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Abstract. We study the long-time asymptotics of the doubly nonlinear diffusion equation ρt = div(|∇ρm

|p−2∇ (
ρm)

) in R
n , in the range n−p

n(p−1)
< m <

n−p+1
n(p−1)

and 1 < p < ∞ where the mass of the solution
is conserved, but the associated energy functional is not displacement convex. Using a linearisation of the
equation, we prove an L1-algebraic decay of the non-negative solution to a Barenblatt-type solution, and
we estimate its rate of convergence. We then derive the nonlinear stability of the solution by means of some
comparison method between the nonlinear equation and its linearisation. Our results cover the exponent
interval 2n

n+1 < p < 2n+1
n+1 where a rate of convergence towards self-similarity was still unknown for the

p-Laplacian equation.

1. Introduction

In this work, we consider the doubly nonlinear equation defined for any (t, x) ∈
(0,∞) × R

n by

⎧
⎨

⎩

∂ρ

∂t
= �p

(
ρm) := div

[∣∣∇ρm
∣∣p−2 ∇ (

ρm)]
, (x ∈ R

n, t > 0)

ρ(t = 0) = ρ0 ≥ 0, (x ∈ R
n)

(1.1)

with 1 < p < ∞, 0 < m and n ≥ 3. This class of equations contains the linear dif-
fusion equation (p = 2, m = 1), commonly known as the heat equation, ∂tρ = �ρ;
the nonlinear diffusion equation ∂tρ = �ρm , known as the porous medium equa-
tion (p = 2, m > 1), or the fast diffusion equation (p = 2, m < 1), and the gra-
dient-dependent diffusion equation, ∂tρ = div(|∇ρ|p−2∇ρ) := �pρ, that is, the
p-Laplacian equation (p �= 2, m = 1). When p �= 2 and m �= 1, Eq. (1.1) is
called the doubly nonlinear diffusion equation due to the fact that its diffusion term
depends non-linearly on both the unknown density ρ and its gradient ∇ρ. Such gradi-
ent-dependent diffusion equations appear in several models in non-Newtonian fluids
[23], in glaciology [8,20] and in turbulent flows in porous media [25]. For more details
on these models, we refer to the recent monograph of Vázquez [33] and the references
therein.
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Assuming that the initial data is integrable, ρ0 ∈ L1(Rn), it is known that (1.1) has a
unique solution ρ ∈ C([0,∞), L1(Rn)), with ρ(t) ∈ C1,α(Rn) for some α ∈ (0, 1),
see for instance [2,13–15,26]. Moreover, starting with a non-negative initial data,
ρ0 ≥ 0, it is known that the solution ρ(t) remains non-negative at all times. Further-
more for n ≥ 3, there exists a critical exponent,

mc(p) := n − p

n(p − 1)
,

such that if m > mc(p), then the mass of the solution is conserved,
∫

Rn ρ(t)dx =∫
Rn ρ0dx , while if m < mc(p), the solution vanishes in finite time, see [13,33] and

the references therein. In particular, for the p-Laplacian equation, this corresponds to
the critical p-exponent,

pc := 2n

n + 1
,

above which the mass of the solution is conserved, while the solution disappears in
finite time if p < pc. Therefore, up to renormalising the mass of ρ0 to unity, we can
assume without loss of generality that under the condition m > mc(p), the solution
ρ(t) of (1.1) is a density in R

n , for all times t ≥ 0.
By similarity and scaling, it can be shown that above the critical exponent mc(p),

Eq. (1.1) has a unique self-similar solution ρD∗ , whose initial value is the Dirac mass at
the origin, that is, the fundamental solution of Eq. (1.1). In fact, among all the radially
symmetric solutions of (1.1), this solution is the most concentrated whose initial data
have the same mass as ρ0. It is called the Barenblatt solution [4], and it is precisely:

ρD∗(t, x) = 1

(δpt)n/δp
u D∗

(
x

(δpt)1/δp

)
, (1.2)

where

δp := n(p − 1)(m − mc(p)) > 0,

and

u D∗(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

σ
exp

(
−|p − 1|2

p
|y|p/(p−1)

)
if m = 1

p−1

(
D∗ − m(p − 1) − 1

mp
|y|p/(p−1)

) p−1
m(p−1)−1

+
if m �= 1

p−1 ,

with σ and D∗ are uniquely determined by the mass conservation: ‖u D∗‖L1(Rn) =
‖ρD∗(t)‖L1(Rn) = ‖ρ0‖L1(Rn).

When p = 2 and m > 1 − 2/n, the existence and uniqueness of the Barenblatt
solution was proved by Friedmann and Kamin in [19]. Moreover, they showed that
the solution ρ(t) of the Cauchy problem converges to ρD∗(t) w.r.t. the L1(Rn)-norm,
as t → ∞, with no rates. Rates of convergence were computed by Carrillo and
Toscani [9] if m > 1, independently by Del Pino and Dolbeault [16], and Otto [31]
if m ≥ 1 − 1/n. The rates found in this range were generically optimal. In the range
1 − 2/n < m < 1 − 1/n, there were studies of the linearised problem by Carrillo,
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Lederman, Markowich and Toscani [10], and Denzler and McCann [12]. These linear-
isations were useful to obtain rates of decay for the nonlinear fast diffusion equation
by Carrillo and Vázquez [11] and later by McCann and Slepčev [29], and Kim and
McCann [21]. The decay rates obtained by using the linearisations are in general non
optimal and is optimal in some sub-range, see [21].

When p �= 2 and m = 1, Kamin and Vázquez [22] proved existence and uniqueness
of the Barenblatt solution ρD∗ for the p-Laplacian equation when p > pc, along with
an L1-convergence of the solution ρ(t) of the Cauchy problem to ρD∗(t), with no
rates. Their proof extends to the doubly nonlinear equation as long as m > mc(p),
see [33]. Rates of convergence were computed by Del Pino and Dolbeault [17] when
pc + 1/(n + 1) ≤ p < n for the p-Laplacian equation, but their rates are not optimal;
see also a similar result for the doubly nonlinear equation in [18]. In [1,3], Agueh
generalises previous results by deriving optimal rates for the convergence of the solu-
tion of the Cauchy problem (1.1) to ρD∗(t), for all m ≥ mc(p) + 1/(n(p − 1)) =
(n − p + 1)/(n(p − 1)) and p > 1. For instance, when p = 2, this condition coin-
cides with the case m ≥ 1−1/n, while for the p-Laplacian equation (p �= 2, m = 1),
it corresponds to p ≥ pc + 1/(n + 1) = (2n + 1)/(n + 1), and therefore covers the
range p ≥ n left in [17] but not the remaining exponent interval 2n/(n + 1) < p <

(2n + 1)/(n + 1). Similarly, for the doubly nonlinear diffusion equation, the rate of
convergence remains unknown in the range

mc(p) < m < mc(p) + 1

n(p − 1)
= n − p + 1

n(p − 1)
. (1.3)

Indeed, the proof of [3] is based on optimal transportation inequalities, which follows
from the displacement convexity [28] of the energy functional associated with (1.1),
that is, H F (ρ) = ∫

Rn F[ρ]dx , where

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

p − 1
x ln x if m = 1

p−1

mxγ

γ (γ − 1)
if m �= 1

p−1 ,

and

γ := m + p − 2

p − 1
. (1.4)

This energy functional is displacement convex if and only if γ ≥ 1− 1
n , or equivalently

m ≥ (n − p + 1)/(n(p − 1)). This explains why the method of [3] does not extend
to the interval (1.3).

The goal of this work is then precisely to derive a rate of convergence w.r.t the
L1(Rn)-norm of the non-negative solution ρ of the Cauchy problem (1.1) to the
Barenblatt solution ρD∗(t), as t → ∞, provided that m belongs to the remaining
exponent interval (1.3), that is,

n − p

n(p − 1)
< m <

n − p + 1

n(p − 1)
⇔ 1 − q

n
< γ < 1 − 1

n
. (1.5)
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For convenience we rewrite the Cauchy problem (1.1) as:
⎧
⎨

⎩

∂ρ

∂t
= div

{
ρ∇c∗ [∇ (

F ′◦ρ
)]}

, (x ∈ R
n, t > 0)

ρ(t = 0) = ρ0, (x ∈ R
n),

(1.6)

where c∗(x) = |x |p/p is the Legendre transform of the convex function

c(x) = |x |q
q

,
1

p
+ 1

q
= 1.

By rescaling in time and space ρ as follows:

ρ(t, x) = 1

R(t)n
u (τ, y), (1.7)

where

τ = ln R(t), y = x

R(t)
, R(t)=(1+δpt)1/δp , δp =(p−1)(nm+1) + 1 − n,

(1.8)

it is easy to show that ρ solves (1.6) if and only if u solves the rescaled convection-
diffusion equation

⎧
⎨

⎩

∂u

∂τ
= div

{
u∇c∗ [∇ (

F ′◦u
)] + uy

}
(y ∈ R

n, τ > 0)

u(τ = 0) = ρ0 (y ∈ R
n).

(1.9)

Moreover, by conservation of mass there exists a unique D∗ such that the Barenblatt
profile u D∗ is the equilibrium solution of (1.9). Remark that in the considered range
of exponents (1.5), m(p − 1) − 1 < 0, and then

F(x) = mxγ

γ (γ − 1)
, γ := m + p − 2

p − 1
. (1.10)

Therefore, the Barenblatt profile is simply given by

u D∗(y) =
(

D∗ + 1 − γ

m
c(y)

) 1
γ−1

. (1.11)

In fact, u D∗ is the unique density function of same mass as u0 which satisfies on its
support,

∇ (
F ′◦u D∗

) = −∇c. (1.12)

The main result of our paper is the following:

THEOREM 1.1 (Rates of convergence). Let m, p be in the range (1.5), and let u0

be a density such that there exist positive constants D0 > D1 for which

u D0(x) ≤ ρ0(x) = u0(x) ≤ u D1(x) ∀x ∈ R
n . (H1)
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Consider u a solution to (1.9) with initial data u0, there exists a unique D∗ such that
u(τ ) converges to the Barenblatt profile u D∗ in L1(Rn). Moreover, there exist a time
τ0 and two positive constants λ and M = M(m, n, p, u0, τ0) such that, for any time
τ > τ0

‖u(τ ) − u D∗‖L1(Rn) ≤ M e− λ
2 τ . (1.13)

As a consequence, for a time large enough the corresponding solution ρ(t) of (1.1)
converges to the Barenblatt solution ρD∗(t), algebraically fast in the L1-norm, at the
rate λ/(2δp): there exist a time t0 and a constant C = C(m, n, p, ρ0, t0) such that, for
any time t > t0

‖ρ(t) − ρD∗(t)‖L1(Rn) ≤ C t−λ/(2δp), (1.14)

where δp = (p − 1)(nm + 1) + 1 − n.
The main tool is the following relative free energy with respect to the Barenblatt

solution u D∗ defined by

E[u|u D∗ ] :=
∫

Rn

[
F ◦u(y) − F ◦u D∗(y) − F ′◦u D∗(y)(u(y) − u D∗(y))

]
dy

(1.15)

for any given u ∈ L1+(Rn). Its derivative along the flow of (1.6) is formally given by

− d

dτ
E[u(τ )|u D∗ ] = I[u(τ )|u D∗ ]

where

I[u(τ )|u D∗ ] :=
∫

Rn
u(τ, y)∇ (

F ′◦u(τ, y) + c(y)
) · (∇c∗◦∇F ′ ◦u(τ, y) + y

)
dy .

In this paper, we prove that the relative entropy decays exponentially fast in the form

E [
u(τ )|u D∗

] ≤ e−β τE [
u0|u D∗

]
, (1.16)

for some β > 0. This is obtained in two steps. First, we linearise (1.9) at the equilibrium
solution u D∗ by using the linear perturbation u(τ ) = u D∗ +εv(τ ), and we show that the
linearised version of the relative energy converges to 0 exponentially fast, as in [10].
For that, we use the Hardy–Poincaré inequality recently established by Blanchet, Bon-
forte, Dolbeault, Grillo and Vázquez in [5]. Next, following the strategy in [6], we try
to compare the relative energy and the dissipation of the relative energy—that is, the
Fisher information—for both linearised and nonlinear equations, to deduce the expo-
nential decay (1.16) for the nonlinear equation. The main differences with respect to
[6] lie in the fact that a direct relation between the linearised and the nonlinear Fisher
information is not clear due to the singular characters at the origin of the weights when
1 < p < 2. Therefore, we are forced to use a sort of regularised linearised Fisher
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information instead. Moreover, the control of the additional terms appearing in the
regularised entropy dissipation of the linearised problem and in the relation between
the entropy dissipations is more involved in our case.

We note that, based on our computations (see Remark 3.4), the Bakry–Emery
approach used in [10], which consists of differentiation twice the relative energy
E[v(τ)] to estimate the spectral gap at the eigenvalue 0, does not yield a positive
result for our equation when 1 < p < 2, and thus, a similar procedure to [11] for the
doubly nonlinear equations is not feasible. Moreover, the Hardy–Poincaré inequality
used here to establish the linear stability is actually valid on a larger interval, m∗(p) <

m < mc(p) + 1
n(p−1)

, which includes our interval mc(p) < m < mc(p) + 1
n(p−1)

,

as m∗(p) < mc(p), where m∗(p) := n−2q
n−q + 2−p

p−1 . Therefore, our linearisation result
extends naturally to the interval m∗ < m ≤ mc(p) where mass conservation for
the nonlinear equation fails. In this range, one needs to carefully define the right
class of initial data and a substitute of the Barenblatt solution, as done in [6] when
p = 2. Here, we will not follow this path and we will restrict ourselves to the case
mc(p) < m < mc(p) + 1

n(p−1)
where mass is conserved to concentrate in the main

new difficulties.
The paper is organised as follows. In Sect. 2, we review and introduce the main

estimates on the solutions needed in the rest of the work. In particular, we prove the
convergence of the solution u(τ ) of (1.9) to the equilibrium solution u D∗ in C1(Rn),
as τ → ∞, with no rate. Then in Sect. 3, we analyse a suitable linearised problem for
which we apply an entropy–entropy dissipation argument based on Hardy–Poincaré
inequalities. Finally, Sect. 4 is devoted to establish the exponential decay of u(τ ) to
u D∗ by the comparison between linear and nonlinear relative entropy dissipations.

2. Convergence without rate

Let us start by reviewing some well-known facts about the global unique weak solu-
tions associated to (1.1) in the range of exponents considered. They conserve mass for
all times, i.e.,

∫

Rn
ρ(t, x)dx =

∫

Rn
ρ0(x)dx ∀ t ∈ (0,∞). (2.1)

From now on, D∗ is the unique positive real such that

∫

Rn
ρ0(x)dx =

∫

Rn
u D∗(x)dx . (2.2)

Moreover, solutions of the Cauchy problem to (1.1) enjoy a comparison principle
and the L1-contraction property. Due to the change of variables (1.7) and (1.8), these
properties hold for the solution u of the nonlinear Fokker–Planck equation (1.9). Since
in the rest of this paper we will only work with the scaled solutions of the nonlinear



Vol. 10 (2010) Large time asymptotics of the doubly nonlinear equation 65

Fokker–Planck equation (1.9), from now on we will use t instead of τ and x instead
of y for the time and position variables respectively. The quotient function

w(t, x) := u(t, x)

u D∗(x)

is solution to

∂w(t, x)

∂t
= 1

u D∗(x)
div

{
w(t, x) u D∗(x)

(∇c∗◦∇ [
F ′◦(

w(t, ·) u D∗
)]

(x)

−∇c∗◦∇ [
F ′◦u D∗

]
(x)

)}
.

Define

W0 := inf
x∈Rn

u D0(x)

u D∗(x)
≤ sup

x∈Rn

u D1(x)

u D∗(x)
:= W1.

A straightforward calculation gives

W0 =
(

D∗
D0

) 1
1−γ ≤ 1 ≤

(
D∗
D1

) 1
1−γ := W1

with strict inequalities unless ρ0 = u D∗ . In terms of w0 = u0/u D∗ , the “sandwich”
assumption on the initial data (H1) of Theorem 1.1 can be rewritten as follows: there
exist positive constants D0 > D1 such that

0 < W0 ≤ u D0(x)

u D∗(x)
≤ w0(x) ≤ u D1(x)

u D∗(x)
≤ W1 < ∞ ∀ x ∈ R

n . (H1
′
)

REMARK 2.1. Let us point out that the condition (H1) or (H1′) in the case of the fast
diffusion equation (p = 2) and in the corresponding range, 1−2/n < m < 1−1/n, is
not restrictive. In fact, as a consequence of the global Harnack principle proved in [7],
the hypothesis (H1) is satisfied by ρ(t) for any t > 0 with an initial data u0 ∈ L1+(Rn).
In the present case, a similar Harnack principle, not available in the literature, would
restrict the study of the asymptotic rates to this particular set of initial data.

Let us first remind the standard regularity theory of degenerate parabolic equations
[13–15,24,26,27]:

LEMMA 2.2 (Interior regularity estimates). Let � be a bounded set and {un}n be
a sequence of solutions to (1.9). If there exists t0 and 0 < C1 ≤ C2 such that for all
t ≥ t0

C1 ≤ un(t) ≤ C2

then there exists C such that for all α ∈ (0, 1) and t ≥ t0, ‖un(t)‖C1,α ≤ C.

As a consequence we have
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LEMMA 2.3 (UniformC1,α-estimates). Consider a solution u ∈C([0,∞); L1(Rn))

of (1.9) with initial data u0 satisfying (H1). If w = u/u D∗ then for any α ∈ (0, 1) and
t0 ∈ (0,∞),

sup
t≥t0

‖w(t)‖C1,α(Rn) < ∞ .

Moreover, there exists C > 0 such that for any x ∈ R
n\B1

|∇w(t, x)| ≤ C
w(t, x)

|x | ∀ t > 0. (2.3)

As a consequence,

|∇u| ∼|x |→∞ |x |q/(γ−1)+1. (2.4)

Proof. Due to the comparison principle and the hypothesis (H1), the function u(t) is
sandwiched between the two Barenblatt profiles for all times, i.e.,

u D0 ≤ u(t) ≤ u D1 t ≥ 0,

and thus is uniformly bounded in B2, the Euclidean ball of radius 2, uniformly in
t ≥ t0 > 0. Due to Lemma 2.2, u(t) ∈ C1,α(B1) for any 0 ≤ α < 1 hold uniformly
in t ≥ t0 > 0. Consider w = u/u D∗ , then w is also bounded in C1,α(B1), for any
0 ≤ α < 1 uniformly in t ≥ t0 > 0. To deal with large values of x we introduce the
rescaled function

uλ(t, x) := λp/(1−m)u(t, λx)

which is also solution to (1.9) but the annulus B2λ/Bλ gets mapped into the annulus
�1 := B2/B1. Note that all derivatives of the rescaled Barenblatt u D∗/λ are uniformly
bounded from above and below since

Dβu D∗/λ → C Dβ

(
|x | q(p−1)

m(p−1)−1

)
uniformly in �1 as λ → ∞

for any multi-index β ∈ N
d . As a consequence, we get that uλ(t) is also uniformly

bounded from above and below in �1 uniformly in λ ≥ 1 and t ≥ t0 > 0. Again
using the regularity theory of the degenerate parabolic equation, we deduce that the
C1,α-norm of uλ(t) and thus of wλ(t) in �1 is also uniformly bounded for t ≥ t0 and
λ ≥ 1 by a constant C1. Going back in the λ-scaling we find a constant independent
of λ > 1 such that

|∇w(t, λx)|
w(t, λx)

≤ C1

λ
in (t0,∞) (2.5)

in �1, and thus, the C1-norm of w(t) in R
n/B1 is uniformly bounded. Similar scaling

argument applies to the Hölder semi-norms. As a consequence of (2.5)

|∇w(t, λx)| ≤ C1
w(t, λx)

λ
≤ 2 C1

w(t, λx)

λ|x | .
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We thus obtain (2.3) for any y = λx ∈ B2λ\Bλ, and any λ > 0.
Note that ∇u = u D ∇w + w∇u D and thus we have (2.4). �

From this we can obtain the following result regarding the evolution of the relative
entropy to the stationary state.

PROPOSITION 2.4 (Entropy/entropy production). Let u ∈ C([0,∞); L1(Rn)) be
a solution of (1.9) for an initial data satisfying (H1), and consider the free energy E
defined by (1.15). Its derivative along the flow of (1.9) is:

d

dt
E[u(t)|u D∗ ] = −I [

u(t)|u D∗
]

where

I [
u(t)|u D∗

] :=
∫

Rn
u(t)

[∇ (
F ′◦u(t) − F ′◦u D∗

)]

· [∇c∗ (∇ (
F ′◦u(t)

)) − ∇c∗ (∇ (
F ′◦u D∗

))]
dy

is the relative Fisher information of u(t) w.r.t. u D∗ . Moreover, I [
u(t)|u D∗

] = 0 if and
only if u = u D∗ .

Proof. By performing formally integration by parts, we get

d

dt
E[u(t)|u D∗ ] =

∫

Rn

[
F ′◦u(t)−F ′ ◦u D∗

]
div

{
u(t)∇c∗ [∇ (

F ′◦u(t)
)]+u(t)y

}
dy

= −
∫

Rn
u(t)∇ [

F ′◦u(t)−F ′ ◦u D∗
]·{∇c∗ [∇ (

F ′◦u(t)
)]+y

}
dy.

The above energy dissipation follows using that u D∗ satisfies (1.12) and ∇c∗◦∇c = id.
This integration by parts can be justified using Lemma 2.3 by a standard argument
introducing a cut-off function like in [6, Proposition 2.6]. Since the arguments are
exactly equal, we do not perform any further details. By the convexity of c∗,

[∇c∗(a) − ∇c∗(b)
] · (a − b) ≥ 0 (2.6)

with equality if and only if a = b. So the Fisher information is non-negative and zero
if and only if u and u D∗ have the same mass and such that ∇(F ′◦ u(τ )− F ′◦ u D∗) = 0,
i.e. u = u D∗ . �

With these ingredients, we can obtain a first result of convergence toward stationary
states.

LEMMA 2.5 (Uniform convergence). Let u ∈ C([0,∞); L1(Rn)) be a solution
of (1.9) for an initial data satisfying (H1), then limt→∞ w(t, x) = 1 uniformly in
compact sets of R

n.

Proof. Define uh(t, x) := u(h + t, x), for any given h > 0 and t ∈ [0, 1]. It is
also well-known [13] that equi-bounded set of solutions of (1.1) are equi-continu-
ous in time. This property carries over to u(t) by the change of variables in (1.7).
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This fact together with the uniform bounds in C1,α obtained in Lemma 2.2 and the
Ascoli-Arzelá theorem implies that for any sequence (hn)n∈N there exists a sub-
sequence (hn)n∈N, denoted with the same index, such that {uhn }n∈N converges to
a function u∞ uniformly in compact sets of [0, 1] × R

n , and moreover, u∞(t) ∈
C1,α(Rn) for all t ∈ [0, 1]. Since E[u(t)|u D∗ ] is non-increasing and positive it has a
limit as t → ∞ and

∫ 1

0
I[u(s + hn)|u D∗ ]ds =

∫ hn+1

hn

I[u(s)|u D∗ ]ds

= E[u(hn)|u D∗ ] − E[u(hn + 1))|u D∗ ] →t→∞ 0,

the function t �→ I[uhn (t)|u D∗ ] is integrable on [0, 1] and converges to zero as
n → ∞. By (2.6), I is non-negative. By Fatou’s lemma we have
∫

Rn
lim

n→∞ uhn (t, x)∇
(
F ′◦uhn (t, x)+c(x)

)
·
(
∇c∗ [

∇F ′◦uhn (t, x)+∇c∗◦∇c(x)
])

dx

= 0.

As a consequence of (2.6), u∞ satisfies ∇[F ′ ◦ u∞(x) + c(x)] = 0, from which
u∞ = u D for some D > 0. By conservation of mass D = D∗. Since the limit of all
the convergent sub-sequences is uniquely determined by u D∗ , the result is proved. �

PROPOSITION 2.6 (Convergence in L p-spaces). Let u ∈ C([0,∞); L1(Rn)) be
a solution of the scaled doubly-nonlinear equation (1.9) for an initial data satisfying
(H1), then

lim
t→∞ ‖u(t) − u D∗‖p = 0 for any p ∈ [1,∞] and lim

t→∞ E[u(t)|u D∗ ] = 0 .

Proof. By Lemma 2.5, limt→∞ |u(t, x) − u D∗(x)| = 0 for any x ∈ R
n . Moreover,

by assumptions (H1), for |x | large enough
∣∣u(t) − u D∗

∣∣ ≤ max
{∣∣u D0 − u D∗

∣∣ ,
∣∣u D1 − u D∗

∣∣} = O
(
|x |−q(2−γ )/(1−γ )

)
.

So the difference between |u(t) − u D∗ |θ is in L1(Rn) if θ > �(p, m) with

�(p, m) := n(1 − γ )

q(2 − γ )
.

It is easy to check that �(p, m) is a decreasing function of γ and so of m. Since q > 1,
in the range of exponents (1.5), we have

�(p, m) ≤ �(p, mc(p)) = n

n + q
< 1.

By Lebesgue’s dominated convergence theorem, it implies that u(t) converges to u D∗
in Lθ (Rn), for any θ ∈ [1,∞). Finally, we use the following interpolation lemma,
due to Nirenberg, [30, p. 126]:

‖ f ‖∞ ≤ C ‖ f ‖
n

n+2

C1(Rn)
‖ f ‖

2
n+2
2 ∀ f ∈ C(Rn),

for f = u(t) − u D∗ together with (2.4) to obtain the result in the uniform norm.
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By Taylor’s formula on the integrand of the relative entropy we have

F ◦u(x)−F ◦u D∗(x)−F ′ ◦u D∗(x) (u(x) − u D∗(x))= 1

2
F ′′◦ξ(x)(u(x) − u D∗(x))2

with

u D∗(x)W0 ≤ min(u(x), u D∗(x)) ≤ ξ(x) ≤ max(u(x), u D∗(x))) ≤ u D∗(x)W1,

due to (H1), see also (H1’). For x large enough

C uγ−2
D0

(
UD1 − UD0

)2 ∼ |x |−q(2−γ )/(1−γ ) .

Since �(p, m) < 1, the integrand of the relative entropy is bounded by an integrable
function. The convergence to 0 of the relative entropy thus holds by the Lebesgue
dominated convergence theorem. �

REMARK 2.7. In contrast with [6], we do not generally have the convergence in
C1,α(Rn).

3. Linear stability

To prove the decay (1.16) of u(t) to u D∗ in the energy form, it is sufficient to
establish the following nonlinear Hardy–Poincaré type inequality:

E [u|u D∗] ≤ 1

β
I [u|u D∗ ], (3.1)

for some β > 0 and u ∈ C1,α(Rn) verifying (H1). Indeed, (3.1) combined with
Proposition 2.4 yield

d

dt
E [u(t)|u D∗] ≤ −βE [u(t)|u D∗],

and this leads to the energy decay (1.16) by a simple Gronwall argument. To prove
(3.1), we will first show a linearised version of this inequality, i.e., a weighted Poincaré
inequality, by considering the perturbation u(t) = u D∗ + εv(t) of the solution u(t) to
(1.9). This will lead to the convergence of v(t) to 0 in relative entropy for the linearised
equation of (1.9), as we will show below. Next section will be devoted to compare the
relative entropy and Fisher information in (3.1) with their linearised analogues.

For clarity in our exposition, let us start by formally deriving the form of the weighted
Poincaré inequality that we will be dealing with below. Using the perturbation u =
u D∗ + εv and the second order Taylor expansion of F (u D∗ + εv) at ε = 0 on the
expression of the relative entropy (1.15), we have that

F ◦u − F ◦u D∗ = εvF ′(u D∗) + ε2

2
v2 F ′′◦u D∗ + O(ε3),
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and then E [u|u D∗] linearises as:

E [u|u D∗ ] = ε2

2

∫

Rn
v2 F ′′◦u D∗ + O(ε3).

Let us hence introduce the weighted L2-norm:

E [v] = 1

2

∫

Rn
v2(x) F ′′ ◦u D∗(x)dx, (3.2)

which will play the role of the linearised relative entropy.
Concerning the linearisation of the Fisher information, from the first order Taylor

expansion of F ′◦u = F ′ (u D∗ + εv
)

at ε = 0, we have

B := ∇ [
F ′◦u

] = A + εW + O(ε2). (3.3)

with

A := ∇ [
F ′◦u D∗

] = ∇c and W := ∇ [
vF ′′◦u D∗

]
. (3.4)

Then using that ∇c∗(z) = z|z|p−2, we obtain

∇c∗(B) = ∇c∗(A) + ε|A|p−2W + ε(p − 2)|A|p−4(A · W )A + O(ε2). (3.5)

Combining (3.3) and (3.5), we see that I [u|u D∗ ] formally linearises as:

I [u|u D∗]=ε2
∫

Rn
u D∗ |A|p−2|W |2dx+ε2(p − 2)

∫

Rn
u D∗ |A|p−4(A·W )2dx+O(ε3).

Hence, for ε small enough, the nonlinear Hardy–Poincaré inequality (3.1) linearises
as

β

2

∫

Rn
v2 F ′′◦u D∗ ≤

∫

Rn
u D∗ |∇c|p−2|∇ [

vF ′′◦u D∗
] |2dx (3.6)

+(p − 2)

∫

Rn
u D∗ |∇c|p−4 [∇c · ∇ (

vF ′′◦u D∗
)]2 dx .

It will be shown below that the LHS of (3.6) is a Lyapunov function—and the relative
entropy—for the linearised equation of (1.9), and the RHS of (3.6) corresponds to the
dissipation of this relative entropy, up to a constant.

Let u be the solution of (1.9), and consider the small perturbation

u(t) = u D∗ + εv(t) (3.7)

of u D∗ , where ε > 0 is small, and v(t) ∈ C1,α(Rn) for some α ∈ (0, 1). Because of
the mass-conservation (2.1) and (2.2), we have using the rescaling (1.7) and (1.8), that

∫

Rn
v(t, x)dx = 0, ∀t ≥ 0.
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Moreover (3.7) implies that

∂u

∂t
= ε

∂v

∂t
. (3.8)

On the other hand, using (1.12), we have that ∇c∗ (A) = ∇c∗[−∇c(x)] = −x , and
then (3.5) gives that

u
[∇c∗ (B) + x

] = εu D∗
[
|A|p−2W + (p − 2)|A|p−4(A · W )W

]
+ O(ε2).

(3.9)

Inserting (3.8) and (3.9) into (1.9), we formally obtain after simplifying by ε and then
setting ε = 0, that the linearised problem to (1.9) is:

⎧
⎨

⎩

∂v

∂t
= div

{
u D∗

(
|A|p−2W + (p − 2)|A|p−4(A · W )A

)}
(x ∈ R

n, t > 0)

v(t = 0) = v0 (x ∈ R
n),

(3.10)

with v0 ∈ L1(Rn) of zero average. We can easily check that Eq. (3.10) has the linear-
ised relative entropy (3.2) as Lyapunov functional. Actually, differentiating E [v(t)]
along a solution v of (3.10), we formally have by a straightforward computation, that

d

dt
E [v(t)] = − (I [v(t)] + (p − 2)I0 [v(t)]) , (3.11)

where

I [v(t)] =
∫

Rn
|W (t)|2u D∗ |A|p−2dx and I0 [v(t)] =

∫

Rn
(A · W (t))2 u D∗ |A|p−4dx .

The Cauchy–Schwarz inequality implies that |A|p−4(A ·W (t)) ≤ |A|p−2|W (t)|2, and
as a consequence, I0[v(t)] ≤ I[v(t)]. Using 1 < p < 2, we have

I [v(t)] + (p − 2)I0 [v(t)] ≥ (p − 1)I [v(t)] ≥ 0. (3.12)

In case p > 2, it is direct that I[v(t)] + (p − 2)I0[v(t)] ≥ I[v(t)] ≥ 0. From these
estimates, the dissipation (3.11) and |A(x)| = |∇[F ′ ◦u D∗ ](x)| > 0 for all x ∈ R

n ,
we readily formally conclude that the unique steady state is the zero solution.

The objective of the rest of this section is to show the following asymptotic
exponential relaxation of the linearised equation (3.10):

THEOREM 3.1. Let m satisfying (1.5) and v0 ∈ L1(Rn) with zero average.
Consider v(t) the solution to (3.10) with initial data v0. There exists a constant β > 0
such that

E [v(t)] ≤ e−βt E[v0]. (3.13)
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Let us concentrate first in the case 1 < p < 2. To derive this exponential rate of
convergence, we establish the following functional inequality

E [v] ≤ 1

β
(I [v] + (p − 2)I0 [v]) , β > 0,

for all v ∈ C1,α(Rn) with zero average. This inequality corresponds to the formal
linearisation (3.6) of the nonlinear Hardy–Poincaré inequality (3.1). In fact, because
of (3.12), it is sufficient to prove the following weighted Poincaré type inequality:

E [v] ≤ p − 1

β
I [v] , β > 0 (3.14)

for all v ∈ C1,α(Rn) with zero average. This is equivalent to show the Hardy–Poincaré
type inequality:

∫

Rn
g2dµ(x) ≤ β̃

∫

Rn
|∇g|2dν(x), (3.15)

for some β̃ > 0, where g is any function satisfying
∫

Rn gdµ(x) = 0, and

dµ(x) = dx

F ′′◦u D∗(x)
, dν(x) = u D∗(x)|∇ (

F ′◦u D∗(x)
) |p−2dx . (3.16)

Note that the functions v and g in (3.14) and (3.15) are related by g = v F ′′◦u D∗ , and
β̃ = 2(p − 1)/β. The inequality (3.15) is also enough to prove the needed inequality
in the case p > 2 since (3.11) implies that

d

dt
E [v(t)] ≤ −I [v(t)] .

LEMMA 3.2 (Hardy–Poincaré type inequality). Let m, n, p be such that 1 < p <

∞ and mc(p) < m <
n−p+1
n(p−1)

. Then, there exits a constant β̃ > 0 such that

∫

Rn
g2dµ(x) ≤ β̃

∫

Rn
|∇g|2dν(x),

for any function g ∈ C1,α̃(Rn) satisfying
∫

Rn gdµ(x) = 0 with 0 < α̃ < 1, where µ

and ν are defined by (3.16).

We keep calling this inequality, “Hardy–Poincaré inequality” to remind the link
with the inequality proved in [5,6], but here we only use the Poincaré type part of
the inequality. The proof of the Hardy–Poincaré inequality was performed in [5,6]
and an estimate of the constant β̃ is also established. This proof can be adapted to
Lemma 3.2. For completeness, we give here the proof of this variant of the Hardy–
Poincaré inequality.

Proof. We first observe that we can reduce to show the inequality for the Schwartz
class g ∈ D(Rn) by simple approximation arguments. In L2(Rn, dµ) we consider the
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closable quadratic form v �→ Q(v) := ∫
Rn |∇g|2dν and −L the unique non-negative,

self-adjoint operator in L2(Rn, dµ) associated with the closure of Q. By Persson’s
theorem [32],

inf σess(−L) = lim
R→∞ inf

v∈HR

Q(v)
∫

Rn |g|2dµ

where HR := {v ∈ H1(Rd , dν) : supp(v) ⊂ R
n\B(0, R)}. Roughly speaking it

means that the inequality is true for any weights with the same behaviour in a neigh-
bourhood of +∞. By a straightforward computation using (1.12) and (1.11), we have
that

dµ(x) = 1

m

(
D∗ + 1 − γ

mq
|x |q

) 2−γ
γ−1

dx ∼|x |→∞
1

m

(
1 − γ

m q

) 2−γ
γ−1 |x |2α−2dx

and

dν(x) = |x |2−q
(

D∗ + 1 − γ

mq
|x |q

) 1
γ−1

dx ∼|x |→∞
(

1 − γ

m q

) 1
γ−1 |x |2αdx

with α chosen in such a way that q(2−γ )/(γ −1) = 2(α−1) and 2−q +q/(γ −1) =
2α, that is,

α = 1 + q(2 − γ )

2(γ − 1)
or equivalently α = 2 − q

2
+ q

2(γ − 1)
.

It is left to the reader to check that α < −(d − 2)/2 in the range of 1 < p < ∞ and
mc(p) < m, and thus, we can apply [5, Theorem 1] to obtain

inf σess(−L) ≥ 1 − γ

q
κα

where κα is the constant of the following Hardy inequality with weight, see also [6].
We refer to [5, Theorem 1] for estimates on the constant κα depending of −n < α

or α ≤ −n, see also [6]. We remark that both cases happen depending on the precise
values of mc(p) < m <

n−p+1
n(p−1)

and 1 < p < ∞.
The lowest eigenvalue of −L is λ1 = 0 with eigenfunctions given by the constants

functions. Zero mean-value solutions belong to the orthogonal set to the eigenspace
associated to λ1. Since λ1 is non-degenerate we obtain the desired result for some
λ2 ∈ (0, κα]. �

Since the only behaviour of the weights that counts is their growth at infinity, we
can avoid the singularity of the weight at the origin for the singular case 1 < p < 2
directly to obtain the following stronger inequality.

COROLLARY 3.3. For any ε > 0, there exists a constant β̃ε > 0 such that
∫

Rn
g2dµ(x) ≤ β̃ε

∫

Rn
|∇g|2dνε(x),
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for any function g ∈ C1,α(Rn) satisfying
∫

Rn gdµ(x) = 0, where µ is defined
by (3.16), and

dνε(x) = u D∗(x)
(
ε + |∇ (

F ′◦u D∗(x)
) |)p−2 dx .

Therefore, setting v = g/(F ′′ ◦ u D∗), we have the stronger weighted Poincaré
inequality

E [v] ≤ β̃ε

2
I (ε) [v] (3.17)

for all v ∈ C1,α̃(Rn) with zero average and 0 < α̃ < 1, where

I(ε)[v] =
∫

Rn
|∇ (

vF ′′◦u D∗
) |2 (

ε + |∇ (
F ′◦u D∗

) |)p−2
u D∗dx . (3.18)

REMARK 3.4. The Bakry–Emery approach used in [10] to establish the weighted
Poincaré inequality inequality (3.14) when p = 2, does not seem to apply here when
1 < p < 2. For illustration, let us consider the particular case m = n = 1, that
is the linearisation of the 1-dimensional rescaled p-Laplacian equation, ∂tv = div
{(p − 1)u D∗ |A|p−2W }, where A and W are defined by (3.4). In this case, the relative
entropy dissipation equation (3.11) simplifies as

dE [v(t)]

dt
= −(p − 1)I [v(t)] ,

and it is easy to show that its dissipation is

−dI [v(t)]

dt
= 2(p − 1)2D [v(t)|vD∗] ,

where

D [v(t)|vD∗] =
∫

Rn
F ′′◦u D∗

[
div

(
u D∗ |A|p−2W

)]2
dx .

Following [10], if one can establish the estimate D [v(t)|vD∗] ≥ λI [v(t)|vD∗] for
some λ > 0, then it will imply the weighted Poincaré inequality (3.14). But by a direct
computation, we can show that

D [v(t)|vD∗] =
(

1+ (p − 2)2

p(p − 1)

)
I (v(t)|vD∗)+

∫

Rn
F ′′ ◦ u D∗

(
u D∗ |A|p−2div W

)2
dx

+K
p − 2

(p − 1)2

∫

Rn
u D∗ |A|p−2W 2|y|−qdx . (3.19)

Note that the second term in the above expression is non-negative (because F is con-
vex), while the last term is non-positive in the range 1 < p < 2. If p ≥ 2, the last
term is also non-negative and we obtain D(v(t)|vD∗) ≥ I(v(t)|vD∗), that is λ = 1.
This then yields the desired inequality (3.14) when p ≥ 2. But if 1 < p < 2, one
cannot derive this estimate from (3.19), at least at cursory glance.
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Proof of Theorem 3.1. We apply Lemma 3.2 to g(t) = v(t)F ′′ ◦ u D∗ and β = 2
(p − 1)/β̃. By (3.11) and (3.12) we have

dE [u(t)]

dt
≤ −βE [v(t)] .

This leads to (3.13) by a Gronwall estimate.

4. Nonlinear stability

The first step to go from linear to nonlinear stability is to use that our solution is
sandwiched between two Barenblatt profiles to compare the nonlinear relative entropy
and its dissipation with their linearised counterparts.

PROPOSITION 4.1 (Comparison linear/nonlinear relative entropy). Consider a
function u satisfying (H1). Then there exist positive constants C1 and C2 such that

C1 E[u − u D∗ ] ≤ E[u|u D∗ ] ≤ C2 E[u − u D∗ ].
Proof. The asserted result follows from the end of the proof of Proposition 2.6 with
C1 := mW γ−2

0 and C2 := mW γ−2
1 . �

The next objective is to compare the nonlinear Fisher information, I[u(t)|u D∗ ],
with its linear analogue, I[u(t) − u D∗ ] along solutions of (1.9). Let us point out that
the weight

∣∣∇ (
F ′◦u D∗

)∣∣p−2 = |x |2−q

in the linearised entropy dissipation diverges at the origin for 1 < p < 2. This sin-
gular behaviour makes complicated any attempt to compare it with nonlinear Fisher
analogues. Due to the singularity of the weight |∇(F ′ ◦u D∗)|p−2 at x = 0, we will
replace I[u(t) − u D∗ ] by its regularised analogue I(ε)[u(t) − u D∗ ] defined by (3.18),
where ε > 0 is a fixed constant.

PROPOSITION 4.2 (Comparison linear/non-linear Fisher information). Assume
that u is the solution of (1.9), and set v = u − u D∗ . Then:

1. Case 1 < p < 2: Given ε > 0, there exist t0 > 0 and positive constants κ1 and
κ2 such that for all t > t0,

I (ε) [v(t)] ≤ κ1 I [u(t)|u D∗] + κ2E [v(t)] . (4.1)

2. Case p > 2: There exist t0 > 0 and positive constants κ1 and κ2 such that for
all t > t0,

I [v(t)] ≤ κ1 I [u(t)|u D∗] + κ2E [v(t)] . (4.2)

Moreover κ2 can be chosen arbitrary small provided that t0 is large enough.
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The proof of this proposition is organised as follows:

CLAIM 1. We first show that, for all ε ≥ 0 and 1 < p < 2 and for ε = 0 if p ≥ 2,
there exists κ0 > 0 such that

I (ε) [v(t)] ≤ κ0I (ε)
γ [v(t)] + κ2E [v(t)] , (4.3)

where

I (ε)
γ [v] =

∫

Rn

∣
∣∇ [

F ′◦u − F ′◦u D∗
]∣∣2 (

ε + |∇ (
F ′◦u D∗(x)

) |)p−2
u D∗ dx . (4.4)

CLAIM 2. Next we show that if 1 < p < 2, then for all ε > 0 there exists δ > 0
such that

I (ε)
γ [v(t)] ≤ δI [u(t)|u D∗] , (4.5)

whereas if 2 < p < ∞, then there exists δ > 0 such that

Iγ [v(t)] ≤ δI [u(t)|u D∗] . (4.6)

Combining (4.3) and (4.5)–(4.6), we obtain the desired inequalities (4.1) and (4.2)
with κ1 = δκ0; here Iγ = I(0)

γ and I = I(0).

Proof of Claim1. Here we follow the arguments of the proof of Lemma 5.1 in [6].
Indeed, let hk(w) = (wk−1 − 1)/(k − 1), where

w(t, x) = u(t, x)

u D∗(x)
.

Because of assumption (H1), we have that W0 ≤ w(t, x) ≤ W1, where the constant
W0 and W1 are such that 0 < W0 < 1 < W1. By studying the function h2/hγ on
[W0, W1], we have

α0hγ (w)2 ≤ h2(w)2 ≤ α1hγ (w)2, (4.7)

and

h′
2(w)2 ≤ α2h′

γ (w)2,

where

α0 := |γ − 1|2
∣
∣∣∣∣

W0 − 1

W γ−1
0 − 1

∣
∣∣∣∣

2

< 1, α1 := |γ − 1|2
∣
∣∣∣∣

W1 − 1

W γ−1
1 − 1

∣
∣∣∣∣

2

> 1

and

α2 := W 2(2−γ )
1 > 1.
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Now, define

I (ε)
k [v] := m2

∫

Rn

∣∣∣∇
(

uγ−1
D∗ hk(w)

)∣∣∣
2
(ε + |x |q−1)p−2u D∗ dx .

We have that I (ε) = I (ε)
2 and for k = γ , I (ε)

γ is defined in (4.4). Next we compute

I (ε)
k [v]. By expanding |∇(uγ−1

D∗ hk(w))|2, we have

I (ε)
k [v] = m2

∫

Rn
u2γ−1

D∗ h′
k(w)2|∇w|2(ε + |x |q−1)p−2 dx

+(1 − γ )2
∫

Rn
hk(w)2|x |2(q−1)(ε + |x |q−1)p−2u D∗ dx

+2m(1 − γ )

∫

Rn
uγ

D∗h′
k(w)hk(w)|x |q−2(ε + |x |q−1)p−2∇w · x dx .

Integrating by parts, the last integral can be rewritten as

∫

Rn
uγ

D∗h′
k(w)hk(w)|x |q−2(ε + |x |q−1)p−2∇w · xdx

= 1

2

∫

Rn
∇

(
hk(w)2

)
· |x |q−2x(ε + |x |q−1)p−2uγ

D∗ dx

= −1

2

∫

Rn
hk(w)2div

(
|x |q−2x(ε + |x |q−1)p−2uγ

D∗
)

dx

= −1

2

∫

Rn
hk(w)2div

(
|x |q−2x(ε + |x |q−1)p−2

)
uγ

D∗ dx

+ γ

2m

∫

Rn
hk(w)2|x |2(q−1)(ε + |x |q−1)p−2u D∗ dx .

Then, for ε ≥ 0 if 1 < p < 2 and ε = 0 if p > 2,

I (ε)
k [v] = m2

∫

Rn
u2γ−1

D∗ h′
k(w)2|∇w|2(ε + |x |q−1)p−2 dx

+(1 − γ )

∫

Rn
hk(w)2|x |2(q−1)(ε + |x |q−1)p−2u D∗ dx

−m(1 − γ )

∫

Rn
hk(w)2div

(
|x |q−2x(ε + |x |q−1)p−2

)
uγ

D∗ dx . (4.8)

Next we set κ0 := max(α1, α2). Moreover, since w uniformly converges to 1 as t goes
to ∞, then α0, α1, α2 and κ0 > 1 can be chosen arbitrary close to 1 provided that
t > t0, for some t0 large enough. Combining (4.7) and (4.8), we have
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I(ε)[v] = I (ε)
2 [v] ≤ m2α2

∫

Rn
u2γ−1

D∗ h′
γ (w)2|∇w|2(ε + |x |q−1)p−2 dx

+α1(1 − γ )

∫

Rn
hγ (w)2|x |2(q−1)(ε + |x |q−1)p−2u D∗ dx

−m(1 − γ )

∫

Rn
h2(w)2div

(
|x |q−2x(ε + |x |q−1)p−2

)
uγ

D∗ dx

≤ κ0I (ε)
γ [v] + m(1 − γ )

×
∫

Rn
uγ

D∗div
(
|x |q−2x(ε+|x |q−1)p−2

)(
κ0hγ (w)2−h2(w)2

)
dx .

The integration by parts is valid as

hγ (w)2|x |uγ

D∗ ∼ h2(w)2 |x | uγ

D∗

∼ (
UD0 − UD1

)2 |x | U γ−2
D∗ ∼ |x |−q(2−γ )/(1−γ )+1−n

Finally, we observe that 0 ≤ κ0hγ (w)2 −h2(w)2 ≤ (κ0/α0 − 1) h2(w)2 and by direct
computation

∣
∣∣ div

(
|x |q−2x(ε + |x |q−1)p−2

)∣
∣∣ ≤ n + 2(q − 2), (4.9)

which is valid for ε ≥ 0 if 1 < p < 2 and ε = 0 if p > 2. We then deduce that

I (ε)[v(t)] ≤ κ0I (ε)
γ [v(t)] + κ2E [v(t)]

with κ2 := 2(κ0/α0 − 1)(1 − γ )(n + 2(q − 2)) > 0. Clearly κ2 is arbitrary small pro-
vided that t0 is large enough since κ0/α0 = max(α1/α0, α2/α0) > 1 gets arbitrarily
close to 1.

Proof of Claim2 (Case 1: 1 < p < 2): First we expand I (ε)
γ [v(t)] and I [u(t)|u D∗],

and we have that

I (ε)
γ [v(t)] =

∫

Rn
|∇ [

F ′ ◦ u
] |2(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

+
∫

Rn
|∇ [

F ′ ◦ u D∗
] |2(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

−2
∫

Rn
∇ [

F ′ ◦ u
] · ∇ [

F ′ ◦ u D∗
]
(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

and

I [u(t)|u D∗] =
∫

Rn

∣∣∇ [
F ′ ◦ u

]∣∣p
u dx +

∫

Rn
|∇ [

F ′ ◦ u D∗
] |pu dx

−
∫

Rn
∇ [

F ′ ◦ u
] · ∇c∗ (∇ [

F ′ ◦ u D∗
])

u dx

−
∫

Rn
∇ [

F ′ ◦ u D∗
] · ∇c∗ (∇ [

F ′ ◦ u
])

u dx .
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Next we use Young inequality a·b ≤ c(a)+c∗(b) with c(z) = |z|q/q, a = ∇c∗(∇[F ′◦
u]) and b = ∇[F ′ ◦ u D∗ ], to have that

∇ [
F ′ ◦ u D∗

] · ∇c∗ (∇F ′(u)
) ≤ 1

q

∣∣∇ [
F ′ ◦ u

]∣∣p + 1

p
|∇ [

F ′ ◦ u D∗
] |p,

Then I[u(t)|u D∗ ] can be estimated as

I [u(t)|u D∗] ≥ 1

p

∫

Rn

∣∣∇ [
F ′ ◦ u

]∣∣p
u dx + 1

q

∫

Rn

∣∣(∇ [
F ′ ◦ u D∗

])∣∣p
u dx

−
∫

Rn
∇ [

F ′ ◦ u
] · ∇c∗ (∇ [

F ′ ◦ u D∗
])

u dx

= 1

p

∫

Rn

∣
∣∇ [

F ′ ◦ u
]∣∣p

u dx + 1

q

∫

Rn
| (∇ [

F ′ ◦ u D∗
]) |pu dx

+nm

γ

∫

Rn
uγ dx . (4.10)

Now, we compute the cross term of I (ε)
γ [v(t)]. We have that

∫

Rn
∇ [

F ′ ◦ u
] · ∇ [

F ′ ◦ u D∗
]
(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

= m

1 − γ

∫

Rn
∇(uγ−1) · x |x |q−2(ε + |x |q−1)p−2u D∗ dx

= − m

1 − γ

∫

Rn
uγ−1 div

(
x |x |q−2(ε + |x |q−1)p−2u D∗

)
dx

= − m

1 − γ

∫

Rn

uγ

w
div

(
x |x |q−2(ε + |x |q−1)p−2

)
dx

+ 1

1 − γ

∫

Rn
wγ−1u D∗ |x |2(q−1)(ε + |x |q−1)p−2 dx .

Since the last term in the above sum is non-negative, then using (4.9) and the fact that
1 < p < 2, we can estimate I (ε)

γ [v(t)] as

I (ε)
γ [v(t)] ≤

∫

Rn

∣∣∇ [
F ′ ◦ u

]∣∣2
(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

+
∫

Rn
|∇ [

F ′ ◦ u D∗
] |2(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

+ 2m

1 − γ

∫

Rn

uγ

w
div

(
x |x |q−2(ε + |x |q−1)p−2

)
dx

≤
∫

Rn

∣∣∇ [
F ′ ◦ u

]∣∣2
(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

+
∫

Rn
|∇ [

F ′ ◦ u D∗
] |2(ε + |∇ [

F ′ ◦ u D∗
] |)p−2u D∗ dx

+2m(n + 2(q − 2))

1 − γ

∫

Rn

uγ

w
dx
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≤
∫

Rn

∣∣∇ [
F ′ ◦ u

]∣∣p
�ε(u, u D∗)2−pu D∗ dx +

∫

Rn
|∇ [

F ′ ◦ u D∗
] |pu D∗ dx

+2m(n + 2(q − 2))

1 − γ

∫

Rn

uγ

w
dx,

where

�ε(u, u D∗) :=
∣∣∇ [

F ′ ◦ u
]∣∣

ε + |∇ [F ′ ◦ u D∗] | .

Let us check that �ε(u, u D∗) is uniformly bounded. Using Lemma 2.3 we are reduced
to work at |x | ∼ ∞. Actually, we need to show that |∇(uγ−1)|/|∇(Uγ−1

D∗ )| is uniformly
bounded for |x | > R and t > t0. Due to (H1) it is sufficient to prove that |∇u|/|∇UD∗ |
is uniformly bounded for |x | > R and t > t0. Since ∇u = w∇UD∗ + UD∗∇w, for
|x | > R and t > t0 we have

|∇u|
|∇UD∗ | ≤ |w| + |∇w|

|∇UD∗ |∇UD∗ .

Using (2.3), we have |∇w| ∼ O(|x |−d) and thus (|∇w|/|∇UD∗ |)∇UD∗ is bounded
for |x | > R and t > t0. Therefore �ε(u, u D∗) is uniformly bounded and thus
�ε(u, u D∗) ≤ η for some η depending on ε and t0. We obtain the estimate

I (ε)
γ [v(t)] ≤ η2−p

W0

∫

Rn

∣∣∇ [
F ′ ◦ u

]∣∣p
u dx + 1

W0

∫

Rn

∣∣∇ [
F ′ ◦ u D∗

]∣∣p
u dx

+2m(n + 2(q − 2))

(1 − γ )W0

∫

Rn
uγ dx . (4.11)

Combining (4.10) and (4.11), and setting

δ := 1

W0
max

(
pη2−p, q,

2γ (n + 2(q − 2))

n(1 − γ )

)
,

we deduce (4.5).

Proof of Case 2: 2 < p < ∞ (of Claim2): As above, we have the expression

Iγ [v(t)] =
∫

Rn

∣∣∇ [
F ′◦u − F ′◦u D∗

]∣∣2 |∇ (
F ′◦u D∗(x)

) |p−2u D∗ dx .

For convenience, we can also rewrite I (u(t)|u D∗) as

I [u(t)|u D∗] =
∫

K
H [u|u D∗ ] ∣∣∇ [

F ′◦u − F ′◦u D∗
]∣∣2

u dy,

where

H [u(t)|u D∗ ] = ∇ (
F ′◦u − F ′◦u D∗

) · [∇c∗ [∇ (
F ′◦u

)] − ∇c∗ [∇ (
F ′◦u D∗

)]]

|∇ (F ′◦u − F ′◦u D∗) |2
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and K := {x ∈ R
n such that |∇ [

F ′◦u − F ′◦u D∗
] | �= 0}. Let us show that there exist

a constant δ > 0, such that for all t > t0,

H [u(t)|u D∗ ] ≥ δ
∣∣∇ (

F ′◦u D∗
)∣∣p−2

. (4.12)

Let us remark, if p = 2, then δ = 1, and equality holds in (4.12).
For simplicity, set a(t) = ∇(F ′◦u(t)) and aD∗ = ∇(F ′◦u D∗). It is clear that (4.12)

holds in the set where aD∗ = 0. Therefore, let us restrict to the set where aD∗ �= 0
without loss of generality. Let us denote b(t) = a(t)/|aD∗ | and bD∗ = aD∗/|aD∗ |. It
is straightforward to check that

H [u(t)|u D∗ ]
|∇ (F ′◦u D∗) |p−2 = (b(t) − bD∗) · (|b(t)|p−2b(t) − bD∗

)

|b(t) − bD∗ |2 . (4.13)

Let θ denote the angle between b(t) and bD∗ . We have that

|b − bD∗ |2 = |b|2 + |bD∗ |2 − 2b cos θ = 1 + |b|2 − 2b cos θ,

and

(b − bD∗) ·
(
|b|p−2b − bD∗)

)
= |b|p − |b| cos θ − |b|p−1 cos θ + |bD∗ |2

= 1 + |b|p − (|b| + |b|p−1) cos θ

so that (4.13) reads as:

H [u(t)|u D∗ ]
|∇ (F ′◦u D∗) |p−2 = 1 + r(t)p − (

r(t) + r(t)p−1
)

x(t)

1 + r(t)2 − 2r(t)x(t)

where r(t) = |b(t)| ≥ 0 and x(t) = cos θ ∈ [−1, 1], with r(t) → 1 as t → ∞.
Estimate (4.12) is reduced to show that

f p(r, x) := 1 + r p − (r + r p−1)x

1 + r2 − 2r x
≥ δ, (4.14)

for all x ∈ [−1, 1] and for all r ≥ 0. For that, let us define the function

Fp(r, x) := 1 + r p − (r + r p−1)x − δ(1 + r2 − 2r x),

which is easily checked to be decreasing in x for r > 0, whenever δ ≤ 1
2 . Therefore,

we have Fp(r, x) > Fp(r, 1) and thus, to show (4.14) for r > 0 and −1 ≤ x < 1
is reduced to show that Fp(r, 1) ≥ 0, whenever δ ≤ 1

2 . Since Fp(1, 1) = 0, this is
equivalent to show that f p(r, 1) ≥ δ for 0 < r < 1 and r > 1. The last assertion
comes from the fact that when p > 2,

f p(r, 1) = (r p − r) − (r p−1 − 1)

(r − 1)2 = (r − 1)(r p−1 − 1)

(r − 1)2 = r p−1 − 1

r − 1

is bounded below by 1, since in 0 < r < 1, we have r p−1 − 1 < r − 1 < 0; in r > 1,
we have r p−1 − 1 > r − 1 > 0; and limr→1 f p(r, 1) = p − 1 > 1. Therefore,

f p(r, 1) ≥ 1 >
1

2
≥ δ.
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Proof of the main theorem, Theorem 1.1: Given 1 < p < 2 and ε > 0, set v =
u − u D∗ . From Proposition 4.2 and the strong weighted Poincaré inequality (3.17),
we have that

E [v(t)] ≤ κ1β̃ε

2 − κ2β̃ε

I [u(t)|u D∗] ,

where κ2 can be chosen arbitrary small provided that t > t0 is large enough. This
together with Proposition 4.1 yields the Hardy–Poincaré type inequality:

E [u(t)|u D∗] ≤ 1

λ
I [u(t)|u D∗] , (4.15)

where λ := (2 − κ2β̃ε)/C2κ1β̃ε > 0. We combine (4.15), limt→∞ E[u(t))|u D∗ ] = 0
(see Proposition 2.6) and the entropy dissipation equation

d

dt
E[u(t)|u D∗ ] = −I[u(t)|u D∗ ]

to obtain the exponential decay of the relative entropy, E[u(t)|u D∗ ] ≤ e−λtE[u0|u D∗ ].
The L1-decay (1.13) follows from the Csiszàr–Kullback type inequality (see for e.g.,
[3]),

‖u(t) − u D∗‖2
L1(Rn)

≤ M(n, n, p)E [u(t)|u D∗] , M(m, n, p) > 0,

and (1.14) is a direct consequence of the rescaling (1.7) and (1.8). The case p > 2
follows analogously without need of using the regularised entropy dissipation.

REMARK 4.3. The rate of convergence λ in Theorem 1.1 can be explicitly recon-
structed in the above computation for a given choice of ε for p < 2, but t0 will depend
on the choice of ε. For p > 2, we can even give an explicit range for the constant λ.
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