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Area-preserving evolution of nonsimple symmetric plane curves
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Abstract. The area-preserving nonlocal flow in the plane is investigated for locally convex closed curves,
which may be nonsimple. For highly symmetric convex curves, the flows converge to m-fold circles, while
for Abresch–Langer type curves, the convergence to m-fold circles happens if and only if the enclosed
algebraic area is positive.

1. Introduction

In this paper, we study a nonlocal version of the curve shortening flow. Let us start
by reviewing results on the curve shortening flow. For any closed plane curve X0, one
may consider its evolution under the rule

∂ X

∂t
= k N , X (·, t) = X0(·), (1.1)

where N and k denote the inner unit normal and curvature of the curve X (·, t), re-
spectively. The curve shortening problem has been studied intensively. First, it was
proved by Gage and Hamilton [13] that every simple closed convex curve is shrunk
to a point in finite time under (1.1), and furthermore, after normalizing the enclosing
area of the curve at every instant to be constant, the normalized curve tends to a circle.
Next, Grayson [14] shows that every simple closed curve stays simple and evolves
smoothly to a convex curve in finite time. For immersed curves, it is not hard to show
that a unique solution for (1.1) exists for small time. However, simple examples show
that it may develop some singularity before it shrinks to a point. Thus, the study turns
to the classification of singularities, see for instance, Angenent [3], Oaks [24], or ex-
amining concrete examples such cardioid-shaped curves in Angenent and Velazquez
[4]. In the other direction, there are results for locally convex, immersed closed curves
with some symmetries. For instance, a class of highly symmetric curves consisting of
n-fold rotational symmetry and total curvature of 2mπ with n > 2m was introduced
in Epstein and Gage [10] (see definition in Section 5 of [10]), and it was shown that
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any such curve evolves under (1.1) to a point which is an asymptotic m-fold circle
in finite time. When m and n satisfy the relation n/2 < m < n/

√
2, Abresch and

Langer [1] discovered that there are self-similar solutions to (1.1) (which are called
to be ‘Abresch–Langer curves’ in this paper), and they proposed some saddle point
property for these solutions (see [8] for more references). This property was later
confirmed in Au [5], see also Wang [29].

As every simple closed curve evolves to a round point under the curve shortening
flow, it is expected that the isoperimetric ratio would behave nicely under the evolution.
In fact, Gage [11] showed that the isoperimetric ratio decreases under the flow for
convex curves. Unfortunately, the ratio may increase when the initial curve is not
convex. To look for a modified flow which decreases the isoperimetric ratio, Gage
introduced a nonlocal version of the curve shortening flow in [12]

∂ X

∂t
=

(
k − 2mπ

L(t)

)
N , X (·, 0) = X0(·), (1.2)

where m and L denote the winding number of the immersed closed curve and its
perimeter at time t , respectively. It is not hard to show that this modified flow exists
for small time, preserves local convexity and the enclosing signed area, and decreases
the perimeter and hence the isoperimetric ratio. It is shown in Gage [12] that a simple
closed convex curve is evolved into the circle smoothly as time goes to infinity. Sin-
gularity formation for (1.2) is studied in Escher and Ito [9]. It is worthwhile to study
(1.2) as parallel to (1.1).

In this paper, we first consider (1.2) for initial curves in the class of highly symmetric
convex curves. Denote by Hm,n the highly symmetric convex curves with n-fold
rotational symmetry and total curvature of 2mπ (n > 2m). We have

THEOREM 1.1. For X0 ∈ Hm,n, n > 2m, the flow (1.2) exists for all time and it
converges to an m-fold circle smoothly as time goes to infinity.

Next, we turn to the class of Abresch–Langer curves. We would like to put them in a
more general setting, that is, Abresch–Langer type curves. Before giving the definition,
we define the support function of locally convex closed curve X (parameterized by its
tangent angle θ ∈ [0, 2mπ ]) to be

h(θ) =< X (θ),−N (θ) >,

where −N is the outward normal vector (sin θ,− cos θ) or (cos(θ − π/2), sin(θ −
π/2)). The relationship between locally convex, closed curves and their support func-
tions is contained in Proposition 2.1 of [7].

The Abresch–Langer type curves, denoted by Am,n , are defined to be locally convex
smooth curves, which have n-fold rotational symmetry and total curvature of 2mπ

with n < 2m (m and n are mutually prime). In addition, we require that their support
functions h and curvature functions k are symmetric with respect to θ = 0 and θ =
mπ/n, and both strictly decreasing in (0, mπ/n). The examples of Am,n are illustrated
in Fig. 1.
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Figure 1. Abresh–Langer type curves

Before stating the results for Am,n , we note that if the curvature blows up at a finite
time, it means that the maximal existence time of the flow must be finite. When the
maximal existence time is infinite, the curvature may be uniformly bounded or blow
up at infinite time.

THEOREM 1.2. Assume that X0 ∈ Am,n whose enclosed algebraic area is A0.
The following conclusions hold.

(1) When A0 is positive, the flow under (1.2) exists for all time and converges to an
m-fold circle smoothly as time goes to infinity.

(2) When A0 < 0, the curvature of the flow blows up at finite time.
(3) When A0 = 0, the curvature of the flow blows up at the maximal existence time.

It is concluded that for X0 in Hm,n , the asymptotic shape of its evolution is the same
under (1.2) and curve shortening flow. For X0 in Am,n , the asymptotic shape under
(1.2) is some different from that under curve shortening flow, where the singularities
can also appear even if A0 > 0 (see [5]).

In the following, we reformulate our problem via support functions and curvature
functions. One may find the details in [7]. Since each curve X (u, t) is strictly convex,
each point on it has a unique tangent and one can use the tangent angle θ ∈ [0, 2mπ ]
to parameterize it. Generally speaking, θ is a function of u and t . In order to make
θ independent of time t , one can attain that by adding a tangential component to the
velocity vector ∂ X/∂t , which does not affect the geometric shape of the evolving curve
(see, for example, [12]). Then, evolution equations can be expressed in the coordinates
of θ and t .

Denote by h(θ, t) the support function of X (θ, t). Then, Problem (1.2) can be
reformulated as the following initial value problem for h(θ, t),

{
ht = −(h + hθθ )

−1 + 2mπ L−1(t), (θ, t) ∈ [0, 2mπ ] × (0, T ),

h(θ, 0) = h0, θ ∈ [0, 2mπ ] (1.3)

where h0 denotes the support function of initial curve X0.
If we denote the curvature function of X (θ, t) by k(θ, t), Problem (1.2) can be

reformulated by
{

kt = k2(kθθ + k − 2mπ L−1(t)), (θ, t) ∈ [0, 2mπ ] × (0, T ),

k(θ, 0) = k0, θ ∈ [0, 2mπ ] (1.4)
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where k0 denotes the curvature of initial curve X0. We note that above problems are
both periodic in θ . Throughout this paper, Problem (1.4) will be frequently used and
sometime we also need recur to Problem (1.3).

In the end of this section, we say more about nonlocal flow. As an interesting variant
of the popular curve shortening flow, the nonlocal curvature flow, arising in many
application fields [27], such as phase transitions and image processing, has received
much attention in recent years. Generally, the normal speed takes the form of

V = [F(k(u, t)) − λ(t)]N , (1.5)

where F(k) is a given function of curvature satisfying F ′(z) > 0 for all z in its domain
and λ(t) is a function of time, which may depend on certain global quantities of X (., t),
say enclosed area A(t), length L(t) or others. When F(k) = k, Problem (1.5) is usually
called k-type nonlocal flow problem. Except for the area-preserving flow considered
here, there are other k-type flows. For example, Ma and Zhu [21] studied a length-
preserving flow, and Jiang and Pan [16] studied a nonlocal flow increasing the area of
evolving curves and decreasing their length. They all obtained the same convergence
as that in [12]. When F(k) = k−1, Problem (1.5) is called 1/k-type nonlocal flow
problem and has been investigated by Pan and Yang [25] and Pan and Zhang [26].
Recently, the generalized case F(k) = kα (α �= 0) is also considered, see [19]. In the
higher dimensional case, people also consider nonlocal flows. For example, there are
Huisken’s volume preserving mean curvature flow [15] and McCoy’s surface area-
preserving mean curvature flow [23]. We also refer the readers to [9] and [6] for some
other types of area-preserving flow.

The rest of our paper is organized as the following. In Sect. 2, the sufficient condition
on the curvature is established for the convergence of flow. Then, we prove Theorem
1.1 and 1.2 in Sects. 3 and 4, respectively, where the key point is to establish time-
independent upper bound on the evolving curves’ curvature.

2. A general convergence result

A sufficient condition on the curvature for the convergence of flow is given as
follows.

THEOREM 2.1. If the flow under (1.2) exists for all time and the curvature of
evolving curves are time-independently bounded from above, the flow must converge
to an m-fold circle smoothly as t→∞.

In order to prove Theorem 2.1, some lemmas are prepared. From now on, we set
I = [−mπ/n, mπ/n] and λ(t) = 2mπ L−1(t).

LEMMA 2.2. Consider the flow under (1.2). If the curvature of evolving curves is
time-independently bounded from above, it is also time-independently bounded from
below.
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Proof. We first claim: the curvature k of X (., t) satisfies

sup
I×[0,t]

(k2
θ + k2) ≤ max

{
sup

I×[0,t]
k2, sup

I×{0}
(k2

θ + k2)
}

(2.1)

for all t ∈ [0, T ). The proof is analogous to Lemma I1.12 in Andrews [2]. Let � =
(kθ )

2 + k2 and let t > 0 be fixed. Suppose at (θ0, t0) ∈ I ×[0, t] we have �(θ0, t0) =
supI×[0,t](k2

θ + k2). Then, we may assume t0 > 0 (otherwise we are done). We claim
that kθ (θ0, t0) = 0. If not, then at (θ0, t0) the following properties

⎧⎪⎪⎨
⎪⎪⎩

kθθ + k = 0,

�θθ = 2kθ (kθθθ + kθ ) ≤ 0,

∂�
∂t = 2k2kθ (kθθθ + kθ ) − 4λ(t)kk2

θ − 2λ(t)k3 ≥ 0,

give a contradiction. Hence, kθ (θ0, t0) = 0, and we conclude

sup
I×[0,t]

(k2
θ + k2) = k2(θ0, t0) ≤ sup

I×[0,t]
k2.

By (2.1) and the uniform upper bound of the curvature, there is a constant C indepen-
dent of time such that

|kθ (θ, t)| ≤ C for all (θ, t) ∈ I × [0, T ). (2.2)

This implies

∣∣∣∣ log
k(θ2, t)

k(θ1, t)

∣∣∣∣ =
∣∣∣∣
∫ θ2

θ1

kθ (θ, t)

k(θ, t)
dθ

∣∣∣∣ ≤ C L(t) ≤ C L(0)

for all t ∈ [0, T ) and any θ1, θ2 ∈ I . In particular, we have Harnack-type estimate:

kmax(t)

kmin(t)
≤ eC L(0).

Also, by

2mπ

kmax(t)
≤

∫ 2mπ

0

1

k(θ, t)
dθ = L(t) ≤ L(0),

we have

kmin(t) ≥ kmax(t)e
−C L(0) ≥ 2mπ

L(0)
e−C L(0).

The proof is done. �

If the two-side bound on k is obtained, it will yield the smooth estimates for k.
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LEMMA 2.3. Consider the flow under (1.2). If the curvature of evolving curves is
time-independently bounded from above, for every l ∈ Z+, there exists a constant Cl

depending only on X0 such that

sup
I×[0,T )

|k(l)(θ, t)| ≤ Cl .

Proof. Recall that k(θ, t) satisfies

kt = k2kθθ + k3 − λ(t)k2.

Therefore, the estimate in Lemma 2.2 guarantees that the above equation is uniformly
parabolic. In addition, during the proof of Lemma 2.2, we also know that kθ has the
uniform estimate independent of time. Then, by standard Schauder estimate, we can
obtain the uniform estimate for kθθ . So we can regard the above equation as a linear
parabolic equation

kt = akθθ + bk, a = k2, b = k2 − λ(t)k,

Then, by using the same techniques in the proof of Theorem 8 of [20], we can obtain
the estimates independent of time for all higher-order derivatives of k in t and θ . This
can be also done via the regularity estimates for linear parabolic equation, see [17],
[18]. �

We can complete the proof of Theorem 2.1 now.

Proof of Theorem 2.1. Take the Lyapunov functional to be

F(t) = L2.

�

Then, F ′
(t) = 2L L ′(t) ≤ 0. For any t > 0,

∫ t
0 F ′

(t) dt = F(t)−F(0) ≥ −F(0),

and hence ∫ ∞

0
F ′

(t) dt > −∞. (2.3)

We claim that
F ′

(t) → 0, t → ∞. (2.4)

Suppose by contrary it does not hold. Then, there is a constant C0 > 0 and a sequence
{̃ti }∞i=1 with {̃ti } → ∞ as i → ∞, such that F ′

(̃ti ) ≤ −C0. Recall the regularity
results in Lemma 2.3. Therefore, we can find a ρ0 > 0 (independent of t̃i ), such that
|F ′

(t)| ≥ C0
2 , t ∈ [̃ti , t̃i + ρ0], and so

∫ t̃i +ρ0

t̃i
F ′

(t) dt ≤ −C0ρ0

2
. (2.5)

On the other hand, (2.3) implies that limi→∞
∫ ∞

ti
F ′

(t) dt = 0, a contradiction with
(2.5). Thus, our claim (2.4) holds.

For any sequence {t j }∞j=1 with {t j }→∞ as j→∞, {k(θ, t j )}∞j=1 is equi-continuous,
which can be observed by the fact that all the derivatives of k(θ, t)are uniformly
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bounded. By Arzela–Ascoli Theorem, we can take out a subsequence {t jk }∞k=1, such
that {k(θ, t jk )}∞k=1 converges smoothly to k∗, with k∗ smooth and strictly positive.
Since

F ′
(t jk ) = 2

[(∫ 2mπ

0
dθ

)2

−
∫ 2mπ

0

dθ

k(t jk )

∫ 2mπ

0
k(t jk ) dθ

]
→ 0, k → ∞,

we take the limit to obtain

4m2π2 =
(∫ 2mπ

0
k∗(θ)dθ

)(∫ 2mπ

0

dθ

k∗(θ)

)
.

Hölder inequality tells us that k∗ is a constant. This means that the limit curve is an
m-fold circle.

3. Proof of Theorem 1.1

In this section, we restrict ourselves to the evolution of curves in Hm,n and prove
Theorem 1.1. The ideas are basically motivated by [12] and [28]. By using the support
function, we improve the curvature’s estimate to be time-independent, so that we can
show the convergence of flow by Theorem 2.1.

For curves in Hm,n , Epstein and Gage [10] showed that their support functions
must be positive by choosing the origin to be symmetric center and the following
Bonnesen-type inequalities hold.

LEMMA 3.1. Let X ∈ Hm,n. There holds

(1) r L − A − mπr2 ≥ 0 for r ∈ [rin, rout],
(2) L2 − 4mπ A ≥ m2π2(rout − rin)

2

where rin and rout denote, respectively, the radii of the largest inscribed circle and the
smallest circumscribed circle of the curve.

Let h denote the support function relative to the center of symmetry. It is evident
that rin ≤ h ≤ rout. From this fact and the inequality (1) in Lemma 3.1, it follows that
hL − A − πmh2 ≥ 0. By integrating it with respect to the arc length s and using the
fact that

∫
X h ds = 2A, we have

∫

X
h2 ds ≤ L A

mπ
. (3.1)

Then, we use the Hölder inequality to obtain

L =
∫ L

0
hk ds ≤

(∫ L

0
h2 ds

)1/2 (∫ L

0
k2 ds

)1/2

.

With (3.1), we deduce that
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LEMMA 3.2. Let X ∈ Hm,n. There holds
∫

X
k2 ds ≥ mπ L

A
. (3.2)

Note that (3.2) can be regarded as the generalization of Gage’s inequality (see
[11]). Using (3.2), we can compute the decay rate of the isoperimetric deficiency for
the evolving curves to obtain

LEMMA 3.3. If X0 ∈ Hm,n, then for curves X (θ, t) evolving according to (1.2),
we have

m2π2

A
(rout − rin)

2 ≤ L2

A
− 4mπ ≤ C1e−C2t , ∀ t ∈ (0, T ), (3.3)

where C1 and C2 only depend on initial data X0.

The global existence of the flow is proved via considering the parabolic equation
(1.4) satisfied by k. The proof just follows the lines of [12]. According to [12], we
define the median curvature k∗ as

k∗(t) = sup{β : k(θ, t) > β on some interval of length π}.
For X0 ∈ Hm,n with enclosed algebraic area A0 and length L0, we have the estimate

k∗(t) ≤ L0/(2A0), t ∈ [0, T ).

Note that the rotational symmetry of X0 guarantees that k0 is 2mπ/n-periodic in θ

and so is k(θ, t) in view of the parabolic equation (1.4). Since 2mπ/n < π , we have

k∗(t) = kmin(t).

The length of the curve is given by

L =
∫ 2mπ

0

dθ

k(θ, t)
<

∫ 2mπ

0

dθ

kmin(t)
= 2mπ

kmin(t)
.

Hence, k∗(t) ≤ 2mπ/L(t). As L(t)2 ≥ 4mπ A(t), we have k∗(t) ≤ L(t)/(2A(t)) ≤
L0/(2A0).

Subsequently, mimicking the proof of Proposition 3.6 in Gage [12], we can show the
integral

∫ 2mπ

0 log k(θ, t) dθ has an upper bound C(X0, T ) on [0, T ). In the original
arguments, we only need change the integral interval to be [0, 2mπ ] and use the
isoperimetric inequality for nonsimple closed curves. To go further, we need to estimate
the L2-norm of kθ , which can be done according to Lemma 3.4 and Corollary 3.5 in
[12]. In fact, we have

∫ 2mπ

0
(kθ )

2 dθ ≤ 2mπ M2 + DM + C

where M = sup[0,2mπ ]×[0,T ) k(θ, t) and the constants C, D only depend on the initial

curve. Now, we can convert the upper bound for
∫ 2mπ

0 log k(θ, t) dθ to be a bound for
sup[0,2mπ ]×[0,T ) k(θ, t).
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Let (θ1, t1) be a point such that k(θ1, t1) = dM with 0 < d < 1. Then

k(θ1, t1) − k(θ, t1) =
∫ θ1

θ

kθ dθ ≤
(∫ 2mπ

0
(kθ )

2
)1/2

(θ1 − θ)1/2

≤ (2mπ M2 + DM + C)1/2(θ1 − θ)1/2

≤ MC1(θ1 − θ)1/2

for some constant C1 (only depending on initial curve) since we can assume M > 1.
It means that

k(θ, t1) ≥ dM − MC1(θ1 − θ)1/2.

So we can estimate
∫ 2mπ

0
log k(θ, t) dθ

=
∫

|θ−θ1|≤( d
2C1

)2
log k(θ, t) dθ +

∫

|θ−θ1|≥( d
2C1

)2
log k(θ, t) dθ

≥ log
(dM

2

)
· d2

2C2
1

+
(

2mπ − d2

2C2
1

)
log(kmin(0)e−μt1)

≥ C2 log M + C3 − C4t1.

where the estimate kmin(t) ≥ kmin(0)e−μt1 is from the proof of Lemma 3.1 in [12],
and the constants C2(> 0), C3, C4(> 0), μ(> 0) only depend on initial curve. Thus,
an upper bound for M is deduced, which may depend on T . We can conclude the
global existence result of the flow as follows.

LEMMA 3.4. Under (1.2) with X0 ∈ Hm,n, the flow exists for all time and the
evolving curves also belong to Hm,n.

Apart from the proof line of Gage [12], we improve the upper bound of k to be
time-independent, in order to obtain a more detailed proof of the flow’s convergence
than Gage [12]. To go ahead, we need two-side positive bound for support function h.

LEMMA 3.5. Consider Problem (1.2) with X0 ∈ Hm,n. The support function h of
X (., t) satisfies

0 < r0 ≤ h(θ, t) ≤ R0, (θ, t) ∈ I × [0, T )

for some constants r0 and R0.

Proof. Note that rout obviously has positive upper and lower bound. After the global
existence of flow is established in Lemma 3.4, we take the limit in (3.3) to obtain

rout − rin → 0, t → ∞.

It implies rin also has a positive lower bound. The proof is done just by recalling the
inequality rin ≤ h(θ, t) ≤ rout, which is true because of the symmetry of X (., t). �
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LEMMA 3.6. Consider Problem (1.2) with X0 ∈ Hm,n. The curvature function k
of X (., t) satisfies

k(θ, t) ≤ M1, ∀ (θ, t) ∈ I × [0, T ),

for some constant M1 independent of time T .

Proof. The method is originally from Tso [28]. For convenience, we write λ(t) =
2mπ/L(t). Fix a t ∈ (0, T ). Consider the quantity Q = k/(h − a) where h ≥ 2a.
According to Lemma 3.5, one can choose a = r0/2. Let the maximum of Q over
I × [0, t] be attained at (θ0, t0), t0 > 0. At the point (θ0, t0), we have

∂ Q

∂θ
= 0,

∂ Q

∂t
≥ 0, and

∂2 Q

∂θ2 ≤ 0.

A direct computation shows that

Qθ = kθ

h − a
− khθ

(h − a)2 ,

Qθθ = kθθ

h − a
− 2hθ

h − a
Qθ − khθθ

(h − a)2

= kθθ

h − a
− 2hθ

h − a
Qθ − 1 − kh

(h − a)2 ,

and

Qt = kt

h − a
− kht

(h − a)2

= k2kθθ

h − a
+ k3 − λ(t)k2

h − a
− λ(t)k − k2

(h − a)2

where the last inequality is due to the equations for k and h. Substituting Qθθ and Qθ ,
we have

∂ Q

∂t
= k2 Qθθ + 2k2hθ Qθ

h − a
+ 2k2

(h − a)2 − ak3

(h − a)2 − λ(t)

(
k2

h − a
+ k

(h − a)2

)
.

Since

0 ≤ ∂ Q

∂t
≤ 2k2

(h − a)2 − ak3

(h − a)2

≤ −Q2[a2 Q − 2]
(where the inequality h − a ≥ a > 0 is used), we deduce that Q(θ0, t0) ≤ 2

a2 . When
the maximum of Q attains at the initial time, we have Q ≤ maxI Q(θ, 0). Hence,

Q ≤ max
{

2
a2 , maxI Q(θ, 0)

}
:= M. That is k

h−a ≤ M. It follows that

k ≤ M(h − a) ≤ M(R0 − r0/2).

�

Now, the proof of Theorem 1.1 can be completed.
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Proof of Theorem 1.1. Since the time-independent upper bound for k has been ob-
tained in Lemma 3.6, we can use Theorem 2.1 to draw the conclusion. �

4. Proof of Theorem 1.2

In this section, we consider the evolution of curves in Am,n and prove Theorem 1.2.
When A0 ≤ 0, the conclusion is obvious. Since the flow is area-preserving, it certainly
cannot converge to an m-fold circle, which has positive algebraic area. As a result, we
must have curvature blow-up at maximal existence time. Furthermore, by Proposition
9 in [9], the life span of the flow must be finite when A0 < 0. When A0 = 0, it is
remarked in [9] that whether the life span is finite or not is still an open problem.

We only need deal with the case of A0 > 0. We point out that the proof of Theorem
1.1 relies much on the use of the Bonnesen-type inequalities. But unfortunately, we
know little about the relevant results for general nonsimple locally convex curves, in
particular, the curves in Am,n . However, the ‘good’ shape of curves guarantees that
the estimates for curvature are feasible.

Two lemmas are prepared to give some information about the shape of the evolving
curves starting some X0 ∈ Am,n .

LEMMA 4.1. Consider Problem (1.2) with X0 ∈ Am,n. Let h(θ, t) be support
function of X (., t) and k(θ, t) be curvature function of X (., t). Then,

(a) both of h and k are 2mπ/n-periodic in θ , and symmetric with respect to θ = 0
and θ = mπ/n;

(b) both of h and k always attain their maximum at θ = 0. hθ and kθ are negative on
(0, mπ/n).

Proof. It is easy to observe that (a) holds. We only prove (b). By differentiating the
equation in (1.3), we see that the function u = hθ satisfies a parabolic equation

ut = a(θ, t)uθθ + b(θ, t)u, (θ, t) ∈ I × [0, T )

where a(θ, t) = b(θ, t) = k2 and T > 0. According to the Sturm comparison principle
(see [22]), the number of zeroes of u is nonincreasing in time. Note that at t = 0, the
function

u(θ, 0) = ∂

∂θ
h0(θ)

has exactly 2 zeros in I (a circle). Hence, the number of zeroes of u(θ, t) cannot exceed
two for all t ∈ [0, T ). On the other hand, by the reflectional symmetry of Problem
(1.3) with respect to the axis θ = 0 and θ = mπ/n, we see that u(θ, t) must vanish
at θ = 0 and mπ/n for every t ∈ [0, T ). So we conclude that u(θ, t) does not change
its sign on (−mπ/n, 0) and (0, mπ/n) for all t ∈ [0, T ). Then, the conclusion for h
follows. The conclusion for k can be proved similarly. �
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LEMMA 4.2. Consider Problem (1.2) with X0 ∈ Am,n. The support function h of
X (., t) satisfies

h0(mπ/n) ≤ h(θ, t) ≤ h0(0), (θ, t) ∈ I × [0, T ).

Proof. We claim that for any time t ∈ [0, T )

ht < 0 at θ = 0; ht > 0 at θ = mπ/n.

Indeed, since k(mπ/n, t) ≤ k(θ, t) ≤ k(0, t) by Lemma 4.1, we have

2mπ

k(0, t)
< L =

∫ 2mπ

0

dθ

k(θ, t)
<

2mπ

k(mπ/n, t)
.

Hence,

k(mπ/n, t) <
2mπ

L
< k(0, t).

Then, the claim is true in view of the equation ht = 2mπ/L −k. The proof is done. �

For X0 ∈ Am,n , if its support function h0 is positive everywhere, then by the above
lemma we have two-side positive bound for h. It permits us to argue as in Sect. 3 to
show the convergence of the flow. But this will fail when h0 is nonpositive at mπ/n.
So we employ the method of Au [5] to overcome the difficulty.

LEMMA 4.3. Consider Problem (1.2) with X0 ∈ Am,n with A0 > 0. There exists
a constant M independent of time T such that

k(θ, t) ≤ M, ∀ (θ, t) ∈ I × [0, T ).

Proof. After suitable coordinates are chosen, the leave of evolving curve X with θ ∈
(−δ, δ) (δ is suitably small) is a graph u(x, t) over some interval, say (−R(t), R(t)).
More precisely, we may express X (θ, t) = (x, u(x, t)) with x ∈ [−R(t), R(t)].
Furthermore, we claim that the interval (−R(t), R(t)) can be independent of time t .
Indeed, when A0 > 0, it is easy to observe that the area Ã(t) enclosed by each leave
satisfies Ã(t) > A0/n. Set the horizontal width of the leave is d(t) and the vertical
width is l(t) (see Fig. 2). Obviously, Ã(t) ≤ d(t)l(t). This means

d(t) ≥ Ã(t)/ l(t) ≥ A0/(nl(t)).

Recall that l(t) ≤ h(0, t) ≤ h0(0). Hence, our claim is true.
Now, we take the interval to be (−R, R). A calculation shows that (see [7]) u

satisfies

ut = uxx

1 + u2
x

− 2mπ

L(t)

√
1 + u2

x , (x, t) ∈ (−R, R) × (0, T ). (4.1)

Note that u is a concave function. Therefore, we have the estimate

sup{|ux | : x ∈ (−R/2, R/2)} ≤ 2

R
osc{u(x, t) : x ∈ (−R, R)}

≤ 2

R
h(0, t) ≤ 2

R
h0(0).



Vol. 14 (2014) Area-preserving evolution 399

Figure 2. A leave represented by a graph

Differentiating (4.1), we know w = ux satisfies

wt = wxx

1 + w2 − 2ww2
x

(1 + w2)2 − 2mπ

L(t)

wwx√
1 + w2

, (x, t) ∈ (−R, R) × (0, T ).

Since we have the estimate |w| ≤ 2
R h0(0) on (−R/2, R/2) × (0, T ), by the interior

gradient estimate for quasilinear parabolic equations (see Theorem 11.18 in [18]), we
obtain

|uxx | = |wx | ≤ C(R), (x, t) ∈ (−R/4, R/4) × (t − R/4, t),

with t ∈ (R/4, T ). This gives a time-independent upper bound for k = uxx/(1 +
u2

x )
3/2. �

Now, the proof of Theorem 1.2 can be completed.

Proof of Theorem 1.2. For the case of A0 > 0, since we have obtained the time-
independent upper bound for k in Lemma 4.3, the convergence is an immediate result
of Theorem 2.1. The conclusion for the case of A0 ≤ 0 is obvious as noted in the
beginning of this section. �

For the asymptotic shape of the flow in Theorem 1.2(2), it can be observed such a
lemma holds.

LEMMA 4.4. For X0 ∈ Am,n, the flow under (1.2) exists as long as the area of
each leave of evolving curves is positive.

Proof. Define k∗(t) as in Sect. 3. We claim that k∗(t) is bounded as long as the area of
each leave is positive. If M < k∗(t), then k(θ, t) > M on some interval (θ0, θ0 + π).
This implies that each leave lies between paralleled lines whose distance is given by

∫ θ0+π

θ0

sin(θ − θ0)

k(θ, t)
dθ ≤ 2

M
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Figure 3. A leave of evolving curve

(see Fig. 3). The diameter is bounded by L(t)/(2n), and the area of each leave (denoted
by Ã(t)) is bounded by the width times the diameter, that is, Ã(t) < L(t)/M . We
have M ≤ L(t)/ Ã(t). Since M can be chosen arbitrarily close to k∗(t), we have
k∗(t) ≤ L(t)/ Ã(t). So our claim is true. Then, arguing as in Sect. 3, we can use the
boundedness of k∗(t) to show global existence of the flow. �

Lemma 4.4 tells us that if the flow exists only for finite time, say T ∗, then the area
of each leave must be zero at t = T ∗. When this happens, if A0 < 0, n cusps are
formed; if A0 = 0, the flow evolves into a point.
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