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Abstract. Let V and V ∗ be a real reflexive Banach space and its dual space, respectively. This paper is
devoted to the abstract Cauchy problem for doubly nonlinear evolution equations governed by subdifferen-
tial operators with non-monotone perturbations of the form: ∂Vψ

t (u′(t))+ ∂V ϕ(u(t))+ B(t, u(t)) � f (t)
in V ∗, 0 < t < T, u(0) = u0, where ∂Vψ

t , ∂V ϕ : V → 2V ∗
denote the subdifferential operators of

proper, lower semicontinuous and convex functions ψ t , ϕ : V → (−∞,+∞], respectively, for each
t ∈ [0, T ], and f : (0, T ) → V ∗ and u0 ∈ V are given data. Moreover, let B be a (possibly) multi-valued
operator from (0, T )×V into V ∗. We present sufficient conditions for the local (in time) existence of strong
solutions to the Cauchy problem as well as for the global existence. Our framework can cover evolution
equations whose solutions might blow up in finite time and whose unperturbed equations (i.e., B ≡ 0)
might not be uniquely solved in a doubly nonlinear setting. Our proof relies on a couple of approximations
for the equation and a fixed point argument with a multi-valued mapping. Moreover, the preceding abstract
theory is applied to doubly nonlinear parabolic equations.

1. Introduction

Let V and V ∗ be a reflexive Banach space and its dual space, respectively, and let
H be a Hilbert space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗

with continuous and densely defined canonical injections. Let ∂Vψ
t (for each t ∈

[0, T ]) and ∂Vϕ : V → 2V ∗
stand for the subdifferential operators of proper, lower

semicontinuous and convex functionsψ t andϕ, respectively, from V into (−∞,+∞].
Moreover, let B be a (possibly) multi-valued mapping from (0, T )× V into V ∗ such
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that B(t, ·) might be non-monotone in V × V ∗ for each fixed t . We discuss the exis-
tence of local and global (in time) strong solutions to the following Cauchy problem
for a doubly nonlinear evolution equation:

(CP)

{
∂Vψ

t (u′(t))+ ∂Vϕ(u(t))+ B(t, u(t)) � f (t) in V ∗, 0 < t < T,
u(0) = u0,

where u′(t) = du(t)/dt , and f : (0, T ) → V ∗ and u0 ∈ V are given.
Studies of evolution equations governed by subdifferential operators were initiated

with the following simple case:

u′(t)+ ∂Hϕ(u(t)) � 0, 0 < t < T (1.1)

in a Hilbert space H (see, e.g., Brézis [20]), and various generalized forms of (1.1) have
been studied by many authors to reinforce the applicability of theories of evolution
equations to nonlinear PDEs. We particularly choose three directions of generalization
among successful ones in applications to nonlinear PDEs.

Non-monotone perturbations: The development of perturbation theory for (1.1) is
further extending the applicability of subdifferential approaches to nonlinear PDEs.
Indeed, Navier–Stokes equation (see Ôtani-Yamada [43], Ôtani [41,42]), Allen-Cahn
equation and Cahn–Hilliard equation (see Kenmochi et al. [34]) are reduced to the
perturbation problem for (1.1) of the form:

u′(t)+ ∂Hϕ(u(t))+ B(t, u(t)) � f (t) (1.2)

with a possibly non-monotone operator B : (0, T ) × H → H in a Hilbert space H .
In [41], Mitsuharu Ôtani first established an abstract theory on the existence of local
and global (in time) strong solutions to Cauchy problems for (1.2), and his frame-
work can cover nonlinear PDEs whose solutions possibly blow up in finite time, e.g.,
degenerate parabolic equations with blow-up terms (see also [39,40]). Moreover, his
abstract theory has been applied to various nonlinear parabolic equations and systems
such as Navier–Stokes equation, heat-convection equation, magneto-micropolar fluid
equation and various nonlinear parabolic equations and systems.

Doubly nonlinear evolution equation: Barbu [14], Arai [10], Senba [48] and Colli-
Visintin [24] investigated sufficient conditions for the existence of strong solutions to
Cauchy problems for doubly nonlinear evolution equations in the form

∂Hψ(u
′(t))+ ∂Hϕ(u(t)) � f (t) in H, 0 < t < T (1.3)

with two subdifferential operators ∂Hψ and ∂Hϕ, and their results were applied to
doubly nonlinear parabolic equations such as

α (ut (x, t))− div a(∇u(x, t)) � f (x, t), (x, t) ∈ �× (0, T ), (1.4)
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where � is a bounded domain of R
N , α : R → R and a : R

N → R
N are maximal

monotone graphs, and f : �×(0, T ) → R is a given function (see also [4,8,17,23,37],
[45, Sect. 11], [11,38,47] and [46]).

Moreover, Grange-Mignot [30], Barbu [16] and Kenmochi-Pawlow [35] also stud-
ied other types of doubly nonlinear evolution equations such as

v′(t)+ ∂Hϕ(u(t)) � f (t), v(t) ∈ ∂Hψ(u(t)) in H, 0 < t < T (1.5)

(see also [9,12,25,36,49,53], [45, Sect. 11], [1–3,5]).
Banach space framework: It helps our analysis of nonlinear PDEs to choose a

proper function space as a base space of each setting. Indeed, one can find advantages
of frameworks which admit a flexible choice of function spaces particularly in studies
on doubly nonlinear parabolic equations, e.g., (1.4) and the following

∂

∂t
|u|p−2u(x, t)−�mu(x, t) = f (x, t), (x, t) ∈ �× (0, T ),

where p,m ∈ (1,∞) and�m denotes the so-called m-Laplacian given by�mu(x) =
div(|∇u(x)|m−2∇u(x)) (see Raviart [44], Tsutsumi [51]). However, evolution equa-
tions governed by subdifferential operators were originally studied only in Hilbert
space settings. Hence, several authors (e.g., Brézis [19], Kenmochi [32], Barbu [16]
and Colli [23]) made attempts to establish V -V ∗ frameworks that enable us to treat
evolution equations in Banach spaces V and their dual spaces V ∗ (see also Akagi-Ôtani
[6–8], Akagi [5], Aso et al’s[12]).

In order to cover a broader range of nonlinear PDEs, particularly, doubly nonlinear
versions of various PDEs, e.g., Allen-Cahn equations and Navier–Stokes equations,
it would be necessary to study (CP) with as general assumptions as possible. How-
ever, there seems to be no contribution to (CP) with three options, double nonlinearity,
non-monotone perturbations and Banach space framework. The purpose of the cur-
rent paper is to present sufficient conditions for the local (in time) existence of strong
solutions to (CP) as well as for the global existence. To do so, we overcome a couple of
difficulties, e.g., the strong nonlinearity of the equation and the defect of useful proper-
ties of maximal monotone operators defined in Banach spaces (cf. maximal monotone
operators in Hilbert spaces have fine properties such as the Lipschitz continuity of
their resolvents and Yosida approximations).

It is particularly noteworthy that the following unperturbed problems corresponding
to (CP) might not be uniquely solved.

∂Vψ
t (u′(t))+ ∂Vϕ(u(t)) � f (t) in V ∗, 0 < t < T, u(0) = u0. (1.6)

Indeed, a simple example of non-unique solutions was given in [23] even for the case
where V is a Hilbert space and ψ t is independent of t . Following a classical approach
to perturbation problems, one employs mappings ST : g 
→ u, which maps a function
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g : (0, T ) → V ∗ to the strong solution(s) u of (1.6) with f replaced by f − g on
[0, T ], and FT : g 
→ B(·, u(·)) to obtain a strong solution u∗ := ST g∗ of (CP) with
a fixed point g∗ of FT . However, since we cannot ensure the uniqueness of strong
solutions of (1.6), FT could be a multi-valued mapping. Fixed point theorems for
multi-valued mappings have already been established; in particular, several authors
extended Schauder-Tychonoff’s fixed point theorem to multi-valued mappings (see,
e.g., [22,27,29]). Here, we note that such fixed point theorems require the convexity
of the set FT g for every g; however, the convexity is not obvious in our case. In order
to overcome such a difficulty, we introduce approximate problems for (CP) whose
solutions can be constructed by the fixed point argument mentioned previously. More
precisely, the unperturbed problem corresponding to our approximation has a unique
solution, so the fixed point argument can work well for the approximate problems.
Furthermore, our unperturbed problem with approximation could be a new example
of doubly nonlinear problems with the uniqueness of solutions (cf. [23]). Thus, we
can construct approximate solutions for (CP), and then, we derive the convergence of
the approximate solutions to obtain a solution of (CP) (see Sect. 4 for more details).

We apply the preceding abstract theory to the initial-boundary value problems for
doubly nonlinear parabolic equations of degenerate type such as

|ut |p−2ut (x, t)−�mu(x, t)− |u|q−2u(x, t) = f (x, t) (1.7)

for (x, t) ∈ �× (0, T ), where � is a bounded domain in R
N , 1 < m, p, q < ∞ and

f : �× (0, T ) → R is given. Such doubly nonlinear degenerate parabolic equations
can be regarded as a special case of generalized Allen-Cahn equations due to Gurtin
[31]. Indeed, the solution u(x, t) of (1.7) corresponds to the order parameter at (x, t)
generated by a generalized gradient system A(u′(t))u′(t) = −F ′(u(t)) of the free
energy

F(u) := 1

m

∫
�

|∇u(x)|mdx − 1

q

∫
�

|u(x)|qdx −
∫
�

f (x, t)u(x)dx

and the constitutive modulus A(u) := |u|p−2. Moreover, we also treat a semilinear
equation with a nonlinear term involving the gradient of u, e.g.,

|ut |p−2ut (x, t)−�u(x, t)− |u|q1−2u(x, t)± |∇u(x, t)|q2−1 = f (x, t) (1.8)

with 1 < q1, q2 < ∞. It is noteworthy that (1.8) can be no longer written as a
generalized gradient system, because of the gradient nonlinearity.

This paper consists of seven sections. In Sect. 2, we summarize without proofs
the relevant material on maximal monotone operators and subdifferential operators.
Section 3 is devoted to our main results on the existence of local and global (in time)
strong solutions of (CP). Proofs of the main results will be given in Sects. 4, 5 (for the
local existence) and in Sect. 6 (for the global existence). Finally, in Sect. 7 we discuss
applications of the preceding abstract theory to nonlinear PDEs.
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2. Preliminaries

In this section, several standard facts on maximal monotone operators and subdif-
ferential operators are given for later use.

Let E and E∗ be a reflexive Banach space and its dual space with the norms | · |E

and | · |E∗ , respectively, and the duality pairing 〈·, ·〉. According to [13], every reflexive
Banach space can be equivalently renormed (along with its dual) to be strictly convex.
Throughout this paper, we denote by D(A) the domain of each operator A : E → 2E∗

,
and moreover, we denote by A the graph of A, that is, [u, ξ ] ∈ A means u ∈ D(A)
and ξ ∈ A(u).

An operator A : E → 2E∗
is said to be monotone if 〈ξ1 − ξ2, u1 − u2〉 ≥ 0 for

all [u1, ξ1], [u2, ξ2] ∈ A, and the maximality of A is known to be equivalent to the
condition that the range of FE + A coincides with E∗, where FE denotes the dual-
ity mapping between E and E∗, provided that E and E∗ are strictly convex (see,
e.g., [15,21]). The following proposition is concerned with the closedness of maximal
monotone operators in an appropriate topology (see [21]).

PROPOSITION 2.1. Let E be a reflexive Banach space. Let A : E → 2E∗
be a

maximal monotone operator and let [un, ξn] ∈ A and [u, ξ ] ∈ E × E∗ be such that
un → u weakly in E and ξn → ξ weakly in E∗. Moreover, suppose that

lim sup
n→∞

〈ξn, un〉 ≤ 〈ξ, u〉.

Then, it follows that [u, ξ ] ∈ A and 〈ξn, un〉 → 〈ξ, u〉.
We denote by
(E) the set of all proper, lower semicontinuous and convex functions

φ from E into (−∞,+∞], where the “proper” means φ �≡ ∞. For each φ ∈ 
(E),
the effective domain D(φ) of φ is given as follows:

D(φ) := {u ∈ E;φ(u) < ∞},
and the subdifferential operator ∂Eφ : E → 2E∗; u 
→ ∂Eφ(u) of φ is defined by

∂Eφ(u) := {ξ ∈ E∗;φ(v)− φ(u) ≥ 〈ξ, v − u〉 for all v ∈ D(φ)}
with the domain D(∂Eφ) := {u ∈ D(φ); ∂Eφ(u) �= ∅}. It is well known that every
subdifferential operator is maximal monotone (see, e.g., [15,21]).

Now, let H be a Hilbert space whose dual space H∗ is identified with itself and
define the subdifferential operator ∂Hφ : H → 2H of φ ∈ 
(H) as follows:

∂Hφ(u) := {ξ ∈ H ;φ(v)− φ(u) ≥ (ξ, v − u)H for all v ∈ D(φ)}
with the domain D(∂Hφ) := {u ∈ D(φ); ∂Hφ(u) �= ∅}. Here, (·, ·)H denotes the inner
product of H . Then, since ∂Hφ becomes maximal monotone, for λ > 0, one can define
the resolvent Jλ : H → D(∂Hφ) and the Yosida approximation (∂Hφ)λ : H → H of
∂Hφ by

Jλ := (I + λ∂Hφ)
−1, (∂Hφ)λ := (I − Jλ)/λ,
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where I stands for the identity mapping of H . Furthermore, for λ > 0 the Moreau-
Yosida regularization φλ : H → R of φ ∈ 
(H) is given by

φλ(u) := inf
v∈H

{
1

2λ
|u − v|2H + φ(v)

}
for all u ∈ H. (2.1)

The following proposition provides fine properties of resolvents, Yosida approxima-
tions and Moreau-Yosida regularizations in H (see [18] for its proof).

PROPOSITION 2.2. Let H be a Hilbert space and let φ ∈ 
(H). Then, φλ is a
Fréchet differentiable convex function from H into R. Moreover, the infimum in (2.1)
is attained by Jλu, where Jλ denotes the resolvent of ∂Hφ, i.e.,

φλ(u) = 1

2λ
|u − Jλu|2H + φ(Jλu) = λ

2
|(∂Hφ)λ(u)|2H + φ(Jλu).

Furthermore, the following (i)–(iii) hold.

(i) ∂H (φλ) = (∂Hφ)λ, where ∂H (φλ) is the subdifferential (Fréchet derivative) of
φλ.

(ii) φ(Jλu) ≤ φλ(u) ≤ φ(u) for all u ∈ H and λ > 0.
(iii) φλ(u) → φ(u) as λ → 0+ for all u ∈ H.

Finally, we recall the chain rule for subdifferential operators in a Banach space set-
ting, and it also plays important roles to deal with evolution problems (see [5,23,32]).
Throughout this paper, for each p ∈ (1,∞), we denote by p′ the Hölder conjugate of
p, i.e., p′ := p/(p − 1).

PROPOSITION 2.3. Let E be a reflexive Banach space and let p ∈ (1,∞). Let
φ ∈ 
(E) and let u ∈ W 1,p(0, T ; E) be such that u(t) ∈ D(∂Eφ) for a.e. t ∈ (0, T ).
Suppose that there exists g ∈ L p′

(0, T ; E∗) such that g(t) ∈ ∂Eφ(u(t)) for a.e.
t ∈ (0, T ). Then, the function t 
→ φ(u(t)) is absolutely continuous on [0, T ]. More-
over, let I := {t ∈ [0, T ]; u(t) ∈ D(∂Eφ), u and φ(u(·)) are differentiable at t}.
Then, [0, T ]\I is negligible, i.e., its Lebesgue measure is zero, and

d

dt
φ(u(t)) = 〈

h, u′(t)
〉

for every h ∈ ∂Eφ(u(t)) and t ∈ I.

3. Main results

Let V and V ∗ be a real reflexive Banach space and its dual space, let H be a real
Hilbert space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗ (3.1)

with continuous and densely defined canonical injections. Here, we set

CH := sup
u∈V \{0}

|u|H

|u|V > 0.
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Let ψ t , ϕ ∈ 
(V ) and let ∂Vψ
t and ∂Vϕ be the subdifferential operators of ψ t and

ϕ, respectively, for every t ∈ [0, T ] with T > 0. Moreover, let B be a mapping from
(0, T )× V into 2V ∗

. We consider the following Cauchy problem.

(CP)

{
∂Vψ

t (u′(t))+ ∂Vϕ(u(t))+ B(t, u(t)) � f (t) in V ∗, 0 < t < T,
u(0) = u0,

where f : (0, T ) → V ∗ and u0 ∈ V are given data. Here and henceforth, we are
concerned with strong solutions of (CP) defined as follows.

DEFINITION 3.1. For each S ∈ (0, T ], a function u ∈ C([0, S]; V ) is said to be
a strong solution of (CP) on [0, S], if the following conditions are satisfied:

(i) u is a V -valued absolutely continuous function on [0, S];
(ii) u(0) = u0;

(iii) u(t) ∈ D(∂Vϕ), u′(t) ∈ D(∂Vψ
t ) for a.e. t ∈ (0, S), and there exist sections

η(t) ∈ ∂Vψ
t (u′(t)), ξ(t) ∈ ∂Vϕ(u(t)) and g(t) ∈ B(t, u(t)) such that

η(t)+ ξ(t)+ g(t) = f (t) in V ∗ for a.e. t ∈ (0, S); (3.2)

(iv) the function t 
→ ϕ(u(t)) is absolutely continuous on [0, S].
Before describing our main results, let us introduce assumptions on ψ t , ϕ and B

for p ∈ (1,∞) and T > 0. We first give assumptions on the coercivity and the
boundedness of ∂Vψ

t : V → V ∗ as follows.

(A1) There exist constants C1 > 0 and C2 ≥ 0 such that

C1|u|p
V ≤ ψ t (u)+ C2 for all t ∈ [0, T ] and u ∈ D(ψ t ).

(A2) There exist a constant C3 ≥ 0 and m1 ∈ L1(0, T ) such that

|η|p′
V ∗ ≤ C3ψ

t (u)+ m1(t) for a.e. t ∈ (0, T ) and all [u, η] ∈ ∂Vψ
t .

Here we give a proposition, which will be used later.

PROPOSITION 3.2. Let p ∈ (1,∞) and suppose that (A2) is satisfied. In addition,
we assume that there exists a function w : [0, T ] → V such that

μ0 := sup
t∈[0,T ]

{|w(t)|V + |ψ t (w(t))|} < +∞. (3.3)

Then, the following (A2)′ holds true:

(A2)′ For all ζ ∈ (0, 1), there exists Nζ ∈ L1(0, T ) depending only on ζ, p,C3,m1,

μ0 such that

(1 − ζ )ψ t (u) ≤ 〈η, u〉 + Nζ (t) for all t ∈ [0, T ] and [u, η] ∈ ∂Vψ
t .

In particular, if m1 ≡ 0 and μ0 = 0, then Nζ ≡ 0 for any ζ ; hence ψ t (u) ≤
〈η, u〉.
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Proof. Let t ∈ [0, T ] and [u, η] ∈ ∂Vψ
t be fixed. By the definition of subdifferentials,

it then follows that

ψ t (u)− ψ t (w(t)) ≤ 〈η, u − w(t)〉 ≤ 〈η, u〉 + |η|V ∗ |w(t)|V
for each t ∈ [0, T ]. By (A2) and Young’s inequality, for any ζ ∈ (0, 1), there exists a
constant Cζ ≥ 0 such that

ψ t (u) ≤ 〈η, u〉 + ζψ t (u)+ ζ
m1(t)

C3
+ Cζ sup

t∈[0,T ]
|w(t)|p

V + sup
t∈[0,T ]

ψ t (w(t)).

Hence, setting Nζ (t) := ζm1(t)/C3 + Cζμ
p
0 + μ0, we obtain (A2)′, and moreover,

we also notice that Nζ ≡ 0 if m1 ≡ 0 and μ0 = 0. �

REMARK 3.3. Mielke and Theil [37] studied the rate-independent processes gen-
erated by some energy formulation of doubly nonlinear evolution equations with dis-
sipation functionals ψ homogeneous of degree 1, i.e., ψ(αu) = αψ(u) for α ≥ 0 and
u ∈ V . Unfortunately, our framework cannot handle their setting, which corresponds
to the case p = 1 in our assumptions, since this case is excluded.

We write {ψ t }t∈[0,T ] ∈ 
(V, [0, T ];α, β, �0) for functions α, β : (0, T ) → R and
a non-decreasing function �0 on [0,∞) if the following (i) and (ii) are satisfied:

(i) ψ t ∈ 
(V ) for all t ∈ [0, T ];
(ii) there exists a constant δ > 0 such that for all t0 ∈ [0, T ] and v0 ∈ D(ψ t0), we

can take a function v : Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ] → V satisfying

|v(t)− v0|V ≤ |α(t)− α(t0)|�0(|ψ t0(v0)| + |v0|V )
ψ t (v(t)) ≤ ψ t0(v0)+ |β(t)− β(t0)|�0(|ψ t0(v0)| + |v0|V )

for all t ∈ Iδ(t0).

Particularly, (ii) ensures a smooth movement of the graph for ψ t in t , and this type
of assumption was well studied by several authors (see, e.g., [32,33]) to treat time-
dependent subdifferential operators. Then, our third assumption reads,

(A3) There exist functions α, β ∈ W 1,1(0, T ) and a non-decreasing function �0 on
[0,∞) such that {ψ t }t∈[0,T ] ∈ 
(V, [0, T ];α, β, �0).

REMARK 3.4. The assumption (A3) ensures that the function t 
→ ψ t (u(t)) is
measurable in (0, T ) whenever u ∈ L1(0, T ; V ), and moreover, by (A3) one can
always take a function w : [0, T ] → V satisfying (3.3) (see [8] and [32]).

Suppose that (A3) is satisfied and define � : L p(0, T ; V ) → (−∞,+∞] by

�(u) :=
⎧⎨
⎩

∫ T

0
ψ t (u(t))dt if [t 
→ ψ t (u(t))] ∈ L1(0, T ),

+∞ otherwise.
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Then,� ∈ 
(L p(0, T ; V )). Moreover, by Proposition 1.1 of [32], we can assure that

η ∈ ∂L p(0,T ;V )�(u) if u ∈ L p(0, T ; V ), η ∈ L p′
(0, T ; V ∗),

and [u(t), η(t)] ∈ ∂Vψ
t for a.e. t ∈ (0, T ). (3.4)

As to ϕ, we employ the following compactness condition.

(
1) There exist a reflexive Banach space X and a non-decreasing function �1 in R

such that X is compactly embedded in V and

|u|X ≤ �1(ϕ(u)+ |u|H ) for all u ∈ D(∂Vϕ).

We next introduce assumptions on the non-monotone operator B. Condition (B1)ε
provides some growth condition for B(t, ·) : V → V ∗ with a constant ε > 0.
Condition (B2) can be regarded as a condition on the compactness and the closedness
for the operator B : u 
→ B(·, u(·)) in the sense of multi-valued operators. Moreover,
to treat multi-valued operators B : (0, T ) × V → V ∗, we also impose (B3) so that
the operator B will be well defined and convex-valued in a proper Bochner-Lebesgue
space (see also Remark 3.5).

(B1)ε D(∂Vϕ) ⊂ D(B(t, ·)) for a.e. t ∈ (0, T ). There exist mε
2 ∈ L1(0, T ) and a

non-decreasing function �ε2 on [0,∞) satisfying the following:

|g|p′
V ∗ ≤ ε|ξ |σV ∗ + |mε

2(t)|�ε2(|ϕ(u)| + |u|V ), σ := min{2, p′}
for a.e. t ∈ (0, T ) and all u ∈ D(∂Vϕ), g ∈ B(t, u) and ξ ∈ ∂Vϕ(u).

(B2) Let S ∈ (0, T ] and let {un} and {ξn} be sequences in C([0, S]; V ) and
Lσ (0, S; V ∗) with σ := min{2, p′}, respectively, such that

un → u strongly in C([0, S]; V ), [un(t), ξn(t)] ∈ ∂Vϕ for a.e. t ∈ (0, S),

sup
t∈[0,S]

|ϕ(un(t))| +
∫ S

0
|u′

n(t)|p
H dt +

∫ S

0
|ξn(t)|σV ∗dt

is bounded for all n ∈ N.

Moreover, let {gn} be a sequence in L p′
(0, S; V ∗) such that

gn(t) ∈ B(t, un(t)) for a.e. t ∈ (0, S), gn → g weakly in L p′
(0, S; V ∗).

Then, {gn} is precompact in L p′
(0, S; V ∗) and g(t) ∈ B(t, u(t)) for a.e.

t ∈ (0, S).
(B3) Let S ∈ (0, T ] and let u ∈ C([0, S]; V ) ∩ W 1,p(0, S; H) be such that

ϕ(u(·)) ∈ L∞(0, S). Suppose that there exists ξ ∈ L p′
(0, S; V ∗) such that

ξ(t) ∈ ∂Vϕ(u(t)) for a.e. t ∈ (0, S). Then, there exists a V ∗-valued strongly
measurable function g such that g(t) ∈ B(t, u(t)) for a.e. t ∈ (0, S). More-
over, the set B(t, u) is convex for all t ∈ (0, T ) and u ∈ D(B(t, ·)).

Here, we give a couple of remarks on (B1)ε–(B3).
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REMARK 3.5. (i) Let us show a couple of simpler (but more restrictive) alter-
natives to (B2).

(B2)1 B(t, u) = B(u) is single-valued and locally uniformly continuous from V
into V ∗.
If (B2)1 is assumed, then for any sequence un → u strongly in C([0, S]; V ),
it follows that gn(t) := B(un(t)) → B(u(t)) strongly in V ∗ uniformly
on [0, T ]. Hence (B2) follows. However, this condition could be somewhat
restrictive in applications to PDEs.

(B2)2 For each S ∈ (0, T ), the operator B : u 
→ B(·, u(·)) is single-valued, con-
tinuous and compact from L∞(0, S; X)∩ W 1,p(0, S; H) into L p′

(0, S; V ∗).
Let (un) be a sequence in the assumption of (B2). Then, by (
1), we find that
(un) is bounded in L∞(0, S; X) ∩ W 1,p(0, S; H). Hence by (B2)2, up to a
subsequence, we have gn := B(·, un(·)) → B(·, u) strongly in L p′

(0, S; V ∗).
(ii) Condition (B3) is not necessary to be assumed under (
1) and (B1)ε if X

is separable and B is single-valued and M(0, T ) × B(X)-measurable, where
M(0, T ) is the σ -algebra of Lebesgue measurable sets on (0, T ) and B(X) is
the Borel tribe generated by X . Indeed, the function t 
→ B(t, u(t)) is M(0, T )-
measurable for any M(0, T )-measurable function u : (0, T ) → X . Hence by
(B1)ε, we deduce that B(u) belongs to L p′

(0, T ; V ∗), provided that u satisfies
all assumptions in (B3). Moreover, B(t, u) is always convex.

(iii) Suppose that both (B1)ε and (
1) are satisfied. Then we get, by (
1),

|u|V ≤ C |u|X ≤ C�1(|ϕ(u)| + |u|H ).

Hence, we can derive the following (B1)′ε from (B1)ε by putting �ε3(x) :=
�ε2(x + C�1(x)).

(B1)′ε D(∂Vϕ) ⊂ D(B(t, ·)) for a.e. t ∈ (0, T ). There exist mε
2 ∈ L1(0, T ) and a

non-decreasing function �ε3 on [0,∞) satisfying the following:

|g|p′
V ∗ ≤ ε|ξ |σV ∗ + |mε

2(t)|�ε3(|ϕ(u)| + |u|H ), σ := min{2, p′}
for a.e. t ∈ (0, T ) and all u ∈ D(∂Vϕ), g ∈ B(t, u) and ξ ∈ ∂Vϕ(u).

Hence, we use (B1)′ε instead of (B1)ε to prove main results stated below.

Now, our result on the local (in time) existence is stated as follows:

THEOREM 3.6. (Local existence) Let p ∈ (1,∞) and T > 0 be given. Suppose
that (A1)–(A3), (
1), (B1)ε–(B3) are all satisfied with a sufficiently small ε > 0
(the smallness of ε is determined only from p,C1,C3 and CH ). Then, for all f ∈
L p′
(0, T ; V ∗)and u0 ∈ D(ϕ), there exists T∗ = T∗(ϕ(u0)+|u0|H +‖ f ‖L p′

(0,T ;V ∗)) ∈
(0, T ] such that (CP) admits at least one strong solution u ∈ W 1,p(0, T∗; V ) on [0, T∗]
satisfying

η, ξ, g ∈ L p′
(0, T∗; V ∗), ϕ(u(·)) ∈ W 1,1(0, T∗),

where η(t), ξ(t) and g(t) denote the sections of ∂Vψ
t (u′(t)), ∂Vϕ(u(t)) and

B(t, u(t)), respectively, as in (3.2) for a.e. t ∈ (0, T∗).
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A proof of Theorem 3.6 will be given in Sects. 4 and 5; its outline will be also shown
at the beginning of Sect. 4.

As for the global (in time) existence, we have:

THEOREM 3.7. (Global existence) Let p ∈ (1,∞) and T > 0 be fixed. Sup-
pose that (A1)–(A3), (
1), (B2), (B3) and the following (B4)ε are satisfied with
a sufficiently small ε > 0 (the smallness of ε is determined only from p,C1,C3

and CH ).

(B4)ε D(∂Vϕ) ⊂ D(B(t, ·)) for a.e. t ∈ (0, T ). There exists mε
3 ∈ L1(0, T ) satisfy-

ing the following:

|g|p′
V ∗ ≤ ε|ξ |σV ∗ + |mε

3(t)|
{|ϕ(u)| + |u|p

V + 1
}
, σ := min{2, p′}

for a.e. t ∈ (0, T ) and all u ∈ D(∂Vϕ), g ∈ B(t, u) and ξ ∈ ∂Vϕ(u).

Then, for all f ∈ L p′
(0, T ; V ∗) and u0 ∈ D(ϕ), there exists a strong solution u ∈

W 1,p(0, T ; V ) of (CP) on [0, T ] such that

η, ξ, g ∈ L p′
(0, T ; V ∗), ϕ(u(·)) ∈ W 1,1(0, T ), (3.5)

where η(t), ξ(t) and g(t) denote the sections of ∂Vψ
t (u′(t)), ∂Vϕ(u(t)) and

B(t, u(t)), respectively, as in (3.2) for a.e. t ∈ (0, T ).

Furthermore, the global existence is assured for small data u0 and f in a proper
sense by employing the following (B5) and (B6)ε instead of (B4)ε.

(B5) There exist a positive constant C4 and non-decreasing functions �i (i = 4, 5)
on [0,∞) such that lims→+0 �i (s) = 0 and

C4ϕ(u) ≤ 〈ξ + g, u〉 + �4(ϕ(u))ϕ(u), (3.6)

|u|p
V ≤ �5(ϕ(u))ϕ(u), (3.7)

for a.e. t ∈ (0, T ) and all u ∈ D(∂Vϕ), ξ ∈ ∂Vϕ(u), g ∈ B(t, u).
(B6)ε There exists a non-decreasing function �ε6 on [0,∞) such that lims→+0 �

ε
6(s) =

0 and

|g|p′
V ∗ ≤ ε|ξ |p′

V ∗ + �ε6(ϕ(u))ϕ(u) (3.8)

for a.e. t ∈ (0, T ) and all u ∈ D(∂Vϕ)∩ D(B(t, ·)), ξ ∈ ∂Vϕ(u), g ∈ B(t, u).

THEOREM 3.8. (Global existence for small data) Let p ∈ (1,∞) and T > 0 be
fixed. Suppose that ψ t (0) ≡ 0, (A1)–(A3), (
1), (B1)ε–(B3) and (B5), (B6)ε are all
satisfied with C2 = 0,m1 ≡ 0 and a sufficiently small ε > 0 (the smallness of ε is
determined only from p,C1,C3 and CH ). Then, there exists δ > 0 independent of T
such that for all f ∈ L p′

(0, T ; V ∗) and u0 ∈ D(ϕ) satisfying ‖ f ‖� + ϕ(u0) < δ,
where ‖ f ‖� is given by

‖ f ‖� :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
t∈[1,T ]

∫ t

t−1
| f (τ )|p′

V ∗dτ if 1 ≤ T,

∫ T

0
| f (τ )|p′

V ∗dτ if 0 < T < 1,

(3.9)
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the Cauchy problem (CP) admits a strong solution u ∈ W 1,p(0, T ; V ∗) on [0, T ] and
(3.5) holds true.

REMARK 3.9. We can assume that ψ t ≥ 0 and ϕ ≥ 0 without any loss of gener-
ality in our proofs of the main results. Indeed, putting ψ̂ t := ψ t + C2 and using (A1),
we find that ψ̂ t ≥ 0, D(ψ̂ t ) = D(ψ t ), D(∂V ψ̂

t ) = D(∂Vψ
t ) and ∂V ψ̂

t = ∂Vψ
t . As

for ϕ, from the fact that ϕ ∈ 
(V ) and (
1), the extension by infinity ϕ̃ of ϕ onto H
(see also (4.1) below) belongs to 
(H). Hence, there exist u∗ ∈ H and μ ∈ R such
that ϕ̃(u) ≥ (u∗, u)H + μ for all u ∈ H (see, e.g., Proposition 2.1 of [15, p. 51]).
Thus, we have ϕ̂(u) := ϕ(u) − (u∗, u)H − μ ≥ 0 for all u ∈ V , and moreover, it
holds that D(ϕ̂) = D(ϕ), D(∂V ϕ̂) = D(∂Vϕ) and ∂V ϕ̂ = ∂Vϕ − u∗. Therefore, the
evolution equation of (CP) is equivalent to the following:

∂V ψ̂
t (u′(t))+ ∂V ϕ̂(u(t))+ B(t, u(t)) � f̂ (t) := f (t)− u∗.

Moreover, (A1)–(A3), (B1)ε–(B4)ε and (
1) are all satisfied with ψ t and ϕ replaced
by ψ̂ t and ϕ̂, respectively. In particular, if (B5) is satisfied, it then follows from (3.7)
that ϕ ≥ 0 without any replacement of ϕ.

In the rest of this paper, we denote by C a non-negative constant, which does not
depend on the elements of the corresponding space or set and may vary from line to
line.

4. Approximate problems for (CP)

Our proof of Theorem 3.6 is divided into two steps. In the first step, we propose
approximate problems for (CP) and construct their solutions by employing Kakutan-
i-Fan’s fixed point theorem for multi-valued mappings. To do so, we first define the
extension of ϕ onto H as follows:

ϕ̃(u) :=
{
ϕ(u) if u ∈ V,
+∞ if u ∈ H\V .

(4.1)

Then, the assumption (
1) yields ϕ̃ ∈ 
(H). We now introduce approximate prob-
lems for (CP) as follows:

(CP)λ

⎧⎨
⎩
λu′(t)+ ∂Vψ

t (u′(t))+ ∂H ϕ̃λ(u(t))+ B(t, Jλu(t)) � f (t) in V ∗,
0 < t < T,

u(0) = u0,

where Jλ and ∂H ϕ̃λ denote the resolvent and the Yosida approximation of ∂H ϕ̃, respec-
tively. Before discussing the existence of strong solutions for (CP)λ, we first prove in
Sect. 4.1 the existence and uniqueness of strong solutions for the following unperturbed
problems with an arbitrary function g ∈ L p′

(0, T ; V ∗):

(CP)λ,g

{
λu′(t)+ ∂Vψ

t (u′(t))+ ∂H ϕ̃λ(u(t))+ g(t) � f (t) in V ∗, 0 < t < T,
u(0) = u0.
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We next define the solution operator ST : L p′
(0, T ; V ∗) → W 1,p(0, T ; V ), which

maps g into the unique strong solution u of (CP)λ,g on [0, T ]. In order to prove the
existence of local (in time) strong solutions for (CP)λ, we find a fixed point of the

mapping FT0 : L p′
(0, T0; V ∗) → 2L p′

(0,T0;V ∗); g 
→ FT0 g given by

FT0 g :=
{

h ∈ L p′
(0, T0; V ∗); h(t) ∈ B(t, Jλ(ST0 g)(t)) for a.e. t ∈ (0, T0)

}

for some T0 ∈ (0, T ] independent of λ. Indeed, for every fixed point g∗ of FT0 ,
the strong solution u∗ := ST0 g∗ of (CP)λ,g∗ satisfies B(t, Jλu∗(t)) � g∗(t) for a.e.
t ∈ (0, T0). Hence, u∗ also becomes a strong solution of (CP)λ on [0, T0]. The detail
of our proof for the existence of fixed points of FT0 will be given in Sect. 4.2.

The second step is devoted to the limiting procedure of strong solutions uλ for (CP)λ
as λ → +0. To do so, we establish a priori estimates for uλ (see Sect. 5).

REMARK 4.1. For the case where V = V ∗ = H is a Hilbert space (see [11]), one
can more easily prove the uniqueness of strong solutions for (CP)λ,g . Indeed, (CP)λ,g
can be rewritten into

u′(t) = (λI + ∂Hψ
t )−1 ( f (t)− g(t)− ∂H ϕ̃λ(u(t))) in H, 0 < t < T,

and we observe that the mapping u 
→ (λI + ∂Hψ
t )−1 ( f (t)− g(t)− ∂H ϕ̃λ(u))

becomes Lipschitz continuous in H for every t ∈ [0, T ]. Hence, the uniqueness of
strong solutions follows immediately. However, for the case where V is not a Hilbert
space, the mapping (λI + ∂Vψ

t )−1 : V ∗ → V is no longer Lipschitz continuous.

4.1. Unperturbed problem

In this subsection, the existence and uniqueness of strong solutions are proved for
the unperturbed problems (CP)λ,g .

THEOREM 4.2. Let T > 0 and p ∈ (1,∞) be fixed. Suppose that (A1)–(A3) and
(
1) are satisfied. Then, for each λ ∈ (0,∞), f, g ∈ L p′

(0, T ; V ∗) and u0 ∈ D(ϕ),
the Cauchy problem (CP)λ,g admits a unique strong solution u ∈ W 1,p(0, T ; V ) ∩
W 1,2(0, T ; H) on [0, T ] such that

Jλu(·) ∈ C([0, T ]; V ) ∩ W 1,p(0, T ; H),

ϕ̃λ(u(·)) ∈ W 1,1(0, T ), η ∈ L p′
(0, T ; V ∗),

where η(t) denotes the section of ∂Vψ
t (u′(t)) such that λu′(t)+η(t)+∂H ϕ̃λ(u(t))+

g(t) = f (t) for a.e. t ∈ (0, T ).

Proof. We first prove the uniqueness part. Let u1 and u2 be strong solutions for (CP)λ,g
on [0, T ] and put w := u1 − u2. We then see that

λw′(t)+ η1(t)− η2(t)+ ∂H ϕ̃λ(u1(t))− ∂H ϕ̃λ(u2(t)) � 0,
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where ηi (t) := f (t) − g(t) − ∂H ϕ̃λ(ui (t)) − λu′
i (t) ∈ ∂Vψ

t (u′
i (t)) (i = 1, 2).

Multiplying this by w′(t), we can deduce that

λ
∣∣w′(t)

∣∣2
H + 〈

η1(t)− η2(t), w
′(t)

〉
= − (

∂H ϕ̃λ(u1(t))− ∂H ϕ̃λ(u2(t)), w
′(t)

)
H ≤ 1

λ
|w(t)|H |w′(t)|H .

Using the monotonicity of ∂Vψ
t , we have

λ
∣∣w′(t)

∣∣2
H ≤ 1

λ
|w(t)|H |w′(t)|H ,

which implies

d

dt
|w(t)|H ≤ ∣∣w′(t)

∣∣
H ≤ 1

λ2 |w(t)|H .

Therefore, integrating this over (0, t), we get

|w(t)|H ≤ |w(0)|H + 1

λ2

∫ t

0
|w(τ)|H dτ for all t ∈ [0, T ],

which together with Gronwall’s inequality implies

|w(t)|H ≤ |w(0)|H exp

(
t

λ2

)
for all t ∈ [0, T ].

Thus, the uniqueness of strong solutions follows, provided that λ > 0. �

REMARK 4.3. Several criteria have been provided for the uniqueness of solutions
in [24] and [23] (see also [37]). However, (CP)λ,g could not be classified into their
categories. We emphasize that (CP)λ,g is truly doubly nonlinear, i.e., both operators
acting on u(t) and u′(t), respectively, are nonlinear and not self-adjoint, but its solution
is unique.

As for the existence of strong solutions for (CP)λ,g , we further introduce the
following approximate problems in H :

(CP)H
λ,gn

⎧⎨
⎩
λu′

n(t)+ ∂H ψ̃
t (u′

n(t))+ ∂H ϕ̃λ(un(t))+ gn(t) � fn(t) in H,
0 < t < T,

un(0) = u0,

where ψ̃ t denotes the extension of ψ t onto H defined as in (4.1), and { fn} and {gn}
are approximate sequences in C([0, T ]; H) such that

fn → f and gn → g strongly in L p′
(0, T ; V ∗) as n → ∞.

Here, we remark that (A1) implies ψ̃ t ∈ 
(H) for all t ∈ [0, T ], so that ∂H ψ̃
t

becomes maximal monotone in H . Then, (CP)H
λ,gn

can be rewritten into

u′
n(t) = Fn(t, un(t)), un(0) = u0
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with the mapping Fn : [0, T ] × H → H defined by

Fn : (t, u) 
→
(
λI + ∂H ψ̃

t
)−1

( fn(t)− gn(t)− ∂H ϕ̃λ(u)) .

Then, since ∂H ϕ̃λ and (λI + ∂H ψ̃
t )−1 are Lipschitz continuous in H , so is Fn(t, ·)

for all t ∈ [0, T ]. By Lemma 2.9 of [8], we can deduce from (A3) that the function
t 
→ Fn(t, u) is continuous in [0, T ] for all u ∈ H . Hence, the existence and unique-
ness of strong solutions un ∈ C1([0, T ]; H) for (CP)H

λ,gn
on [0, T ] are ensured by

Cauchy-Lipschitz-Picard’s existence theorem with obvious modifications (see, e.g.,
Corollary 1.1 of [20]). Furthermore, as in [8, p. 694], we can prove that u′ is a V -valued
weakly continuous function on [0, T ].

We next establish a priori estimates for un in the following lemmas.

LEMMA 4.4. There exists a constant M ≥ 0 such that for all n ∈ N, all strong
solutions un of (CP)H

λ,gn
on [0, T ] satisfy

λ

∫ T

0
|u′

n(t)|2H dt +
∫ T

0
ψ t (u′

n(t))dt + sup
t∈[0,T ]

ϕ̃λ(un(t))

≤ M
{
ϕ(u0)+ C2T + |N 1

2
|L1(0,T ) + ‖ fn − gn‖p′

L p′
(0,T ;V ∗)

}
(4.2)

with a constant M = M(p,C1) depending only on p and C1.

Proof. Multiplying (CP)H
λ,gn

by u′
n(t) and using Proposition 2.3, we get

λ|u′
n(t)|2H + 〈ηn(t), u′

n(t)〉 + d

dt
ϕ̃λ(un(t)) = 〈 fn(t)− gn(t), u′

n(t)〉,

where ηn(t) := fn(t)− gn(t)− ∂H ϕ̃λ(un(t))− λu′
n(t)∈∂H ψ̃

t (u′
n(t))⊂∂Vψ

t (u′
n(t)),

for a.e. t ∈ (0, T ). Then, by virtue of (A2)′ with ζ = 1/2, it follows that

λ|u′
n(t)|2H + 1

2
ψ t (u′

n(t))+ d

dt
ϕ̃λ(un(t))

≤ N 1
2
(t)+ c0

(
| fn(t)− gn(t)|p′

V ∗ + C2

)
+ 1

4
ψ t (u′

n(t))

with a constant c0 = c0(p,C1) depending only on p and C1. Thus,

λ|u′
n(t)|2H + 1

4
ψ t (u′

n(t))+ d

dt
ϕ̃λ(un(t)) ≤ N 1

2
(t)+ c0

(
| fn(t)− gn(t)|p′

V ∗ + C2

)
.

Integrating this over (0, t), we have

λ

∫ t

0
|u′

n(τ )|2H dτ + 1

4

∫ t

0
ψτ (u′

n(τ ))dτ + ϕ̃λ(un(t))

≤ ϕ(u0)+ |N 1
2
|L1(0,T ) + c0

(
‖ fn − gn‖p′

L p′
(0,T ;V ∗) + C2T

)

for all t ∈ [0, T ], since Proposition 2.2 gives ϕ̃λ(u0) ≤ ϕ̃(u0) = ϕ(u0). �
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LEMMA 4.5. There exist constants C and Cλ such that

sup
t∈[0,T ]

|un(t)|V +
∫ T

0
|u′

n(t)|p
V dt ≤ C, (4.3)

sup
t∈[0,T ]

|Jλun(t)|H +
∫ T

0

∣∣∣∣ d

dt
Jλun(t)

∣∣∣∣
p

H
dt ≤ C, (4.4)

∫ T

0
|ηn(t)|p′

V ∗dt ≤ C, (4.5)

sup
t∈[0,T ]

|∂H ϕ̃λ(un(t))|H ≤ Cλ, (4.6)

where C is independent of λ, but Cλ may not.

Proof. By (A1) and (4.2), we get
∫ T

0 |u′
n(t)|p

V dt ≤ C . Moreover, we note that

|un(t)|V = |u0|V +
∫ t

0

d

dτ
|un(τ )|V dτ ≤ |u0|V +

∫ t

0
|u′

n(τ )|V dτ,

which implies (4.3).
Since the resolvent Jλ is non-expansive in H , it follows that |Jλun(t + h) −

Jλun(t)|H ≤ |un(t + h)− un(t)|H for all t, t + h ∈ [0, T ], which implies
∫ T

0

∣∣∣∣ d

dt
Jλun(t)

∣∣∣∣
p

H
dt ≤

∫ T

0
|u′

n(t)|p
H dt ≤ C.

Moreover, as in the proof of (4.3), we also derive that supt∈[0,T ] |Jλun(t)|H ≤ C .
By virtue of the assumption (A2),

|ηn(t)|p′
V ∗ ≤ C3ψ

t (u′
n(t))+ m1(t)

for a.e. t ∈ (0, T ). Thus, (4.2) also implies (4.5).
Moreover, since ∂H ϕ̃λ is Lipschitz continuous in H , we can deduce that

|∂H ϕ̃λ(un(t))|H ≤ Cλ (|un(t)|H + 1) ,

which together with (4.3) yields (4.6). �

From these a priori estimates, we can derive the following convergences.

LEMMA 4.6. There exist a subsequence {n′} of {n}, u ∈ W 1,p(0, T ; V ) ∩
W 1,2(0, T ; H) and η ∈ L p′

(0, T ; V ∗) such that

un′ → u weakly in W 1,p(0, T ; V ) ∩ W 1,2(0, T ; H), (4.7)

ηn′ → η weakly in L p′
(0, T ; V ∗), (4.8)

∂H ϕ̃λ(un′(·)) → ∂H ϕ̃λ(u(·)) weakly in L2(0, T ; H), (4.9)

Jλun′(·) → Jλu(·) weakly in W 1,p(0, T ; H), (4.10)

strongly in C([0, T ]; V ). (4.11)

Hence, we have ϕ̃λ(u(·)) ∈ W 1,1(0, T ) and λu′ + η + ∂H ϕ̃λ(u(·))+ g = f .
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Proof. By Lemmas 4.4 and 4.5, there exist u ∈ W 1,p(0, T ; V ) ∩ W 1,2(0, T ; H)
and η ∈ L p′

(0, T ; V ∗) such that (4.7)–(4.8) hold, and moreover, there exist ξ ∈
L2(0, T ; H) and v ∈ W 1,p(0, T ; H) such that

∂H ϕ̃λ(un′(·)) → ξ weakly in L2(0, T ; H), (4.12)

Jλun′(·) → v weakly in W 1,p(0, T ; H). (4.13)

By Proposition 2.2 and Lemma 4.4, we see that

ϕ(Jλun(t)) = ϕ̃(Jλun(t)) ≤ ϕ̃λ(un(t)) ≤ C
{
ϕ(u0)+ 1 + ‖ fn − gn‖p′

L p′
(0,T ;V ∗)

}

for each t ∈ [0, T ], which together with (4.4) and (
1) implies that {Jλun(·)} is
bounded in L∞(0, T ; X) ∩ W 1,p(0, T ; H). Therefore, since X is compactly embed-
ded in V , and V is continuously embedded in H , Theorem 5 of [50] ensures that

Jλun′(·) → v strongly in C([0, T ]; V ). (4.14)

Hence, since ∂H ϕ̃λ(un(t)) ∈ ∂H ϕ̃(Jλun(t)), by Proposition 1.1 of [32] and Proposi-
tion 2.1 of Sect. 2, we can derive from (4.12) and (4.14) that ξ(t) ∈ ∂H ϕ̃(v(t)) for a.e.
t ∈ (0, T ).

Now, it remains to prove that v(t) = Jλu(t) and ξ(t) = ∂H ϕ̃λ(u(t)) for a.e. t ∈
(0, T ). To this end, from the definition of resolvents and Yosida approximations (see
Sect. 2), we have Jλun′(t) + λ∂H ϕ̃λ(un′(t)) = un′(t) for a.e. t ∈ (0, T ). Passing to
the limit as n′ → ∞, we can deduce that v(t) + λξ(t) = u(t) for a.e. t ∈ (0, T ),
and therefore, since ξ(t) ∈ ∂H ϕ̃(v(t)), we can deduce that v(t) = Jλu(t) and ξ(t) =
∂H ϕ̃λ(u(t)) for a.e. t ∈ (0, T ). Moreover, by Proposition 2.3, it follows that

d

dt
ϕ̃λ(u(·)) = (ξ(·), u′(·))H ∈ L1(0, T ),

which implies ϕ̃λ(u(·)) ∈ W 1,1(0, T ). �

We next verify that the limit u satisfies the initial condition u(0) = u0, and moreover,
the point wise convergence of un′ at each t ∈ [0, T ] is also derived in the following
lemma.

LEMMA 4.7. The limit u of un′ obtained in Lemma 4.6 by choosing the subsequence
{n′} of {n} satisfies

u(t) → u0 strongly in V as t → +0.

Furthermore, for each t ∈ [0, T ], it follows that

un′(t) → u(t) weakly in V . (4.15)
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Proof. By (4.3), for any q ∈ (1,∞), we can take a subsequence {nq} of {n} such that
unq → u weakly in Lq(0, t; V ) for all t ∈ (0, T ). Hence we have, by (4.3),

‖u − u0‖Lq (0,t;V ) ≤ lim inf
nq→∞ ‖unq − u0‖Lq (0,t;V )

= lim inf
nq→∞

(∫ t

0

∣∣∣∣
∫ τ

0
u′

nq (s)ds

∣∣∣∣
q

V
dτ

)1/q

≤ C

(
p′

q + p′

)1/q

t1/q+1/p′

for all q ∈ (1,∞). Therefore, passing to the limit as q → ∞, since u ∈ C([0, T ]; V ),
we can deduce that, for each t ∈ [0, T ],

|u(t)− u0|V ≤ sup
τ∈[0,t]

|u(τ )− u0|V = lim
q→∞ ‖u − u0‖Lq (0,t;V ) ≤ Ct1/p′

,

which implies that u(t) → u0 strongly in V as t → +0.
Moreover, since u(0) = un′(0) = u0, we get, by (4.7),

〈w, un′(t)− u(t)〉 =
∫ t

0
〈w, u′

n′(τ )− u′(τ )〉dτ → 0

for all w ∈ V ∗ and t ∈ [0, T ]. Thus, (4.15) holds. �

Finally, we prove that η(t) ∈ ∂Vψ
t (u′(t)) for a.e. t ∈ (0, T ) to close our proof

of Theorem 4.2. Multiply ηn(t) by u′
n(t) and integrate this over (0, T ). By Proposi-

tion 2.3, it then follows from (CP)H
λ,gn

that

∫ T

0
〈ηn(t), u′

n(t)〉dt

=
∫ T

0
〈 fn(t)− gn(t), u′

n(t)〉dt − ϕ̃λ(un(T ))+ ϕ̃λ(u0)− λ

∫ T

0
|u′

n(t)|2H dt.

Hence, by Lemmas 4.6 and 4.7, we get

lim sup
n′→∞

∫ T

0
〈ηn′(t), u′

n′(t)〉dt

≤
∫ T

0
〈 f (t)− g(t), u′(t)〉dt − ϕ̃λ(u(T ))+ ϕ̃λ(u0)− λ

∫ T

0
|u′(t)|2H dt

=
∫ T

0
〈 f (t)− g(t)− ∂H ϕ̃λ(u(t))− λu′(t), u′(t)〉dt =

∫ T

0
〈η(t), u′(t)〉dt,

which together with (4.7) and (4.8) implies η ∈ ∂L p(0,T ;V )�(u′) (see Proposition 2.1).
Consequently, we can deduce from (3.4) that [u′(t), η(t)] ∈ ∂Vψ

t for a.e. t ∈ (0, T ).
This completes our proof for Theorem 4.2. �



Vol. 11 (2011) Doubly nonlinear evolution equations with non-monotone perturbations 19

4.2. Perturbed problem

This subsection is devoted to proving the existence of local (in time) strong solu-
tions for (CP)λ. As was mentioned in the beginning of Sect. 4, we shall obtain a fixed

point g∗ of the mapping FT0 : L p′
(0, T0; V ∗) → 2L p′

(0,T0;V ∗) for some T0 ∈ (0, T ]
independent of λ by using the following Kakutani-Fan’s fixed point theorem for multi-
valued mappings (see Corollary 2 to Theorem 6.3 of [22, p. 75] for more detail):

PROPOSITION 4.8. Let K be a non-empty compact convex subset of a locally
convex topological vector space E. Let T be an upper semicontinuous mapping from
K into 2E such that T x is a closed convex subset of E and T x ∩ K �= ∅ for each
x ∈ K . Then, T has a fixed point x∗ ∈ K , that is, T x∗ � x∗.

We also emphasize that T0 is independent of λ, and this fact plays a crucial role in
the limiting process, which will be described in Sect. 5.

Now our goal of this subsection is the following:

THEOREM 4.9. Let T > 0 and p ∈ (1,∞) be fixed. Suppose that (A1)–(A3),
(
1) and (B1)ε–(B3) are all satisfied with a sufficiently small ε > 0 (the smallness
of ε is determined only from p,C1,C3 and CH ). Then, for any f ∈ L p′

(0, T ; V ∗)
and u0 ∈ D(ϕ), there exists T0 = T0(‖ f ‖L p′

(0,T ;V ∗) + ϕ(u0)+ |u0|H ) > 0 such that
for each λ ∈ (0, 1], the Cauchy problem (CP)λ admits at least one strong solution
u ∈ W 1,p(0, T0; V ) ∩ W 1,2(0, T0; H) on [0, T0] satisfying

Jλu(·) ∈ C([0, T0]; V ) ∩ W 1,p(0, T0; H), (4.16)

ϕ̃λ(u(·)) ∈ W 1,1(0, T0), η, g ∈ L p′
(0, T0; V ∗), (4.17)

where η(t) and g(t) stand for the sections of ∂Vψ
t (u′(t)) and B(t, Jλu(t)), respec-

tively, such that λu′(t)+ η(t)+ ∂H ϕ̃λ(u(t))+ g(t) = f (t) for a.e. t ∈ (0, T0).

Proof. Repeating the same argument as in the proof of Lemma 4.4, we can immedi-
ately derive the following lemma. �

LEMMA 4.10. There exists a constant M ≥ 0 such that for all S ∈ (0, T ] and
g ∈ L p′

(0, S; V ∗), every strong solution u of (CP)λ,g on [0, S] satisfies

λ

∫ S

0
|u′(t)|2H dt +

∫ S

0
ψ t (u′(t))dt + sup

t∈[0,S]
ϕ̃λ(u(t))

≤ M
{
ϕ(u0)+ C2S + |N 1

2
|L1(0,S) + ‖ f − g‖p′

L p′
(0,S;V ∗)

}
(4.18)

with a constant M = M(p,C1) depending only on p and C1.

By Theorem 4.2, (B1)′ε and (B3), we can assert that FSg is non-empty for every
S ∈ (0, T ] and g ∈ L p′

(0, S; V ∗). We next prove the closedness of the graph of FS

in L p′
(0, S; V ∗).
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LEMMA 4.11. Let S ∈ (0, T ] be arbitrarily given. Let [gn, hn] ∈ FS be such that
gn → g and hn → h strongly in L p′

(0, S; V ∗) as n → ∞. Then, it follows that
[g, h] ∈ FS.

Proof. Let un := SSgn and let ηn(t) := f (t) − gn(t) − ∂H ϕ̃λ(un(t)) − λu′
n(t) ∈

∂Vψ
t (u′

n(t)). Then, by Lemma 4.10, we have

λ

∫ S

0
|u′

n(t)|2H dt +
∫ S

0
ψ t (u′

n(t))dt + sup
t∈[0,S]

ϕ̃λ(un(t)) ≤ C, (4.19)

which also implies

sup
t∈[0,S]

|un(t)|V +
∫ S

0
|u′

n(t)|p
V dt ≤ C, sup

t∈[0,S]
|∂H ϕ̃λ(un(t))|H ≤ Cλ, (4.20)

∫ S

0
|ηn(t)|p′

V ∗dt ≤ C, (4.21)

sup
t∈[0,S]

|Jλun(t)|H +
∫ S

0

∣∣∣∣ d

dt
Jλun(t)

∣∣∣∣
p

H
dt ≤ C. (4.22)

Hence by (
1), the sequence {Jλun(·)} is bounded in L∞(0, S; X). Thus, just as in
the proof of Lemma 4.6, by virtue of Theorem 5 of [50], there exists a subsequence
{n′} of {n} such that Jλun′(·) → Jλu(·) strongly in C([0, S]; V ) as n′ → ∞, and
moreover, we can also obtain

un′ → u weakly in W 1,p(0, S; V ) ∩ W 1,2(0, S; H),

un′(t) → u(t) weakly in V for each t ∈ [0, S],
∂H ϕ̃λ(un′(·)) → ∂H ϕ̃λ(u(·)) weakly in L2(0, S; H),

Jλun′(·) → Jλu(·) weakly in W 1,p(0, S; H),

ηn′ → η weakly in L p′
(0, S; V ∗)

for some u ∈ W 1,p(0, S; V ) ∩ W 1,2(0, S; H) and η ∈ L p′
(0, S; V ∗). Furthermore,

since gn → g strongly in L p′
(0, S; V ∗), we get η(t) = f (t)− g(t)− ∂H ϕ̃λ(u(t))−

λu′(t) ∈ ∂Vψ
t (u′(t)) for a.e. t ∈ (0, S). Therefore, u becomes a strong solution of

(CP)λ,g on [0, S]. Hence, we have u = SSg.

Now we recall the assumptions that hn → h strongly in L p′
(0, S; V ∗) and hn(t) ∈

B(t, Jλun(t)) for a.e. t ∈ (0, S). Therefore, noting that (4.19) gives

sup
t∈[0,S]

ϕ(Jλun(t)) ≤ sup
t∈[0,S]

ϕ̃λ(un(t)) ≤ C

and that ∂H ϕ̃λ(un(t)) ∈ ∂H ϕ̃(Jλun(t)) ⊂ ∂Vϕ(Jλun(t)), we can derive that h(t) ∈
B(t, Jλu(t)) for a.e. t ∈ (0, S) from (4.20), (4.22) and (B2). Consequently, we can
deduce that [g, h] ∈ FS . �
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Thus, we have:

LEMMA 4.12. The following (i)–(iii) hold true.

(i) Let R ≥ ‖ f ‖p′
L p′

(0,T ;V ∗)+ϕ(u0)+|m1|L1(0,T )+|N 1
2
|L1(0,T )+T (C2+1) be fixed.

Then, there exists a constant T0 = T0(‖ f ‖L p′
(0,T ;V ∗) + R + ϕ(u0)+ |u0|H ) ∈

(0, T ] independent of λ ∈ (0, 1] such that FT0 BT0
R ⊂ BT0

R , where

BT0
R :=

{
g ∈ L p′

(0, T0; V ∗);
∫ T0

0
|g(t)|p′

V ∗dt ≤ R

}
;

(ii) Let QT0
R := conv(FT0 BT0

R )be the closed convex hull ofFT0 BT0
R in L p′

(0, T0; V ∗).
Then, FT0 QT0

R ⊂ QT0
R , and QT0

R is compact in L p′
(0, T0; V ∗);

(iii) The restriction of FT0 to QT0
R is an upper semicontinuous mapping from QT0

R

into 2L p′
(0,T0;V ∗).

Proof. Proof of (i). Let T0 ∈ (0, T ] be a number which will be determined later.
Let g ∈ BT0

R and let u = ST0 g, i.e., u is a strong solution of (CP)λ,g on [0, T0]. Putting
σ := min{2, p′}, we get, by (CP)λ,g and (A2),
∫ T0

0
|∂H ϕ̃λ(u(t))|σV ∗dt ≤c1

{∫ T0

0
| f (t)|p′

V ∗dt+
∫ T0

0
|g(t)|p′

V ∗dt+λ2
∫ T0

0
|u′(t)|2H dt

+
∫ T0

0
ψ t (u′(t))dt + |m1|L1(0,T0)

+ T0

}
,

where c1 = c1(p,C3,CH ) is a constant depending only on p,C3 and CH .
Let h ∈ FT0 g be arbitrarily given, that is, h ∈ L p′

(0, T0; V ∗) and h(t) ∈
B(t, Jλu(t)) for a.e. t ∈ (0, T0). Since ∂H ϕ̃λ(u(t)) ∈ ∂Vϕ(Jλu(t)), by (B1)′ε and
Lemma 4.10, it follows that∫ T0

0
|h(t)|p′

V ∗dt

≤ εc2

{
‖ f ‖p′

L p′
(0,T ;V ∗)+R+ϕ(u0)+|m1|L1(0,T ) + |N 1

2
|L1(0,T ) + T (C2 + 1)

}

+
(∫ T0

0
|mε

2(t)|dt

)
�ε3

(
C

{
‖ f ‖p′

L p′
(0,T ;V ∗) + R + ϕ(u0)+ |u0|H + 1

})
,

where c2 = c2(p,C1,C3,CH ) is a constant depending only on p,C1,C3 and CH .
Here, we also remark that the constant C above is independent of λ ∈ (0, 1] and T0.
We set ε > 0 such that

εc2 ≤ 1

4
, (4.23)

then εc2{‖ f ‖p′
L p′

(0,T ;V ∗)+R+ϕ(u0)+|m1|L1(0,T )+|N 1
2
|L1(0,T )+T (C2+1)} ≤ R/2.

Since mε
2 ∈ L1(0, T ), we can take T0 ∈ (0, T ] independent of λ such that

(∫ T0

0
|mε

2(t)|dt

)
�ε3

(
C{‖ f ‖p′

L p′
(0,T ;V ∗) + R + ϕ(u0)+ |u0|H + 1}

)
≤ R/2.
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It then follows that

∫ T0

0
|h(t)|p′

V ∗dt ≤ R,

which proves (i).
Proof of (ii). Since BT0

R is convex and closed in L p′
(0, T0; V ∗), (i) gives

QT0
R := conv

(
FT0 BT0

R

)
⊂ conv

(
BT0

R

)
= BT0

R .

Hence, it follows that FT0 QT0
R ⊂ FT0 BT0

R ⊂ QT0
R .

It now remains to prove that QT0
R is compact in L p′

(0, T0; V ∗). To this end, we claim

that FT0 BT0
R is precompact in L p′

(0, T0; V ∗). Indeed, let {hn} be a sequence in FT0 BT0
R .

Then (i) implies that {hn} is bounded in L p′
(0, T0; V ∗). We can take a sequence

{gn} in BT0
R such that hn ∈ FT0 gn , i.e., hn(t) ∈ B(t, Jλun(t)) for a.e. t ∈ (0, T0),

where un := ST0 gn . Since {gn} is bounded in L p′
(0, T0; V ∗), by Lemma 4.10, we can

derive that {Jλun(·)} and {ϕ(Jλun(·))} are bounded in W 1,p(0, T0; H) and L∞(0, T0),
respectively, for all n ∈ N, and that {Jλun(·)} is precompact in C([0, T0]; V ). More-
over, by (CP)λ,gn , we find that {∂H ϕ̃λ(un(·))} is bounded in Lσ (0, T0; V ∗). Thus,

(B2) implies that {hn} is precompact in L p′
(0, T0; V ∗), and so is FT0 BT0

R . Therefore

by Mazur’s theorem (see, e.g, (C.4) Theorem of [29, p. 603]), QT0
R becomes compact

in L p′
(0, T0; V ∗).

Proof of (iii). Applying Lemma 4.11 with gn ≡ g and S = T0, we can deduce
that the set FT0 g is closed in L p′

(0, T0; V ∗). Hence, by virtue of Lemma 4.11 and the
following proposition (see Proposition 6.2 of [22, p. 77] for its proof), it follows from

(ii) that FT0 is upper semicontinuous from QT0
R into 2Q

T0
R .

PROPOSITION 4.13. Let K and K1 be two compact topological spaces, and let
T be a mapping from K into 2K1 such that T x is closed for each x ∈ K . Then, T is
upper semicontinuous from K into 2K1 if and only if the graph of T is a closed subset
in K × K1.

Furthermore, since the topology of QT0
R is induced by L p′

(0, T0; V ∗), it also holds

true that FT0 is upper semicontinuous from QT0
R into 2L p′

(0,T0;V ∗). �

Now, let g ∈ QT0
R be fixed. Then, for arbitrary h1, h2 ∈ FT0 g and θ ∈ [0, 1],

we have (1 − θ)h1 + θ2h2 ∈ L p′
(0, T0; V ∗), and moreover, by (B3), we see

(1 − θ)h1(t) + θh2(t) ∈ B(t, Jλ(ST0 g)(t)) for a.e. t ∈ (0, T0). Hence, it follows
that (1 − θ)h1 + θh2 ∈ FT0 g, which implies that the set FT0 g is convex. Therefore
by Lemma 4.12, we can apply Proposition 4.8 to the mapping FT0 restricted to QT0

R ,

so that there exists a fixed point g∗ ∈ QT0
R of FT0 , i.e., g∗ ∈ FT0 g∗. This completes

our proof of Theorem 4.9. �
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5. Convergence of approximate solutions

In this section, we derive the convergence of strong solutions uλ ∈ W 1,p(0, T0; V )∩
W 1,2(0, T0; H) for (CP)λ on [0, T0] by establishing a priori estimates. Here, we recall
the fact that T0 is independent of λ (see Lemma 4.12). By Theorem 4.9, for each
λ ∈ (0, 1], there exist gλ, ηλ ∈ L p′

(0, T0; V ∗) such that

λu′
λ(t)+ ηλ(t)+ ∂H ϕ̃λ(uλ(t))+ gλ(t) = f (t) in V ∗, (5.1)

ηλ(t) ∈ ∂Vψ
t (u′

λ(t)), gλ(t) ∈ B(t, Jλuλ(t)) for a.e. t ∈ (0, T0). (5.2)

Throughout this section, every constant denoted by C will be independent of λ.
Since ∂H ϕ̃λ(uλ(t)) ∈ ∂Vϕ(Jλuλ(t)) for a.e. t ∈ (0, T0), by (A2), (B1)′ε and (5.1),
it follows that

|gλ(t)|p′
V ∗ ≤ εc3

{
| f (t)|p′

V ∗ + |gλ(t)|p′
V ∗ + λ2|u′

λ(t)|2H + ψ t (u′
λ(t))+ |m1(t)| + 1

}
+ |mε

2(t)|�ε3 (ϕ̃λ(uλ(t))+ |Jλuλ(t)|H )

with some constant c3 = c3(p,C3,CH ) depending only on p,C3 and CH . We can
then deduce that

(1 − εc3)|gλ(t)|p′
V ∗ ≤ εc3

{
| f (t)|p′

V ∗ + λ2|u′
λ(t)|2H + ψ t (u′

λ(t))+ |m1(t)| + 1
}

+ |mε
2(t)|�ε3 (ϕ̃λ(uλ(t))+ |Jλuλ(t)|H ) . (5.3)

Multiplying (5.1) by u′
λ(t) and using (A2)′ with ζ = 1/2 and (A1), we observe

λ|u′
λ(t)|2H + 1

2
ψ t (u′

λ(t))+ d

dt
ϕ̃λ(uλ(t))

≤ N 1
2
(t)+ c4

(
|gλ(t)|p′

V ∗ + | f (t)|p′
V ∗

)
+ 1

4
ψ t (u′

λ(t))+ C2

4

with a constant c4 = c4(p,C1) depending only on p and C1. Moreover, fixing ε so
small that

εc3c4

1 − εc3
≤ 1

8
, (5.4)

we have

λ

2
|u′
λ(t)|2H + 1

8
ψ t (u′

λ(t))+ d

dt
ϕ̃λ(uλ(t))

≤ C
(
| f (t)|p′

V ∗ + |N 1
2
(t)| + |m1(t)| + 1

)
+ C |mε

2(t)|�ε3 (ϕ̃λ(uλ(t))+ |Jλuλ(t)|H ) (5.5)

for a.e. t ∈ (0, T0). Here by (A1), we note that

d

dt
|Jλuλ(t)|H ≤

∣∣∣∣ d

dt
Jλuλ(t)

∣∣∣∣
H

≤ |u′
λ(t)|H ≤ CH |u′

λ(t)|V ≤ 1

8
ψ t (u′

λ(t))+ C.
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Hence, it follows that

d

dt
{ϕ̃λ(uλ(t))+ |Jλuλ(t)|H }
≤ C

(
| f (t)|p′

V ∗ +|N 1
2
(t)|+|m1(t)| + 1

)
+ C |mε

2(t)|�ε3 (ϕ̃λ(uλ(t))+|Jλuλ(t)|H )

for a.e. t ∈ (0, T0). Then, we employ the following standard fact:

PROPOSITION 5.1. Let T > 0, let ρ,m ∈ L1(0, T ) and let φ be an absolutely
continuous function from [0, T ] into R such that

dφ

dt
(t) ≤ ρ(t)+ |m(t)|�(φ(t)) for a.e. t ∈ (0, T ) (5.6)

with some non-decreasing function � on [0,∞). Then, it follows that

sup
t∈[0,T∗]

φ(t) ≤ φ(0)+ |ρ|L1(0,T ) + 1 (5.7)

with a constant T∗ ∈ (0, T ] satisfying

∫ T∗

0
|m(t)|dt ≤ 1

1 + �(φ(0)+ |ρ|L1(0,T ) + 1)
. (5.8)

Therefore, by Propositions 2.2 and 5.1, we can take T∗ = T∗(ϕ(u0) + |u0|H +
‖ f ‖L p′

(0,T ;V ∗)) ∈ (0, T0] independent of λ such that

sup
t∈[0,T∗]

{ϕ̃λ(uλ(t))+ |Jλuλ(t)|H } ≤ C. (5.9)

Furthermore, integrating (5.5) over (0, T∗), we can obtain

λ

∫ T∗

0
|u′
λ(t)|2H dt +

∫ T∗

0
ψ t (u′

λ(t))dt ≤ C, (5.10)

which together with (A1) and (A2) also implies

∫ T∗

0
|u′
λ(t)|p

V dt ≤ C,
∫ T∗

0
|ηλ(t))|p′

V ∗dt ≤ C.

Moreover, it follows from (5.3) and (5.1) that

∫ T∗

0
|gλ(t)|p′

V ∗dt ≤ C,
∫ T∗

0
|∂H ϕ̃λ(uλ(t))|σV ∗dt ≤ C

with σ = min{2, p′}.
Therefore, we can obtain the following convergences by taking a sequence {λn} in

(0, 1) such that λn → +0. There exist u ∈ W 1,p(0, T∗; V ), η, g ∈ L p′
(0, T∗; V ∗)
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and ξ ∈ Lσ (0, T∗; V ∗) such that

uλn → u weakly in W 1,p(0, T∗; V ),

ηλn → η weakly in L p′
(0, T∗; V ∗),

gλn → g weakly in L p′
(0, T∗; V ∗),

∂H ϕ̃λn (uλn (·)) → ξ weakly in Lσ (0, T∗; V ∗),
λnu′

λn
→ 0 strongly in L2(0, T∗; H).

Here, we also find that ξ = f − η − g ∈ L p′
(0, T∗; V ∗). Furthermore, since {u′

λn
}

is bounded in L p(0, T∗; V ), it follows that
√
λnu′

λn
→ 0 strongly in L p(0, T∗; V ).

Hence by (5.10), we can assert that

√
λnu′

λn
→ 0 weakly in L2(0, T∗; H). (5.11)

Moreover, note that

∫ T∗

0

∣∣∣∣ d

dt
Jλuλ(t)

∣∣∣∣
p

H
dt ≤

∫ T∗

0
|u′
λ(t)|p

H dt ≤ C. (5.12)

Therefore, by (5.9) and (
1), Theorem 5 of [50] implies

Jλn uλn → v strongly in C([0, T∗]; V ) (5.13)

for some v ∈ C([0, T∗]; V ). Furthermore, we can also prove v = u by using the
definition of ∂H ϕ̃λ and the fact that {∂H ϕ̃λ(uλ(·))} is bounded in Lσ (0, T∗; V ∗). Since
∂H ϕ̃λn (uλn (t)) ∈ ∂Vϕ(Jλn uλn (t)) for a.e. t ∈ (0, T∗), by Proposition 1.1 of [32] and
Proposition 2.1, we assert that

ξ(t) ∈ ∂Vϕ(u(t)) for a.e. t ∈ (0, T∗),

which also yields that ϕ(u(·)) ∈ W 1,1(0, T∗) and dϕ(u(t))/dt = 〈ξ(t), u′(t)〉 for a.e.
t ∈ (0, T∗). Moreover, we can also deduce from (B2) that

gλn → g strongly in L p′
(0, T∗; V ∗),

g(t) ∈ B(t, u(t)) for a.e. t ∈ (0, T∗).

Furthermore, we claim that η(t) ∈ ∂Vψ
t (u′(t)) for a.e. t ∈ (0, T∗). Indeed, we see

∫ T∗

0
〈ηλn (t), u′

λn
(t)〉dt

≤
∫ T∗

0
〈 f (t), u′

λn
(t)〉dt −

∫ T∗

0
|√λnu′

λn
(t)|2H dt − ϕ(Jλn uλn (T∗))+ ϕ(u0)

−
∫ T∗

0
〈gλn (t), u′

λn
(t)〉dt.
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Therefore, we have

lim sup
n→∞

∫ T∗

0
〈ηλn (t), u′

λn
(t)〉dt

≤ lim
n→∞

∫ T∗

0
〈 f (t), u′

λn
(t)〉dt − lim inf

n→∞

∫ T∗

0
|√λnu′

λn
(t)|2H dt

− lim inf
n→∞ ϕ(Jλn uλn (T∗))+ ϕ(u0)− lim

n→∞

∫ T∗

0
〈gλn (t), u′

λn
(t)〉dt

≤
∫ T∗

0
〈 f (t)− ξ(t)− g(t), u′(t)〉dt,

which implies η(t) = f (t)− ξ(t)− g(t) ∈ ∂Vψ
t (u′(t)) for a.e. t ∈ (0, T∗).

Finally, we check the initial condition, u(0) = u0. We observe that

|u(t)− u0|H ≤ |u(t)− Jλn uλn (t)|H + |Jλn uλn (t)− Jλn u0|H + |Jλn u0 − u0|H

≤ CH sup
t∈[0,T∗]

|u(t)− Jλn uλn (t)|V

+
(∫ T

0

∣∣∣∣ d

dτ
Jλn uλn (τ )

∣∣∣∣
p

H
dτ

)1/p

t1/p′ + |Jλn u0 − u0|H .

Hence, passing to the limit as n → ∞, we can deduce from (5.12) and (5.13) that

|u(t)− u0|H ≤ Ct1/p′ → 0 as t → +0.

Thus, from the fact that u ∈ C([0, T∗]; V ), we also conclude that u(t) → u0 strongly
in V as t → +0. Consequently, u becomes a strong solution of (CP) on [0, T∗], and
our proof of Theorem 3.6 is complete. �

6. Global existence

In this section, we give proofs of Theorems 3.7 and 3.8.

6.1. Proof of Theorem 3.7

Let S ∈ (0, T ] and let u be a strong solution of (CP) on [0, S]. In this proof, every
constant denoted by C is independent of S. Multiplying (CP) by u′(t) and using (A1)
and (A2)′ with ζ = 1/2, we get

1

2
ψ t (u′(t))− N 1

2
(t)+ d

dt
ϕ(u(t)) ≤ c4

(
| f (t)|p′

V ∗ + |g(t)|p′
V ∗

)
+ 1

4
ψ t (u′(t))+ C2

4
,

where g(t) denotes the section of B(t, u(t)) as in (3.2), for a.e. t ∈ (0, S). Now, by
(B4)ε, we see that

|g(t)|p′
V ∗ ≤ ε|ξ(t)|σV ∗ + |mε

3(t)|
{
ϕ(u(t))+ |u(t)|p

V + 1
}
,
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where ξ(t) denotes the section of ∂Vϕ(u(t)) as in (3.2), and moreover, as in (5.3),

(1 − εc5)|g(t)|p′
V ∗ ≤ εc5

{
| f (t)|p′

V ∗ + ψ t (u′(t))+ |m1(t)| + 1
}

+ |mε
3(t)|

{
ϕ(u(t))+ |u(t)|p

V + 1
}

with some constant c5 = c5(p,C3) depending only on p and C3. Hence, choosing
ε > 0 so small that

εc5

1 − εc5
≤ 1

8c4
,

we can derive

|g(t)|p′
V ∗ ≤ C

(
| f (t)|p′

V ∗ + |m1(t)| + |mε
3(t)| + 1

)

+ C |mε
3(t)|

{
ϕ(u(t))+ |u(t)|p

V

} + 1

8c4
ψ t (u′(t))

for a.e. t ∈ (0, S). Furthermore, by (A1), we observe that

d

dt
|u(t)|p

V ≤ p|u(t)|p−1
V |u′(t)|V ≤ C |u(t)|p

V + 1

8
ψ t (u′(t))+ C2

8
.

Thus,

d

dt

{
ϕ(u(t))+ |u(t)|p

V

} ≤ C
(
| f (t)|p′

V ∗ + |m1(t)| + |mε
3(t)| + |N 1

2
(t)| + 1

)

+ C
(|mε

3(t)| + 1
) {
ϕ(u(t))+ |u(t)|p

V

}

for a.e. t ∈ (0, S). Hence, integrating this over (0, t) and applying Gronwall’s inequal-
ity, we can deduce that

sup
t∈[0,S]

{
ϕ(u(t))+ |u(t)|p

V

} ≤ C (6.1)

with some constant C independent of S.
We find that (B4)ε implies (B1)′ε with mε

2 replaced by mε
3. By virtue of Theorem 3.6,

there exists a strong solution u of (CP) on [0, T0] for some T0 ∈ (0, T ], and more-
over, (6.1) holds with S = T0. In case T0 = T , we obtain our desired conclusion. In
case T0 < T , recall the proof of Theorem 3.6 (particularly, the choice of T0 and T∗)
and note that the function I ⊂ [0, T ] 
→ ∫

I |mε
3(t)|dt is absolutely continuous by

mε
3 ∈ L1(0, T ).
Then, due to (6.1), we can extend u onto [0, T ] as a strong solution of (CP), by

using Theorem 3.6.
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6.2. Proof of Theorem 3.8

We first prepare the following Lemma 6.1 (see Lemma 4.4 of [6] for its proof).

LEMMA 6.1. Let T > 0, let ρ ∈ L1(0, T ) and let φ be a non-negative absolutely
continuous function from [0, T ] into R such that

dφ

dt
(t)+ αφq−1(t) ≤ K |ρ(t)| for a.e. t ∈ (0, T ), (6.2)

where α > 0, K > 0 and q > 1. Let r > 0 and suppose that φ(0) ≤ r and
‖ρ‖ ≤ rq−1, where ‖ρ‖ is given by

‖ρ‖ :=

⎧⎪⎪⎨
⎪⎪⎩

sup
t∈[1,T ]

∫ t

t−1
|ρ(τ)|dτ if 1 ≤ T,

∫ T
0 |ρ(τ)|dτ if 0 < T < 1.

Then, there exists a non-decreasing function Mα,K ,q(·) on [0,∞) depending only on
α, K , q such that

φ(t) ≤ Mα,K ,q(r)r for all t ∈ [0, T ].
Now, we proceed to prove Theorem 3.8. We first fix ε > 0 satisfying (6.10), which

will be given later, and assume (A6)ε. Since lims→+0 �i (s) = 0 for each i = 4, 5 and
lims→+0 �

ε
6(s) = 0, we next choose δ0 > 0 satisfying (6.5) and (6.13), which will be

stated below.
Let S ∈ (0, T ] and let u be a strong solution of (CP) on [0, S] with u0 and f

satisfying

‖ f ‖� + ϕ(u0) < δ (6.3)

for an enough small constant δ ∈ (0, δ0), which will be determined by (6.14) and will
not depend on S and T . Then, we shall prove that

sup
t∈[0,S]

ϕ(u(t)) ≤ δ0 (6.4)

by contradiction. Assume supt∈[0,S] ϕ(u(t)) > δ0, so that there exists T1 ∈ (0, S) such
that ϕ(u(T1)) = δ0 and ϕ(u(t)) < δ0 for all t ∈ [0, T1).

Set δ0 > 0 such that

�4(δ0) <
C4

2
, �5(δ0) <

C4 p

8
. (6.5)

By (B5), it then follows that

C4

2
ϕ(u(t)) ≤ 〈ξ(t)+ g(t), u(t)〉, (6.6)

|u(t)|p
V ≤ C4 p

8
ϕ(u(t)), (6.7)
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where ξ(t) and g(t) stand for the sections of ∂Vϕ(u(t)) and B(t, u(t)), respectively,
as in (3.2), for a.e. t ∈ (0, T1). Hence, we have

C4

2
ϕ(u(t)) ≤ 〈 f (t)− η(t), u(t)〉

≤ 1

p′
(
| f (t)|p′

V ∗ + |η(t)|p′
V ∗

)
+ C4

4
ϕ(u(t)),

where η(t) ∈ ∂Vψ
t (u′(t)) as in (3.2). Thus, (A2) with m1 ≡ 0 gives

C4

4
ϕ(u(t)) ≤ 1

p′
{
| f (t)|p′

V ∗ + C3ψ
t (u′(t))

}
for a.e. t ∈ (0, T1). (6.8)

On the other hand, since ψ t (0) ≡ 0 and m1 ≡ 0, we can take Nζ ≡ 0 in (A2)′.
Hence, multiplying (CP) by u′(t) and using (A2)′ with ζ = 0 and (A1) with C2 = 0,
we get

ψ t (u′(t))+ d

dt
ϕ(u(t)) ≤ c6

(
| f (t)|p′

V ∗ + |g(t)|p′
V ∗

)
+ 1

2
ψ t (u′(t)), (6.9)

where c6 = c6(p,C1) is a constant depending only on p and C1. Moreover, we get,
by (3.8) and (A2) with m1 ≡ 0,

(1 − εc7)|g(t)|p′
V ∗ ≤ εc7

(
| f (t)|p′

V ∗ + C3ψ
t (u′(t))

)
+ �ε6(δ0)ϕ(u(t)),

where c7 = 3p′−1, for a.e. t ∈ (0, T1). Now, fixing ε so small that

0 <
εc7

1 − εc7
≤ 1

4c6C3
(6.10)

(hence, the smallness of ε depends only on p,C1 and C3), we have

|g(t)|p′
V ∗ ≤ 1

4c6C3
| f (t)|p′

V ∗ + 1

4c6
ψ t (u′(t))+ 1

1 − εc7
�ε6(δ0)ϕ(u(t)) (6.11)

for a.e. t ∈ (0, T1). Hence, (6.9) yields

1

2
ψ t (u′(t))+ d

dt
ϕ(u(t))

≤
(

c6 + 1

4C3

)
| f (t)|p′

V ∗ + 1

4
ψ t (u′(t))+ c6

1 − εc7
�ε6(δ0)ϕ(u(t)) (6.12)

for a.e. t ∈ (0, T1).
Therefore, adding (6.8) multiplied by p′/(4C3) to (6.12), we can obtain

1

4
ψ t (u′(t))+ d

dt
ϕ(u(t))+ 2αϕ(u(t))

≤ K | f (t)|p′
V ∗ + c6

1 − εc7
�ε6(δ0)ϕ(u(t))+ 1

4
ψ t (u′(t)),
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where

α := p′C4

32C3
, K :=

(
c6 + 1

2C3

)

for a.e. t ∈ (0, T1). Hence, we can deduce that

d

dt
ϕ(u(t))+ αϕ(u(t)) ≤ K | f (t)|p′

V ∗ for a.e. t ∈ (0, T1),

since δ0 > 0 satisfies

�ε6(δ0) < α
1 − εc7

c6
. (6.13)

Thus, by Lemma 6.1, since u0 and f satisfies (6.3) with an enough small constant
δ ∈ (0, δ0) determined by

Mα,K ,2 (δ) δ <
δ0

2
, (6.14)

it follows that

ϕ(u(t)) <
δ0

2
for all t ∈ [0, T1],

which contradicts the fact that ϕ(u(T1)) = δ0. Hence (6.4) follows.
Thus, since δ0 and δ are independent of S, as in the proof of Theorem 3.7, we can

prove the existence of strong solutions of (CP) on [0, T ]. �

7. Applications to nonlinear PDEs

In this section, we apply the preceding abstract theory to doubly nonlinear parabolic
equations.

7.1. Doubly nonlinear parabolic equations of degenerate type

In this subsection, we treat doubly nonlinear parabolic equations of degenerate type,
for which (1.7) is a typical example, and we finally provide sufficient conditions for
the existence of local and global (in time) solutions of the initial-boundary value prob-
lems. Let T > 0 and let � be a bounded domain in R

N with boundary ∂�. We first
deal with the following initial-boundary value problem,

α(x, t, ut (x, t))− div a(x,∇u(x, t))+ g(x, t, u(x, t)) � f (x, t),

(x, t) ∈ �× (0, T ), (7.1)

u(x, t) = 0, (x, t) ∈ ∂�× (0, T ), (7.2)

u(x, 0) = u0(x), x ∈ � (7.3)

with functions α : � × (0, T ) × R → 2R, a : � × R
N → R

N , g : � × (0, T ) ×
R → R, u0 : � → R and f : �× (0, T ) → R. To discuss the existence of solutions
for (7.1)–(7.3), we introduce the following assumptions for p ∈ [2,∞).
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(H1) (i) There exists a function j : �× [0, T ] × R → [0,∞) such that
• j (x, t, ·) ∈ 
(R) for a.e. x ∈ � and all t ∈ [0, T ],
• ∂R j (x, t, ·) = α(x, t, ·) for a.e. (x, t) ∈ �× (0, T ),
• j (·, t, r) is continuous in � for a.e. t ∈ (0, T ) and all r ∈ R.

(ii) For each v ∈ L p(�), the function j (·, t, v(·)) is measurable in � for all
t ∈ [0, T ], and there exists a function η : �×(0, T ) → R such that η(·, t) ∈
α(·, t, v(·)) and η(·, t) is measurable in � for a.e. t ∈ (0, T ). Furthermore,
for all t ∈ [0, T ], there exists v0 ∈ L p(�) such that j (·, t, v0(·)) ∈ L1(�).

(iii) There exist ρ, σ ∈ W 1,1(0, T ), b1 ∈ L1(�) and a constant δ > 0 with the
following property: for all t0 ∈ [0, T ] and r0 ∈ R, there exists a function
π : Iδ(t0) × � × R → R, where Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ], such
that

|π(t; x, r0)− r0| ≤ |ρ(t)− ρ(t0)| { j (x, t0, r0)+ b1(x)}1/p ,

j (x, t, π(t; x, r0)) ≤ j (x, t0, r0)+ |σ(t)− σ(t0)|{ j (x, t0, r0)+ b1(x)}

for a.e. x ∈ � and all t ∈ Iδ(t0), and π(t; ·, v(·)) is measurable in � for all
t ∈ [0, T ] and v ∈ L p(�).

(H2) There exist a constant C5 ≥ 0, a1 ∈ L1(�) and a2 ∈ L1(�× (0, T )) such that
the following (i), (ii) hold.

(i) |r |p ≤ C5 j (x, t, r)+ a1(x) for a.e. x ∈ � and all (t, r) ∈ [0, T ] × R.
(ii) |η|p′ ≤ C5 j (x, t, r) + a2(x, t) for a.e. (x, t) ∈ � × (0, T ) and all r ∈

R, η ∈ α(x, t, r).
(H3) (i) There exists a function φ = φ(x,p) : � × R

N → R such that φ(·,p) is
measurable in� for all p ∈ R

N , φ(x, ·) is convex and Fréchet differentiable
in R

N and its derivative ∂RNφ(x, ·) coincides with a(x, ·) for a.e. x ∈ �.
(ii) For all v ∈ L p(�; R

N ), the function a(·, v(·)) is measurable in �. More-
over, there exists v0 ∈ L p(�; R

N ) such that φ(·, v0(·)) ∈ L1(�).
There exist constants m > 1,C6 ≥ 0 and a3, b2 ∈ L1(�) such that

(iii) |p|m ≤ C6φ(x,p)+ a3(x) for a.e. x ∈ � and all p ∈ R
N ;

(iv) |a(x,p)|m′ ≤ C6φ(x,p)+ b2(x) for a.e. x ∈ � and all p ∈ R
N .

(H4) (i) There exist constants q > 1 + 1/p′,C7 ≥ 0 and a4 ∈ L1(�× (0, T )) such
that
|g(x, t, r)|p′ ≤ C7|r |p′(q−1) + a4(x, t) for a.e. (x, t) ∈ � × (0, T ) and
all r ∈ R.

(ii) The function g = g(x, t, r) is a Carathéodory function in �× (0, T )× R

(i.e., measurable in (x, t) and continuous in r ).

REMARK 7.1. (i) By (i) of (H3), we can deduce thatφ(x, ·) is continuous in R
N

for a.e. x ∈ �. Hence, φ(·, v(·)) becomes measurable in� for each measurable
function v : � → R

N .
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(ii) Let us give simple examples of functions α which satisfy (H1) and (H2) with
p ≥ 2. The following is concerned with the case where α is single-valued:

α(x, t, r) = k(x, t)|r |p−2r,

where k is an absolutely continuous function from [0, T ] into C(�) such that
k(x, t) ≥ k0 > 0 for all (x, t) ∈ �× [0, T ] with a positive number k0.

As for the case where α is multi-valued, we give

α(x, t, r) =

⎧⎪⎨
⎪⎩

{|r − c(t)|p−2(r − c(t))} if 1 < |r − c(t)|,{
r−c(t)
|r−c(t)|

}
if 0 < |r − c(t)| ≤ 1,

[−1, 1] if r = c(t)

with c ∈ W 1,1(0, T ).
(iii) Typical examples of a(x,p) and g(x, t, r) satisfying (H3) and (H4) are

a(x,p) = |p|m−2p and g(x, t, r) = λ(x, t)|r |q−2r with λ ∈ L∞(� ×
(0, T )), respectively. Then, div a(x,∇u(x)) coincides with �mu(x) :=
div (|∇u(x)|m−2∇u(x)), where �m is the so-called m-Laplacian.

We are concerned with solutions of the initial-boundary value problem (7.1)–(7.3)
defined as follows:

DEFINITION 7.2. For each T > 0, a function u : � × (0, T ) → R is said to be
a solution of the initial-boundary value problem (7.1)–(7.3) on [0, T ] if the following
conditions are all satisfied:

• u ∈ W 1,p(0, T ; L p(�)) ∩ C([0, T ]; W 1,m
0 (�));

• there exists a function η∈ L p′
(0, T ; L p′

(�)) such that η(x, t)∈α(x, t, ut (x, t))
for a.e. (x, t) ∈ �× (0, T );

• it holds that div a(·,∇u(·, t)), g(·, t, u(·, t)) ∈ L p′
(�) and

η(x, t)− div a(x,∇u(x, t))+ g(x, t, u(x, t)) = f (x, t)

for a.e. (x, t) ∈ �× (0, T );
• u(·, t) → u0 strongly in L p(�) as t → +0.

To apply the preceding abstract theory to (7.1)–(7.3), we suppose that

2 ≤ p < m∗ :=
{ Nm

N−m if m < N ,
+∞ if m ≥ N

and q <
m∗

p′ + 1. (7.4)

Moreover, set X := W 1,m
0 (�) with the norm | · |X := |∇ · |Lm (�) and set V := L p(�)

and H := L2(�). Then, V is continuously and densely embedded in H , and by the
Rellich-Kondrachov compact embedding theorem, X is compactly embedded in V .

Define the operator B : (0, T )× V → V ∗ by

B(t, u) := g(·, t, u(·)) for all t ∈ (0, T ) and u ∈ D(B(t, ·))
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with the domain D(B(t, ·)) := {u ∈ V ; g(·, t, u(·)) ∈ V ∗}. By (H4) and (7.4), we
then infer that X ⊂ L p′(q−1)(�) ∩ V ⊂ D(B(t, ·)) for each t ∈ (0, T ). Furthermore,
we also define the functions ψ t , ϕ : V → (−∞,+∞] by

ψ t (u) :=
⎧⎨
⎩

∫
�

j (x, t, u(x))dx if j (·, t, u(·)) ∈ L1(�),

+∞ otherwise
(7.5)

for every t ∈ [0, T ], and

ϕ(u) :=
⎧⎨
⎩

∫
�

φ(x,∇u(x))dx if u ∈ X and φ(·,∇u(·)) ∈ L1(�),

+∞ otherwise.
(7.6)

Then, by (H1), it follows that ψ t ∈ 
(V ) for all t ∈ [0, T ]; by (H1) and (H2),
D(ψ t ) = V for a.e. t ∈ (0, T ). Since j (·, t, r) is upper semicontinuous in� for each
(t, r) ∈ (0, T ) × �, we can prove ∂Vψ

t (u) = α(·, t, u(·)) for a.e. t ∈ (0, T ) and
all u ∈ D(∂Vψ

t ) by modifying the proof of Proposition 1.1 of [32], and moreover,
D(∂Vψ

t ) = V for a.e. t ∈ (0, T ). By (H3), we have ϕ ∈ 
(V ) and D(ϕ) = X ,
and moreover, the restriction ϕ|X of ϕ to X becomes Gâteaux differentiable in X
and its derivative ∂X (ϕ|X )(u) at u coincides with −div a(·,∇u(·)) in the sense of
distributions. Hence, since ∂Vϕ(u) = ∂X (ϕ|X )(u) for each u ∈ D(∂Vϕ), the subdif-
ferential ∂Vϕ(u) of ϕ at u ∈ D(∂Vϕ) also coincides with −div a(·,∇u(·)). Therefore,
(7.1)–(7.3) is transcribed into the Cauchy problem (CP).

Furthermore, we prepare the following lemma.

LEMMA 7.3. Let T>0 and let� be a bounded domain in R
N with C1 boundary ∂�.

(i) If (H1) and (H2) are satisfied for some p ∈ [2,∞), then (A1)–(A3) hold.
(ii) If (H3), (H4) and (7.4) are satisfied for some p ∈ [2,∞), then (
1) and (B1)ε–

(B3) hold for any ε > 0.

Proof. Proof of (i). Both (A1) and (A2) are immediately derived from (H2). Let
t0 ∈ [0, T ] and v0 ∈ D(ψ t0) be fixed. Define a function v : � × Iδ(t0) → R by
v(x, t) := π(t; x, v0(x)). Then v(·, t) is measurable in � for each t ∈ Iδ(t0), and

|v(x, t)− v0(x)| ≤ |ρ(t)− ρ(t0)| { j (x, t0, v0(x))+ b1(x)}1/p ,

j (x, t, v(x, t)) ≤ j (x, t0, v0(x))+ |σ(t)− σ(t0)| { j (x, t0, v0(x))+ b1(x)}

for all a.e. x ∈ � and t ∈ Iδ(t0). Hence v(·, t) ∈ V for all t ∈ Iδ(t0), and j (·, t, v(·, t))
is measurable in � by (H1), and moreover,

|v(·, t)− v0|V ≤ |ρ(t)− ρ(t0)|
{
ψ t0(v0)+ |b1|L1(�)

}1/p
,

ψ t (v(·, t)) ≤ ψ t0(v0)+ |σ(t)− σ(t0)|
{
ψ t0(v0)+ |b1|L1(�)

}
,

which implies (A3).
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Proof of (ii). By (iii) of (H3), we can derive

|∇u|mLm (�) ≤ C6ϕ(u)+ |a3|L1(�) for all u ∈ X. (7.7)

Hence, (
1) follows since X is compactly embedded in V by (7.4). As for (B1)ε,
we obtain, by (H4)

|B(t, u)|p′
V ∗ = |g(·, t, u(·))|p′

V ∗ ≤ C7|u|p′(q−1)
L p′(q−1)(�)

+ |a4(·, t)|L1(�)

for a.e. t ∈ (0, T ) and all u ∈ D(B(t, ·)). (7.8)

By (7.4) and (7.7),

|B(t, u)|p′
V ∗ ≤ C

{
ϕ(u)p′(q−1)/m + |a3|p′(q−1)/m

L1(�)

}
+ |a4(·, t)|L1(�)

for a.e. t ∈ (0, T ) and all u ∈ D(ϕ), (7.9)

which implies (B1)ε for any ε > 0.
By virtue of Theorem 1.27 of [45], the mapping

u 
→ g(·, t, u(·)); L p′(q−1)(�) → V ∗

becomes continuous for a.e. t ∈ (0, T ). Moreover, the mapping

t 
→ g(·, t, u(·)); (0, T ) → V ∗

is strongly measurable in (0, T ) for any fixed u ∈ L p′(q−1)(�). Indeed, by (ii) of
(H4), the function (x, t) 
→ g(x, t, u(x)) is measurable in � × (0, T ), so Fubini’s
theorem ensures that the mapping t 
→ ∫

�
g(x, t, u(x))v(x)dx is also measurable in

(0, T ) whenever v is measurable in�. Hence, the mapping t 
→ g(·, t, u(·)) becomes
weakly measurable in (0, T )with values in V ∗. Thus, since V ∗ is separable, by Pettis’s
theorem, we can deduce that it also becomes strongly measurable in (0, T ).

Let S ∈ (0, T ] be fixed and define the operator B : L p′(q−1)(0, S; L p′(q−1)(�)) →
L p′
(0, S; V ∗) by

(Bu)(t) := g(·, t, u(t)(·))
for all u ∈ L p′(q−1)(0, S; L p′(q−1)(�)) and a.e. t ∈ (0, S).

Then recalling (7.8) and employing Theorem 1.43 of [45], we can deduce that

B is continuous from L p′(q−1)(0, S; L p′(q−1)(�)) into L p′
(0, S; V ∗). (7.10)

Since X ⊂ L p′(q−1)(�), this particularly yields (B3).
We finally prove (B2). Let {un} be a sequence in C([0, S]; V ) such that un → u

strongly in C([0, S]; V ) and

sup
t∈[0,S]

ϕ(un(t))+
∫ S

0
|u′

n(t)|p
H dt is bounded for all n ∈ N. (7.11)
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Hence, since (7.4) implies that X is compactly embedded in L p′(q−1)(�), by Theorem
5 of [50], we can take a subsequence {n′} of {n} such that

un′ → u strongly in C([0, S]; L p′(q−1)(�)).

Therefore, we can deduce from (7.10) that

Bun′ → Bu strongly in L p′
(0, S; V ∗).

Thus, (B2) is proved. �

The existence of local (in time) solutions for the initial-boundary value problem
(7.1)–(7.3) follows immediately from Lemma 7.3 and Theorem 3.6.

THEOREM 7.4. Let T > 0 and let� be a bounded domain in R
N with C1 bound-

ary ∂�. Suppose that (H1)–(H4) and (7.4) are satisfied for some p ∈ [2,∞). Then,
for all f ∈ L p′

(0, T ; L p′
(�)) and u0 ∈ W 1,m

0 (�), there exists

T∗ = T∗
(∫
�
φ(x,∇u0(x))dx + |u0|L2(�) + ‖ f ‖L p′

(0,T ;L p′
(�))

)
∈ (0, T ] such that

the initial-boundary value problem (7.1)–(7.3) admits at least one solution u on [0, T∗].
As for the global existence, our result is stated as follows.

THEOREM 7.5. Let T > 0 and let� be a bounded domain in R
N with C1 boundary

∂�. Suppose that (H1)–(H4) and (7.4) are satisfied for some p ∈ [2,∞). In addition,
assume that

q ≤ max

{
p,

m

p′ + 1

}
. (7.12)

Then, for all f ∈ L p′
(0, T ; L p′

(�)) and u0 ∈ W 1,m
0 (�), the initial-boundary value

problem (7.1)–(7.3) admits at least one solution u on [0, T ].
Proof. In order to prove this theorem, it suffices to check (B4)ε (see also Theorem 3.7
and Lemma 7.3). Noting that (7.12) yields

|u|p′(q−1)
L p′(q−1)(�)

≤ C
(
ϕ(u)+ |u|p

V + 1
)

for all u ∈ X,

we can derive (B4)ε for any ε > 0 from (7.8). �

Furthermore, the following theorem is concerned with the existence of global (in
time) solutions for small data u0 and f .

THEOREM 7.6. Let T > 0 and let� be a bounded domain in R
N with C1 bound-

ary ∂�. Suppose that (H1)–(H4) and (7.4) are satisfied with p ∈ [2,∞), a1 ≡ 0, a2 ≡
0, a3 ≡ 0, a4 ≡ 0, j (·, ·, 0) ≡ 0 and φ(·, 0) ≡ 0. In addition, assume that

m < p and
m

p′ + 1 < q. (7.13)
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Then, there exists δ > 0 independent of T such that for all f ∈ L p′
(0, T ; L p′

(�))

and u0 ∈ W 1,m
0 (�) satisfying ‖ f ‖� + ∫

�
φ(x, u0(x))dx < δ, where ‖ f ‖� is given as

in (3.9), the initial-boundary value problem (7.1)–(7.3) admits at least one solution u
on [0, T ].
Proof. It follows that ψ t (0) = ∫

�
j (x, t, 0)dx = 0 for all t ∈ [0, T ]. Since a1 ≡ 0

and a2 ≡ 0, we obtain C2 = 0 and m1 ≡ 0 in (A1) and (A2), respectively. Hence, due
to Theorem 3.8 and Lemma 7.3, it suffices to prove (3.6)–(3.8).

By (H3) with a3 ≡ 0, it follows that

ϕ(u) =
∫
�

φ(x,∇u(x))dx ≥ C−1
6

∫
�

|∇u(x)|mdx = C−1
6 |u|mX

for all u ∈ D(ϕ). Hence, we have

|u|p
V ≤ Cϕ(u)p/m for all u ∈ D(ϕ). (7.14)

Therefore, (3.7) follows with a non-decreasing function �5(s) = O(s
p
m −1) from the

fact that m < p. Moreover, combining (7.9) with a3 = a4 ≡ 0 and noting that

p′(q − 1) > m, we can obtain (3.8) with �ε6(s) = O(s
p′(q−1)

m −1) for any ε > 0.
Finally, we shall derive (3.7). Let t ∈ (0, T ) and let u ∈ D(∂Vϕ) be arbitrary given.

We can then derive

〈∂Vϕ(u)+ B(t, u), u〉 ≥ ϕ(u)− ϕ(0)− |B(t, u)|V ∗ |u|V ≥ ϕ(u)− Cϕ(u)
q
m

from the fact that ϕ(0) = ∫
�
φ(x, 0)dx = 0. Hence, since (7.13) implies

σ := q

m
>

1

m

(
m

p′ + 1

)
>

1

m

( m

m′ + 1
)

= 1,

we conclude that (3.6) holds with a non-decreasing function �4(s) = O(sσ−1). This
completes our proof. �

7.2. Semilinear parabolic equations with gradient nonlinearities

We next deal with the following inclusion instead of (7.1),

α(x, t, ut (x, t))−
N∑

i, j=1

∂

∂xi

(
ai j (x)

∂u

∂x j
(x)

)

+ h(x, t, u(x, t),∇u(x, t)) � f (x, t) (7.15)

with functions ai j : � → R (i, j = 1, 2, . . . , N ) and h : �× (0, T )×R×R
N → R.

Then, (1.8) is reduced to (7.15) as a special case. To state our existence result, we
introduce the following (H3)′ and (H4)′.
(H3)′ (i) ai j ∈ W 1,∞(�) and ai j = a ji for each i, j = 1, 2, . . . , N .
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(ii) There exists a constant λ0 > 0 such that

λ0|ξ |2 ≤
N∑

i, j=1

ai j (x)ξiξ j for a.e. x ∈ � and all ξ = (ξ1, ξ2, . . . , ξN ) ∈ R
N .

(H4)′ (i) There exist constants q1, q2 > 1 + 1/p′,C8 ≥ 0 and a5 ∈ L1(�× (0, T ))
such that

|h(x, t, r,p)|p′ ≤ C8

(
|r |p′(q1−1) + |p|p′(q2−1)

)
+ a5(x, t)

for a.e. (x, t) ∈ �× (0, T ) and all (r,p) ∈ R × R
N .

(ii) The function h = h(x, t, r,p) is a Carathéodory function in �× (0, T )×
R × R

N (i.e., measurable in (x, t) and continuous in (r,p)).

Then, we have:

THEOREM 7.7. Let T > 0 and let� be a bounded domain in R
N with C2 bound-

ary ∂�. Suppose that (H1), (H2), (H3)′, (H4)′ and the following (7.16) are satisfied
for some p ∈ [2,∞).

2 ≤ p < 2∗ :=
{ 2N

N−2 if 2 < N ,
+∞ if 2 ≥ N ,

q1 < 2∗, q2 < 2 + 2

N
. (7.16)

Then, for all f ∈ L p′
(0, T ; L p′

(�)) and u0 ∈ H1
0 (�), there exists

T∗ = T∗
(
|u0|H1

0 (�)
+ ‖ f ‖L p′

(0,T ;L p′
(�))

)
∈ (0, T ] such that the initial-boundary

value problem {(7.15), (7.2), (7.3)} admits at least one solution u on [0, T∗].
Proof. We set V = L p(�), H = L2(�) and set X = H1

0 (�) with the norm | · |X :=
|∇ · |L2 . Then X is compactly embedded in V by (7.16). Moreover, we define the
functional ϕ : V → [0,∞] by

ϕ(u) :=

⎧⎪⎪⎨
⎪⎪⎩

1

2

N∑
i, j=1

∫
�

ai j (x)
∂u

∂xi
(x)

∂u

∂x j
(x)dx if u ∈ X,

+∞ otherwise.

(7.17)

Then by (H3)′, it follows that

1

2
λ0|u|2X ≤ ϕ(u) ≤ C max

i, j
|ai j |L∞(�)|u|2X for all u ∈ X,

which implies D(ϕ) = X and (
1). Moreover, ϕ|X becomes Gâteaux differentiable
in X and its derivative ∂X (ϕ|X )(u) at u ∈ X coincides with

−
N∑

i, j=1

∂

∂xi

(
ai j (x)

∂u

∂x j
(x)

)
(7.18)
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in the sense of distribution. Hence, ∂Vϕ(u) also coincides with (7.18) in V ∗ for each
u ∈ D(∂Vϕ). Furthermore, thanks to Theorem 9.15 and Lemma 9.17 of [28], we can
derive that D(∂Vϕ) = W 2,p′

(�) ∩ H1
0 (�) and

|u|W 2,p′
(�)

≤ C |∂Vϕ(u)|V ∗ for all u ∈ D(∂Vϕ). (7.19)

Let us check the assumptions of Theorem 3.6. By (i) of Lemma 7.3, (A1)–(A3) hold
with ψ t given by (7.5). Define the operator B : (0, T )× V → V ∗ by

B(t, u) := h(·, t, u(·),∇u(·)) for all t ∈ (0, T ) and u ∈ D(B(t, ·))

with the domain D(B(t, ·)) := {u ∈ V ; h(·, t, u(·),∇u(·)) ∈ V ∗}. By (H4)′, we then
obtain

|B(t, u)|p′
V ∗ ≤ C8

(
|u|p′(q1−1)

L p′(q1−1)(�)
+ |∇u|p′(q2−1)

L p′(q2−1)(�)

)
+ |a5(·, t)|L1(�)

for a.e. t ∈ (0, T ) and all u ∈ D(B(t, ·)).

Here for the case where p′(q1 −1) > 2∗, Gagliardo–Nirenberg’s inequality and (7.16)
yield

|u|L p′(q1−1)(�)
≤ C |u|θ1

W 2,p′
(�)

|∇u|1−θ1
H for all u ∈ D(∂Vϕ) (7.20)

with some θ1 ∈ (0, 1) satisfying θ1(q1 − 1) < 1; for the case where p′(q1 − 1) ≤ 2∗,
it follows that |u|L p′(q1−1)(�)

≤ C |∇u|H for all u ∈ X . Moreover, for the case where
p′(q2 − 1) > 2, we also have

|∇u|L p′(q2−1)(�)
≤ C |u|θ2

W 2,p′
(�)

|∇u|1−θ2
H for all u ∈ D(∂Vϕ) (7.21)

with some θ2 ∈ (0, 1) satisfying θ2(q2 − 1) < 1; for the case where p′(q2 − 1) ≤ 2,
we get |∇u|L p′(q2−1)(�)

≤ C |∇u|H for all u ∈ X . Therefore by (7.19), for all ε > 0,
there exists Cε ≥ 0 such that

|B(t, u)|p′
V ′ ≤ ε|∂Vϕ(u)|p′

V ∗ + Cε�7(ϕ(u)) for all u ∈ D(∂Vϕ) and a.e. t ∈ (0, T )

with some non-decreasing function �7 on [0,∞), which implies (B1)ε for any ε > 0.
By Theorem 1.27 of [45], the Nemytskii mapping

[u, v] 
→ h(·, t, u(·), v(·)); L p′(q1−1)(�)× L p′(q2−1)(�; R
N ) → V ∗

is continuous for a.e. t ∈ (0, T ), and moreover, the function t 
→ h(·, t, u(·), v(·))
becomes strongly measurable in (0, T ) with values in V ∗ for any fixed u ∈
L p′(q1−1)(�) and v ∈ L p′(q2−1)(�; R

N ). Let S ∈ (0, T ] be fixed. Then by Theo-
rem 1.43 of [45], the mapping N : L p′(q1−1)(0, S; L p′(q1−1)(�)) × L p′(q2−1)(0, S;
L p′(q2−1)(�; R

N )) → L p′
(0, S; V ∗) given by
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(N (u, v))(t) := h(·, t, u(t)(·), v(t)(·)) for a.e. t ∈ (0, S)

for all [u, v] ∈ L p′(q1−1)(0, S; L p′(q1−1)(�))× L p′(q2−1)
(

0, S; L p′(q2−1)(�; R
N )

)

also becomes continuous; particularly, (B3) follows from (7.19), (7.20) and (7.21).
We next check (B2). Let {un} be a sequence such that

sup
t∈[0,S]

ϕ(un(t))+
∫ S

0
|u′

n(t)|p
H dt +

∫ S

0
|∂Vϕ(un(t))|p′

V ∗dt is bounded (7.22)

for all n ∈ N. Then {un} is bounded in L p′
(0, S; W 2,p′

(�)) ∩ L∞(0, S; H1
0 (�)) ∩

W 1,p(0, S; H) (see (7.19)). Moreover, it follows from (7.16) that W 2,p′
(�) is com-

pactly embedded in L p′(q1−1)(�) and also in W 1,p′(q2−1)(�). Hence, Theorem 5
of [50] implies that {un} is precompact in L p′

(0, S; L p′(q1−1)(�)) and also in
L p′
(0, S; W 1,p′(q2−1)(�)). Therefore, extracting a subsequence {n′} of {n} if nec-

essary, and recalling (7.20) and (7.21), we can deduce that

un′ → u strongly in L p′(q1−1)
(

0, S; L p′(q1−1)(�)
)
,

∇un′ → ∇u strongly in L p′(q2−1)
(

0, S; L p′(q2−1)(�; R
N )

)
.

Hence, the continuity of N yields that

B(·, un′(·)) → B(·, u(·)) strongly in L p′
(0, S; V ∗),

which implies (B2). Thus, by Theorem 3.6, we obtain our desired conclusion. �

We can also prove the existence of global (in time) solutions of the initial-boundary
value problem for (7.15) as in Theorem 7.5.

THEOREM 7.8. Let T > 0 and let � be a bounded domain in R
N with C2

boundary ∂�. Suppose that (H1), (H2), (H3)′, (H4)′ and (7.16) are satisfied for some
p ∈ [2,∞). In addition, assume that

q1 ≤ p and q2 ≤ 2

p′ + 1. (7.23)

Then, for all f ∈ L p′
(0, T ; L p′

(�)) and u0 ∈ H1
0 (�), the initial-boundary value

problem {(7.15), (7.2), (7.3)} admits at least one solution u on [0, T ].
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