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Abstract. The purpose of this article is to establish upper and lower estimates for the integral kernel of the
semigroup exp(−t P) associated with a classical, strongly elliptic pseudodifferential operator P of positive
order on a closed manifold. The Poissonian bounds generalize those obtained for perturbations of fractional
powers of the Laplacian. In the selfadjoint case, extensions to t ∈ C+ are studied. In particular, our results
apply to the Dirichlet-to-Neumann semigroup.

0. Introduction

Let M be a compact n-dimensional Riemannian C∞-manifold and P a classical,
strongly elliptic pseudodifferential operator (ψdo) on M of order d > 0. We consider
upper and lower estimates for the integral kernel KV (x, y, t) of the generalized heat
semigroup V (t) = e−t P . Semigroups generated by such nonlocal operators have been
of recent interest in different settings.

(1) For a Riemannian manifold ˜M with boundary M , the Dirichlet-to-Neumann oper-
ator is a first-order pseudodifferential operator on M with principal symbol |ξ |.
Arendt and Mazzeo [3,4], initiated the study of the associated semigroup and its
relation to eigenvalue inequalities, motivating later studies, e.g., by Gesztesy and
Mitrea [12] and Safarov [21].

(2) The heat kernel generated by fractional powers of the Laplacian �d/2 and their
perturbations provides another example. Sharp estimates for e−t�d/2

, 0 < d < 2,
can be obtained from those for e−t� by subordination formulas. For perturbations
on bounded domains in R

n , recent work on estimates includes Chen et al. [8] and
other works by these authors, and Bogdan et al. [6].

In this article, we generalize the Poissonian estimates obtained in the second case to
sectorially elliptic operators P of all positive orders on closed manifolds, by pseudo-
differential methods. In particular, we allow nonselfadjoint operators and systems. A
main result for such systems P is as follows:
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THEOREM 1. The kernel of the semigroup satisfies

|KV (x, y, t)| ≤ Ce−c1t t (d(x, y)+ t1/d)−n−d , for all x, y ∈ M, t ≥ 0, (*)

for any c1 smaller than the infimum γ (P) of the real part of the spectrum of P.
If P is selfadjoint ≥ 0, the estimates extend to the complex t = eiθ |t | with |θ | < π

2 ,
with uniform estimates

|KV (x, y, t)| ≤ C(cos θ)−N e−γ (P)Re t |t |
(d(x, y)+ |t |1/d)d ((d(x, y)+ |t |1/d)−n + 1),

(**)

where N = max{ n
d ,

7n
2 + 4d + 7}.

Here, d(x, y) denotes the distance between x and y. If P is a system, it suffices
that P is sectorially elliptic, having the spectrum of the principal symbol in a sector
{λ �= 0 | | arg λ| ≤ θ0} with θ0 <

π
2 . Extending (*), also derivatives of the kernel,

and, if further spectral information is available, a refined description of the long-time
behavior, are obtained in the paper. Moreover, for the expansion of the kernel in quasi-
homogeneous terms in local coordinates, we show estimates of each term.

For the Dirichlet-to-Neumann operator, as well as for the perturbations of fractional
powers of the Laplacian of orders 0 < d < 2, we get not only upper estimates but
also similar lower estimates at small distances.

The estimate (*) exhibits a large class of operators which satisfy upper estimates
closely related to those studied abstractly, e.g., in Duong and Robinson [10] and
Coulhon and Duong [9]. They have implications for the maximal regularity of the
associated evolution equation in L p, the L p-independence of the spectrum as well as
the functional calculus.

As a simple application of (**) and Hölder’s inequality, one can obtain ultracon-
tractive estimates

‖e−t P‖L(L p,Lq ) ≤ C(cos θ)−N
∥

∥

|t |
(d(x, y)+ |t |1/d)d ((d(x, y)+ |t |1/d)−n + 1)

∥

∥

Lq,y L p′,x
,

uniformly for all t ∈ C with Re t > 0. In the case of operators with Gaussian heat ker-
nel estimates, a rich spectral theory has been developed (see e.g., Arendt [2], Ouhabaz
[20]).

With the help of comparison principles, our result implies Poissonian estimates,
e.g., for boundary problems in an open subset	 of M : If P is the variational operator
associated with a Dirichlet form a with domain D ⊂ L2(M), we consider the abstract
Dirichlet realization P	 associated with the closure of a|D∩C0(	). In the case where
a is Markovian, one obtains 0 ≤ Ke−t P	 ≤ Ke−t P on 	. See Grigor’yan and Hu [14]
for more refined comparison principles.
Outline. Section 1 collects some known facts. In Sect. 2, we treat semigroups gen-
erated by nonselfadjoint P for t ≥ 0, by pseudodifferential methods based on [16].
Section 3 extends the estimates to complex t for selfadjoint P . Section 4 includes
lower estimates for perturbations of fractional powers of the Laplacian and for the
Dirichlet-to-Neumann operator.
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1. Preliminaries

Notation: 〈ξ 〉 = √

ξ2 + 1. The indication ≤̇ means “≤ a constant times,” ≥̇
means “≥ a constant times,” and =̇ means that both hold.

Let P be a classical ψdo of order d ∈ R+, acting in a Hermitian N -dimensional
C∞ vector bundle E over a closed, compact Riemannian n-dimensional manifold M .

We assume that the principal symbol p0(x, ξ) of P has its spectrum (for ξ �= 0)
in a sector {λ �= 0 | | arg λ| ≤ ϕ0} for some ϕ0 <

π
2 . (In the notation of the book

[16], P −λ is parameter-elliptic on the rays in the complementing sector; according to
Seeley [23], the latter are “rays of minimal growth” of the resolvent.) From P , one can
define the generalized heat operator V (t) = e−t P , t ≥ 0, a holomorphic semigroup
generated by P , as explained in detail, e.g., in [16, Sect. 4.2]. The kernel KV (x, y, t)
(C∞ for t > 0) was analyzed there in its dependence on t , but mainly with a view
to sup-norm estimates over all x, y, allowing an analysis of the diagonal behavior,
that of KV (x, x, t). We shall expand the analysis here to give more information on
KV (x, y, t).

For convenience of the reader, we recall the definitions of symbol spaces that are
used. For d ∈ R, the symbol space Sd

1,0(R
n × R

n) consists of the C∞-functions
a(x, ξ) (x, ξ ∈ R

n) such that for all α, β ∈ N
n
0,

|Dβ
x Dα

ξ a(x, ξ)| ≤̇ 〈ξ 〉d−|α|; (1.1)

it is a Fréchet space provided with the seminorms supx,ξ |〈ξ 〉−d+|α|Dβ
x Dα

ξ a|. The
symbols define operators A = Op(a(x, ξ)) of order d by

Op(a(x, ξ))u = F−1a(x, ξ)Fu =
∫

Rn
eix ·ξa(x, ξ)û(ξ) d̄ξ,

where Fu = û denotes the Fourier transform and d̄ξ = (2π)−ndξ . The operator
maps from S(Rn) to S(Rn), extending to suitable spaces of distributions and Sobolev
spaces, and obeying various composition rules.

The space of classical symbols of order d, Sd(Rn × R
n), is the subset of Sd

1,0(R
n ×

R
n) where a(x, ξ) moreover has an asymptotic expansion a ∼ ∑

l∈N0
ad−l in terms

ad−l(x, ξ) homogeneous in ξ of degree d − l for |ξ | ≥ 1, such that a′
M = a −

∑

l<M ad−l ∈ Sd−M
1,0 for all M ∈ N0. The principal symbol ad is often denoted a0.

(The homogeneity need only hold for |ξ | ≥ R, some R > 0.)
It should be noted that we here use the globally estimated symbols of Hörmander

[17, Section 18.1], which have the advantage that remainders are kept inside the cal-
culus.

Operators on manifolds are defined by use of local coordinates and rules for change
of variables, composition with cut-off functions etc.; we refer to the quoted works for
details.

The book [16] moreover includes parameter-dependent symbols a(x, ξ, λ) for λ in
a sector of C, with special symbol estimates involving the parameter (also operators
on manifolds with boundary are treated there).
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Consider a localized situation where the symbol p(x, ξ) of P is defined in a bounded
open subset of R

n—we can assume that it is extended to R
n , with symbol estimates

valid uniformly in x . The principal symbol p0(x, ξ) is an N × N -matrix with spectrum
in the sector {λ �= 0 | | arg λ| ≤ ϕ0}, when |ξ | ≥ 1. This holds in particular when P
is strongly elliptic, for then

Re(p0(x, ξ)v, v) ≥ c|ξ |d |v|2, for |ξ | ≥ 1, v ∈ C
N , with c > 0, (1.2)

and hence since

| Im(p0v, v)| ≤ |(p0v, v)| ≤ C |ξ |d |v|2 ≤ c−1C Re(p0v, v), for |ξ | ≥ 1, v ∈ C
N ,

(1.3)

the sectorial ellipticity holds with ϕ0 = arctan(c−1C) ∈ [0, π2 [ . When P is scalar,
the two ellipticity properties are equivalent, but for systems, strong ellipticity is more
restrictive than the mentioned sectorial ellipticity (also called parabolicity of ∂t + P).

When working in a localized situation, we assume (as we may) that the sectorial
ellipticity holds uniformly for the symbols extended to R

n . The estimates in the fol-
lowing are valid in particular for operators given on R

n with global symbol estimates.
The spectrum σ(P) of P lies in a right half plane and has a finite lower bound

γ (P) = inf{Re λ | λ ∈ σ(P)}. We can modify p0 for small ξ such that σ(p0(x, ξ))
has a positive lower bound for all (x, ξ) and lies in {λ = reiϕ | r > 0, |ϕ| ≤ ϕ0}.

The information in the following is taken from [16, Section 3.3].
The resolvent Qλ = (P − λ)−1 exists and is holomorphic in λ on a neighborhood

of a set

Wr0,ε = {λ ∈ C | |λ| ≥ r0, arg λ ∈ [ϕ0 + ε, 2π − ϕ0 − ε],} ∪ {Re λ ≤ γ (P)− ε}.
(1.4)

(with ε > 0). There exists a parametrix Q′
λ on a neighborhood of a possibly larger set

(with δ > 0, ε > 0)

Vδ,ε = {λ ∈ C | |λ| ≥ δ or arg λ ∈ [ϕ0 + ε, 2π − ϕ0 − ε]} ∪ {Re λ < inf
x,ξ
γ (p0(x, ξ))};

such that this parametrix coincides with (P − λ)−1 on the intersection. Its symbol
q(x, ξ, λ) in local coordinates is holomorphic in λ there and has the form

q(x, ξ, λ) ∼
∑

l≥0

q−d−l(x, ξ, λ), where q−d = (p0(x, ξ)− λ)−1. (1.5)

Here, when P is scalar,

q−d−1 = b1,1(x, ξ)q
2−d , . . . , q−d−l =

2l
∑

k=1

bl,k(x, ξ)q
k+1
−d , . . . ; (1.6)
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with symbols bl,k independent of λ and homogeneous of degree dk −l in ξ for |ξ | ≥ 1.
When P is a system, each q−d−l is for l ≥ 1 a finite sum of terms with the structure

r(x, ξ, λ) = b1qν1−db2qν2−d · · · bM qνM−d bM+1, (1.7)

where the bk are homogeneous ψdo symbols of order sk independent of λ, the νk are
positive integers with sum∈ [2, 2l+1], and s1+· · ·+sM+1−d(ν1+· · ·+νM ) = −d−l.
(Further information and references in Remark 3.3.7.) Moreover (cf. Theorems 3.3.2,
3.3.5.), the remainder q ′

M = q −∑

l<M q−d−l satisfies for λ on the rays in Wr0,ε:

|Dβ
x Dα

ξ q ′
M (x, ξ, λ)| ≤̇ 〈ξ 〉d−|α|−M (1 + |ξ | + |λ|1/d)−2d , when M + |α| > d.

(1.8)

2. Semigroups generated by sectorially elliptic pseudodifferential operators

As explained in [16, Section 4.2], the semigroup V (t) = e−t P can be defined from
P by the Cauchy integral formula

V (t) = i
2π

∫

C
e−tλ(P − λ)−1 dλ, (2.1)

where C is a suitable curve going in the positive direction around the spectrum of P;
it can be taken as the boundary of Wr0,ε for a small ε. In the local coordinate patch,
the symbol is (for any M ∈ N0)

v(x, ξ, t) = v−d + · · · + v−d−M+1 + v′
M ∼

∑

l≥0

v−d−l(x, ξ, t), where

v−d−l = i
2π

∫

C
e−tλq−d−l(x, ξ, λ) dλ, v′

M = i
2π

∫

C
e−tλq ′

M dλ. (2.2)

A prominent example is e−t
√
� where� denotes the (nonnegative) Laplace–Beltrami

operator on M . This is a Poisson operator from M to M ×R+ as defined in the Boutet
de Monvel calculus ([7], cf. also [16]), when t is identified with xn+1. When M is
replaced by R

n , its kernel is the well-known Poisson kernel

K(x, y, t) = cn
t

(|x − y|2 + t2)(n+1)/2
(2.3)

for the operator solving the Dirichlet problem for � on R
n+1+ .

Also, more general operator families V (t) = e−t P with P of order 1 are sometimes
spoken of as Poisson operators (e.g., by Taylor [24]), and indeed, we can show that
for P of any order d ∈ R+, V (t) identifies with a Poisson operator in the Boutet
de Monvel calculus. This will be taken up in detail elsewhere. In order to match the
conventions for Poisson symbol-kernels, the indexation in (2.2) is chosen slightly dif-
ferently from that in [16, Section 4.2], where v−d−l would be denoted v−l . We define
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V−d−l(t) and V ′
M (t) in local coordinates to be the ψdo’s with symbol v−d−l(x, ξ, t)

resp. v′
M (x, ξ, t). The kernel KV (x, y, t) is in local coordinates expanded according

to the symbol expansion:

KV (x, y, t) =
∑

0≤l<M

KV−d−l (x, y, t)+ KV ′
M
(x, y, t). (2.4)

The following result follows from [16].

THEOREM 2.1. 1◦ In local coordinates, the kernel terms satisfy for some c′ > 0:

|KV−d−l (x, y, t)| ≤̇ e−c′t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t (l−n)/d if d − l > −n,

t (| log t | + 1) if d − l = −n,

t if d − l < −n.

(2.5)

For a given c0 > 0 we can modify p0 to satisfy inf x,ξ γ (p0(x, ξ)) ≥ c0; then c′ can
be any number in ]0, c0[ .

2◦ Moreover, with the modification in 1◦ used with c0 = γ (P) if γ (P) > 0, the
remainder satisfies

|KV ′
M
(x, y, t)| ≤̇ e−c1t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t (M−n)/d if d − M > −n,

t (| log t | + 1) if d − M = −n,

t if d − M < −n,

(2.6)

for any c1 < γ (P). In particular,

|KV (x, y, t)| ≤̇ e−c1t t−n/d . (2.7)

Proof. The theorem was shown with slightly less precision on the constants c′, c1 in
[16, Theorems 4.2.2 and 4.2.5]. It was there aimed toward applications where d is
integer. The estimates of resolvent symbols in Sect. 3.3 are still valid when d ∈ R+,
but the replacement of P by P + a (a ∈ R) in the beginning of Sect. 4.2 on heat
operators only gives a classical ψdo when d is integer, so we need another device to
take the value of γ (P) into account for general d ∈ R+. We shall now explain the
needed modifications, with reference to [16].

For 1◦, the proof in Theorem 4.2.2 shows the validity of (2.5) with a small positive
c′ < inf x,ξ γ (p0(x, ξ)). For a given c0 > 0, the proof goes through to allow any
c′ < c0, when p0(x, ξ) is modified for |ξ | ≤ R (for a possibly large R) to satisfy
inf γ (p0(x, ξ)) ≥ c0.

For 2◦, the remainder symbol q ′
M is holomorphic on Wr0,ε; here, if γ (P) > 0 we

define the terms q−d−l as under 1◦, with c0 = γ (P). For large M , q ′
M is ≤̇ 〈λ〉−2.

The proof of Th. 4.2.2 gives an estimate of KV ′
M

by e−c1t t (1 + | log t |), and the proof
of Theorem 4.2.5 shows how to remove the logarithm. The estimates of KV ′

M
for lower

values of M follow by addition of the estimates of finitely many KV−d−l -terms. �
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We shall improve this to give information on the dependence on |x − y| also. This
will rely on the following result on kernels of Sr

1,0-ψdo’s, found, e.g., in Taylor [24,
Lemma XII 3.1] or [25, Proposition VII 2.2].

PROPOSITION 2.2. Let a ∈ C∞(Rn × R
n) be such that for some r ∈ R, some

N ∈ N0 with N > n + r , and all 0 ≤ |α| ≤ N,

supx,ξ 〈ξ 〉−r+|α||Dα
ξ a(x, ξ)| ≤ C0 < ∞. (2.8)

Then the inverse Fourier transform KA(x, y) = F−1
ξ→za(x, ξ)|z=x−y is O(|x − y|−N )

for |x − y| → ∞, and satisfies for all |x − y| > 0:

|KA(x, y)| ≤̇ C0

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|x − y|−r−n if r > −n,

| log |x − y|| + 1 if r = −n,

1 if r < −n.

(2.9)

In particular, if a ∈ Sr
1,0(R

n × R
n) defining the ψdo A, the estimates hold for its

kernel KA(x, y) for all N > n + r , each estimate depending only on the listed symbol
seminorms.

The dependence of the kernel norms on C0 is seen from an inspection of the proof.
In the scalar case, the kernel study can be based on nice explicit formulas that

we think are worth explaining. Consider the contribution from one of the terms in
(1.6). As integration curve, we can here use Cϕ consisting of the two rays reiϕ and
re−iϕ, ϕ = ϕ0 + ε. For t > 0, a replacement of tλ by � gives the following:

wl,k(x, ξ, t) = i
2π

∫

Cϕ
e−tλ bl,k(x, ξ)

(p0(x, ξ)− λ)k+1 dλ = i
2π

∫

Cϕ
e−� tkbl,k

(tp0 − �)k+1 d�

= i
2π tkbl,k

∫

Cϕ,R

e−�

(tp0 − �)k+1 d� = 1
k! t

kbl,ke−tp0; (2.10)

here, we have replaced the integration curve by a closed curve Cϕ,R connecting the
two rays by a circular piece in the right half plane with radius R ≥ 2t |p0(x, ξ)| and
applied the Cauchy integral formula for derivatives of holomorphic functions. This
shows the following:

v−d = e−tp0
, v−d−l(x, ξ, t) =

2l
∑

k=1

1
k! t

kbl,k(x, ξ)e
−tp0(x,ξ) for l ≥ 1. (2.11)

Then, the kernels of the V−d−l(t) can be estimated by the following observations.

PROPOSITION 2.3. Let p0(x, ξ) be the principal symbol of a classical scalar
strongly ellipticψdo P on R

n of order d ∈ R+, chosen such that Re p0(x, ξ) ≥ c0>0.
1◦ Let c′ ∈ [0, c0[ . For any j ∈ N0, (t (p0(x, ξ)−c′)) j e−t (p0(x,ξ)−c′) is in S0

1,0(R
n×

R
n) uniformly in t ≥ 0.
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2◦ Let

w(x, ξ, t) = i
2π

∫

Cϕ
e−tλ b(x, ξ)

(p0(x, ξ)− λ)k+1 dλ, (2.12)

where k ≥ 1 and b ∈ Sdk−l
1,0 (Rn × R

n). Then

w(x, ξ, t) = 1
k! t

kb(x, ξ)e−tp0(x,ξ) = e−c′t t w′(x, ξ, t), (2.13)

where w′(x, ξ, t) ∈ Sd−l
1,0 (R

n × R
n), uniformly for t ≥ 0.

Moreover, w̃(x, z, t) = F−1
ξ→zw satisfies for any c′ ∈ ]0, c0[ :

|w̃(x, z, t)| ≤̇ e−c′t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t |z|l−d−n if d − l > −n,

t (| log |z|| + 1) if d − l = −n,

t if d − l < −n.

(2.14)

It follows that for l ≥ 1, KV−d−l (x, y, t) = F−1
ξ→zv−d−l(x, ξ, t)|z=x−y satisfies the

estimates

|KV−d−l (x, y, t)| ≤̇ e−c′t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t |x − y|l−d−n if d − l > −n,

t (| log |x − y|| + 1) if d − l = −n,

t if d − l < −n.

(2.15)

Moreover, KV−d−l (x, y, t) is O(e−c′t t |x − y|−N ) for |x − y| → ∞, any N.

Proof. 1◦. For each fixed t > 0, e−tp0(x,ξ) is rapidly decreasing in ξ , hence is in S−∞
1,0 .

But for our purposes we need estimates that hold uniformly in t for t → 0. Let

M j,k,l = sup
s≥0

sl∂k
s (s

j e−s).

Then, for all t ≥ 0, ξ ∈ R
n ,

|(tp0(x, ξ)) j e−tp0(x,ξ)| ≤ M j,0,0,

|∂ξi
(

(tp0) j e−tp0)| = |∂s(s
j e−s)|s=tp0 t∂ξi p0| ≤ M j,k,1|(p0)−1∂ξi p0| ≤̇ 〈ξ 〉−1, . . .

|∂αξ
(

(tp0) j e−tp0)| ≤̇ 〈ξ 〉−|α|, . . . (2.16)

showing the assertion for c′ = 0. (2.16) holds also if p0 is replaced by p0 − c′
throughout, when c′ ∈ ]0, c0[ .

2◦. The first identity in (2.13) was shown in (2.10). We can also write

w(x, ξ, t) = 1
k! t b(p0 − c′)1−k(t (p0 − c′))k−1e−c′t e−t (p0−c′) = e−c′t t w′(x, ξ, t).

Here, b(p0 − c′)1−k is in Sd−l
1,0 , independent of t , and by 1◦, (t (p0 − c′))k−1e−t (p0−c′)

is uniformly in S0
1,0, so it follows that w′ is uniformly in Sd−l

1,0 . We can now apply
Proposition 2.2 to draw the conclusion (2.14).

Since v−d−l(x, ξ, t) is a sum of such terms when l ≥ 1, the estimates (2.15)
follow. �
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For systems P , we can use systematic estimates from [16]. We find for general P:

THEOREM 2.4. 1◦ In local coordinates, KV−d satisfies for some c′ > 0:

|KV−d (x, y, t)| ≤̇ e−c′t t |x − y|−d−n . (2.17)

For l ≥ 1, the kernelsKV−d−l satisfy (2.15). For all l, the kernels are O(e−c′t t |x−y|−N )

for |x − y| → ∞, any N. If γ (P) > 0, we modify p0 to satisfy infx,ξ γ (p0(x, ξ)) ≥
γ (P), then c′ can be any number in ]0, γ (P)[ .

2◦ Moreover, with p0 chosen as in 1◦,

|KV ′
M
(x, y, t)| ≤̇ e−c1t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t |x − y|M−d−n if d − M > −n,

t (| log |x − y|| + 1) if d − M = −n,

t if d − M < −n,

(2.18)

for any c1 < γ (P). In particular,

|KV (x, y, t)| ≤̇ e−c1t t |x − y|−d−n . (2.19)

Proof. 1◦. When P is scalar, the estimates in (2.15) for l ≥ 1 are shown in Proposition
2.3, when we take c0 = γ (P) if γ (P) > 0. For general systems P , the symbols q−d−l

are sums of symbols as in (1.7), and we apply [16, Lemma 4.2.3]. Here, (4.2.35) with
k = −d − l shows that

|Dβ
x Dα

ξ v−d−l(x, ξ, t)| ≤̇ 〈ξ 〉d−l−|α|te−c′t ,

for all α, β. Actually, the estimate (4.2.35) has e−ct〈ξ〉d
with a positive c as the last fac-

tor, but an inspection of the proof (the location of integral contours) shows that e−ct〈ξ〉d

can be replaced by e−c′t , if c′ < inf γ (p0(x, ξ)). This shows that ec′t t−1v−d−l is in
Sd−l

1,0 uniformly in t , so the estimates of the KV−d−l follow by use of Proposition 2.2.
For l = 0, we can argue as follows in the scalar case: For each j = 1, . . . , n,

∂ξ j v−d = ∂ξ j e
−tp0 = −t (∂ξ j p0)e−tp0

,

where ∂ξ j p0 ∈ Sd−1
1,0 . Now, as in Proposition 2.3, e−c′t∂ξ j p0e−t (p0−c′) is in Sd−1

1,0

uniformly in t , and hence ṽ−d = F−1
ξ→zv−d satisfies, since d − 1 > −n,

|z j ṽ−d | ≤̇ e−c′t t |z|−d+1−n . (2.20)

Taking the square root of the sum of squares for j = 1, . . . , n, we find after division
by |z| that

|ṽ−d | ≤̇ e−c′t t |z|−d−n . (2.21)

In the systems case, we note that

∂ξ j q−d = −q−d(∂ξ j p0)q−d , (2.22)
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since ∂ξ j [(p0 − λ)(p0 − λ)−1] = 0. Lemma 4.2.3 applies to this in the same way as
above, showing that

|Dβ
x Dα

ξ ∂ξ j v−d(x, ξ, t)| ≤̇ 〈ξ 〉d−1−|α|te−c′t ,

so ec′t t∂ξ j v−d is uniformly in Sd−1
1,0 . We conclude (2.20), from which (2.21) follows,

implying (2.17).
2◦. Here, the estimate in (2.18) has already been shown for large M in Theorem

2.1. For lower values of M , we can add the estimates of the entering homogeneous
terms KV−d−l with l ≥ M ; the top term gives the weakest estimate. �

Theorems 2.1 and 2.4 together lead to Poisson-like kernel estimates:

THEOREM 2.5. 1◦ One has in local coordinates:

|KV−d−l (x, y, t)| ≤̇ e−c′t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t (|x − y| + t1/d)l−d−n if d − l > −n,

t (| log(|x − y| + t1/d)| + 1) if d − l = −n,

t if d − l < −n,

(2.23)

for some c′ > 0. If γ (P) > 0, we modify p0 to satisfy infx,ξ γ (p0(x, ξ)) ≥ γ (P);
then c′ can be any number in ]0, γ (P)[ .

2◦ Moreover, with p0 chosen as in 1◦,

|KV ′
M
(x, y, t)| ≤̇ e−c1t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t (|x − y| + t1/d)M−d−n if d − M > −n,

t (| log(|x − y| + t1/d)| + 1) if d − M = −n,

t if d − M < −n,

(2.24)

for any c1 < γ (P). In particular,

|KV (x, y, t)| ≤̇ e−c1t t (|x − y| + t1/d)−d−n,

|KV ′
1
(x, y, t)| ≤̇ e−c1t t (|x − y| + t1/d)1−d−n . (2.25)

3◦ For the operators defined on M, one has (with d(x, y) denoting the distance
between x and y)

|KV (x, y, t)| ≤̇ e−c1t t (d(x, y)+ t1/d)−d−n, (2.26)

for any c1 < γ (P).

Proof. 1◦–2◦. In the region where |x − y| ≥ t1/d ,

|x − y| ≤ |x − y| + t1/d ≤ 2|x − y|,

in other words, |x − y| =̇ |x − y| + t1/d . Then, the estimates in Theorem 2.4 imply
the validity of the above estimates on this region.
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In the region where |x − y| ≤ t1/d , we have instead that t1/d =̇ |x − y|+ t1/d . Then
the estimates in Theorem 2.1 imply the above estimates on that region; for example

t−n/d = t (t1/d)−d−n =̇ t (|x − y| + t1/d)−d−n

there. For the two regions together, this shows (2.23)–(2.25).
3◦. This follows from the estimates in local coordinates. �

The operator P on M has compact resolvent. When the eigenvalues with real part
equal to γ (P) (necessarily finitely many) are semisimple (i.e., the algebraic multiplic-
ity equals the geometric multiplicity), we can sharpen the information on the behavior
for t → ∞:

COROLLARY 2.6. Assume that all eigenvalues of P with real part γ (P) are
semisimple (it holds in particular when P is selfadjoint). Then

|Ke−t P (x, y, t)| ≤̇ e−γ (P)t t

(d(x, y)+ t1/d)d

(

(d(x, y)+ t1/d)−n + 1
)

. (2.27)

Proof. The spectral projections� j = i
2π

∫

C j
(P−λ)−1dλ onto the eigenspaces X j for

the eigenvalues {λ1, . . . , λk} with real part γ (P) (where C j is a small circle around the
eigenvalue) are pseudodifferential operators of order −∞, and their kernels K� j (x, y)

are bounded. If ε > 0, the operator P ′ = P + ε
∑k

j=1� j satisfies γ (P ′) > γ (P).
By Theorem 2.5 applied to P ′,

|Ke−t P ′ (x, y, t)| ≤̇ e−γ (P)t t (d(x, y)+ t1/d)−d−n .

On the other hand, V (t) = e−t P ′ + (1 − e−εt )
∑k

j=1 e−tλ j� j , so

Ke−t P (x, y, t) = Ke−t P ′ (x, y, t)+ (1 − e−εt )
k
∑

j=1

e−tλ j K� j (x, y).

From

1 − e−εt ≤ min{1, εt} ≤̇ t

(diam(M)+ t1/d)d
≤ t

(d(x, y)+ t1/d)d
,

we conclude that (1 − e−εt )|K� j (x, y)| ≤̇ t
(d(x,y)+t1/d )d

, and (2.27) follows since

|e−tλ j | = e−tγ (P) for each j . �
REMARK 2.7. The proof of Corollary 2.6 allows to sharpen the estimates in The-

orem 2.5 and Theorem 2.9 below also in the general case where the eigenvalues with
real part γ (P) are not all semisimple. Denote by r the dimension of the largest irre-
ducible P-invariant subspace of any eigenspace X j associated with an eigenvalue
with real part γ (P). Then, in Theorems 2.5 and 2.9, we may replace the upper bound
e−c′t t (d(x, y)+ t1/d)−d−n−k by

e−γ (P)t (1 + tr−1)
t

(d(x, y)+ t1/d)d

(

(d(x, y)+ t1/d)−n−k + 1
)

. (2.28)
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It is not hard to extend the estimates to complex t in convenient sectors around R+.
Namely, since p0 has its spectrum in the sector {| arg λ| ≤ ϕ0}, eiθ P has the sectorial
ellipticity property when |θ | < θ0 = π

2 − ϕ0. For each θ , it generates a semigroup

e−teiθ P , and these operator families coincide with the holomorphic extension of V (t)
to the rays {reiθ } in the sector Vθ0 = {t ∈ C | | arg t | < θ0}. On each ray, we have the
estimates in Theorem 2.5, and they hold uniformly in closed subsectors of Vθ0 . We
have hereby obtained the following:

THEOREM 2.8. With ϕ0 defined as in the beginning of Sect. 1 and θ0 = π
2 − ϕ0,

the semigroup generated by P extends holomorphically to the sector {| arg t | < θ0},
and the estimates in Theorem 2.5 hold in terms of |t | on any closed sector {| arg t | ≤ θ}
with 0 < θ < θ0, taking c1 < min|θ ′|≤θ γ (eiθ ′

P).

For the case where P is selfadjoint, global estimates on the open sector {| arg t | < π
2 }

will be given in Sect. 3.
Also, the derivatives of the kernels can be estimated by use of the symbol estimates

in [16].

THEOREM 2.9. 1◦ One has in local coordinates:

|Dβ
x Dγ

y D j
t KV−d−l (x, y, t)|

≤̇ e−c′t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t (|x − y| + t1/d)l−(1+ j)d−|γ |−n if ( j + 1)d + |γ | − l > −n,

t (| log(|x − y| + t1/d)| + 1) if ( j + 1)d + |γ | − l = −n,

t if ( j + 1)d + |γ | − l < −n,

(2.29)

for some c′ > 0. If γ (P) > 0, we modify p0 to satisfy infx,ξ γ (p0(x, ξ)) ≥ γ (P);
then c′ can be any number in ]0, γ (P)[ .

2◦ Moreover, with p0 chosen as in 1◦,

|Dβ
x Dγ

y D j
t KV ′

M
(x, y, t)|

≤̇ e−c1t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t (|x − y| + t1/d)M−( j+1)d−|γ |−n if ( j + 1)d + |γ | − M > −n,

t (| log(|x − y| + t1/d)| + 1) if ( j + 1)d + |γ | − M = −n,

t if ( j + 1)d + |γ | − M < −n,

(2.30)

for any c1 < γ (P).
3◦ The estimates of derivatives of KV hold for the operator defined on M with

|x − y| replaced by d(x, y).

Proof. As in Theorem 2.5, the estimates are pieced together from estimates general-
izing those in Theorem 2.1 resp. Theorem 2.4 to include derivatives. We use that

|Dβ
x Dγ

y D j
t KV−d−l (x, y, t)| = |Dβ

x Dγ
z D j

t ṽ−d−l(x, z, t)
∣

∣

z=x−y |
= |F−1

ξ→z(ξ
γ Dβ

x D j
t v−d−l(x, ξ, t))

∣

∣

z=x−y |.
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To generalize Theorem 2.1 to allow x- and y-derivatives, we just have to apply the
arguments of [16, Theorems 4.2.2 and 4.2.5], to the modified symbols ξγ Dβ

x v−d−l , to
get the estimates (2.29) with |x − y| replaced by 0. Derivatives with respect to t alone
are explained in Theorem 4.2.5; finally, this is combined with x- and y-derivatives in
a straightforward way. Similar considerations work for remainders; here, we can in
fact refer directly to (4.2.60) for large M , and the statements for lower M follow by
addition of the appropriate set of estimates of KV−d−l -terms. This gives the expected
generalization of Theorem 2.1, namely (2.29)–(2.30) with |x − y| replaced by 0.

For the generalization of Theorem 2.4, we note that estimates

|ξγ Dβ
x Dα

ξ D j
t v−d−l(x, ξ, t)| ≤̇ 〈ξ 〉( j+1)d+|γ |−|α|−l te−c′t

for |α| + l > 0, all β, j , follow from [16, Lemma 4.2.3] (see the remarks around
(4.2.40) for how to include t-derivatives, as done also in Theorem 4.2.5). Thus,
ec′t t−1ξγ Dβ

x D j
t v−d−l is in S( j+1)d+|γ |−l

1,0 uniformly in t , and it follows by Propo-
sition 2.2 that

|Dγ
z Dβ

x D j
t ṽ−d−l(x, z, t)|

≤̇ e−c′t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t |z|−( j+1)d−|γ |+l−n, if ( j + 1)d + |γ | − l > −n,

t (| log(|z| + t1/d)| + 1) if ( j + 1)d + |γ | − l = −n,

t if ( j + 1)d + |γ | − l < −n.

This implies estimates as in (2.29) with |x − y| + t1/d replaced by |x − y|. The con-
clusion is immediate for l ≥ 1, and for l = 0, we use the estimates of Dξ j v as in the
proof of Theorem 2.4. Again for remainder estimates, we can appeal to (4.2.60) for
large M .

The proof is now completed as in Theorem 2.5. �
REMARK 2.10. As an example of a nonselfadjoint strongly elliptic case of inter-

est to which the results apply, let us mention the first-order operator P = �
1
2 + L ,

where L is a first-order differential operator with real coefficients (in the situation on
R

n, L = b(x) · ∇ + c(x), b and c real smooth with all derivatives bounded). Since
the principal symbol b(x) · iξ of L is purely imaginary, Re p0(x, ξ) = |ξ |, so p0(x, ξ)
for ξ �= 0 ranges in a sector {λ �= 0 | | arg λ| ≤ ϕ0}, ϕ0 <

π
2 . This case is treated by

other methods in Xie and Zhang [26].

3. Estimates in the complex plane for selfadjoint operators

In this section, we shall derive some uniform kernel estimates for the extension of
the semigroup into the region C+ = {t ∈ C | Re t > 0}, when P is selfadjoint. We
assume for simplicity that P is ≥ 0. As noted in Theorem 2.8, V (t) exists for all
t ∈ C+, and the estimates worked out in Sect. 2 hold uniformly on closed subsectors
{t ∈ C+ | | arg t | ≤ θ}, 0 ≤ θ < π

2 . For the analysis of the behavior for θ → π
2 ,

additional efforts are needed. We shall rely on a theorem of Agmon [1]:
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PROPOSITION 3.1. Let 	 be an open set having the cone property. Let T be a
bounded operator in L2(	) such that the ranges of T and T ∗ are contained in Hm(	)

for an m > n (m can be noninteger if 	 = R
n or is suitably smooth). Then T is an

integral operator with a continuous and bounded kernel KT (x, y) on	×	 satisfying

|KT (x, y)| ≤ C(‖T ‖0,m + ‖T ∗‖0,m)
n/m‖T ‖1−n/m

0,0 ,

with a constant depending only on 	 and m.

Here, ‖T ‖a,b stands for the norm of T as an operator from Ha(	) to Hb(	). The
theorem holds in particular when 	 is replaced by our manifold M or by R

n .
We note first that there is an easy estimate of the kernel in terms of t alone that can

be obtained essentially by functional analysis.

THEOREM 3.2. The full kernel satisfies for t = eiθ |t | ∈ C+:

|KV (x, y, t)| ≤̇ 1 + (cos θ)−n/d |t |−n/d .

Proof. Note that ‖V (t)‖0,m =̇ ‖(1+Pm/d)V (t)‖0,0 because P ≥ 0 is strongly elliptic
and of order d. By the standard theory of analytic semigroups (see e.g., Lunardi [18,
Proposition 2.1.1]) or functional calculus, and ((Re t)P)M V (t) is uniformly bounded
for M ∈ N0. This extends to M ≥ 0 by interpolation. Hence, we obtain for m ≥ 0:

‖V (t)‖0,m =̇ ‖(1 + Pm/d)V (t)‖0,0 ≤̇ 1 + (Re t)−m/d .

The estimates likewise hold for V (t)∗ = V (t̄). Proposition 3.1, therefore, yields for
any m > n

|KV (x, y, t)| ≤̇ (‖V (t)‖0,m + ‖V (t̄)‖0,m)
n/m‖V (t)‖1−n/m

0,0 ≤̇ 1 + (Re t)−n/d

=̇ 1 + (cos θ |t |)−n/d ,

as was to be shown. �

Extensions to C+ of the other estimates in Sect. 2 are more costly in negative pow-
ers of cos θ . We first consider the homogeneous terms in the symbol of Qλ, showing
how the estimates of symbols like (1.5)–(1.7) depend on arg λ, when λ is close to the
spectrum of P .

As in [16], we denote |λ|1/d = μ and write 〈(ξ, μ)〉 = (1 + |ξ |2 +μ2)1/2 for short
as 〈ξ, μ〉; it is =̇ (1 + |ξ | + |λ|1/d).

PROPOSITION 3.3. Let p0(x, ξ) be symmetric with lower bound ≥ c〈ξ 〉d , and
let λ ∈ C with arg λ = ϕ, 0 < |ϕ| ≤ π

2 . Then

|q−d(x, ξ, λ)| = |(p0(x, ξ)− λ)−1| ≤̇ | sin ϕ|−1〈ξ, μ〉−d ,

|Dβ
x Dα

ξ q−d(x, ξ, λ)| ≤̇ | sin ϕ|−1−|α|−|β|〈ξ 〉d−|α|〈ξ, μ〉−2d , when |α| + |β| > 0.
(3.1)

For all l, α, β with l > 0,

|Dβ
x Dα

ξ q−d−l(x, ξ, λ)| ≤̇ | sin ϕ|−2l−1−|α|−|β|〈ξ 〉d−l−|α|〈ξ, μ〉−2d . (3.2)
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Proof. We have for λ = eiϕ |λ| with 0 < |ϕ| ≤ π
2 , and v ∈ C

N :

|(p0v, v)− λ|v|2| ≥ | Im((p0v, v)− |λ|eiϕ |v|2)| = |λ|| sin ϕ||v|2,
|(p0v, v)− λ|v|2| = |e−iϕ(p0v, v)− |λ||v|2| ≥ | Im e−iϕ(p0v, v)|

= | sin ϕ|(p0v, v) ≥ | sin ϕ| c〈ξ 〉d |v|2,
from which follows

|(p0 − λ)v||v| ≥ |((p0 − λ)v, v)| ≥̇ | sin ϕ|(|λ| + 〈ξ 〉d)|v|2.
This implies that |(p0 −λ)−1| ≤̇ | sin ϕ|−1(〈ξ 〉d +|λ|)−1 =̇ | sin ϕ|−1〈ξ, μ〉−d , show-
ing (3.1).

The other estimates follow as in [16] from the structure of the terms in the parame-
trix, using (3.1): q−d−l is for l ≥ 1 a finite sum of terms, where ν1 + · · · + νM ≥ 2
takes values up to 2l + 1,

r(x, ξ, λ) = b1qν1−db2qν2−d · · · bM qνM−d bM+1,

cf. (1.7). Each q−d contributes to the estimates with a factor | sin ϕ|−1, and there are
up to 2l + 1 such factors; this shows (3.2) for α = β = 0. Each differentiation may
hit a factor q−d giving an extra | sin ϕ|−1 in view of (2.22); this leads to the estimates
(3.2) by the Leibniz formula. �

The symbol terms v−d−l(x, ξ, t) are defined from the q−d−l(x, ξ, λ) as in (2.2).
When t ∈ C+, with argument arg t = θ ∈ ]− π

2 ,
π
2 [, we must assure that Re(λt) → ∞

when |λ| → ∞ on the integral curve C. This holds if λ runs on a contour formed of
the rays λ = re±iϕ0 , where ϕ0 = 1

2 (
π
2 − |θ |), connected near 0 by a circle of radius

ε′ < inf γ (p0(x, ξ)) passing to the right of 0:

C = {reiϕ0 | ∞ > r > ε′} ∪ {ε′eiϕ | ϕ0 > ϕ > −ϕ0} ∪ {re−iϕ0 | ε′ < r < ∞},
ϕ0 = 1

2 (
π
2 − |θ |). (3.3)

Here, infλ∈C Re(λ) = c1 > 0.

REMARK 3.4. Note that |θ | = π
2 − 2ϕ0 belongs to [0, π2 [ if and only if ϕ0 belongs

to ]0, π4 ]. On this interval, sin ϕ0 =̇ sin(2ϕ0) = cos θ , so they can be used inter-
changeably in our estimates.

We shall need the following generalization of [16, Lemma 4.2.3].

LEMMA 3.5. Let t = eiθ |t |, and choose ϕ0 and C as in (3.3).
Let M ∈ N, let σ1, . . . , σM be nonnegative integers with

σ = σ1 + · · · + σM ≥ 1, (3.4)

and let f (x, ξ, λ) be a (matrix-formed) symbol of the form

f (x, ξ, λ) = f1(p
0 − λ)−σ1 f2(p

0 − λ)−σ2 · · · (p0 − λ)−σM fM+1, (3.5)



64 H. Gimperlein and G. Grubb J. Evol. Equ.

where the f j (x, ξ) areψdo symbols of order s j ∈ R, homogeneous for |ξ | ≥ 1. Denote
s1 + · · · + sM+1 = s, then the order of f is k = s − σd. Let Fλ = Op( f (x, ξ, λ)) on
R

n, and let E(t) be the operator family defined from Fλ for Re t > 0 by

E(t) = i
2π

∫

C
e−tλFλ dλ. (3.6)

Then E(t) = Op(e(x, t, ξ)), where the symbol

e(x, t, ξ) = i
2π

∫

C
e−tλ f (x, ξ, λ) dλ (3.7)

satisfies:

(i) e(x, s−d t, sξ) = sd+ke(x, t, ξ) for |ξ | ≥ 1, s ≥ 1,

(ii) |Dβ
x Dα

ξ e(x, t, ξ)| ≤̇ (sin ϕ0)
−σ−|α|−|β|〈ξ 〉d+k−|α|e−c Re t〈ξ〉d

. (3.8)

The kernel of E(t) satisfies for d + k > −n

|KE (x, y, t)| ≤̇ (sin ϕ0)
−σ−(d+k+n)/de−c′ Re t |t |−(d+k+n)/d , (3.9)

with c′ > 0.
If σ ≥ 2,

|Dβ
x Dα

ξ e(x, t, ξ)| ≤̇ (sin ϕ0)
−σ−|α|−|β||t |〈ξ 〉2d+k−|α|e−c′ Re t〈ξ〉d

. (3.10)

In this case, the kernel satisfies for d + k ≤ −n

|KE (x, y, t)| ≤̇ (sin ϕ0)
−σ e−c′ Re t

{

|t | (| log Re t | + 1) if d + k = −n,

|t | if d + k < −n.
(3.11)

Proof. As in [16, Lemma 4.2.3], we can pass the operator definition through the inte-
gral. To estimate e, we first consider |ξ | ≤ 1. We use the residue theorem and that p0

is selfadjoint to obtain

|e(t, x, ξ)| = | i
2π

∫

C
e−tλ f (x, ξ, λ) dλ| ≤̇ (1 + |t |σ−1)e−c Re t .

Here, c = γ (p0(x, ξ)).
For |ξ | ≥ 1, we replace C by a closed, homogeneous curve Cc,C around the spectrum

of p0(x, ξ). Cc,C coincides with C on a annulus of inner radius c|ξ |d and outer radius
C |ξ |d and is closed by the segments of the boundary of this annulus which lie to the
right of C. Then, by homogeneity,

|e(t, x, ξ)| = | i
2π

∫

Cc,C

e−tλ f (x, ξ, λ) dλ| ≤̇ (sin ϕ0)
−σ 〈ξ 〉d〈ξ 〉ke− c

2 Re t |ξ |d
.

Combining the two estimates, we conclude (3.8) for α = β = 0. The derivatives
Dβ

x Dα
ξ e(x, t, ξ) are sums of terms of a similar form, with k replaced by k − |α| and

σ replaced by numbers ≤ σ + |α| + |β|.
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To show (3.9) for d+k > −n, we estimate KE by comparing e with its homogeneous
extension eh :

KE (x, y, t) =
∫

Rn
ei(x−y)·ξ eh(x, t, ξ) d̄ξ +

∫

|ξ |≤1
ei(x−y)·ξ (e − eh) d̄ξ.

Using (3.8) and a homogeneous variant,

|KE (x, y, t)| ≤̇ (sin ϕ0)
−σ e−c1 Re t

∫

Rn
e−c2 Re t |ξ |d |ξ |d+k d̄ξ

+ (sin ϕ0)
−σ e−c1 Re t

∫

|ξ |≤1
e−c2 Re t |ξ |d (〈ξ 〉d+k + |ξ |d+k) d̄ξ.

The first integral is =̇ (Re t)−(d+k+n)/d =̇ (sin ϕ0)
−(d+k+n)/d |t |−(d+k+n)/d , while

the second remains bounded as |t | → 0.
Now, consider the case where σ ≥ 2. As | f | ≤̇ 〈λ〉−2 away from R+, the integral

converges uniformly in t ≥ 0. We may deform C to a closed curve in the left half plane,
where f is holomorphic, to conclude e(x, 0, ξ) = 0. Also, using (−λ)(pd − λ)−1 =
1 − pd(pd − λ)−1,

∂t e(x, t, ξ) = i
2π

∫

C
e−tλ(−λ) f (x, ξ, λ) dλ

can be expressed in terms of e and a second term of the same form, with one of the s j

replaced by s j + d. By (3.8)

|∂t e(x, t, ξ)| ≤̇ (sin ϕ0)
−σ 〈ξ 〉2d+ke−c Re t〈ξ〉d

and hence, since the value at t = 0 is 0,

|e(x, t, ξ)| ≤̇ (sin ϕ0)
−σ |t |〈ξ 〉2d+ke−c Re t〈ξ〉d

.

This shows (3.10) for α = β = 0. The proof for Dβ
x Dα

ξ e(x, t, ξ) is analogous. The
estimate (3.11) is obtained similarly to (3.9), using (3.10) instead of (3.8). �

This leads to the estimates of homogeneous terms:

THEOREM 3.6. Let t = eiθ |t | ∈ C+. In local coordinates, the homogeneous terms
in the kernel of V (t) satisfy for some c′ > 0:

|KV−d (x, y, t)| ≤̇ (cos θ)−n/de−c′ Re t |t |−n/d , (3.12)

|KV−d−l (x, y, t)| ≤̇ (cos θ)−2l−1e−c′ Re t

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(cos θ)(l−n)/d |t |(l−n)/d if d − l > −n,

|t | (| log Re t | + 1) if d − l = −n,

|t | if d − l < −n.

(3.13)
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Proof. We choose ϕ0 and the curve C as in (3.3), recalling that cos θ =̇ sin ϕ0. For
l ≥ 1, the assertion follows from Lemma 3.5, (3.9) resp. (3.11), using that in the terms
of q−d−l , (d + k + n)/d = (n − l)/d and σ ≤ 2l + 1.

For l = 0, we explicitly compute

|KV−d (x, y, t)| = (2π)−n
∣

∣

∣

∣

∫

Rn
ei(x−y)·ξ e−tp0(x,ξ) d̄ξ

∣

∣

∣

∣

≤̇ e−c1 Re t
(∫

Rn
e−c2 Re t |p0

h(x,ξ)| d̄ξ +
∫

|ξ |≤1

(

e−c2 Re t |p0(x,ξ)| − e−c2 Re t |p0
h(x,ξ)|

)

d̄ξ

)

≤̇ e−c1 Re t
(∫

Rn
e− Re t |ξ |d d̄ξ + 1

)

≤̇ e−c′ Re t (Re t)−n/d .

The assertion follows, since Re t = |t | cos θ . �

Moreover, estimates in terms of |t | and powers of |x − y| are obtained. For a ∈ R,
we denote by [a] the largest integer ≤ a.

THEOREM 3.7. 1◦ In local coordinates, KV−d satisfies for some c′ > 0:

|KV−d (x, y, t)| ≤̇ (cos θ)−[d−1+n]−3e−c′ Re t |t | |x − y|−d−n . (3.14)

For l ≥ 1, the kernels KV−d−l satisfy

|KV−d−l (x, y, t)| ≤̇ (cos θ)−2l−1e−c′ Re t

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(cos θ)−[d−l+n]−1|t | |x − y|l−d−n if d − l > −n,

(cos θ)−1|t | (| log |x − y|| + 1) if d − l = −n,

|t | if d − l < −n.

(3.15)

2◦ Moreover,

|KV−d−l (x, y, t)| ≤̇ e−c′ Re t

⎧

⎪

⎨

⎪

⎩

(cos θ)−Nl |t | (|x − y| + |t |1/d)l−d−n if d − l > −n,

(cos θ)−Nl |t | (| log(|x − y| + |t |1/d)| + 1) if d − l = −n,

(cos θ)−Nl |t | if d − l < −n,

where Nl =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max{n/d, [d − 1 + n] + 3} if l = 0,

max{2l + 1 + (n − l)/d, 2l + 2 + [d − 1 + n]} if l > 0, d − l > −n,

2l + 2 if d − l = −n,

2l + 1 if d − l < −n.
(3.16)

Proof. 1◦. For l ≥ 1, we obtain from Lemma 3.5, (3.10), that

|Dα
ξ v−d−l(x, t, ξ)| ≤̇ (cos θ)−2l−1−|α|〈ξ 〉d−l−|α||t |e−c′ Re t .

Here, we apply Proposition 2.2 with r = d − l; then, we need |α| ≤ N where N ∈ N0,
N > d − l + n. If d − l + n < 0 we take N = 0, and if d − l + n ≥ 0, we take
N = [d − l + n] + 1. This shows (3.15).
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For l = 0, v−d(x, t, ξ) = e−tp0(x,ξ), and we pass via ∂ξ j v to show the estimate,
as in Theorem 2.4. Here, ∂ξ j v enters by application of Lemma 3.5 to f (x, ξ, λ) =
∂ξ j q−d = −q−d(∂ξ j p0)q−d ; it has σ = 2, k = −d − 1. Then (3.10) gives that

|Dα
ξ ∂ξ j v−d(x, t, ξ)| ≤̇ (cos θ)−2−|α|〈ξ 〉d−1−|α||t |e−c′ Re t ,

so an application of Proposition 2.2 with N = [d − 1 + n] + 1 gives that

|z j ṽ−d | ≤̇ (cos θ)−2−[d−1+n]−1|t |e−c′ Re t |z|−d+1−n .

Using this for all j = 1, . . . , n, we find (3.14).
2◦. We here combine the preceding estimates with those in Theorem 3.6 in the same

way as in the proof of Theorem 2.5. �

Estimates of remainders V ′
M are more difficult to work out, since they depend on

the interplay between the exact resolvent Qλ and the homogeneous symbol terms, and
they will be more costly in powers of (cos θ)−1, the larger M is taken. We shall here
go directly to remainder kernel estimates.

Let us define the M th resolvent remainder operator

Q′
M = Qλ −

∑

l<M

Q−d−l ,

where each Q−d−l is an operator on the manifold M constructed from the symbols
q−d−l in local coordinates. For each λ, Q′

M is a ψdo of order −d − M , but we do
not know on beforehand how it is estimated in terms of λ, although we have such
information on the terms Q−d−l . Let us write

Q′
M = Q′

M (P − λ)Qλ = RM Qλ, where

RM = Q′
M (P − λ) = 1 −

∑

l<M

Q−d−l(P − λ) (3.17)

is a ψdo of order −M constructed from known symbols. The idea is now that func-
tional analysis gives us a certain control over operator norms of Qλ, whereas ψdo
calculus will allow us to estimate operator norms of RM , and then Agmon’s result
Proposition 3.1 will lead to a kernel estimate of the composed operator. For λ with
argument ϕ satisfying 0 < |ϕ| ≤ π

2 ,

‖(P − λ)u‖‖u‖ ≥ |((P − λ)u, u)| ≥ | Im λ|‖u‖2 = | sin ϕ| |λ| ‖u‖2; hence

‖Qλ‖0,0 ≤ | sin ϕ|−1 |λ|−1. (3.18)

We are aiming for an estimate of KV ′
M

by c|t |, and we know from Theorem 2.1 based
on [16, Thm. 4.2.5] that to avoid logarithmic factors, it is better to use the resolvent
formula

Qλ = −λ−1 + λ−1 QλP, (3.19)

inserted in the integral (2.1) derived with respect to t .
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First some details on how to handle the possible zero eigenspace of P . Similarly to
Corollary 2.6, it will be convenient to write P = Pε−ε�0, where�0 is the orthogonal
projection onto the zero eigenspace of P , and ε > 0 is chosen ≤ the lowest positive
eigenvalue, whereby Pε = P +ε�0 is ≥ ε. Here,�0 is theψdo of order 0 with kernel
∑ν

j=1ϕ j (x)ϕ j (y)∗, for an orthonormal basis ϕ1, . . . , ϕν of the zero eigenspace. Then

V (t) = V ε(t)+ (1 − e−εt )�0, where V ε(t) = e−t Pε ;
and it is the latter operator that needs investigation. V ε(t) is defined from the resolvent
Qε
λ = Qλ − (ε − λ)−1�0 = (Pε − λ)−1 by

V ε(t) = i
2π

∫

C
e−tλQε

λ dλ. (3.20)

For this integral, the contour can be chosen as in (3.3) with ε′ < ε.
For simplicity of notation, we drop the ε-index in the next calculations and return

to include the contribution from �0 in the final formulations.
An application of (3.19) gives

V (t) = i
2π

∫

C
e−tλ(−λ−1 + λ−1 QλP) dλ = i

2π

∫

C
e−tλλ−1 QλP dλ,

∂t V (t) = − i
2π

∫

C
e−tλQλP dλ. (3.21)

Thus, ∂tKV ′
M

is the kernel of the integral of the M th remainder −(QλP)′M of −QλP .
We know that KV ′

M
vanishes at t = 0 and want to show boundedness of the last integral

applied to the kernel of the M th remainder. Here, (cf. also (3.17))

QλP =
(

∑

l<M

Q−d−l + Q′
M

)

P =
∑

l<M

Q−d−l P + RM QλP =
∑

l<M

Q−d−l P + RM P Qλ.

Since RM P Qλ is already of order −M , the M th remainder of QλP is

(QλP)′M = ˜RM + RM P Qλ, where ˜RM =
(

∑

l<M

Q−d−l P

)′

M

. (3.22)

In preparation for the study of the symbols of RM and ˜RM , we prove a lemma on com-
position formulas from the ψdo theory. In the general first two rules, it is important
that the component to the right is λ-independent, to keep the introduction of factors
| sin ϕ|−1 as low as possible.

LEMMA 3.8. Let b(x, ξ) ∈ Sd2
1,0(R

n × R
n), and let a(x, ξ, λ) ∈ Sd1

1,0(R
n × R

n)

with respect to (x, ξ), with λ as in Proposition 3.3, such that for some d ′ ≥ 0, N ∈ R,
one has for all α, β ∈ N

n
0 ,

|Dβ
x Dα

ξ a(x, ξ, λ)| ≤̇ | sin ϕ|−N−|α|−|β|〈ξ 〉d ′+d1−|α|〈ξ, μ〉−d ′
. (3.23)
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1◦ There exists c(x, ξ, λ) ∈ Sd1+d2
1,0 (Rn × R

n) such that Op(a)Op(b) = Op(c), and
for every M ∈ N0,

c(x, ξ, λ) =
∑

|α|<M

1
α! Dα

ξ a(x, ξ, λ)∂αx b(x, ξ)+ cM (a, b), (3.24)

where

|Dβ
x Dα

ξ cM (a, b)| ≤̇ | sin ϕ|−N−M−|α|−|β|〈ξ 〉d ′+d1+d2−M−|α|〈ξ, μ〉−d ′
. (3.25)

2◦ If (3.23) for α = β = 0 is replaced by

|a(x, ξ, λ)| ≤̇ | sin ϕ|−N 〈ξ 〉d+d1〈ξ, μ〉−d . (3.26)

for some 0 ≤ d ≤ d ′, then (3.24) holds with (3.25) valid for M ≥ 1 and the estimates
of c0 replaced by

|Dβ
x Dα

ξ c0(a, b)| ≤̇ | sin ϕ|−N−|α|−|β|〈ξ 〉d+d1+d2−|α|〈ξ, μ〉−d . (3.27)

3◦ For γ ∈ N
n
0 , Dγ Op(a) = Op(aγ ), where

|Dβ
x Dα

ξ aγ (x, ξ, λ)| ≤̇
∑

k≤|γ |
| sin ϕ|−N−k−|α|−|β|〈ξ 〉d ′+d1+|γ |−k−|α|〈ξ, μ〉−d ′

.

(3.28)

Proof. 1◦. Let χ(x, ξ) denote a C∞-function that is 1 for |x |2 +|ξ |2 ≤ 1 and vanishes
for |x |2 + |ξ |2 ≥ 2, then we can replace the given symbols by their products with
χ(εx, εξ), which makes all integrals calculated below convergent. It is known in the
theory (by the technique of oscillatory integrals, cf. [17, Sect. 7.8]) that the result-
ing symbols converge to the given symbols for ε → 0 in all the seminorms that are
involved. The modified symbols will again be denoted a, b. We can also assume that
b has compact support in x (in a set containing the x for which we need the formula).
Then b̂(η, ξ) = Fx→ηb(x, ξ) satisfies

|Dα
ξ b̂(η, ξ)| ≤̇ 〈η〉−N ′ 〈ξ 〉d2−|α|, (3.29)

for all α, N ′. It follows from the ψdo defining formula that Op(a)Op(b) = Op(c),
where

c(x, ξ, λ) =
∫

R4n
a(x, η, λ)b(y, ξ)ei(x−y)·ηei(y−z)·ξ dzd̄ξdyd̄η

=
∫

Rn
a(x, ξ + η, λ)b̂(η, ξ)eix ·η d̄η. (3.30)

If M > 0, we insert the Taylor expansion of a in ξ up to order M ,

a(x, ξ + η, λ) =
∑

|α|<M

1
α!η

α∂αξ a(x, ξ, λ)

+
∑

|α|=M

M
α! η

α

∫ 1

0
(1 − h)M−1∂αξ a(x, ξ + hη, λ) dh,
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obtaining that c = c<M + cM , where

c<M = (2π)−n
∫

Rn

∑

|α|<M

1
α!∂

α
ξ a(x, ξ, λ)ηα b̂(η, ξ)eix ·η d̄η

=
∑

|α|<M

1
α!∂

α
ξ a(x, ξ, λ)Dα

x b(x, ξ) =
∑

|α|<M

1
α! Dα

ξ a(x, ξ, λ)∂αx b(x, ξ),

cM = (2π)−n
∫

Rn

∑

|α|=M

M
α!
∫ 1

0
(1 − h)M−1∂αξ a(x, ξ + hη, λ) dh ηα b̂(η, ξ)eix ·η d̄η.

The sum over |α| < M equals the sum in (3.24). For the last integral, we use that

|∂αξ a(x, ξ + hη, λ)| ≤̇ | sin ϕ|−N−M 〈ξ + hη〉d ′+d1−M 〈ξ + hη,μ〉−d ′

≤̇ | sin ϕ|−N−M 〈ξ 〉d ′+d1−M 〈ξ, μ〉−d ′ 〈η〉|d ′+d1−M|+d ′
,

by the Peetre inequality. Taking this together with the estimates (3.29) of b̂ (with a
large N ′), we can conclude that

|cM | ≤̇ | sin ϕ|−N−M 〈ξ 〉d ′+d1+d2−M 〈ξ, μ〉−d ′
.

For M = 0, we apply such considerations directly to c0 = c(x, ξ, λ) in (3.30):

|c0| ≤̇ | sin ϕ|−N
∫

〈ξ + η〉d ′+d1〈ξ + η,μ〉−d ′ 〈η〉−N ′ 〈ξ 〉d2 d̄η

≤̇ | sin ϕ|−N 〈ξ 〉d ′+d1+d2〈ξ, μ〉−d ′
.

Derivatives of cM in x and ξ are treated in a similar way.
In the case 2◦, the proof goes through in a similar way, except that d ′ is replaced by

d in expressions containing undifferentiated factors a.
In 3◦, the λ-independent factor is to the left, and (3.30) holds with integrand

(ξ + η)γFz→ηa(z, ξ, λ)eix ·η. The Taylor expansion of (ξ + η)γ is a finite bino-
mial expansion

∑

κ≤γ
(

γ
κ

)

ξγ−κηκ and leads to a finite composition formula where the
estimates (3.28) of the terms can be read off directly. �

The composed symbol c = c0(a, b) is also denoted a ◦ b (used in [16]) or a#b.
For the analysis of RM , we denote P − λ = ˜P , with the parameter-dependent

symbol p̃(x, ξ, λ) = p(x, ξ)− λ in local coordinates; here, for any M ∈ N0,

p =
∑

k<M

pd−k + p′
M , p̃ =

∑

k<M

p̃d−k + p̃′
M , with

p̃d = p − λ, p̃d−k = pd−k for k > 0, p̃′
M = p′

M for M > 0. (3.31)

pd is also denoted p0. The pd−k are homogeneous in |ξ | of degree d − k for |ξ | ≥ 1,
and p′

M ∈ Sd−M
1,0 (Rn × R

n).
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PROPOSITION 3.9. Let M ≥ 1. The symbol rM (x, ξ, λ) of RM (cf. (3.17)) satisfies
in local coordinates:

|Dβ
x Dα

ξ rM (x, ξ, λ)| ≤̇ | sin ϕ|−2M−|α|−|β|〈ξ 〉d−M−|α|〈ξ, μ〉−d . (3.32)

We also have that RM = R(1)M + R(2)M with symbols

rM = r (1)M + r (2)M , r (2)M = q−d p′
M , (3.33)

estimated by:

|Dβ
x Dα

ξ r (1)M (x, ξ, λ)| ≤̇ | sin ϕ|−2M−|α|−|β|〈ξ 〉2d−M−|α|〈ξ, μ〉−2d ,

|Dβ
x Dα

ξ r (2)M (x, ξ, λ)| ≤̇ | sin ϕ|−1−|α|−|β|〈ξ 〉d−M−|α|〈ξ, μ〉−d . (3.34)

Moreover, ˜RM = −RM .

Proof. We have that

rM = 1 −
∑

k<M

∑

l<M

q−d−l ◦ p̃d−k −
∑

l<M

q−d−l ◦ p̃′
M .

The terms in the parametrix symbol
∑

l≥0q−d−l are constructed as solutions to the
successive equations for m ∈ N0:

∑

|α|+k+l=m

1
α! Dα

ξ q−d−l∂
α
x p̃d−k =

{

1 for m = 0,

0 for m = 1, 2, . . . ,
(3.35)

cf. e.g., Seeley [23, (1)]. We use the truncated composition formula in Lemma 3.8 to
compute the symbol rM of RM with expansions in up to M homogeneous terms:

rM = 1 −
∑

k<M

∑

l<M

⎧

⎨

⎩

∑

k+l+|α|<M

1
α! Dα

ξ q−d−l∂
α
x p̃d−k + cM−k−l(q−d−l , p̃d−k)

⎫

⎬

⎭

− c0

(

∑

l<M

q−d−l , p̃′
M

)

.

By (3.35),

∑

k<M

∑

l<M

∑

k+l+|α|<M

1
α! Dα

ξ q−d−l∂
α
x p̃d−k = 1.

Thus, rM consists of the following terms:

rM = −
∑

k<M

∑

l<M

cM−k−l(q−d−l , p̃d−k)− c0

(

∑

l<M

q−d−l , p̃′
M

)

. (3.36)
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Using the estimates (3.1) and (3.2) together with |Dβ
x Dα

ξ p̃d−k(x, ξ)| ≤̇ 〈ξ 〉d−k−|α|,
we obtain from Lemma 3.8 with d ′ = 2d, d1 = −d − l and d2 = d − k that for l ≥ 1
in the sum over k, l:

|Dβ
x Dα

ξ cM−k−l(q−d−l , p̃d−k)|
≤̇ | sin ϕ|−M+k+l−1−2l−|α|−|β|〈ξ 〉2d−d−l+d−k−(M−k−l)−|α|〈ξ, μ〉−2d

≤ | sin ϕ|−2M−|α|−|β|〈ξ 〉2d−M−|α|〈ξ, μ〉−2d , (3.37)

since k − l ≥ −M + 1.
For l = 0, we find in view of Lemma 3.8 2◦, since k < M ,

|Dβ
x Dα

ξ cM−k(q−d , p̃d−k)|
≤̇ | sin ϕ|−1−(M−k)−|α|−|β|〈ξ 〉2d−d+d−k−(M−k)−|α|〈ξ, μ〉−2d

≤̇ | sin ϕ|−M−1−|α|−|β|〈ξ 〉2d−M−|α|〈ξ, μ〉−2d . (3.38)

In the last term,
∣

∣

∣

∣

∣

∣

Dβ
x Dα

ξ c0

⎛

⎝

∑

1≤l<M

q−d−l , p̃′
M

⎞

⎠

∣

∣

∣

∣

∣

∣

≤̇
∑

1≤l<M

| sin ϕ|−2l−1−|α|−|β|〈ξ 〉2d−d−l+(d−M)−|α|〈ξ, μ〉−2d

≤̇ | sin ϕ|−2M−|α|−|β|〈ξ 〉2d−M−|α|〈ξ, μ〉−2d , (3.39)

whereas

c0(q−d , p′
M ) = q−d p′

M + c1(q−d , p′
M ),

with c1(q−d , p′
M ) estimated as in (3.39) and

|Dβ
x Dα

ξ (q−d p′
M )| ≤̇ | sin ϕ|−1−|α|−|β|〈ξ 〉d−M−|α|〈ξ, μ〉−d . (3.40)

An addition of the contributions (using that 〈ξ 〉/〈ξ, μ〉 ≤ 1) gives (3.32). We also
have the representation (3.33), where all the contributions to r (1)M have O(〈ξ, μ〉−2d),

so that it satisfies (3.34), and r (2)M is estimated in (3.40).
For the analysis of ˜RM , we have by Lemma 3.8:

∑

l<M

q−d−l ◦ p =
∑

k<M

∑

l<M

q−d−l ◦ pd−k +
∑

l<M

q−d−l ◦ p′
M

=
∑

k<M

∑

l<M

⎧

⎨

⎩

∑

k+l+|α|<M

1
α! Dα

ξ q−d−l∂
α
x pd−k + cM−k−l(q−d−l , pd−k)

⎫

⎬

⎭

+ c0

(

∑

l<M

q−d−l , p′
M

)

,

such that the M th remainder has symbol
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r̃M =
∑

k<M

∑

l<M

cM−k−l(q−d−l , pd−k)+ c0

(

∑

l<M

q−d−l , p′
M

)

=
∑

k<M

∑

l<M

cM−k−l(q−d−l , pd−k)+ c0

⎛

⎝

∑

1≤l<M

q−d−l , p′
M

⎞

⎠+ q−d p′
M + c1(q−d , p′

M ).

Here, we can observe that all the p-factors can be replaced by the corresponding
p̃-factors, for they are the same when the index is �= d, and pd enters only in differen-
tiated form since l < M (and p̃d = pd −λ and pd have the same derivatives). Then, in
view of the formula (3.36) for rM , we have indeed r̃M = −rM and ˜RM = −RM . �

Summing up, we now have (cf. (3.22) ff.), since ˜RM = −RM ,

(QλP)′M = −RM + RM P Qλ = −R(1)M − R(2)M + R(1)M P Qλ + R(2)M P Qλ.

These terms will enter in different ways in the integral defining V ′
M (t). Some further

symbol estimates will be needed in the following:

PROPOSITION 3.10. For γ ∈ N
n
0, k ∈ N0, the symbols of R(1)M 〈D〉k, Dγ R(1)M ,

R(2)M P〈D〉k and Dγ R(2)M P satisfy:

|Dβ
x Dα

ξ (r
(1)
M ◦ 〈ξ 〉k)| ≤̇ | sin ϕ|−2M−|α|−|β|〈ξ 〉2d−M−|α|+k〈ξ, μ〉−2d ,

|Dβ
x Dα

ξ (ξ
γ ◦ r (1)M )| ≤̇ | sin ϕ|−2M−|α|−|β|−|γ |〈ξ 〉2d−M−|α|+|γ |〈ξ, μ〉−2d ,

|Dβ
x Dα

ξ (r
(2)
M ◦ p ◦ 〈ξ 〉k)| ≤̇ | sin ϕ|−1−|α|−|β|〈ξ 〉2d−M−|α|+k〈ξ, μ〉−d ,

|Dβ
x Dα

ξ (ξ
γ ◦ r (2)M ◦ p)| ≤̇ | sin ϕ|−1−|α|−|β|−|γ |〈ξ 〉2d−M−|αL|+|γ |〈ξ, μ〉−d .

(3.41)

Proof. The composition with 〈D〉k = Op(〈ξ 〉k) to the right just corresponds to mul-
tiplying the symbol by 〈ξ 〉k , so the first line in (3.42) results directly from (3.34). For
the second line, we use the composition rule in Lemma 3.8 3◦. For the third line, we
can for k = 0 use the composition rule in Lemma 3.8 1◦, which gives the result in
view of (3.34). The third line with k �= 0 follows simply by multiplication by 〈ξ 〉k ,
and the fourth line follows by another application of Lemma 3.8 3◦. �

To apply Agmon’s estimate Proposition 3.1 to obtain kernel estimates, we need an
estimate of L2-bounds in terms of symbol seminorms. Many variants are known, and
we use the following, found in Marschall [19, Theorem 2.1].

PROPOSITION 3.11. Let a ∈ S0
1,0(R

n × R
n) be such that for some C0 > 0, some

N ∈ N0 with N > n
2 , and all α, β ∈ N

n
0 with 0 ≤ |α| ≤ N, 0 ≤ |β| ≤ 1,

supx,ξ 〈ξ 〉−|α||Dβ
x Dα

ξ a(x, ξ)| ≤ C0 < ∞. (3.42)

Then the associated operator A = Op(a) is bounded on L2(R
n), and ‖A‖0,0 ≤̇ C0.

The dependence of the operator norm on C0 follows from an inspection of the proof.
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THEOREM 3.12. The kernels of the operators −R(1)M , R(1)M P Qλ and R(2)M P Qλ are
estimated by

|K
R(1)M
(x, y, λ)| ≤ | sin ϕ|−4d− 7

2 n−6〈λ〉−2,

|K
R(1)M P Qλ

(x, y, λ)| ≤ | sin ϕ|−4d− 7
2 n−7〈λ〉−2,

|K
R(2)M P Qλ

(x, y, λ)| ≤ | sin ϕ|− 3
2 n−4〈λ〉−2,

(3.43)

Proof. For the use of Proposition 3.1, we note that when T is aψdo of order ≤ −n−1,
then

‖T ‖0,n+1 ≤̇
∑

|γ |≤n+1

‖Dγ T ‖0,0,

‖T ∗‖0,n+1 = ‖T ‖−n−1,0 =̇ ‖T 〈D〉n+1‖0,0.

Consider R(1)M . The N occurring in Proposition 3.11 can be written N = n
2 + δ, δ = 1

2

or 1. For |α| ≤ N and |β| ≤ 1, the symbols Dβ
x Dα

ξ (ξ
γ ◦ r (1)M ) are estimated by

|Dβ
x Dα

ξ (ξ
γ ◦ r (1)M )| ≤̇ | sin ϕ|−2M−N−1−|γ |〈ξ 〉2d−M+|γ |〈λ〉−2.

To apply Proposition 3.1 with |γ | up to n + 1, we must take the integer M such that
2d − M + n + 1 ≤ 0, so we let M = 2d + n + 1 + δ′ with δ′ ∈ [0, 1[ . Then

‖Dγ R(1)M ‖0,0 ≤̇ | sin ϕ|−2M−1−N−|γ |〈λ〉−2,

and it follows that

‖R(1)M ‖0,0 ≤̇ | sin ϕ|−2M−1−N 〈λ〉−2

‖R(1)M ‖0,n+1 ≤̇
∑

|γ |≤n+1

‖Dγ R(1)M ‖0,0 ≤̇ | sin ϕ|−2M−N−n−2〈λ〉−2.

Moreover,

‖(R(1)M )∗‖0,n+1 = ‖R(1)M 〈D〉n+1‖0,0 ≤̇ | sin ϕ|−2M−1−N 〈λ〉−2.

Insertion in (3.1) with m = n + 1 gives that

|K
R(1)M
(x, y, λ)| ≤̇ | sin ϕ|(−2M−N−n−2) n

n+1 +(−2M−N−1)(1− n
n+1 )〈λ〉−2

≤̇ | sin ϕ|−2M−N−n−1〈λ〉−2 = | sin ϕ|−4d− 7
2 n−3−2δ′−δ〈λ〉−2

≤ | sin ϕ|−4d− 7
2 n−6〈λ〉−2.

This shows the first estimate in (3.43).
For the second estimate, we reuse the operator norms established for R(1)M . They are

now combined with some elementary norm estimates of P Qλ, namely

‖P Qλ‖0,0 = ‖1 + λQλ‖0,0 ≤̇ 1 + | sin ϕ|−1
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holds in view of (3.18), and moreover, for any s ∈ R,

‖P Qλ‖s,s = ‖Ps/d P QλP−s/d‖0,0 = ‖P Qλ‖0,0 ≤̇ | sin ϕ|−1, (3.44)

since the operators commute. The composition with P Qλ thus results in an extra factor
| sin ϕ|−1 in the norm estimates, and hence likewise in the kernel estimate. This shows
the second estimate in (3.43).

For the third estimate, we combine the elementary estimates

‖Qλ‖s,s ≤̇ | sin ϕ|−1|λ|−1, (3.45)

shown earlier for s = 0, and extendible to all s by conjugation with Ps/d , with norm
estimates of R(2)M P , derived similarly to above from the last two lines in (3.42). The
latter give estimates in terms of | sin ϕ|−1−N−1−n−1〈λ〉−1. In the resulting combined
estimate, we can replace |λ|−1 by 〈λ〉−1, since we are working under the hypothesis
that a possible nullspace of P has been removed. This shows the last line in (3.43). �

Then, we can show the estimate of the remainder kernel:

THEOREM 3.13. Let P be selfadjoint strongly elliptic of order d > 0 on M, with
γ (P) ≥ 0. The remainder kernel KV ′

M
satisfies for arg t = θ , M = 2d + n + 1 + δ′

(with δ′ ∈ [0, 1[ ):

|KV ′
M
(x, y, t)| ≤̇ (cos θ)−2d− 7

2 n−7e−c′ Re t |t |, (3.46)

where c′ > 0 if γ (P) > 0, c′ = 0 if γ (P) = 0.

Proof. If γ (P) > 0, we use the preceding estimates directly to analyse

∂tKV ′
M

= − i
2π

∫

C
e−tλK(QλP)′M dλ,

(QλP)′M = −R(1)M − R(2)M + R(1)M P Qλ + R(2)M P Qλ.

The curve C is chosen as in (3.3). The first, third, and fourth terms contribute with
integrals of the form

i
2π

∫

C
e−tλ f (x, y, λ) dλ

where

|e−λt f (x, y, λ)| ≤̇ e−c′ Re t (cos θ)−4d− 7
2 n−7〈λ〉−2

on the curve by Theorem 3.12 (recall that cos θ =̇ sin ϕ0). Since 〈λ〉−2 integrates to

∞, the resulting function is estimated by e−c′ Re t (cos θ)−4d− 7
2 n−7.

To find the contribution from R(2)M , we first perform the integration on the symbol
level:

i
2π

∫

C
e−tλ(p0 − λ)−1 p′

M dλ = e−tp0
p′

M .
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Here, we can use an estimate from Lemma 3.5. By (3.8),

|Dβ
x Dα

ξ (e
−tp0

p′
M )| ≤̇ (sin ϕ0)

−M−|α|−|β|〈ξ 〉−M−|α|e−c Re t〈ξ〉d

≤̇ (sin ϕ0)
−M−|α|−|β|〈ξ 〉−M−|α|e−c′ Re t , hence

|KOp(e−p0 t p′
M )

| ≤̇ (sin ϕ0)
−M e−c′ Re t when M ≥ n + 1.

Since the latter estimate is dominated by that from the other terms, we conclude
that

|∂tKV ′
M
(x, y, t)| ≤̇ e−c′ Re t (cos θ)−4d− 7

2 n−7.

Then, an integration with respect to t using that KV ′
M
(x, y, 0) = 0 shows (3.46).

In the case where γ (P) = 0, the above considerations will be valid for V ε(t) as
in (3.20). We then have to add (1 − e−εt )�0, which has a smooth kernel bounded by
min{|t |, 1}, and we reach the conclusion in the theorem. �

We can then finally show the following:

THEOREM 3.14. Let P be selfadjoint strongly elliptic of order d > 0 on M, with
γ (P) ≥ 0. The heat kernel KV satisfies for all t ∈ C+ (with arg t = θ ∈ ] − π

2 ,
π
2 [ )

the Poisson estimate, where N = max{ n
d ,

7n
2 + 4d + 7}:

|KV (x, y, t)| ≤̇ (cos θ)−N e−γ (P)Re t |t |
(d(x, y)+ |t |1/d)d ((d(x, y)+ |t |1/d)−n + 1).

(3.47)

Proof. In local coordinates, the estimate follows from Theorems 3.7 and 3.13, by
choosing M = n + 1 + 2d + δ′ in Theorem 3.13 and adding KV−d−l for 0 ≤ l < M ;
the most singular terms dominate. This leads to the global estimate (3.47) (the effect
of the lower bound is handled as in Sect. 2). �

REMARK 3.15. Note that the order d and dimension n enter linearly in N ′ =
7n
2 + 4d + 7, and it is easy to see where the sizes come from: 2n + 4d comes from

the power −2M where M ∼ 2d + n, one n comes from the requirement for Agmon’s
estimate Proposition 3.1, and n

2 comes from the requirement for Marschall’s estimate
Proposition 3.11. The number 7 includes rounding up errors, and may be lowered.
More substantial improvements would depend on choosing other general principles;
e.g., the L∞ kernel estimate in Beals [5, Lemma 2], which is slightly more efficient
than Agmon’s estimate, might save n

2 powers. Note that all orders d ∈ R+ are allowed.
Our result applies in particular to the Dirichlet-to-Neumann operator PDN of order

d = 1 associated with the Laplacian (and lower-order perturbations of it). For this
operator, ter Elst and Ouhabaz [11] have estimates in terms of −N ′′th powers of cos θ ,
where the dimension n enters nonlinearly in N :

N ′′ = 2n(n + 1), compared to our N ′ = 7n
2 + 11;
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here N ′′ > N ′ for n ≥ 6. They are proved by appealing to multiple commutator
estimates for semigroups defined from iterates of PDN , refined (L p → Lq)-estimates
of Coifman-Meyer and others for pseudodifferential operators, Riesz potentials, inter-
polation, and other tools.

REMARK 3.16. Derivatives in x and y can also be estimated by these methods if
needed. For example, Dx j KV (x, y, t) is described by the above formulas composed

to the left with Dx j ; then, in the remainder terms, Dx j is composed with the R(i)M ,
giving symbols described in Proposition 3.10. The remainder for Dy j KV (x, y, t) is

described by formulas, partly of the type where R(i)M is composed to the right with Dx j

which just gives a factor ξ j on the symbol, partly of a type containing QλDx j . In the
latter cases, one can use, e.g., that

P QλDx j = P Dx j Qλ + P[Dξ j , Qλ] = Dx j P Qλ + [P, Dx j ]Qλ + P Qλ[Dx j , P]Qλ.

Here, the first term contributes a Dx j that is absorbed in the ψdo’s before it, and in
the other terms, we note that [Dx j , P] is of order d so that, by (3.44),

‖[P, Dx j ]Qλ‖0,0 ≤̇ ‖P Qλ‖0,0 ≤̇ | sin ϕ|−1,

‖P Qλ[Dx j , P]Qλ‖0,0 ≤̇ ‖P Qλ‖0,0‖[Dx j , P]Qλ‖0,0 ≤̇ | sin ϕ|−2.

4. Kernels of heat semigroups for perturbations of fractional Laplacians
and the Dirichlet-to-Neumann operator

This section complements the general upper bounds from Sect. 2 with lower esti-
mates in the case of fractional powers of the Laplacian and the Dirichlet-to-Neumann
operator and their perturbations.

Let� be the (nonnegative) Laplace–Beltrami operator on the closed, compact Rie-
mannian n-dimensional manifold M . The semigroups e−t� and V d(t) = e−t�d/2

are
related by subordination formulas, which lead to an alternative proof of the upper ker-
nel estimate in this special case, as well as to lower bounds. For d = 1, they assume
a simple form:

LEMMA 4.1. Let λ ≥ 0. One has for all t ≥ 0:

e−t
√
λ = 1

2
√
π

∫ ∞

0
e−sλte− t2

4s s− 3
2 ds. (4.1)

Proof. Let α = t
√
λ /2 and let x = t

2 s− 1
2 ; then dx = − t

4 s− 3
2 ds, and Eq. (4.1) is

turned into

√
π e−2α =

∫ ∞

0
e
−x2− α2

x2 2 dx . (4.2)
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To show this, note that the left-hand side I (α) satisfies I (α) ∈ C1(R+),
limα→0+ I (α) = √

π , and for α > 0 (with y = αx−1, dy = −αx−2dx):

∂α I (α) =
∫ ∞

0
e
−x2− α2

x2 (−4α)x−2 dx = −2
∫ ∞

0
e
− α2

y2 −y2

2 dy = −2I (α).

Thus, I (α) = ce−2α with c = √
π . �

By Zolotarev [27] (see also Grigor’yan [13]), there exists for any 0 < d < 2 a
nonnegative function ηd

t (s) such that

e−tλd/2 =
∫ ∞

0
e−sλ ηd

t (s) ds. (4.3)

Here, ηd
t has the following properties

ηd
t (s) = t−2/dηd

1 (
s

t2/d ) (s, t > 0), (4.4)

ηd
t (s) ≤̇ ts−1− d

2 (s, t > 0), (4.5)

ηd
t (s) =̇ ts−1− d

2 (s ≥ t2/d > 0). (4.6)

By an application of the spectral theorem, we obtain for all t > 0,

V d(t) f = e−t�d/2
f =

∫ ∞

0
e−τ� f ηd

t (τ ) dτ, for all f ∈ Hs(M). (4.7)

In view of (4.7), it holds that

〈δx , V d(t)δy〉 =
〈

δx ,

∫ ∞

0
e−τ�δy η

d
t (τ ) dτ

〉

=
∫ ∞

0
〈δx , e−τ�δy〉 ηd

t (τ ) dτ,

resulting in an identity for the kernels: For all t > 0,

KV d (x, y, t) =
∫ ∞

0
Ke−τ�(x, y) ηd

t (τ ) dτ, for (x, y) ∈ M × M. (4.8)

Using this formula, we can deduce upper and lower estimates for KV d from those
known for Ke−τ� . The following upper and lower estimates are well known (see e.g.,
Saloff-Coste [22]):

c1

V(x,√τ )e−C1
d(x,y)2

τ ≤ Ke−τ�(x, y) ≤ c2

V(x,√τ )e−C2
d(x,y)2

τ . (4.9)

Here, V(x, r) denotes the volume of a ball of radius r around x . For a closed compact
n-dimensional manifold M , V(x, r) =̇ rn for small r , and V(x, r) equals the volume
of the connected component containing x when r ≥ diam M . Hence

V(x,√τ )−1 =̇ (τ n/2)−1 + 1. (4.10)
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THEOREM 4.2. Let 0 < d < 2. The kernel of the semigroup V d(t) = e−t�d/2

satisfies for all t ≥ 0:

K
e−t�d/2 (x, y) =̇ t

(d(x, y)+ t1/d)d

(

(d(x, y)+ t1/d)−n + 1
)

. (4.11)

Proof. The upper estimate follows already from Corollary 2.6. The following proof
moreover extends to give the lower estimate. Inserting the heat kernel bounds (4.9),
(4.10) into (4.8) and using (4.5), we find

KV d (x, y, t) ≤̇
∫ ∞

0
(τ−n/2 + 1) ηd

t (τ ) e−C d(x,y)2

τ dτ

≤̇ t
∫ ∞

0
τ−n/2 τ−1− d

2 e−C d(x,y)2

τ dτ + t
∫ ∞

0
τ−1− d

2 e−C d(x,y)2

τ dτ.

By a change of variables τ �→ Cd(x, y)2τ , the first term equals

t (Cd(x, y)2)−
d+n

2

∫ ∞

0
τ− n+d

2 −1e−1/τ dτ =̇ t

d(x, y)n+d
. (4.12)

Similarly, the second term is

t (Cd(x, y)2)−
d
2

∫ ∞

0
τ− d

2 −1 e−1/τ dτ =̇ t

d(x, y)d
,

and altogether,

KV d (x, y, t) ≤̇ t

d(x, y)d
(

d(x, y)−n + 1
)

.

On the other hand, using the uniform bound Ke−τ�(x, y) ≤̇ τ−n/2 + 1 and (4.4), we
obtain

KV d (x, y, t) ≤̇
∫ ∞

0
(τ−n/2 + 1) ηd

t (τ ) dτ =
∫ ∞

0
(τ−n/2 + 1) ηd

1

( τ

t2/d

)

t−2/d dτ

=
∫ ∞

0
(t−n/dτ−n/2 + 1) ηd

1 (τ ) dτ =̇ t−n/d + 1.

Thus

KV d (x, y, t) ≤̇ min

{

t−n/d + 1,
t

d(x, y)d
(

d(x, y)−n + 1
)

}

.

If t1/d ≥ d(x, y),

t−n/d ≤̇ t−n/d
(d(x, y)

t1/d + 1
)−n−d = t (d(x, y)+ t1/d)−n−d

and

1 ≤̇
(d(x, y)

t1/d + 1
)−d = t (d(x, y)+ t1/d)−d .
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On the other hand, for t1/d ≤ d(x, y) we have d(x, y) =̇ d(x, y)+ t1/d and hence

t

d(x, y)d
(

d(x, y)−n + 1
) ≤̇ t

(d(x, y)+ t1/d)d

(

(d(x, y)+ t1/d)−n + 1
)

.

This shows “ ≤̇ ” in (4.11).
To show the opposite inequality in (4.11), note that the integrand in (4.8) is non-

negative, and (4.9), (4.10) imply

KV d (x, y, t) =
∫ ∞

0
Ke−τ�(x, y) ηd

t (τ ) dτ ≥̇
∫ ∞

α

(τ−n/2 + 1) ηd
t (τ ) e−C d(x,y)2

τ dτ

for α = max{t2/d , d(x, y)2}. Now, for τ ≥ d(x, y)2, e−C d(x,y)2

τ ≥ e−C . Then by
(4.6),

KV d (x, y, t) ≥̇
∫ ∞

α

(τ−n/2 + 1) tτ 1− 1
2 dτ =̇ t

(

α− n+d
2 + α− d

2
)

= min
{

t−n/d , td(x, y)−n−d}+ min
{

1, td(x, y)−d}

≥ t (d(x, y)+ t1/d)−n−d + t (d(x, y)+ t1/d)−d .

�

For d = 1, this complies well with the explicit kernel formula (2.3) for the Poisson
operator solving the Dirichlet problem for the Laplacian on R

n+1+ .
We also consider the case where M is the boundary of a compact (n + 1)-dimen-

sional Riemannian manifold ˜M with boundary. With � denoting the nonnegative
Laplace–Beltrami operator on M , we shall compare Ke−t

√
� with the kernel of the

semigroup generated by the (nonnegative) Dirichlet-to-Neumann operator PDN on
M . PDN is the operator mapping u to the normal derivative ∂ν ũ, where ũ is the har-
monic function on ˜M with boundary value u. It is known (cf. [15]) that PDN is an
elliptic pseudodifferential operator of order 1 on M with the same principal symbol
as

√
� .

Since�d/2 is a classical strongly ellipticψdo of order d, Theorem 2.5 applies to all
operators of the form P = �d/2 + P ′ with P ′ classical of order d − 1, giving upper
estimates of the absolute value of the kernels; note that no selfadjointness is required.
For such operators, we can also show lower estimates.

THEOREM 4.3. Let d ∈ ]0, 2[ and let P be a classical ψdo of order d with the
same principal symbol as�d/2. Then the kernel of V (t) = e−t P satisfies for all t ≥ 0:

|KV (x, y, t)| ≤̇ t

(d(x, y)+ t1/d)d

(

1

(d(x, y)+ t1/d)−n
+ 1

)

+e−c1t t

(d(x, y)+ t1/d)d+n−1 , (4.13)

for any c1 < γ (P) (c1 = γ (P) if Corollary 2.6 applies). Moreover, there is an r > 0
such that

|KV (x, y, t)| ≥̇ t (d(x, y)+ t1/d)−d−n, for d(x, y)+ t1/d ≤ r. (4.14)
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Proof. As P and �d/2 have the same principal symbol,

V (t) = V d(t)+ V ′,

where V ′ is of lower order; more precisely V ′ is the difference between the first
remainders for V (t) = e−t P and V d(t) = e−t�d/2

, as in the second line of (2.25).
Hence,

|KV ′(x, y, t)| ≤̇ e−c1t t (d(x, y)+ t1/d)1−n−d . (4.15)

Now, (4.11) and (4.15) together imply (4.13).
To obtain the lower estimate (4.14), we note that

cs−n−d − c′s1−n−d = cs−n−d(1 − c′c−1s) ≥ 2−1cs−n−d , when s ≤ c/(2c′),
(4.16)

so for all t in a bounded set where e−c1t ≤ c′, the lower estimate in (4.11) implies that
(4.14) holds for all small d(x, y)+ t1/d . �

We can also obtain upper and lower estimates for the Dirichlet-to-Neumann oper-
ator.

THEOREM 4.4. The kernel of e−t PDN satisfies for all t ≥ 0:

Ke−t PDN (x, y, t) ≤̇ t

d(x, y)+ t

(

(d(x, y)+ t)−n + 1
)

, (4.17)

and there is an r > 0 such that it satisfies

Ke−t PDN (x, y, t) ≥̇ t (d(x, y)+ t)−1−n, for d(x, y)+ t ≤ r. (4.18)

Proof. Here, PDN is known to be selfadjoint nonnegative, and the semigroup has real,
nonnegative kernel [3,4], so that we may omit absolute values. The upper estimate
(4.17) follows from Corollary 2.6. The lower estimate (4.18) follows from Theorem
4.3 since PDN differs from �1/2 by a classical ψdo of order 0. �

REMARK 4.5. This work was inspired from a conversation of the second author
with W. Arendt and A. ter Elst in August 2012 on the need for kernel estimates for the
Dirichlet-to-Neumann semigroup, where we suggested the applicability of pseudo-
differential methods as in [16]. When our first version of this paper was posted in
arXiv:1302.6529, we learned of the efforts of ter Elst and Ouhabaz [11], giving an
analysis of the Dirichlet-to-Neumann semigroup kernel by somewhat different meth-
ods, and obtaining some of the same results as those presented here.
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