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Abstract. We introduce a non-linear structured population model with diffusion in the state space. Indi-
viduals are structured with respect to a continuous variable which represents a pathogen load. The class of
uninfected individuals constitutes a special compartment that carries mass; hence the model is equipped
with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread
of infection of a vertically transmitted disease, for e.g., Wolbachia in a mosquito population. Therefore,
the (infinite dimensional) non-linearity arises in the recruitment term. First, we establish global existence
of solutions and the principle of linearised stability for our model. Then, in our main result, we formulate
simple conditions which guarantee the existence of non-trivial steady states of the model. Our method
utilises an operator theoretic framework combined with a fixed-point approach. Finally in the last section,
we establish a sufficient condition for the local asymptotic stability of the positive steady state.

1. Introduction of the model

Structured population dynamics is an exciting field of research in mathematical
biology, see e.g. Refs. [12,29,32,38] for a collection of classical models and results in
the area. Structured population models often assume spatial homogeneity of the popu-
lation in a given habitat and only focus on the dynamics of the population arising from
differences between individuals with respect to some physiological structure. In a gen-
eral model, reproduction, death and growth characterize individual behaviour, which
may be affected by competition (scramble or contest), for e.g. for available resources
or for a mating partner. One usually incorporates certain types of non-linearities via
density dependence in the vital rates to account for these biological phenomena.

Traditionally, structured population models have been formulated as first-order non-
linear partial differential equations of hyperbolic type, and therefore the analysis of
these models is often challenging from the mathematical point of view. In the very
recent paper [27] Hadeler introduced size-structured population models with diffu-
sion in the size-space. The biological motivation is that diffusion allows for “stochastic
noise” to be incorporated in the model equations in a deterministic fashion. In Ref. [27]
Hadeler mainly addressed the question that what type of boundary conditions are
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necessary to be imposed for a biologically plausible and mathematically sound model.
In this context particular cases of a Robin boundary condition were considered. We
note that other researchers also investigated recently the effects of introducing sto-
chasticity (for e.g. variation in individual growth rates) via diffusion in structured
population models, see [3,4,9].

In this paper we introduce and analyze a structured population model, with so called
distributed recruitment term and generalized Wentzell boundary conditions. Our model
intends to describe the dynamics of a population which is infected with a certain type
of bacteria, see later for more details. At the same time our model is general enough
to make the forthcoming analysis to be applicable for similar classes of models. In
particular, we consider the following model:

ut (x, t) + (γ (x)u(x, t))x = (d(x)ux (x, t))x − μ(x)u(x, t)

+β0 (U (t))
∫ m

0
β1(x, y)β2

(∫ m
y u(r, t) dr

U (t)

)
u(y, t) dy, x ∈ (0, m), (1.1)

[
(d(x)ux (x, t))x

]
x=0 − (d(0) + γ (0))ux (0, t)

+
(

γ (0) − γ ′(0) − b0 (U (t)) b2

(∫ m
0 u(r, t) dr

U (t)

))
u(0, t) = 0, (1.2)

d(m)ux (m, t) − γ (m)u(m, t) = 0, (1.3)

with a suitable initial condition. The function u = u(x, t) denotes the density of indi-
viduals of pathogen load x at time t . This means that the total number of individuals
with pathogen (or bacterium) load between x1 and x2 is given by

∫ x2
x1

u(y, t) dy. It is
then clear that the uninfected individuals constitute a separate special class. There-
fore, in contrast to any other state, the state x = 0 carries mass. Hence we specify the
value of the function u at x = 0, which gives the total number of individuals in the
uninfected class. Then the total population size at any time t is given by

U (t) = |u(0, t)| +
∫ m

0
|u(r, t)| dr = ||u||X .

In mathematical terms, we distinguish between equivalence classes of the state space
L1, which are represented by functions, which have different values at x = 0. Or,
in other words, to each equivalence class of the Lebesgue space L1 we assign a real
number, which is its “value” at x = 0. This is expressed in the Wentzell-type boundary
condition (1.2). We also assume a maximal infection load m. The function γ represents
the reproduction rate of the bacterium in the host. Since the maximum infection load is
m we have the boundary condition (1.3), i.e. the infection load cannot increase above
m in any individual in the population. It is shown by a straightforward calculation
(see e.g. Ref. [17] for a similar calculation) that the boundary conditions (1.2)–(1.3)
guarantee conservation of the total population size in the absence of mortality and
recruitment. As usual, μ denotes the mortality rate (both natural mortality and extra



Vol. 12 (2012) Steady states in a structured epidemic model 497

mortality due to the infection) of individuals, while d stands for diffusion. Now we
impose the following general assumptions on the model ingredients:

β0, b0 ∈ C([0,∞)), β2, b2 ∈ C([−1, 1]), μ ∈ C([0, m]),
β1 ∈ C([0, m] × [0, m]),

β0, β1, β2, b0, b2, μ ≥ 0, γ, d ∈ C1([0, m]), d > 0.

In addition, we will make some technical assumptions on some of the model ingredi-
ents later on. Our goal is to describe a model of a population, which is infected with
a disease that is only transmitted vertically; hence, the only non-linearity arises in
the term specifying the recruitment of individuals. To be more precise, we are inter-
ested in the dynamics of Wolbachia infections in mosquito populations. Wolbachia
is a maternally transmitted endosymbiont bacterium, which infects around 70 % of
the arthropod species. Recent laboratory results suggest, see Ref. [31], that a sta-
ble introduction of a particular strain of Wolbachia into Aedes aegypti halved the
average life span of an adult mosquito. This represents a potential tool to eradi-
cate mosquito born diseases (like malaria, dengue, or West Nile virus), since the
life span of the mosquito is reduced to 2–3 weeks which more or less equals the
intrinsic excubation period of the disease, i.e. the time needed for a mosquito to
become infectious after feeding on an infected human. According to Ref. [31], high
maternal inheritance, strong cytoplasmic incompatibility, and low costs to reproduc-
tive output are the key factors for prevalence of the Wolbachia infection. Cytoplasmic
incompatibility (CI for short) means that from a mating of an uninfected female and
an infected male, there is no (complete CI) or only a very few (partial CI) num-
ber of viable offspring. We refer the interested reader to Refs. [14,16,34] for more
biological background and mathematical modelling of populations infected with a
cytoplasmic incompatibility inducing Wolbachia. The possible underlying mecha-
nisms for complete or partial expression of CI are still a matter of debate for dif-
ferent species. In our model we take the following view of partial CI, see Refs.
[6,25] for further reference. We make the assumption that a female who has bac-
terium load y can successfully mate only with males of bacterium load less than y.
Therefore, the function β2, which determines the fertility rate of an individual with
infection load y, depends on the proportion of the individuals who have infection
load higher than y. In particular, β2 is a monotone decreasing function of its argu-
ment. In other words, we assume that the sex ratio is 1:1 and the probability for
a female mosquito of producing a viable offspring is a monotone decreasing func-
tion of the proportion of the male population size that have higher infection load.
The function β0 represents competition effects due for e.g. to limitations in available
resources. Similarly, b2 measures the reproductive success of uninfected females and
b0 represents the effects of competition on the reproduction of uninfected individuals.
The maternal transmission rate is determined by the function β1, i.e. infected moth-
ers with bacterium load y give birth to offspring with bacterium load x at a rate of
β1(x, y).
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The boundary condition (1.2) can be rewritten, and more easily understood from the
point of view of its biological meaning, in the dynamic form (by formally replacing
the diffusion operator from Eq. (1.1) on the boundary) as:

ut (0, t) = u(0, t)

(
−γ (0) − μ(0) + b0(U (t))b2

(∫ m
0 u(r, t) dr

U (t)

))

+ ux (0, t)d(0)+β0(U (t))
∫ m

0
β1(0, y)β2

(∫ m
y u(r, t) dr

U (t)

)
u(y, t) dy.

(1.4)

It is not difficult to verify that in the absence of mortality and recruitment, i.e. tak-
ing μ ≡ 0 and b0 ≡ β0 ≡ 0, the total population size U (t) is conserved. Notice
that in this case, ut (0, t) equals −γ (0)u(0, t) + d(0)ux (0, t), i.e. the flux through
x = 0 due to reproduction of the bacteria (from the biological point of view it would
be natural to assume γ (0) = 0, but we do not impose such a restriction here) and
to diffusion (noise) in the second term (this could take into account a certain—very
weak—horizontal transmission).

Our main goal in this paper is to establish sufficient conditions for the existence
of positive steady-state solutions of model (1.1)–(1.3). We shall refer the interested
reader to Refs. [5,8,15,17] where different size-structured models with distributed
recruitment processes were investigated. The boundary condition (1.2) is the so called
generalized Wentzell-Robin or dynamic boundary condition. These “unusual” bound-
ary conditions were investigated recently for models describing physical processes
such as diffusion and wave propagation, see e.g. Refs. [19,20,26]. In brief, they are
used to model processes where particles reaching the boundary of a domain can be
either reflected from the boundary or they can be absorbed and then released after
some time. Recently in Ref. [17] we introduced, as far as we know for the first time,
Wentzell-type boundary conditions in the context of physiologically structured popu-
lations with a distributed recruitment process and with diffusion in the size space. The
introduction of diffusion in the size space is very natural from the application point
of view, since in the real-world individuals who start their life in the same cohort do
not finish their life so, due for e.g. to stochastic variations in individual growth rates.
We refer the reader to Ref. [27] (see also Ref. [9]) where different types of population
models were introduced with diffusion in the size-space.

The idea of considering population models where the structuring variable represents
a pathogen load is clearly not new. In fact, in Ref. [37] Waldstädter et al. introduced a
similar model, where they have derived a dynamic boundary condition for the special
class of uninfected individuals. In their model, this class, however, does not corre-
spond to the value u(0, t); in fact, the uninfected population size is represented by a
new variable U (t) and a transition condition between the compartment U and u(0, t)
is given. This implies two things: firstly u(0, t) �= U (t), secondly individuals who are
sitting in the special compartment U are not subject to diffusion, i.e. first they need to
enter the state u(0, t). This in some sense may seem counterintuitive, as diffusion is
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incorporated to model stochastic noise, which could result in low probability random
infections. Since we model an (almost) completely vertically transmitted disease, we
do not take into account infection in a usual way. By usual way we mean by means of
a non-linear transition rate of the type SI , which in our model would correspond to
u(0, t)

∫ m
0 u(x, t) dx . But, due to the nature of the Wentzell boundary condition our

model allows for transition between the uninfected and infected compartments as a
diffusive flux through x = 0 in both directions (one of them corresponding to random
infections and the other one to spontaneous, i.e. random healings), depending on the
sign of ux , as commented above. We note that the mathematical analysis presented in
Ref. [37] is carried out in the Hilbert space L2.

We shall mention here that the first papers introducing boundary conditions that
involve second-order derivatives for parabolic or elliptic differential operators go back
to the 1950s, see the papers by Feller [22,23] and Wentzell (also transliterated as “Vent-
cel’”, Aleksandr D. Ventcel�) [35,36]. These first studies were purely motivated from
the mathematical point of view. The original question, as far as we know, was to
identify the maximal set of possible boundary conditions that give rise for a parabolic
differential operator to generate a contraction semigroup on an appropriate state space.

In this paper, first we establish global existence and positivity of solutions of model
(1.1)–(1.3). Our existence proof relies on the existence of the semigroup governing the
linear part of the model, which was established in Ref. [17] (with two-point Wentzell
boundary conditions) following similar arguments developed in Refs. [19,20], and
on the analyticity of this linear semigroup, which was very recently established in
Ref. [21] (and in fact for higher dimensional domains, as well). Then in Sect. 3 we
investigate the existence of non-trivial steady states to our model. To treat the steady-
state problem, we devise Schauder’s fixed point theorem combined with an operator
theoretic approach. A similar operator theoretic framework was previously utilised for
simpler problems (in particular with finite dimensional non-linearities and classical
boundary conditions), see e.g. Refs. [5,15]. The key idea to treat the steady state-
problem is to define a linear operator for a fixed environment (non-linearity) and to
study spectral properties of that operator. Finally in the last section, we establish some
sufficient stability conditions for the positive steady state.

2. Existence and positivity of solutions

In this section we establish global existence (and positivity) of solutions of the non-
linear problem (1.1)–(1.3). Throughout the section, we employ some standard results
from [28]. We introduce the state space X = L1(0, m) ⊕ R with norm

||u|| = ||(u, u0)|| = ||u||1 + |u0|,

which is a Banach lattice. Next we write our problem (1.1)–(1.3) in the form of an
abstract Cauchy problem:
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du
dt

− Au = F(u), t > 0, u(0) = u0, (2.5)

where A is the linear operator defined by

Au =
(

Au
−μ(0)u(0) + d(0)u′(0) − γ (0)u(0)

)
. (2.6)

In (2.6) the operator A is defined as

Au = ∂

∂x

(
d(·)∂u

∂x

)
− ∂

∂x
(γ (·)u) − μ(·)u. (2.7)

The domain of the linear part A is given by

D(A) =
{

u ∈ C2[0, m] : Au ∈ L1(0, m), d(m)u′(m) − γ (m)u(m) = 0

(d(s)u′(s))′
∣∣
s=0 − (d(0) + γ (0))u′(0) + (γ (0) − γ ′(0))u(0) = 0

}
.

The non-linear but bounded function F is defined as

F(u) =
{

F0(u) if u ∈ X \ {0}
0 if u = 0

}
, (2.8)

with D(F) = X , where

F0(u)=

⎛
⎜⎜⎝

β0 (||u||) ∫ m
0 β1(·, y)β2

(∫ m
y u(r) dr

||u||
)

u(y) dy

β0 (||u||) ∫ m
0 β1(0, y)β2

(∫ m
y u(r) dr

||u||
)

u(y) dy+b0 (||u||) b2

(∫ m
0 u(y) dy

||u||
)

u0

⎞
⎟⎟⎠ .

Note that F0 is only defined on the open set X \ {0}.
THEOREM 2.1. Assume that β0, β2, b0 and b2 are locally Lipschitzian. Then a

unique solution of problem (2.5) exists for all positive times for any u0 ∈ X .

Proof. We use Ref. [28, Corollary 3.3.5] to establish global existence of solutions
to the semi-linear problem (2.5). To this end, first we show that F is locally Lips-
chitz continuous, i.e. for every u ∈ X there exists a neighbourhood U ⊂ X of u
such that for every u1, u2 ∈ U we have ||F(u1) − F(u2)||X ≤ L ||u1 − u2||X =
L

(||u1 − u2||1 + |u10 − u20 |
)

for some constant L ≥ 0.
If either u1 = 0 or u2 = 0, then since F is bounded (i.e. all the ingredients

β0, β1, β2, b0 and b2 are continuous, hence bounded) and F(0) = 0 we have the
Lipschitz property ||F(u)|| ≤ L||u|| for some L > 0. For u1 �= 0, u2 �= 0 we have:

||F(u1) − F(u2)||X
≤ |β0 (||u1||) − β0 (||u2||)|

∣∣∣∣∣
∣∣∣∣∣
∫ m

0
β1(·, y)β2

(∫ m
y u1(r) dr

||u1||

)
u1(y) dy

∣∣∣∣∣
∣∣∣∣∣
1

(2.9)
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+β0 (||u2||)
∣∣∣∣∣
∣∣∣∣∣
∫ m

0
β1(·, y)

(
β2

(∫ m
y u1(r) dr

||u1||

)
u1(y)

− β2

(∫ m
y u2(r) dr

||u2||

)
u2(y)

)
dy

∣∣∣∣∣
∣∣∣∣∣
1

(2.10)

+ |β0 (||u1||) − β0 (||u2||)|

×
∣∣∣∣∣
∫ m

0
β1(0, y)β2

(∫ m
y u1(r) dr

||u1||

)
u1(y) dy

∣∣∣∣∣ (2.11)

+β0 (||u2||)
∣∣∣∣∣
∫ m

0
β1(0, y)

(
β2

(∫ m
y u1(r) dr

||u1||

)
u1(y)

− β2

(∫ m
y u2(r) dr

||u2||

)
u2(y)

)
dy

∣∣∣∣∣ (2.12)

+ |b0 (||u1||) − b0 (||u2||)| b2

(∫ m
0 u1(r) dr

||u1||

)
u10 (2.13)

+b0 (||u2||)
(

b2

(∫ m
0 u1(r) dr

||u1||

)
u10 − b2

(∫ m
0 u2(r) dr

||u2||

)
u20

)
. (2.14)

The term in (2.9) can be bounded above by Lβ0 ||u1−u2||Mβ1 Mβ2 m||u1||1, where β0 <

Mβ0 , β1 < Mβ1 , β2 < Mβ2 and Lβ0 is the Lipschitz constant of β0 in [0, supu∈U ||u||].
To obtain the estimate for (2.10) we note that

∣∣∣∣∣β2

(∫ m
y u1(r) dr

||u1||

)
u1(y) − β2

(∫ m
y u2(r) dr

||u2||

)
u2(y)

∣∣∣∣∣
=

∣∣∣∣∣
(

β2

(∫ m
y u1(r) dr

||u1||

)
− β2

(∫ m
y u2(r) dr

||u2||

))
u1(y)

+ β2

(∫ m
y u2(r) dr

||u2||

)
(u1(y) − u2(y))

∣∣∣∣∣
≤ Lβ2

∣∣∣∣∣
∣∣∣∣∣
∫ m

y u1(r) dr

||u1|| −
∫ m

y u2(r) dr

||u1|| +
∫ m

y u2(r) dr

||u1|| −
∫ m

y u2(r) dr

||u2||

∣∣∣∣∣
∣∣∣∣∣
1

|u1(y)|

+Mβ2 |u1(y) − u2(y)|

≤ Lβ2

(∣∣∣∣
∣∣∣∣
∫ m

y
u1(r) dr −

∫ m

y
u2(r) dr

∣∣∣∣
∣∣∣∣
1

|u1(y)|
||u1||

)
+ Mβ2 |u1(y) − u2(y)|

+Lβ2

⎛
⎜⎝

∣∣∣||u2|| − ||u1||
∣∣∣
∣∣∣
∣∣∣∫ m

y u2(r) dr
∣∣∣
∣∣∣
1

||u2||
|u1(y)|
||u1||

⎞
⎟⎠ , (2.15)
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where Lβ2 is the Lipschitz constant of β2 in [−1, 1]. Similar to (2.15), we obtain
the appropriate estimates for the terms (2.11)–(2.14). Hence F is locally Lipschitz-
ian. Since ||F(u) − F(0)|| = ||F(u)|| ≤ L||u||, F is also sub-linear and since A is
sectorial (see Ref. [21]) the statement of Theorem 2.1 follows from [28, Corollary
3.3.5]. �

Note that F : X+ → X+. The solution of the Cauchy problem (2.5) can be written
as

u(t) = T (t)u0 +
∫ t

0
T (t − s)F(u(s)) ds, t ∈ (0, t0), (2.16)

where T is the linear semigroup generated by the closure of the sectorial operator A.
We refer the reader to Ref. [17] where it is showed that a similar linear problem (with
two point Wentzell boundary condition) is governed by a quasicontractive positive
semigroup. Furthermore, we refer to Ref. [21] where the sectoriality of the operator
A was shown in L p, 1 ≤ p ≤ ∞, in general. Since F is a positive operator and the
semigroup T (t) is positive, the variation formula (2.16) immediately shows positivity
of solutions.

The principle of linearised stability can be established for model (1.1)–(1.3) by
directly applying again results from Ref. [28]. In particular, if u∗ is an equilib-
rium point then let F ′

u∗ denote the linearization of F at the equilibrium u∗, which
is a bounded linear operator defined on X (if it exists). See later in Sect. 4 for
more details. Then Ref. [28, Theorem 5.1.1] implies that if A is sectorial and F
is locally Lipschitz continuous, then the equilibrium u∗ is asymptotically stable if
σ

(
A + F ′

u∗
) ⊂ {λ ∈ C | Re(λ) < α < 0}. On the other hand, Ref. [28, Theorem 5.1.3]

implies (under the same conditions on A and F) that the equilibrium u∗ is unstable if
σ

(
A + F ′

u∗
) ∩ {λ ∈ C | Re(λ) > 0} is not empty.

3. Existence of non-trivial steady states

It is obvious that model (1.1)–(1.3) admits the trivial steady state. It is also
clear that even the time independent version of Eqs. (1.1)–(1.3) cannot be solved
explicitly. Therefore, to establish conditions which guarantee the existence of a
positive steady state, we utilize a combination of an operator theoretic frame-
work (see e.g. [5,15]) and a fixed-point approach. For basic definitions and results
from linear semigroup theory used throughout this section we refer the reader to
Refs. [2,10,13].

For a fixed non-vanishing v ∈ L1+(0, m) ⊕ R let us define the linear operator �v

(parameterised by v) by

�vu = Au + F0
v u, (3.17)
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where the operator A is defined in (2.6), and

F0
v u=

⎛
⎜⎜⎝

β0 (||v||) ∫ m
0 β1(·, y)β2

(∫ m
y v(r) dr

||v||
)

u(y) dy

β0 (||v||) ∫ m
0 β1(0, y)β2

(∫ m
y v(r) dr

||v||
)

u(y) dy+b0 (||v||) b2

(∫ m
0 v(y) dy

||v||
)

u0

⎞
⎟⎟⎠ ,

with domain

D(�v) =
{

u ∈ C2([0, m]) : Au ∈ L1(0, m), d(m)u′(m) − γ (m)u(m) = 0

(d(s)u′(s))′
∣∣
s=0 − (d(0) + γ (0))u′(0) + (γ (0) − γ ′(0))u(0) = 0

}
.

(3.18)

It is clear that (v∗, v∗(0)) is a non-trivial steady state of model (1.1)–(1.3) if (and only
if) it is a positive eigenvector belonging to the kernel of the (closure of the) linear
operator �v.

Next we establish some (necessary) regularity properties of the semigroup gen-
erated by the closure of �v. Several characterisations of irreducibility of a positive
semigroup exist in the literature, see for e.g. in Refs. [2,10,13]. Here we follow Ref.
[13]. A positive semigroup T on the Banach lattice X is said to be irreducible if
the resolvent of its generator G is strictly positive, i.e. ∀ 0 �≡ f ∈ X+ we have
(R(λ, G) f )(x) > 0 for almost all x and some λ > s(G).

LEMMA 3.2. For every fixed v ∈ X+ the closure of the linear operator �v gener-
ates an irreducible semigroup on X .

Proof. We introduce the mortality operator M as follows:

Mu =
( −μ(·)u

−μ(0)u(0)

)
on X+. (3.19)

We then consider the resolvent equation

(λI − (A − M)) u = h, (3.20)

for h ∈ X+, λ > 0, i.e.

− h(x) = (d(x)ux (x) − γ (x)u(x))x − λu(x), x ∈ (0, m), (3.21)

−h0 = − (γ (0) + λ) u(0) + d(0)u′(0), (3.22)

for an unknown u ∈ D(A). We have shown in Ref. [17, Theorem 2.1] that the lin-
ear semigroup generated by A − M is positive (with two point Wentzell boundary
conditions, but the proof can be trivially adapted to our case), i.e. the resolvent oper-
ator (λI − (A − M))−1 is positive for λ > 0 large enough. Hence the solution u of
Eqs. (3.21)–(3.22) is non-negative, i.e. u ≥ 0. It is only left to show that the solution
u is in fact strictly positive.
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The one-dimensional minimum principle assures that u cannot attain its minimum
value at an interior point of (0, m), see e.g. Ref. [33, Ch. 1 Theorem 3]. On the other
hand, Ref. [33, Ch. 1 Theorem 4] guarantees that if u attains its non-positive minimum
at 0 then u′(0) > 0 holds, which contradicts h ≥ 0, whereas the boundary condition
at x = m implies u(m) > 0 by the same theorem. Therefore, the semigroup gen-
erated by the closure of A − M is irreducible. Since M is a bounded multiplication
operator, and F0

v is bounded and positive for every v ∈ X+, it follows that the closure
of �v generates an irreducible semigroup for every v ∈ X+, see e.g. Ref. [2, C-III
Proposition 3.3]. �

REMARK 3.3. First of all we note that every steady state (v, v(0)) of model (1.1)–
(1.3) shall have regularity W 2,1(0, m). This immediately implies that model (1.1)–(1.3)
does not admit a steady state which has uninfected individuals only, i.e. of the form
(0, v(0)), with v(0) �= 0.

Secondly, as we noted before, a vector v = (v, v(0)) is a steady state of (1.1)–(1.3)
if and only if it is a positive eigenvector belonging to the kernel of the closure of �v.
Therefore, irreducibility of the semigroup generated by the closure of �v shows that
we also cannot have a steady state of the form (v, 0), since every positive eigenvector
of the closure of the generator is strictly positive if the semigroup is irreducible.

LEMMA 3.4. For every non-vanishing v ∈ X+ the spectrum of �v can contain
only isolated eigenvalues of finite algebraic multiplicity.

Proof. Since M and F0
v are bounded it is enough to show that R(λ, A−M) is compact.

This follows however by noting that the solution of the resolvent Eq. (3.21)–(3.22) is
in W 2,1(0, m) ⊕ R which is compactly embedded in X . The statement now follows
on the grounds of Ref. [13, Proposition II.4.25] and [13, Corollary IV.1.19]. �

As we noted before our goal is to show that there exists an element v ∈ X+ such
that the operator �v has eigenvalue zero. Then, Lemmas 3.2 and 3.4 guarantee the
existence of a corresponding strictly positive (unique normalized) eigenvector. In case
of a model with one-dimensional non-linearity, such as the one we treated in [15],
the operator � is in fact parameterised by a scalar quantity, viz. the total population
size. In this case the positive steady state is obtained readily after an appropriate nor-
malization of the positive eigenvector. In case of the model treated here the function
β2 naturally depends on an infinite dimensional variable. Therefore, in general there
is no guarantee that the positive eigenvector corresponding to the zero eigenvalue of
the operator �v is in fact v (or a scalar multiple of it). For this reason, we need to
construct an appropriate non-linear map on a certain level set of the positive cone of
the state space X and establish the existence of a fixed point of this map. We note that
a different fixed point strategy was employed very recently in Ref. [18] for a class of
models with infinite dimensional non-linearities (and zero flux boundary condition).
That method which uses fixed point results of non-linear maps in conical shells of
Banach spaces, does not apply to our model here since the construction of the non-lin-
ear map requires the (implicit) solution of the steady state equation. We also note that
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a similar argument to the one used here, even though in the case of finite dimensional
interaction variable is used in Ref. [7].

THEOREM 3.5. Assume that β0 and b0 are strictly monotone decreasing functions
of their argument and

(i) limx→∞ β0(x) = limx→∞ b0(x) = 0 and μ(x) > μ0 > 0, ∀x ∈ (0, m);

(ii) there exists an r > 0 such that for all v∗ ∈ X+, ||v∗|| ≤ r we have that the
spectral bound s

(
�v∗

)
> 0.

Then model (1.1)–(1.3) has at least one non-trivial steady state.

Proof. Since �v is a generator of a positive and irreducible semigroup with compact
resolvent, it follows that the spectrum σ(�v) is not empty, see e.g. Ref. [2, C-III
Theorem 3.7]. Moreover, the spectral bound s(�v) is an isolated eigenvalue of alge-
braic multiplicity one with a corresponding strictly positive eigenvector and it is the
unique eigenvalue with positive eigenvector, see e.g. Ref. [10, Theorem 9.10]. We
also note that the spectral bound and the corresponding positive eigenvector change
continuously with respect to (the parameter) v, see e.g. Ref. [30, Sect. 3 in Ch. 4].

We introduce the level set

S = {x ∈ X+ | s(�x) = 0}.

It is shown that the closure of the linear operator A − M generates a (positive) con-
traction semigroup, hence we have s(A − M) = ω0 ≤ 0. Intuitively it is clear that
contractivity follows simply because in the absence of mortality and recruitment the
total population size is preserved. Therefore, if

∣∣∣
∣∣∣F0

v

∣∣∣
∣∣∣ < inf

x∈[0,m]{μ(x)},

then it is shown that s (�v) < 0. Hence conditions (i) imply that there exists an R > 0
such that for ∀ v∗ ∈ X+, ||v∗|| ≥ R we have s

(
�v∗

)
< 0. From (ii) it then follows

that S ⊂ {x ∈ X+ | r < ||x|| < R} . It also follows from conditions (i) and (ii), and
from the continuity and strict monotonicity of the spectral bound (see below) that
along every positive ray R = {αv∗ | α ∈ R+, v∗ ∈ X+ \ { 0}}, there exists a (unique!)
v such that s(�v) = 0. So the set S intersects every positive ray R in a unique element.

Next, we shall show that the spectral bound is in fact strictly monotone decreas-
ing along every positive ray. To this end let 0 < α1 < α2 be real numbers and let
v ∈ X+. Consider the operators �α1v and �α2v. Both of them have compact resolvents
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by Lemma 3.4 and generate positive and irreducible semigroups. We also note that
�α1v − �α2v is a positive operator, since

(
�α1v − �α2v

)
u = (

F0
α1v − F0

α2v
)

u

=

⎛
⎜⎜⎝

(β0 (α1||v||)−β0 (α2||v||)) ∫ m
0 β1(·, y)β2

(∫ m
y v(r) dr

||v||
)

u(y) dy

(β0 (α1||v||)−β0 (α2||v||)) ∫ m
0 β1(0, y)β2

(∫ m
y v(r) dr

||v||
)

u(y) dy

⎞
⎟⎟⎠

+
(

0

(b0 (α1||v||) − b0 (α2||v||)) b2

(∫ m
0 v(y) dy

||v||
)

u0

)

≥ 0,

for every u ∈ X+. We also have

R(λ,�α1v) − R(λ,�α2v) = R(λ,�α1v)
(
�α1v − �α2v

)
R(λ,�α2v) ≥ 0,

for λ large enough. Hence, Ref. [1, Proposition A.2] implies that s(�α1v) > s(�α2v).
Next we construct the non-linear map 
 : S → S,
(v) = ( f4 ◦ f3 ◦ f2 ◦ f1)(v) =

v′, as illustrated briefly in the following diagram:


 : v︸︷︷︸
∈S

f1−→ �v︸︷︷︸
∈L(D(�v),X )

f2−→ Vv︸︷︷︸
∈W 2,1

+ (0,m)⊕R

f3−→ Vv︸︷︷︸
∈L1+(0,m)⊕R

f4−→ v′︸︷︷︸
∈S

. (3.23)

For every element v ∈ S the map f1 assigns the corresponding linear operator �v

“parameterized” by v, which is defined via (3.17). This map f1 is continuous and
bounded. The map f2 assigns the strictly positive normalized eigenvector correspond-
ing to the zero eigenvalue of the operator �v. This map f2 is clearly bounded and
it is also continuous, in fact it is even analytic, see Ref. [11, Lemma 1.3]. The map
f3 is the compact injection of W 2,1(0, m) ⊕ R into L1(0, m) ⊕ R. Finally f4 is the
projection along positive rays of the eigenvector Vv back into the set S, which is again
continuous and bounded.

Next we apply Schauder’s fixed point theorem to an appropriately defined map. As
we noted above the map 
 is continuous and compact. It is only left to show that S
is homeomorphic to a convex set. To this end, we define the map h : S → B by
h(u) = u

||u|| , where B is the unit sphere intersected with the positive cone X+, i.e.

B :=
{

u = (u, u0) ∈ X+ | ||u|| = ||u||1 + |u0| = 1
}

.

Then h is clearly continuous and one to one, since the spectral bound s (�) is strictly
monotone decreasing along positive rays in X and every positive ray of X intersects
B in a unique element.

We shall show now that the function h−1 : B → S defined via h−1(w) = α w, α ∈
R+ such that s (�α w) = 0, is also continuous. Let wn ∈ B be a sequence such that
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wn → w ∈ B and consider the sequence h−1(wn) = αnwn . It follows from condition
(i) that there exists an R > 0 such that s(�v) < 0 for every ||v|| > R, hence the
sequence αn is bounded. Let αnk be a convergent subsequence of αn and let αnk → ᾱ.

Since s
(
�αnk wnk

)
= 0 for every k ∈ N it follows from the continuity of the spec-

tral bound that s (�ᾱw) = 0. Since there is exactly one element on the positive ray
spanned by w at which the spectral bound vanishes we have ᾱ = α. If αnl is another
convergent subsequence of αn , then the continuity of the spectral bound implies again
that αnl → α. So αn → α and finally h−1(wn) = αnwn → αw = h−1(w).

We note that the set B is convex since we are in an AL-space, i.e. we have ||f +g|| =
||f || + ||g|| for every f, g ∈ X+, see e.g. Ref. [2]. Finally we apply Schauder’s fixed
point theorem (see e.g. Ref. [24]) to the continuous and compact map 
̄ : B → B
defined by


̄(x) = h ◦ 
 ◦ h−1(x),

to obtain a fixed point x̄∗ ∈ B of the map 
̄, which yields a fixed point x∗ = h−1 (x̄∗)
of the map 
 in S. This x∗ is the positive steady state of model (1.1)–(1.3) (see the
characterization of a non-trivial steady state immediately after Eq. (3.18)). �

REMARK 3.6. Condition (i) is natural from the biological point of view. The first
condition in (i) requires that the fertility rate of both infected and uninfected individ-
uals tends to zero as the population size tends to infinity. This may be due for e.g. to
competition effects. In fact it turns out that as expected, cytoplasmic incompatibility
itself does not have a negative feedback on population growth. The assumption of a
strictly positive mortality function in (i) seems also realistic.

Condition (ii) seems to be also a natural one, if one is to expect the existence of a
positive steady state. In fact, if it is not satisfied then one can show that there exists a
monotone decreasing sequence of positive real numbers rn → 0, such that for every
n ∈ N there exists a un∗ with ||un∗|| ≤ rn and s

(
�un∗

) ≤ 0 holds. Then, the continuity
of the spectral bound implies that s (�0) ≤ 0 and since the spectral bound is a strictly
monotone decreasing function along positive rays, we have s (�v) ≤ 0, for every
v ∈ X+.

4. Stability

In the previous section we established conditions which guarantee the existence of
a non-trivial steady state. The next natural step is to study the stability of the steady
state (and also the stability of the trivial steady state). In this section we are going
to establish a sufficient condition for the local asymptotic stability of the non-triv-
ial steady state. First we note that the operator F is not (Fréchet) differentiable at
0 because it is homogeneous of degree 1 (it is an “angular operator”). Nevertheless
it is Gâteaux-differentiable at 0. In particular, its directional derivative at 0 into the
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direction of any element v in the positive cone is:

dF0v =

⎛
⎜⎜⎝

β0(0)
∫ m

0 β1(·, y)β2

(∫ m
y v(r) dr

||v||
)

v(y) dy

β0(0)
∫ m

0 β1(0, y)β2

(∫ m
y v(r) dr

||v||
)

v(y) dy + b0(0)b2

(∫ m
0 v(y) dy

||v||
)

v0

⎞
⎟⎟⎠ ,

which is a non-linear operator.
If u∗ is a non-trivial equilibrium of (1.1)–(1.3), then we can formally linearise

Eq. (1.1) around u∗. In particular, if we denote by F ′
u∗ the linearisation (the Fréchet

derivative) of the non-linear operator F at u∗ then the linearised problem can be cast
in the form of an abstract Cauchy problem

d

dt
v = (

A + F ′
u∗

)
v, v(0) = v0, (4.24)

where A is defined in (2.6) and D(F ′
u∗) = X . We leave it for future work to address

the linear problem (4.24) (i.e. to address stability questions of equilibria), in general,
for e.g. using the Liapunov function techniques elaborated in [38, Sect. 4.2]. Here
however, we establish a straightforward and simple condition which guarantees that
the non-trivial equilibrium is locally asymptotically stable.

To this end, we consider on the state space X the operator F defined in (2.8) with
domain D(F) = X +. Then using approximations (in the spirit of Ref. [38, Def.2.4 in
Sect. 2.6]) such as

β0(||u∗ + v||) ∼ β0(||u∗||) + β ′
0(||u∗||)

(∫ m

0
v(y) dy + v0

)

and similarly

β2

(∫ m
y u∗(r) + v(r) dr

||u∗ + v||

)
∼ β2

(∫ m
y u∗(r) dr

||u∗||

)

+β ′
2

(∫ m
y u∗(r) dr

||u∗||

) (∫ m
y v(r) dr

||u∗||

−
∫ m

y
u∗(r) dr

∫ m
0 v(y) dy + v0

||u∗||2
)

,
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it is shown that the linearisation of the operator F at the non-trivial equilibrium u∗
(according again to Ref. [38, Def. 2.4 in Sect. 2.6] is

F ′
u∗ v

=

⎛
⎜⎜⎝

∫ m
0 β1(·, y)β2

(∫ m
y u∗(r) dr

||u∗||
) (

β0(||u∗||)v(y)+β ′
0(||u∗||)

(∫ m
0 v(y) dy + v0

)
u∗(y)

)
dy

∫ m
0 β1(0, y)β2

(∫ m
y u∗(r) dr

||u∗||
) (

β0(||u∗||)v(y) + β ′
0(||u∗||)

(∫ m
0 v(y) dy + v0

)
u∗(y)

)
dy

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

∫ m
0 β1(·, y)β0(||u∗||)β ′

2

(∫ m
y u∗(r) dr

||u∗||
)(∫ m

y v(r) dr

||u∗|| −∫ m
y u∗(r) dr

∫ m
0 v(y) dy+v0

||u∗||2
)

u∗(y) dy

∫ m
0 β1(0, y)β0(||u∗||)β ′

2

(∫ m
y u∗(r) dr

||u∗||
) (∫ m

y v(r) dr

||u∗|| −∫ m
y u∗(r) dr

∫ m
0 v(y) dy+v0

||u∗||2
)

u∗(y) dy

⎞
⎟⎟⎠

+
(

0

b2

( ∫ m
0 u∗(y) dy

||u∗||
) [

b0(||u∗||)v0 + b′
0(||u∗||)

(∫ m
0 v(y) dy + v0

)
u∗0

]
)

+
(

0

b0(||u∗||)b′
2

( ∫ m
0 u∗(y) dy

||u∗||
) ( ∫ m

0 v(y) dy
||u∗|| −

∫ m
0 u∗(y) dy

||u∗||2
(∫ m

0 v(y) dy + v0
))

u∗0

)
,

which is a bounded linear operator on X .

THEOREM 4.7. If

ν := inf
s∈[0,m] {μ(s)} >

∣∣∣∣F ′
u∗

∣∣∣∣ , (4.25)

then the non-trivial steady state u∗ is locally asymptotically stable.

Proof. Note that A−M has compact resolvent (where M is the mortality operator intro-
duced in (3.19)), see the proof of Lemma 3.4, and generates a positive and irreducible
semigroup, see the proof of Lemma 3.2. Therefore, its point spectrum σP (A−M) is not
empty, see
Ref. [2, C-III Theorem 3.7]. We also noted before that it generates a contraction
semigroup. In fact, the semigroup T1(t) generated by A − M satisfies ||T1(t)||X = 1
for every t > 0, hence 0 = ω0(A − M) = s(A − M). On the other hand, we have∣∣∣∣exp

{
t F ′

u∗
}∣∣∣∣ ≤ exp

{
t
∣∣∣∣F ′

u∗
∣∣∣∣}, hence for the growth bound of the semigroup T2(t)

generated by F ′
u∗ we have ω0

(
F ′

u∗
) ≤ ∣∣∣∣F ′

u∗
∣∣∣∣. We also note that M+νI is a dissipative

operator and it generates a contraction semigroup, hence for the growth bound of the
semigroup T3(t) generated by M we have ω0(M) < −ν, and ||T3(t)|| ≤ exp {−ν t}.
Finally, by applying a version of the Trotter product formula (see e.g. Ref. [13, Corol-
lary 5.8]) we obtain ω0(A − M + F ′

u∗ + M) = ω0(A + F ′
u∗) < 0 which shows that

the non-trivial steady state u∗ is locally asymptotically stable. �

REMARK 4.8. The stability condition in Theorem 4.7 may seem very restrictive at
the first glance. It may however be the case that the norm of the linearisation

∣∣∣∣F ′
u∗

∣∣∣∣
is small, especially since for our model we naturally have β ′

0, b′
0, β

′
2, b′

2 ≤ 0. On the
other hand, even natural mortality (note that μ is natural mortality combined with
infection induced mortality) is very high for e.g. in the case of the mosquito Aedes



510 À. Calsina and J. Z. Farkas J. Evol. Equ.

aegypti, which is one of the target species for the introduction of Wolbachia, see Ref.
[31]. We also note that the operator −F ′

u∗ may well be positive if the conditions of
Theorem 3.5 are satisfied, but there are no readily available results concerning the
question that how does the infimum of the spectrum of an operator changes under
positive perturbations. On the other hand if F ′

u∗ is dissipative and ν > 0 then similar
arguments as used in the proof of Theorem 4.7 show that the steady state is locally
asymptotically stable.

REMARK 4.9. As we pointed out earlier, it is not possible to talk about linear sta-
bility of the trivial steady state in the usual sense, as the non-linearity F is not Fréchet
differentiable at 0. We established however global existence of solutions for any initial
condition, and since condition (ii) in Theorem 3.5 requires that the spectral bound of
the linear part is positive in a small neighbourhood of 0, it may be intuitively plausible
to expect (for e.g. utilising the variation formula (2.16)) that the trivial steady state is
unstable and the positive steady state is actually globally asymptotically stable if the
condition of Theorem 4.7 holds true.

5. Concluding remarks

In this paper, we introduced and analysed a non-linear structured population model
with diffusion in the state space. Individuals in the population are structured with
respect to infection (for e.g. bacterium) load, hence we used Wentzell boundary
condition at the uninfected state x = 0. Our model primarily intended to describe
the evolution of Wolbachia infection in an arthropod, for e.g. mosquito population.
Wolbachia is a reproductive parasite and it affects the reproductive mechanisms of
its host in an intriguing fashion. Here we focused on a cytoplasmic incompatibility
(CI) inducing strain. Following [6,25] we adopted the view of partial CI, viz., that a
female can produce viable offspring only when mating with a male who has lower
infection load. Therefore, the functions β2, b2 are assumed to be monotone decreas-
ing. Note however, that these assumptions are not necessary to establish any of our
results, such as Theorems 2.1 and 3.5. In fact, in our main result Theorem 3.5, the
crucial assumption is the one which concerns the strict monotonicity of the functions
β0, b0. The necessity of condition (i) in Theorem 3.5 is also in agreement with the
fact that CI itself does not regulate population growth, it only provides infected indi-
viduals with a reproductive advantage, see e.g. Refs. [14,16,34]. The main difficulty
in the mathematical analysis of our model also arises from this crucial assumption of
the density dependent CI. In particular, physiologically structured population models
with infinite dimensional non-linearities and with distributed recruitment terms, such
as the one used here, are usually notoriously difficult to analyse, see e.g. Ref. [8,18].
The special form of the non-linearity naturally appearing in β2 and b2 also implies
that although the non-linear operator F is locally Lipschitz continuous at 0 it is not
Fréchet differentiable. This also implies that even though intuitively one may expect
that if the conditions of Theorems 3.5 and 4.7 hold true, then the trivial steady state
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is unstable; we cannot discuss linear stability of the trivial steady state using standard
stability results from semilinear theory as developed for e.g. in Refs. [28,38].
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