) for UT = (uT , vT ) are admissible
in the sense that the component u can be chosen to be the unique isentropic solution of
the first equation of (3.1) with terminal datum uT , and the component v is the unique
weak solution (which is also the unique DiPerna–Lions renormalized solution) of the
second equation of (3.1) with terminal datum vT .

Let us stress that the notion of solution admissibility put forward in the above
statement is the strongest one that we are able to formulate, having in mind

• the absence of non-trivial entropies of the system (so that the above solution is, in
fact, an entropy solution, all entropies being described by E(u, v) = η(u) +Cv);

• the choice of the strongest available component-per-component notions of admis-
sibility for weak solutions U = (u, v) of (3.1).

Proof. For the proof of the first claim, keeping in mind the result of Proposition 2.1,
we only need to construct a reversible solution to the continuity equation

vt + (c(t, x)v)x = 0 on [0, T ] × R (4.2)

with every given terminal datum vT and c(t, x) = g(u(t, x)) with u the isentropic
solution of ut + f (u)x = 0 given by Proposition 2.1; by the assumption uT ∈ AT and
(1.5), we have W 1,∞([0, T ] × R) regularity of the coefficient c. In this framework,
uniqueness of a weak solution (which is therefore reversible) for any given L∞ initial
(respectively, terminal) datum is ensured. The solution can be constructed by the char-
acteristics method, using Picard–Lindelöf (Cauchy–Lipschitz) theorem to parametrize
[0, T ] × R by (t, x0), with x being computed as the value of the solution at time t

of the ODE Cauchy problem d
dt X (t) = c(t, X (t)), X (0) = x0. To be specific, using

characteristics to change variables in the (t, x)-plane, using the Fubini theorem one
reduces the weak formulation of a continuity equation with Lipschitz coefficients to a
decoupled family of linear ODEs parametrized by x0 ∈ R, the ODEs being uniquely
solved by explicit integration. This gives a unique weak solution to the continuity
equation with given initial (respectively, terminal) data.
Further, the second claim follows from the first one, using Lemma 2.3. Indeed, by

Lemma 2.3,AT+ = ∪δ>0AT+δ( f,R) is dense inAT . Further, if uT ∈ AT+δ for some
δ > 0, it can be approached in L1

loc(R) by states of the form S←
h uT , where S← is the

semigroup whose trajectories are entropy solutions of (1.3) [which means, backward
solutions of (2.1)]. For h < δ/2, S←

h uT ∈ AT+δ/2 because the trajectory t �→ S←
t uT

is an isentropic, and therefore reversible, entropy solution of (2.1). Since we also have
S←
h uT ∈ W 1,∞(R) [see Remark 2.2(ii)], the density of AT in AT follows. Hence,

also AT × L∞(R) is dense in AT , in L1
loc sense. �

4.2. On the relation between results of Theorems 3.5 and 4.2

It is clear that, whenever uT ∈ AT , both results of Theorems 3.5 and 4.2 apply. This
is interesting because Theorem 3.5 relies on an existence result for the generalized
continuity equation (3.12), whose proof relies on a rather non-explicit construction or
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approximationmethod. In the regular coefficient framework exploited in Theorem 4.2,
the algorithmof [29] formore general duality solutions of (4.2) can be used, see Sect. 5.

In this relation, let us observe that solutions constructed in Theorems 3.5 and 4.2
do coincide. Indeed, the following observation holds.

REMARK 4.3. Given a field of coefficients (A, B) satisfying the assumptions of
Sect. 3.2 and such that A ≥ δ > 0, B = cA with Lipschitz regular coefficient c, the
unique generalized weak solution w of (Aw)t + (Bw)x = 0 is such that v = Aw

is the renormalized solution in the sense of DiPerna–Lions of vt + (cv)x = 0 with
initial datum v0(·) = A(0, ·)w0(·). Given the Lipschitz regularity of c guaranteed
by assumptions of Theorem 4.2, v is also the unique weak solution of the continuity
equation vt + (cv)x = 0.

It should be stressed that the relation between the renormalization properties for w

and for v is not straightforward, because a nonlinear function of v = Aw cannot be
reduced to the form Aμ(w). The arguments for the proof of the above lemma were
developed in [42, Sect. 7.1].

4.3. Examples of forward and backward non-uniqueness for the resonant case

In this section, we propose some elementary examples of states that cannot be
considered as attainable in practice.

EXAMPLE. First, consider the fully resonant case g(u) = f ′(u), for instance, this
occurs for system ⎧⎨

⎩ut +
(
u2
2

)
x

= 0

vt + (uv)x = 0.
(4.3)

Here, solutions v corresponding to self-similar u can be easily computed. To be spe-
cific, given any C1, compactly supported in (−1, 1) function K by an explicit calcu-
lation, we see that U = (u, v) defined by

u(t, x) =
⎧⎨
⎩

1, x ≥ t
x
t , |x | ≤ t

−1, x ≤ −t
v(t, x) = 1

t
K

( x
t

)
≡

⎧⎨
⎩

0, x ≥ t
1
t K ( xt ), |x | ≤ t

0, x ≤ −t
(4.4)

gives a family of weak solutions to system (4.3) that correspond to the same initial
data u0(x) = sign(x) and v0(x) = 0 and to terminal data uT = min{1,max{−1, x

T }}
and v

K (·)
T = 1

T K ( x
T ). Being regular in (δ, T ] × R for all δ > 0, assuming strong

initial and terminal traces, these solutions should be regarded as admissible solu-
tions to (4.3) (in particular, on (δ, T ] × R, these solutions are renormalized solu-
tions in the sense of DiPerna and Lions [21]). Moreover, the characteristics method
(or the theory of [21] applied on [δ, T ] for every δ > 0) ensures that U is the

unique backward solution of (4.3) with terminal dataUT =
(
uT , v

K (·)
T

)
. Thus, back-

ward resolution of (4.3) with different terminal data
(
min{1,max{−1, x

T }}, vK (·)
T

)
for
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K ∈ C1
0((−1, 1)) gives rise to the same initial datumU0 = (sign(·), 0). Then, all states(

min{1,max{−1, ·
T }}, vK (·)

T

)
with different functions K ∈ C1

0((−1, 1)) belong to the

image of the system (4.3) due to explicit solutions given above. However, thanks to the
forward non-uniqueness for (4.3), this information is useless in practice. In particular,
it is clear that starting from U0, any given approximation procedure will select one
and only one controllable terminal datum v

K (·)
T , while other data of the same family

will not be attainable in practice.
Observe that, unless K ≡ 0, the above admissible solutions belong to the space

L∞((0, T ), L1(R)) but the L∞ norm of u(t, ·) blows up, as t approaches zero. There-
fore, if one limits the functional framework for u, v to the space L∞, as we have
done in the other sections of this paper, the target data (4.4) would be automatically
excluded, except for K ≡ 0.

One might think that the non-uniqueness in the above example is due to the fact that
(4.3) is a fully resonant system. But the same features persist for the following system
that is resonant (and actually, not hyperbolic) at u∗ = 1 (note that the resonance at
u∗ = 0 is not an obstacle because (3.4) holds in a neighborhood of u∗ = 0).

EXAMPLE. Consider the system⎧⎨
⎩ut +

(
u2
2

)
x

= 0

vt + (
u2v

)
x = 0.

(4.5)

In this case, given any C1, compactly supported in (0, 1) function K , by an explicit
calculation, we see that U = (u, v) defined by

u(t, x) = min
{
1,max

{
0,

x

t

}}
with v(t, x) = 1

x2
K

(
1

x
− 1

t

)

gives a family of admissible solutions to (4.5). All the corresponding terminal states
UT = (u(T, ·), v(T, ·)) for different K ∈ C1

0((0, 1)) can be seen as attainable (with
solutions (u, v) ∈ L∞((0, T ) × R)) × L∞((0, T ), L1(R))) starting from the same
initial datum U0 = (u(0, ·), 0), due to forward non-uniqueness for (4.5).

REMARK 4.4. One can also observe that setting Û = (û, v̂) with

û: (t, x) �→ u(T − t,−x), v̂ : (t, x) �→ v(T − t,−x)

where (u, v) are solutions for (4.3) [respectively, for (4.5)] from the above families, we
get a family of admissible weak solutions to (4.3) [respectively, to (4.5)] on [0, T ]×R

with different initial data and a common terminal datum. This means that backward
resolution of the continuity equation on v contained in (3.1) can be intrinsically non-
unique, even if different solutions lead to different controls of the same terminal
state. We refer to numerical examples of Sect. 5 for an illustration of the fact that
this phenomenon also complicates the practical construction of controls for resonant
systems (3.1).
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5. Numerics

In this section, we present some results on the numerical backward resolution of
system (3.1) on [σ, T ] × J , where J = [C1,C2], 0 < σ < T and where the final data
(uT , vT ) belong toAT × L∞(J ). We first begin with the description of the numerical
method.

5.1. The numerical method

Let us recall that the solution u obtained in Proposition 2.1 is an isentropic solution
of the scalar conservation law. Consequently, we have that u(t, .) = w(T − t, .)where
w is the unique entropy solution of the auxiliary forward problem{

wt + (− f (w))x = 0,

w|t=0 = uT .

Thus, the numerical backward resolution of system (3.1) is based on the numerical
resolution of the following auxiliary forward problem:{

ut + ( f̃ (u))x = 0,

vt − (g(u)v)x = 0,
(5.1)

where f̃ (u) = − f (u) and (u(0, .), v(0, .)) = (u0, v0) ∈ AT × L∞(J ). In order to
solve (5.1), we use the finite volume method detailed below.
To perform the computations, we look for a fixed domain by determining the domains
of dependence of the conservation law and of the continuity equation. We define

B(1)
1 = C1 + (T − σ) f̃ ′(u0(C1)), B(1)

2 = C2 + (T − σ) f̃ ′(u0(C2)),

B(2)
1 = C1 − (T − σ)g(u0(C1)), B(2)

2 = C2 − (T − σ)g(u0(C2)).

We deduce the fixed domain of interest K = [B1, B2] where we set
B1 = min{C1, B

(1)
1 , B(2)

1 } and B2 = max{C2, B
(1)
2 , B(2)

2 }.
Assuming that in practice vT ∈ BV (J ), we extend the final states as follow

uT (x) =
⎧⎨
⎩
uT (C1) if x ∈ [B1,C1]
uT (C2) if x ∈ [C2, B2]

, vT (x) =
⎧⎨
⎩

vT (C1) if x ∈ [B1,C1]
vT (C2) if x ∈ [C2, B2]

.

We now introduce a regular grid:

B1 = x1/2 < x3/2 < · · · < xM−1/2 < xM+1/2 = B2.

We define the cells K j = [x j−1/2, x j+1/2], the center of the cells x j = 1
2 (x j−1/2 +

x j+1/2) and the space step �x = x j+1/2 − x j−1/2, where 1 ≤ j ≤ M . We define a
time discretization

t0 = σ < t1 < · · · < tn < t N+1 = T,
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with a constant time step �t = tn+1 − tn for 0 ≤ n ≤ N . We denote by unj and vnj
the unknowns which are the approximations of the averages of u(tn, .) and v(tn, .) on
K j , respectively. Namely,

unj � 1

�x

∫
K j

u(tn, x) dx and vnj � 1

�x

∫
K j

v(tn, x) dx .

We set

u0j = 1

�x

∫
K j

u0(x) dx and v0j = 1

�x

∫
K j

v0(x) dx .

Given (unj , v
n
j ), we shall compute (un+1

j , vn+1
j ). We first update unj by using a

Godounov scheme

un+1
j = unj − �t

�x

(
F(unj , u

n
j+1) − F(unj−1, u

n
j )

)
,

where F is the standard Godounov numerical flux (see, e.g., [28,37]):

F(u�, ur ) =

⎧⎪⎨
⎪⎩

min
u∈[u�,ur ]

f̃ (u), if u� ≤ ur ,

max
u∈[ur ,u�]

f̃ (u), otherwise.

Next, we update vnj by using an upwind-type scheme (see [22,29]). We define

gnj+1/2 = (1 − θ)g(unj ) + θg(unj+1), 0 ≤ θ ≤ 1. (5.2)

For s ∈ R, we set s+ = max(0, s) and s− = min(s, 0). Then, we update vn+1
j by

vn+1
j = vnj + �t

�x

{[
(gnj+1/2)

+vnj − (gnj−1/2)
+vnj−1

]
+

[
(gnj+1/2)

−vnj+1 − (gnj−1/2)
−vnj

]}
.

For the boundary conditions, we set

(un0, v
n
0 ) = (uT (C1), vT (C1)), (unM+1, v

n
M+1) = (uT (C2), vT (C2)), 1≤n≤N + 1.

REMARK 5.1. (i) As we already pointed out, u is the entropy solution of the
conservation law of (5.1). Therefore, any standard monotone consistent finite
volume method can be used to approximate u.

(ii) Let us mention that Gosse and James [29] proved convergence results for the
upwind scheme described above, in the more general framework of duality solu-
tion for one-dimensional transport and continuity equations (see [11,12]). They
also proved convergence results for Lax–Friedrichs schemes. Therefore, these
latter schemes are also relevant schemes for the transport and continuity equa-
tions.
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(iii) Another approach to solve system (5.1) is to use different grids for the unknowns
u and v. More precisely, one can look for the pair (unj+1/2, v

n
j ), where

unj+1/2 � 1

�x

∫ x j+1

x j
u(tn, x) dx .

Then, one can define gnj+1/2 = g(unj+1/2). However, the numerical experiments
we have performed with this second method seem to give less good results.

(iv) For the numerical simulations, we always take θ = 1/2 in (5.2).

5.2. Numerical results

We now present some numerical experiments on the approximation of solutions to
the backward resolution. We take again system (4.5) recalled below⎧⎨

⎩
ut +

(
u2
2

)
x

= 0,

vt + (u2 v)x = 0.
(5.3)

Differently from Example 4.3, now we consider (5.3) in a non-resonant situation.
Therefore, we set (5.3) on the domain [0.1, 1]×[−0.5, 0.5]. We consider as final state
for the Burgers equation,

uT (x) =
{
x + 0.4 if x < 0

x − 0.3 if x ≥ 0
(5.4)

and we choose two types of final state for the continuity equation

v
(1)
T (x) =

{
0.75 if x < 0,

−0.25 if x ≥ 0
and v

(2)
T (x) = 0.3 sin(4πx). (5.5)

Now choosing�x = 1.56×10−3,�t = �x/2 and performing a backward resolution
of (5.3) by using the numerical scheme presented in 5.1, we compute the approximate
initial states denoted by u0σ , v

(1)
σ and v

(2)
σ , respectively. We next check that solving

(5.3) until time T = 1, starting from uσ and v
(1)
σ , v

(2)
σ , respectively, we obtain final

states denoted by uN+1, v(1)N+1
and v(2)N+1

that are good approximations of uT , v
(1)
T

and v
(2)
T , respectively. To that end, we define the following relative L1-discrete error

norms

eb =
∑M

j=1

∣∣∣uT (x j ) − uN+1
j

∣∣∣∑M
j=1 |uT (x j )|

and e(k)
t =

∑M
j=1

∣∣∣v(k)
T (x j ) − v

(k)N+1

j

∣∣∣∑M
j=1 |v(k)

T (x j )|
,

where k = 1 or 2. We observe that the error norms eb, e
(1)
t and e(2)

t converge to zero,
as reported in the following table:
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Figure 1. Non-resonant case

�x eb e(1)
t e(2)

t

0.05 0.3 0.065 0.2
0.025 0.23 0.041 0.12
0.0125 0.16 0.023 0.073
6.25 × 10−3 0.1 0.019 0.044
3.125 × 10−3 0.068 7.2 × 10−3 0.026
1.56 × 10−3 0.041 3.9 × 10−4 0.015
7.8 × 10−4 0.023 2.2 × 10−4 8.8 × 10−3

In addition, in Fig. 1, we have plotted the exact and the final stateswith the approximate
ones for�x = 1.56×10−3 and�t = �x/2.We observe that apart from the numerical
diffusion of the scheme, the final states are correctly computed.
Note that the accuracy of the scheme can be improved by using hight order schemes

(see for instance [37]).
We now turn to the backward resolution of the following resonant system that was

already considered in Example 4.3:⎧⎨
⎩ut +

(
u2
2

)
x

= 0,

vt + (u v)x = 0.
(5.6)

We keep the same domain, space step and time step as in the non-resonant case.
We still consider the final states (5.4)–(5.5). Proceeding as previously, starting from
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Figure 2. Resonant case

Table 1. Convergence of the L1-error norms

�x e(1)
t e(1)

t,R e(2)
t e(2)

t,R

0.05 0.15 0.11 0.74 0.43
0.025 0.11 0.081 0.65 0.3
0.0125 0.086 0.037 0.57 0.19
6.25 × 10−3 0.058 0.015 0.48 0.1
3.125 × 10−3 0.038 8 × 10−3 0.35 0.06
1.56 × 10−3 0.023 4.4 × 10−3 0.21 0.032
7.8 × 10−4 0.014 3.1 × 10−3 0.12 0.016

the computed initial states, we solve system (5.6) forward in time and we compare the
exact and the computed final states. We report the result in Fig. 2.

We notice that the computed final states do not approximate the exact final states
as well as in the non-resonant case. This observation is reinforced with the very slow
convergence of the relative errors e(1)

t and e(2)
t in Table 1.

In order to improve the accuracy of the approximation, we consider a final state
uT that belongs to AT+δ , for δ > 0. In practice, we first solve the Burgers equation
on the time interval [T, T + δ] with uT as initial state. We next perform a backward
resolution to compute uσ , v

(k)
σ , k = 1 or 2. This procedure amounts to first regularize

the Burgers’ final state (using the procedure of the proof of Lemma 2.3) then perform
the backward resolution.

Finally, as we have done before, we solve the problem forward in time. The results
are reported in Fig. 3, and show the better approximation of the exact final states v

(1)
T

and v
(2)
T . The regularization procedure also allows to improve the rate of convergence

of the L1 error norms denoted by e(k)
t,R , k = 1, 2, in Table 1.
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Figure 3. Resonant case with regularization

6. Conclusions

Our results concern attainability and backward resolution of systems of form (1.1).
They include, after an appropriate reformulation, the classical Keyfitz–Kranzer and
multi-component chromatography systems.
Assuming that system (1.1) admits nontrivial entropies, we characterize the

entropies, we describe the attainable set AT = AT × L∞ for (1.1) and for every
UT ∈ AT we prove the existence of a unique isentropic (and, therefore, admissible)
solution of system (1.1) satisfying U (T ) = UT . Moreover, we give a constructive
algorithm that selects this isentropic solution.
Further, when system (1.1) does not admit nontrivial entropies (this is the case for

some resonant systems), we consider that the function U = (u, v) is an admissible
solution for the system if u is an entropy solution for the scalar conservation law and
the function v is a renormalized solution of the companion continuity equation. In this
case, we have approximate controllability for everyUT ∈ AT and exact controllability
in a dense subset AT × L∞ of AT . We show that the same numerical algorithm for
backward solution applies starting from any UT ∈ AT , but that its efficiency may
drop. In this case, a simple regularization procedure inspired by the definition of AT

permits to improve the performance of the approximation scheme. The convergence of
the relative L1-error norms is also improved by regularization, as reported in Table 1.
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