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Abstract. We treat the time evolution of states on a finite directed graph, with singular diffusion on the
edges of the graph and glueing conditions at the vertices. The operator driving the evolution is obtained by
the method of quadratic forms on a suitable Hilbert space. Using the Beurling–Deny criteria we describe
glueing conditions leading to positive and to submarkovian semigroups, respectively.

0. Introduction

The intentions of this paper are twofold. The first aim is to present a treatment of
one-dimensional “singular” diffusion in the framework of Dirichlet forms. The sec-
ond is to present suitable boundary or glueing conditions on graphs (quantum graphs)
leading to positive or submarkovian C0-semigroups.

Concerning the first topic we assume that µ is a finite Borel measure on a bounded
interval [a, b]. We assume that particles move in [a, b] according to “Brownian
motion” but are only allowed to be located in the support of µ, and in fact are slowed
down or accelerated by the “speed measure” µ. (Incidentally, the support of µ is
allowed to have gaps, what sometimes is referred to by “gap diffusion”.) More gen-
erally, instead of starting with Brownian motion, one also can include a drift in the
diffusion. This leads to including a scale function. The treatment of the corresponding
process has a longer history (cf. [1,3–5,12–14,19,20,22]), but there appears to be no
treatment of the arising evolution in the context of Dirichlet forms.

Concerning the second topic, we assume that finitely many intervals, with diffusion
as described above, are arranged in a graph, and we treat the question how boundary
conditions (glueing conditions) at the vertices can be posed in a way to describe dif-
fusing particles. These topics have also been treated in a recent paper by Kostrykin
et al. [16]. Since we pose the glueing conditions in a different form (following [17]) it
does not seem evident to us to establish the connection between the conditions given
in [16] and our conditions.

There are many motivations from applications for this work. Since we were not
primarily motivated by specific applications we refer to [17,18,23] for some of these
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motivations. An evident motivation is the description of (electric) currents in networks.
In [10] it is explained how diffusion processes on graphs can arise from various limiting
or averaging procedures of diffusion processes on higher dimensional sets. This theory
has been worked out in more specific situations in [6–9,11]. To close the introduction
we describe the contents of the paper in more detail.

In Sect. 1 we present the treatment of one-dimensional singular diffusion mentioned
initially on an interval [a, b]. We assume that µ is a finite Borel measure on [a, b],
with a, b ∈ spt µ but µ({a, b}) = 0. We define the classical Dirichlet form τ ,

τ( f, g) :=
∫

f (x)g(x) dx,

in the Hilbert space H = L2((a, b), µ), on a suitable domain D(τ ). The interesting
(and touchy) point in this combination of data is the circumstance that in the form
the values of f, g may occur on intervals where µ does not have mass. We show that
the C0-semigroup associated with the form is submarkovian (Theorem 1.7), and we
describe the self-adjoint operator associated with the form (Theorem 1.9).

In Sect. 2 we treat a slightly more complicated operator on an interval. We assume
that, besides the data prescribed in Sect. 1, there also is a scale s : [a, b] → R, con-
tinuous and strictly monotonically increasing. We treat the second order differential
expression ∂µ∂s , interpreted in the sense of distributions. We show that—by using
s : [a, b] → [s(a), s(b)] as a homeomorphism—the problem can be transformed to
the situation treated in Sect. 1. In view of this reduction we did not include a scale in
our further investigations in this paper.

In Sect. 3 we start the treatment of diffusion processes on graphs. We consider a
finite directed metric graph. The graph � is given by finite sets of vertices (nodes)
and edges. Each edge has a starting vertex and an end vertex and otherwise is con-
sidered as a bounded interval in R. The vertices carry no mass, and on each of the
edges a formal differential expression like in Sect. 1 is given. From [17] we recall
a method how to prescribe glueing conditions at the vertices in terms of forms, and
we give the description of the operators associated with the forms (Theorem 3.3). We
then single out those glueing conditions giving rise to positive and to submarkovian
C0-semigroups (Theorem 3.5).

In Sect. 4 we treat the case of a graph as in Sect. 3 but where additionally the vertices
may carry a mass. In this case we only treat the case where the functions in the domain
of the form are continuous on the whole graph, which in particular means that the
traces of functions at the end points of the edges coincide with the values of the func-
tions at the corresponding vertices. In this case the corresponding C0-semigroup is
always submarkovian (Theorem 4.2). In the description of the corresponding operator
(Theorem 4.3) the boundary condition also occurs in the value of the operator applied
to functions at the corresponding vertices.

In an Appendix we indicate the structure of (Stonean) sublattices of K
n and of

positive or submarkovian operators on these sublattices. These results are needed in
Sect. 3.
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1. The singular Dirichlet form on an interval

Let a, b ∈ R, a < b. Let µ �= 0 be a finite Borel measure on [a, b], a, b ∈ spt µ, but
µ({a, b}) = 0. In order to define the classical Dirichlet form τ in H := L2((a, b), µ)

we need some notation. Our function spaces will consist of K-valued functions, where
K ∈ {R, C}. We note that [a, b] \ spt µ is an open subset of R, and we define

Cµ[a, b] := {
f ∈ C[a, b]; f affine linear on the components of [a, b] \ spt µ

}
.

In order to pose boundary conditions we choose α, β ∈ [0, π
2 ]. We define

Cµ,α,β [a, b] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
f ∈ Cµ[a, b]; f (a) = f (b) = 0

}
if α = 0, β = 0,{

f ∈ Cµ[a, b]; f (a) = 0
}

if α = 0, 0 < β ≤ π
2 ,{

f ∈ Cµ[a, b]; f (b) = 0
}

if 0 < α ≤ π
2 , β = 0,

Cµ[a, b] otherwise,

W 1
2,µ(a, b) := W 1

2 (a, b) ∩ Cµ[a, b].
The spaces Cµ[a, b] and Cµ,α,β [a, b] are closed subspaces of (C[a, b], ‖ · ‖∞).

We define the form τ by

D(τ ) := W 1
2,µ,α,β(a, b) := Cµ,α,β [a, b] ∩ W 1

2 (a, b),

τ ( f, g) :=
∫ b

a
f ′(x)g′(x) dx + Q0( f, g) + Q1( f, g),

where Q0, Q1 : D(τ ) × D(τ ) → K are defined by

Q0( f, g) :=
{

0 if α = 0,
cos α
sin α

f (a)g(a) if 0 < α ≤ π
2 ,

Q1( f, g) :=
{

0 if β = 0,
cos β
sin β

f (b)g(b) if 0 < β ≤ π
2 .

REMARK 1.1. The value α = 0 corresponds to the zero Dirichlet boundary con-
dition at a, α = π

2 to the Neumann boundary condition, and α ∈ (0, π
2 ) to Robin

boundary conditions. Similarly for β and b.

We note that the form τ is well-defined, i.e., f ∈ D(τ ), f = 0 as an element of
H (or equivalently, f (x) = 0 µ-a.e.) implies τ( f, g) = 0 for all g ∈ D(τ ). Indeed,
if f = 0 µ-a.e. and f is continuous, then f (x) = 0 for all x ∈ spt µ. Since f is
affine linear on the components of [a, b] \ spt µ we conclude that f (x) = 0 for all
x ∈ [a, b], and thus τ( f, g) = 0 for all g ∈ D(τ ).

The definition of τ immediately shows that τ is positive and symmetric.
The following lemma is needed in order to obtain the denseness of D(τ ) in H, and

later for the Beurling–Deny criteria. In its proof we will need the fact that the open
set [a, b] \ spt µ can be decomposed as

[a, b] \ spt µ =
⋃
j∈N

(a j , b j ),
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where N ⊆ N and
(
(a j , b j )

)
j∈N is a countable family of mutually disjoint open

intervals. This decomposition will be used repeatedly.
By the Sobolev embedding theorem the space W 1

2 (a, b) can be considered as a sub-
space of C[a, b]; for elements f ∈ W 1

2 (a, b) we will always choose the continuous
representative.

LEMMA 1.2. Let f ∈ W 1
2 (a, b). Define

f̃ (x) :=
{

f (a j ) + f (b j )− f (a j )

b j −a j
(x − a j ) if x ∈ (a j , b j ), j ∈ N ,

f (x) if x ∈ spt µ.

Then f̃ ∈ W 1
2,µ(a, b), and f̃ = f as elements of H . Moreover,

f̃ ′(x) =
{

f (b j )− f (a j )

b j −a j
if x ∈ (a j , b j ), j ∈ N ,

f ′(x) if x ∈ spt µ.

Proof. For n ∈ N we define

fn(x) :=
{

f (a j ) + f (b j )− f (a j )

b j −a j
(x − a j ) if x ∈ (a j , b j ), j ∈ N , j ≤ n,

f (x) otherwise,

gn(x) :=
{

f (b j )− f (a j )

b j −a j
if x ∈ (a j , b j ), j ∈ N , j ≤ n,

f ′(x) otherwise.

It is easy to see that then fn ∈ W 1
2 (a, b), and f ′

n = gn , for all n ∈ N. Obviously
f̃ = fn = f as elements of H , for all n ∈ N.

Moreover f̃ ∈ Cµ[a, b], and fn → f̃ (n → ∞) uniformly on [a, b]. We define

g(x) := lim
n→∞ gn(x) (x ∈ (a, b)).

From
∫ b j

a j

|g(x)|2 dx = (b j − a j )

∣∣∣∣ f (b j ) − f (a j )

b j − a j

∣∣∣∣
2

= 1

b j − a j

∣∣∣∣
∫ b j

a j

f ′(y) dy

∣∣∣∣
2

≤
∫ b j

a j

| f ′(y)|2 dy,

for all j ∈ N , we obtain g ∈ L2(a, b), and therefore the dominated convergence
theorem implies gn → g in L2(a, b). This shows f̃ ∈ W 1

2 (a, b), f̃ ′ = g. �

THEOREM 1.3. The set C1
c (a, b), as a subset of H , is contained in D(τ ). As a

consequence, D(τ ) is dense in H .

Proof. According to Lemma 1.2, each element f ∈ C1
c (a, b) possesses a representa-

tive f̃ ∈ D(τ ). (Note that f̃ (a) = f̃ (b) = 0, and therefore f̃ ∈ Cµ,α,β [a, b].)
The set Cc(a, b) is dense in H . Using mollifiers one obtains that C1

c (a, b) is dense
in H . �
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In order to show the closedness of τ we need the continuity of the embedding
(D(τ ), ‖ · ‖τ ) ↪→ C[a, b], where the form norm ‖ · ‖τ is defined by

‖ f ‖τ :=
(
τ( f ) + ‖ f ‖2

H
) 1

2
( f ∈ D(τ )).

LEMMA 1.4. There exists a constant C > 0 such that

‖ f ‖∞ ≤ C
(
‖ f ′‖2

L2(a,b) + ‖ f ‖2
H

) 1
2

for all f ∈ W 1
2 (a, b).

Proof. Let x, y ∈ (a, b). The Cauchy–Schwarz inequality yields

| f (x) − f (y)| =
∣∣∣∣
∫ x

y
f ′(z) dz

∣∣∣∣ ≤ ‖ f ′‖L2(a,b)(b − a)
1
2 ,

| f (x)| ≤ | f (y)| + ‖ f ′‖L2(a,b)(b − a)
1
2 .

Integrating this inequality with respect to µ one obtains

| f (x)|µ((a, b)) ≤
∫

(a,b)

| f (y)| dµ(y) + ‖ f ′‖L2(a,b)(b − a)
1
2 µ((a, b))

≤ ‖ f ‖H µ((a, b))
1
2 + ‖ f ′‖L2(a,b)(b − a)

1
2 µ((a, b)).

This inequality shows the assertion. �

THEOREM 1.5. The form τ is closed.

Proof. Let ( fn)n∈N ⊆ D(τ ), fn → f (n → ∞) in H , τ( fn − fm) → 0 (m, n → ∞).
We have to show that f ∈ D(τ ), τ( fn − f ) → 0 (n → ∞).

The sequence ( fn) is a ‖ · ‖τ -Cauchy sequence, and therefore Lemma 1.4 implies
that ( fn) is a ‖ · ‖∞-Cauchy sequence. This implies that there exists f̃ ∈ Cµ,α,β [a, b]
such that ‖ fn − f̃ ‖∞ → 0 (n → ∞). We further conclude that fn → f̃ in H , and
therefore we may assume that f = f̃ belongs to Cµ,α,β [a, b].

Since ( fn) is uniformly convergent to f and ( f ′
n) is a Cauchy sequence in L2(a, b),

thus convergent, we obtain that f ∈ W 1
2 (a, b), f ′

n → f ′ in L2(a, b) (n → ∞). We
conclude that f ∈ Cµ,α,β [a, b] ∩ W 1

2 (a, b) = D(τ ),

τ( fn − f ) =
∫ b

a
| f ′

n(x) − f ′(x)|2 dx + Q0( fn − f ) + Q1( fn − f )

→ 0 (n → ∞). �

REMARKS 1.6. (a) Summarising, we have shown that τ is a densely defined closed
positive form in H . The “first representation theorem” implies that there is a unique
positive definite self-adjoint operator H in H associated with τ ; cf. [15, VI, Theorem
2.1]. Accordingly, the operator −H is the generator of a C0-semigroup (e−t H )t≥0 on
H .
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In order to show that the operators e−t H are positive (in the sense of the order on
H = L2((a, b), µ)) and moreover submarkovian we will show that the conditions of
the Beurling–Deny criteria are satisfied.

(b) We recall that the first Beurling–Deny criterion states (amongst others) that
positivity of the C0-semigroup (e−t H )t≥0 is equivalent to:

For all f ∈ D(τ ) one has | f | ∈ D(τ ), τ(| f |) ≤ τ( f ) (cf. [25, Corollary 2.18]).
(c) The second Beurling–Deny criterion states (amongst others) that, assuming pos-

itivity of (e−t H )t≥0, the property that (e−t H )t≥0 is submarkovian (i.e., positive and
L∞-contractive) is equivalent to:

For all 0 ≤ f ∈ D(τ ) one has f ∧ 1 ∈ D(τ ), τ( f ∧ 1) ≤ τ( f ) (cf. [25, Corollary
2.18]).

(d) A mapping F : K → K is called a normal contraction if F(0) = 0 and |F(x)−
F(y)| ≤ |x − y| (x, y ∈ K). The C0-semigroup (e−t H )t≥0 is submarkovian if and
only if the following condition is satisfied:

For all normal contractions F : K → K and all f ∈ D(τ ) one has F � f ∈ D(τ ),
τ(F � f ) ≤ τ( f ) (cf. [25, Theorem 2.25]).

THEOREM 1.7. Let F : K → K be a normal contraction. Let f ∈ D(τ )

(=Cµ,α,β [a, b] ∩ W 1
2 (a, b)). Then F � f ∈ D(τ ), τ(F � f ) ≤ τ( f ). As a conse-

quence, the C0-semigroup (e−t H )t≥0 is (positive and) submarkovian.

Proof. It is well-known that F � f ∈ W 1
2 (a, b) and |(F � f )′| ≤ | f ′|. (See Remark 1.8

below.) Using Lemma 1.2 we obtain that the function f̃ , defined by

f̃ (x) :=
{

F( f (a j )) + F( f (b j ))−F( f (a j ))

b j −a j
(x − a j ) if x ∈ (a j , b j ), j ∈ N ,

F( f (x)) if x ∈ spt µ,

belongs to Cµ,α,β [a, b]. Evidently f̃ = F � f as elements of H . For j ∈ N , x ∈
(a j , b j ) one obtains the estimate

| f̃ ′(x)| =
∣∣∣∣ F( f (b j )) − F( f (a j ))

b j − a j

∣∣∣∣ ≤
∣∣∣∣ f (b j ) − f (a j )

b j − a j

∣∣∣∣ = | f ′(x)|,

and therefore F � f ∈ D(τ ),

τ(F � f ) = τ( f̃ )

=
∫

spt µ
|(F � f )′(x)|2 dx +

∑
j∈N

∫ b j

a j

| f̃ ′(x)|2 dx

+Q0(F � f ) + Q1(F � f )

≤ τ( f ).

Now the second last assertion of the theorem follows from Remark 1.6(d). �
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REMARK 1.8. A function f ∈ C[a, b] belongs to W 2
1 (a, b) if and only if f is

absolutely continuous, and then f is differentiable almost everywhere, and f ′ is the
distributional derivative. Then, if f is absolutely continuous and F : K → K is a
normal contraction, it is immediate that F � f is absolutely continuous, and therefore
F � f ∈ W 1

1 (a, b). For those points x where f and F � f are differentiable (a set of full
measure) it is immediate that |(F � f )′(x)| ≤ | f ′(x)|, and therefore |(F � f )′| ≤ | f ′|.
(For similar properties in more dimensions we refer to [21, Appendix, Corollary 1].)

To conclude this section we describe the operator H associated with the form τ . In
order to do so we introduce some additional notation.

If f ∈ L1,loc(a, b), g ∈ L1((a, b), µ) are such that f ′ = gµ (where f ′ = ∂ f
denotes the distributional derivative of f ), then we call g distributional derivative of
f with respect to µ, and we write

∂µ f := g.

Note that then necessarily f ′ = 0 on [a, b] \ spt µ, i.e., f is constant on each of the
components of [a, b] \ spt µ. It is easy to see that this is equivalent to

f (x) = c +
∫

(a,x)

g(y) dµ(y) a.e., (1.1)

with some c ∈ K. Thus, the function f has representatives of bounded variation and
these have one-sided limits (not depending on the representative) at all points of [a, b].

We define the “maximal operator” Ĥ in H , associated with the differential expres-
sion −∂µ∂ , by

D(Ĥ) := {
f ∈ Cµ[a, b]; f ′ ∈ L1(a, b), ∂µ f ′ exists, ∂µ f ′ ∈ H}

,

Ĥ f := −∂µ f ′ ( f ∈ D(Ĥ)).

(Note that Ĥ is well-defined as an operator in H : If f ∈ Cµ[a, b] vanishes on spt µ,
then f = 0, and therefore ∂µ f ′ = 0.)

Using (1.1) one easily obtains that D(Ĥ) ⊆ W 1
2 (a, b).

THEOREM 1.9. The operator H is given by

D(H) = {
f ∈ D(Ĥ); cos α f (a) − sin α f ′(a+) = cos β f (b) + sin β f ′(b−) = 0

}
,

H f = −∂µ f ′ ( f ∈ D(H)).

Proof. As a preliminary step we supply an identity. Let f ∈ D(Ĥ), g ∈ D(τ ). From
(1.1) we obtain

f ′(x) = f ′(a+) +
∫

(a,x)

∂µ f ′(y) dµ(y) a.e.
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Using Fubini’s theorem, we now obtain

∫ b

a
f ′(x)g′(x) dx

=
∫ b

a

(
f ′(a+) +

∫
(a,x)

∂µ f ′(y) dµ(y)

)
g′(x) dx

= f ′(a+)(g(b) − g(a)) +
∫

(a,b)

∫
(a,x)

∂µ f ′(y) dµ(y)g′(x) dx

= f ′(a+)(g(b) − g(a)) +
∫

(a,b)

∂µ f ′(y)

∫
(y,b)

g′(x) dx dµ(y)

= f ′(a+)(g(b) − g(a)) +
∫

(a,b)

∂µ f ′(y)(g(b) − g(y)) dµ(y)

= f ′(b−)g(b) − f ′(a+)g(a) + (Ĥ f |g)H.

(1.2)

Let f ∈ D(H) (⊆ D(τ )), g ∈ D(τ ). Then
∫

(a,b)

H f (x)g(x) dµ(x) = τ( f, g)

=
∫ b

a
f ′(x)g′(x) dx + Q0( f, g) + Q1( f, g).

Choosing g ∈ C1
c (a, b), g̃ ∈ Cµ[a, b] such that g̃ spt µ = g spt µ (recall Lemma 1.2),

we obtain
∫

(a,b)

H f (x)g(x) dµ(x) =
∫ b

a
f ′(x)g̃′(x) dx

=
∫

spt µ
f ′(x)g̃′(x) dx +

∑
j∈N

f ′(a j +)

∫ b j

a j

g(b j ) − g(a j )

b j − a j
dx

=
∫

spt µ
f ′(x)g′(x) dx +

∑
j∈N

f ′(a j +)

∫ b j

a j

g′(x) dx

=
∫ b

a
f ′(x)g′(x) dx .

This implies f ∈ D(Ĥ), H f = Ĥ f = −∂µ f ′.
For general g ∈ D(τ ) we conclude, using (1.2),

τ( f, g) − (Q0( f, g) + Q1( f, g)) =
∫ b

a
f ′(x)g′(x) dx

= f ′(b−)g(b) − f ′(a+)g(a) + (H f |g)H.

This means that the equation

Q0( f, g) − f ′(a+)g(a) + Q1( f, g) + f ′(b−)g(b) = 0
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must be satisfied. If α = 0, then cos α f (a) − sin α f ′(a+) = f (a) = 0 because of
f ∈ D(H) ⊆ D(τ ) ⊆ Cµ,α,β [a, b]. If 0 < α ≤ π

2 , then we define g ∈ D(τ ) by
g(x) := x − b (x ∈ [a, b]) and conclude that cos α

sin α
f (a) − f ′(a+) = 0. This shows

that f satisfies the boundary condition at a. The argument for the boundary condition
at b is analogous.

Conversely, let f ∈ D(Ĥ), and let the boundary conditions

cos α f (a) − sin α f ′(a+) = 0,

cos β f (b) + sin β f ′(b−) = 0,
(1.3)

be satisfied. We note that this implies f ∈ Cµ,α,β [a, b], and therefore f ∈ D(τ ). Let
g ∈ D(τ ). Inserting the boundary conditions (1.3) into (1.2) (or using g(a) = 0 if
α = 0, g(b) = 0 if β = 0, respectively) we obtain

(Ĥ f |g)H =
∫ b

a
f ′(x)g′(x) dx + Q0( f, g) + Q1( f, g) = τ( f, g).

Now the definition of H implies f ∈ D(H), H f = Ĥ f . �

The following observation is a preparation for the subsequent examples. Let c ∈
(a, b), µc := µ({c}) > 0, and let f ∈ L1,loc(a, b) be such that ∂µ f ∈ L1((a, b), µ)

exists. Then the equation ∂µ f µ = f ′ implies ∂µ f (c) = f (c+)− f (c−)
µc

.

EXAMPLES 1.10. (a) Let a < a′ < b′ < b. Assume that (a′, b′) is a component
of [a, b] \ spt µ, and that µ({a′, b′}) = 0

Let f ∈ D(H). Then f ′ is continuous at a′ and b′, and

f ′(a′) = f ′(b′) = f (b′) − f (a′)
b′ − a′ .

In Example 3.7 we will transform this example into an example on a graph.
(b) Let a < c < b, µc := µ({c}) > 0, and µ((c − ε, c)) > 0, µ((c, c + ε)) > 0

for all ε > 0.
Let f ∈ D(H). Then

H f (c) = −∂µ f ′(c) = − f ′(c+) − f ′(c−)

µc
, (1.4)

according to Theorem 1.9 and the preceding remark. In Example 4.6 we will give an
isomorphic description in the context of graphs.

(c) Let a < a′ < c < b′ < b, and assume that (a′, c), (c, b′) are components of
[a, b] \ spt µ.

Let f ∈ D(H). Then

H f (c) = −∂µ f ′(c) = − f ′(c+)− f ′(c−)

µc
= − 1

µc

(
f (b′)− f (c)

b′ − c
− f (c)− f (a′)

c − a′

)
.
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2. The Dirichlet form including a scaling function

In this section we transfer the results of Sect. 1 to more general one-dimensional
diffusion operators. We suppose that a′, b′ ∈ R, a′ < b′, and that s : [a′, b′] → R is a
scale (or scaling function), i.e., s is a continuous strictly monotonically increasing func-
tion. As in Sect. 1 we assume that µ′ is a finite Borel measure on [a′, b′], a′, b′ ∈ spt µ′,
but µ′({a′, b′}) = 0. The aim is to associate an operator in H′ := L2([a′, b′], µ′) with
the differential expression −∂µ′∂s , and to present the corresponding Dirichlet form.
This aim will be achieved by transforming the problem to the case treated in Sect. 1.

We define a := s(a′), b := s(b′). Then s : [a′, b′] → [a, b] is a homeomorphism.
Let µ := µ′

s denote the image measure of µ under s (i.e., µ(A) := µ′(s−1(A)), for
all Borel sets A ⊆ [a, b]). Then µ has the properties required in Sect. 1; we further
note that spt µ = s(spt µ′).

We recall the following fact concerning image measures. A function f : [a, b] → K

is µ-integrable if and only if f � s is µ′-integrable, and then the substitution rule

∫
[a,b]

f (x) dµ(x) =
∫

[a′,b′]
f � s(x ′) dµ′(x ′) (2.1)

holds.
For each p ∈ [1,∞] the mapping 	,

	 f := f � s

(mapping functions on [a, b] to functions on [a′, b′]) is an isometric Banach lattice
isomorphism 	 : L p([a, b], µ) → L p([a′, b′], µ′). In particular, 	 : H → H′ is a
unitary operator and a Hilbert lattice isomorphism. The inverse mapping is given by
	−1g = g � s−1.

Let τ be the form treated in Sect. 1. We define the form τ ′ in H′ by

D(τ ′) := 	(D(τ )), τ ′( f, g) := τ(	−1 f, 	−1g). (2.2)

Then it is standard to show that τ ′ is a densely defined, closed positive form, and that
the self-adjoint operator H ′ associated with τ ′ is given by

D(H ′) = 	(D(H)), H ′ = 	H	−1. (2.3)

The generated C0-semigroups are related by

e−t H ′ = 	e−t H 	−1 (t ≥ 0).

The form τ ′ satisfies the conditions of the Beurling–Deny criteria, and the C0-semi-
group (e−t H ′

)t≥0 is (positive and) submarkovian.
It remains to determine the form τ ′ and the operator H ′ more explicitly. In order to

describe D(τ ′) = 	(D(τ ))we first describe the spaces	(Cµ[a, b]),	(Cµ,α,β [a, b]),
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	(W 1
2 (a, b)). A function f : [a′, b′] → K will be called affine linear in s on (a′

0, b′
0),

an open subinterval of [a′, b′], if there exist constants c, d ∈ K such that

f (x ′) = c + ds(x ′) (x ′ ∈ (a′
0, b′

0)).

We define

Cµ′,s[a′, b′] := {
f ∈ C[a′, b′]; f affine linear in s on

the components of [a′, b′]\ spt µ′}.
It is not difficult to see that then Cµ′,s[a′, b′] = 	(Cµ[a, b])). Also, for α, β ∈ [0, π

2 ],
the space

Cµ′,s,α,β [a′, b′] := 	(Cµ,α,β [a, b])
is the space analogous to Cµ,α,β [a, b].

We denote by ds the Borel-Stieltjes measure on [a′, b′] generated by the function
s. Then the image measure of ds under s is the Borel-Lebesgue measure on [a, b].
Let f : (a′, b′) → K be a bounded Borel measurable function, g ∈ L1((a′, b′), ds).
If f ′ = g ds in the sense of distributions, then we write g = ∂s f . We note that,
equivalently,

f (x ′) = c +
∫

(a,x ′]
g(y′) ds(y′) a.e.,

for a suitable constant c ∈ K.
Let f ∈ W 1

2 (a, b). Then

f (x) = c +
∫ x

a
f ′(y) dy a.e.

Applying the substitution rule (2.1) to ds and the Borel-Lebesgue measure one obtains,
for x ′ ∈ (a′, b′),

f � s(x ′) = c +
∫ x ′

a′
f ′ � s(y′) ds(y′),

i.e., ∂s( f � s) = f ′ � s ∈ L2(a′, b′); and the argument can also be reversed.
These remarks explain already the first part of the following result.

THEOREM 2.1. The form τ ′ is given by

D(τ ′) = {
f ∈ Cµ′,s,α,β [a′, b′]; ∂s f exists on (a′, b′), and ∂s f ∈ L2((a

′, b′), ds)
}
,

τ ′( f, g) =
∫ b′

a′
∂s f (x ′)∂s g(x ′) ds(x ′) + Q′

0( f, g) + Q′
1( f, g) ( f, g ∈ D(τ ′),

where Q′
0, Q′

1 are defined analogously to Q0, Q1 in Sect. 1.



648 U. Kant et al. J. Evol. Equ.

Proof. In view of (2.2) and the previous considerations we only have to explain the
integral part in the formula for τ ′.

Let f, g ∈ D(τ ). As explained before, we then have f ′ � s = ∂s( f � s), g′ � s =
∂s(g � s). Therefore the substitution rule yields

∫ b

a
f ′(x)g′(x) dx =

∫ b′

a′
f ′ � s(x ′)g′ � s(x ′) ds(x ′)

=
∫ b′

a′
∂s( f � s)(x ′)∂s(g � s)(x ′) ds(x ′). �

In order to describe H ′ = 	H	−1 we first determine the “maximal operator”
Ĥ ′ = 	 Ĥ	−1. Let f ∈ D(Ĥ). As above, the condition f ′ ∈ L1(a, b) translates to
∂s( f � s) = f ′ � s ∈ L1((a′, b′), ds). From ∂µ f ′ ∈ L2((a, b), µ) we conclude that f ′
is bounded, and therefore ∂s( f � s) = f ′ � s is bounded. Further, the condition that
∂µ f ′ ∈ L2((a, b), µ) translates to

f ′(x) = f ′(a+) +
∫

(a,x)

∂µ f ′(y) dµ(y) a.e.,

f ′ � s(x ′) = f ′ � s(a′+) +
∫

(a′,x ′]
∂µ f ′ � s(y′) dµ′(y′) a.e.,

i.e., ∂µ′∂s( f � s) = ∂µ′( f ′ � s) exists and ∂µ′∂s( f � s) = ∂µ f ′ � s ∈ L2((a′, b′), µ′).
As the computations are also valid in the reverse direction we have shown that

D(Ĥ ′) = {
f ∈ Cµ′,s[a′, b′]; ∂s f exists and is bounded,

∂µ′∂s f exists and ∂µ′∂s f ∈ L2((a
′, b′), µ′)

}
,

Ĥ ′ f = −∂µ′∂s f ( f ∈ D(Ĥ ′)).

Now the following description of H ′ is an immediate consequence of Theorem 1.9.

THEOREM 2.2. The operator H ′ is given by

D(H ′) = {
f ∈ D(Ĥ ′); cos α f (a′) − sin α ∂s f (a′+)

= cos β f (b′) + sin β ∂s f (b′−) = 0
}
,

H ′ f = −∂µ′∂s f ( f ∈ D(H ′)).

3. Dirichlet forms for singular operators on graphs

Let � = (V, E, η) be a finite directed graph. Here, V and E are finite sets (and
V ∩ E = ∅). The elements of V are the vertices of �, those of E the edges, and they
are related by the mapping η = (η0, η1) : E → V × V , where η0(e) should denote
the “starting vertex” of e, and η1(e) the “end vertex”. (Loops, i.e., η1(e) = η0(e), are
allowed.)
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For v ∈ V , the sets

Ev, j := {
e ∈ E; η j (e) = v

}
, for j = 0, 1,

describe the sets of all edges starting or ending at v, respectively. We also will need
the set

Ev := (Ev,0 × {0}) ∪ (Ev,1 × {1})

of all edges connected with v (but where loops starting and ending at v yield two
contributions).

Each edge e ∈ E corresponds to an interval [ae, be] ⊆ R (where ae, be ∈ R, ae <

be), and we assume that µe is a Borel measure on [ae, be] satisfying ae, be ∈ spt µe,
µe({ae, be}) = 0. The form and operator will be defined in the Hilbert space

H� :=
⊕
e∈E

L2((ae, be), µe),

with scalar product

( f |g)H�
:=

∑
e∈E

( fe |ge)L2((ae,be),µe)
.

In the present section the vertices will not have mass; a special case where masses are
attributed to the vertices will be treated in the following section.

In order to define the classical Dirichlet form in H� we introduce the following
notation. We define

C(E) := {
( fe)e∈E ; fe ∈ C[ae, be] (e ∈ E)

}
,

Cµ(E) := {
f ∈ C(E); fe ∈ Cµe [ae, be] (e ∈ E)

}
,

W 1
2 (E) := {

( fe)e∈E ; fe ∈ W 1
2 (ae, be) (e ∈ E)

}
,

W 1
2,µ(E) := W 1

2 (E) ∩ Cµ(E).

For v ∈ V we define a trace operator trv : C(E) → K
Ev , by

trv f (e, j) :=
{

fe(ae) if j = 0, e ∈ Ev,0,

fe(be) if j = 1, e ∈ Ev,1
( f ∈ C(E)).

Also, it will be convenient to use the notation

τE ( f, g) :=
∑
e∈E

∫ be

ae

fe
′(x)ge

′(x) dx,

for f, g ∈ W 1
2,µ(E).
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REMARK 3.1. In this remark we recall from [17] how forms are described, giving
rise to self-adjoint operators subject to boundary conditions at the vertices. For each
v ∈ V we prescribe a subspace Xv of K

Ev and a self-adjoint operator Lv on Xv .
We define τ by

D(τ ) := {
f ∈ W 1

2,µ(E); trv f ∈ Xv (v ∈ V )
}
,

τ ( f, g) :=
∑
e∈E

∫ be

ae

fe
′(x)ge

′(x) dx +
∑
v∈V

(Lv(trv f ) | trv g)KEv

= τE ( f, g) +
∑
v∈V

(Lv(trv f ) | trv g)Xv
.

Then τ is a densely defined closed semi-bounded (below) symmetric form. (See
Remarks 3.2.) The conditions trv f ∈ Xv and the second part of the form are respon-
sible for the glueing conditions at the vertices.

Denoting by Qv the orthogonal projection onto Xv and by Pv the complementary
orthogonal projection, the condition trv f ∈ Xv can also be expressed as the equation
Pv(trv f ) = 0.

We refer to [17, Theorem 9] for this description, in the case that all the measures
µe are the Lebesgue-measure. (Note that we changed the sign of the matrices Lv with
respect to [17, Theorem 9]; this is more convenient in our later development.)

REMARKS 3.2. (a) We consider the special case where Pv = 0, Lv = 0 for all
v ∈ V . We denote the corresponding form by τN (the index N indicating Neumann
boundary conditions). The form τN decomposes as the sum of the Neumann forms on
each of the edges, and therefore the closedness of τN follows from Sect. 1. Obviously,
τN is positive.

(b) The domain D(τ ) contains the dense set
{

f ∈ H�; fe ∈ C1
c (ae, be) (e ∈ E)

}
(compare Theorem 1.3), and therefore is dense. In order to obtain the closedness and
semi-boundedness of τ in Remark 3.1 it is now sufficient to show that the trace map-
pings trv are infinitesimally form small with respect to τN . This, however, follows
from the last estimate in the proof of Lemma 1.4, which can be rewritten as

| f (a)| ≤ r
1
2 ‖ f ′‖L2(a,a+r) + ‖ f ‖L2([a,a+r ],µ) µ((a, a + r))−

1
2 ,

for arbitrary r ∈ (0, b − a), and correspondingly for b.

In order to describe the self-adjoint operator H associated with the form τ of
Remark 3.1 we define the “maximal operator” Ĥ in H� , by

D(Ĥ) := {
f ∈ Cµ(E); fe

′ ∈ L1(a, b), ∂µe fe
′ exists,

∂µe fe
′ ∈ L2((ae, be), µe) (e ∈ E)

}
,

Ĥ f := (−∂µe fe
′)e∈E ( f ∈ D(Ĥ),

with the notation introduced in Sect. 1. From Sect. 1 we recall that D(Ĥ) ⊆ D(τN ).
For f ∈ D(Ĥ) we know that the limits fe

′(ae+), fe
′(be−) exist. For the formulation
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of the boundary conditions it is convenient to define the notion of signed traces, as
follows. For v ∈ V we define strv g ∈ K

Ev by

strv g(e, j) :=
{

ge(ae+) if j = 0, e ∈ Ev,0,

−ge(be−) if j = 1, e ∈ Ev,1,

if g is a function for which the one-sided limits exist. Then, for v ∈ V , f ∈ D(Ĥ),
the vector of the outgoing derivatives from v is obtained by strv f ′ ∈ K

Ev .

THEOREM 3.3. Let Xv, Lv (v ∈ V ) and τ be as in Remark 3.1, and let H be the
self-adjoint operator associated with τ . Then

D(H) = {
f ∈ D(Ĥ); trv f ∈ Xv, Qv(strv f ′) = Lv(trv f ) (v ∈ V )

}
,

H f = Ĥ f ( f ∈ D(H)).

Proof. (analogous to the proof of Theorem 1.9) Let f ∈ D(Ĥ), g ∈ D(τ ). Summing
Eq. (1.2) (from the proof of Theorem 1.9) over the edges we obtain

∑
e∈E

∫ be

ae

fe
′(x)ge

′(x) dx = −
∑
v∈V

(strv f ′ | trv g)KEv + (Ĥ f |g)H�
. (3.1)

Let f ∈ D(H). From D(H) ⊆ D(τ ) we conclude that trv f ∈ Xv (v ∈ V ). As in
the proof of Theorem 1.9 one obtains f ∈ D(Ĥ), H f = Ĥ f . Let g ∈ D(τ ). Using
(3.1) we obtain

τE ( f, g) +
∑
v∈V

(strv f ′ | trv g)KEv = (H f |g)H�

= τ( f, g) = τE ( f, g) +
∑
v∈V

(Lv(trv f ) | trv g)KEv ,

i.e.,
∑
v∈V

(strv f ′ − Lv(trv f ) | trv g)KEv = 0.

Let v ∈ V , ξ ∈ Xv . There exists g ∈ D(τ ) such that trv g = ξ , trw g = 0 for all
w ∈ V \{v}; indeed, one only has to connect the prescribed traces affine linearly on
all edges. This shows that strv f ′ − Lv(trv f ) is orthogonal to Xv = R(Qv), i.e.,

0 = Qv(strv f ′ − Lv(trv f )) = Qv(strv f ′) − Lv(trv f ).

Conversely, let f ∈ D(Ĥ), and let the boundary conditions trv f ∈ Xv ,
Qv(strv f ′) = Lv(trv f ) (v ∈ V ) be satisfied. Then f ∈ D(τ ), by the first part
of the boundary conditions. Let g ∈ D(τ ). We note that then

(strv f ′ | trv g)KEv = (strv f ′ | Qv(trv g))KEv

= (Qv(strv f ′) | trv g)KEv = (Lv(trv f ) | trv g)KEv
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for all v ∈ V . Using (3.1) we obtain

(Ĥ f |g)H�
= τE ( f, g) +

∑
v∈V

(strv f ′ | trv g)KEv

= τE ( f, g) +
∑
v∈V

(Lv(trv f ) | trv g)KEv = τ( f, g).

Now the definition of H implies that f ∈ D(H), H f = Ĥ f . �

EXAMPLE 3.4. We refer to [17] for a variety of examples. We only want to mention
a very simple example, where the graph consists of one vertex 0 and one loop [0, 1]. We
let X0 := lin{(1, 1)}, L0 := 0. Then the boundary conditions contained in the descrip-
tion of the domain of H are those of periodicity, f (0) = f (1), f ′(0) − f ′(1) = 0.

We now come to the main object of this section, i.e., the investigation under what
conditions the generated C0-semigroup is positive or submarkovian. In this analysis
we make use of the description of (Stonean) sublattices of K

n and operators on such
sublattices. These topics are treated in the Appendix.

THEOREM 3.5. Let Xv, Lv (v ∈ V ) and τ be as in Remark 3.1, and let H be the
self-adjoint operator associated with τ .

(a) Assume additionally that Xv is a sublattice of K
Ev and that (e−t Lv )t≥0 is a

positive C0-semigroup on Xv , for all v ∈ V . Then (e−t H )t≥0 is a positive C0-semi-
group on H� .

(b) Assume additionally that Xv is a Stonean sublattice of K
Ev and that (e−t Lv )t≥0

is a submarkovian C0-semigroup on Xv , for all v ∈ V . Then (e−t H )t≥0 is a submarko-
vian C0-semigroup on H� .

Proof. (a) The proof is given by verifying the condition of the first Beurling–Deny
criterion stated in Remark 1.6(b). Thus, let f ∈ D(τ ). Then | f | ∈ D(τN ) (as an ele-
ment of H� ) and τE (| f |) ≤ τE ( f ), by Theorem 1.7. Moreover trv | f | = | trv f | ∈
Xv , by the hypothesis that Xv is a sublattice of K

Ev , for all v ∈ V , and this shows
that | f | ∈ D(τ ). Finally, the hypothesis on Lv implies that

(
Lv(trv | f |) ∣∣ trv | f |) ≤

(Lv(trv f ) | trv f ) for all v ∈ V , by Lemma A.3(a), and this shows τ(| f |) ≤ τ( f ).
(b) From part (a) we already know that the C0-semigroup (e−t H )t≥0 is positive.

In order to show that it is submarkovian we check the condition of the second Beur-
ling–Deny criterion mentioned in Remark 1.6(c). Thus, let 0 ≤ f ∈ D(τ ). Then
f ∧ 1 ∈ D(τN ) (as an element of H� ) and τE ( f ∧ 1) ≤ τE ( f ), by Theorem 1.7.
Moreover trv( f ∧ 1) = (trv f ) ∧ 1 ∈ Xv , by the hypothesis that Xv is a Stonean
sublattice of K

Ev , for all v ∈ V , and this shows that f ∧ 1 ∈ D(τ ). Finally, the
hypothesis on Lv implies that (Lv(trv( f ∧ 1)) | trv( f ∧ 1)) ≤ (Lv(trv f ) | trv f ) for
all v ∈ V , by Lemma A.3(b), and this shows τ( f ∧ 1) ≤ τ( f ). �

REMARK 3.6. The conditions at the vertices stated in Theorem 3.3 are also nec-
essary for the positivity or submarkovian property, respectively. In order to see this it
is sufficient to observe that, for any vertex v0 ∈ V and any x ∈ K

Ev0 , there exists a
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function f ∈ D(τ ) such that trv0 f = x and trv f = 0 for all v ∈ V \ {v0}. Such an
element is easily constructed by taking f affine linear on all edges. (Observe that for
this element one obtaines τE (| f |) = τE ( f ).)

EXAMPLE 3.7. We turn Example 1.10(a) into a graph with edges e1 := [a, a′],
e2 := [b′, b] and vertices a, b and v, where η1(e1) = η0(e2) = v. In the vertex v we
define Xv := K

2 and Lv := 1
b′−a′

(
1 −1
1 1

)
. These definitions give rise to the glueing

condition

(− f ′(a′)
f ′(b′)

)
= Lv

(
f (a′)
f (b′)

)
= 1

b′ − a′

(
f (a′) − f (b′)

− f (a′) + f (b′)

)
.

Using the restriction of µ to e1 and e2 as µ1 and µ2, respectively (and formulating the
boundary conditions at a and b in the graph version) we see that the two descriptions
give rise to the same evolution.

4. Graphs with masses on the vertices

In this section we treat the case of graphs as in the preceding section, but additionally
we assume that (some of) the vertices carry a mass, i.e., in the language of stochastic
processes, particles visiting these vertices have the tendency to stick to these vertices.
Otherwise, the assumption concerning the graph � = (V, E, η) and the measures µe

(e ∈ E) are as in Sect. 3.
So, additionally to the assumption of the previous section, we assume that, for

v ∈ V , we are given µv ≥ 0, and we define

V0 := {v ∈ V ; µv = 0}.

Then the form τ will be given the Hilbert space

H� :=
⊕
e∈E

L2([ae, be], µe) ⊕ �2(V, (µv)v∈V ).

(By �2(V, (µv)v∈V ) we understand K
V \V0 , equipped with the scalar product (x | y) :=∑

V \V0
xv yvµv .) In the present paper, we will only treat the case where the functions

in the domain are continuous on the graph, which, in view of the treatment presented
in Sect. 3, is a special case. Accordingly, we define

C(�) := {
f ∈ K

V ∪E ∩ C(E); f (v) = (trv f )(e, j) ((e, j) ∈ Ev, v ∈ V )
}
,

Cµ(�) := C(�) ∩ Cµ(E).
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For the definition of τ we further assume that, for all v ∈ V , we are given a coefficient
lv ≥ 0. We define

D(τ ) := Cµ(�) ∩ W 1
2 (E),

τ ( f, g) :=
∑
e∈E

∫ be

ae

fe
′(x)ge

′(x) dx +
∑
v∈V

lv f (v)g(v)

(
= τE ( f, g) +

∑
v∈V

lv f (v)g(v)

)
.

LEMMA 4.1. The form τ is a closed positive symmetric form and is densely defined.

Proof. Positivity and symmetry are obvious. The closedness is obtained as in
Remark 3.2(b).

For v ∈ V we define the element gv ∈ D(τ ) by gv(v) := 1, gv(w) := 0 for all
w ∈ V \ {v}, and by affine linear connection of the corresponding traces. Now, let
f ∈ H� . Then the element f − ∑

{v∈V ; µv �=0} f (v)gv can be approximated in H� by

functions in
{

f ∈ D(τ ); fe ∈ C1
c (ae, be) (e ∈ E), f (v) = 0 (v ∈ V )

} ⊆ D(τ ), and
therefore D(τ ) is dense in H� . �

Let H be the self-adjoint operator associated with τ .

THEOREM 4.2. The C0-semigroup (e−t H )t≥0 is submarkovian.

Proof. The proof that τ satisfies the Beurling–Deny criteria mentioned in
Remarks 1.6(b), (c) is analogous to (but easier than) the proof of Theorem 3.5, and is
therefore omitted. �

It remains to describe the operator H associated with τ .

THEOREM 4.3. The operator H is given by

D(H) =
⎧⎨
⎩ f ∈ Cµ(�) fe

′ ∈ L1(a, b), ∂µe fe
′ exists,

∂µe fe
′ ∈ L2((ae, be), µe) (e ∈ E),

∑
e∈Ev,0

fe
′(ae+) −

∑
e∈Ev,1

fe
′(be−) = lv f (v) (v ∈ V0)

⎫⎬
⎭ ,

(H f )e = −∂µe fe
′ (e ∈ E),

H f (v) = 1

µv

⎛
⎝−

∑
e∈Ev,0

fe
′(ae+) +

∑
e∈Ev,1

fe
′(be−) + lv f (v)

⎞
⎠ (v ∈ V \ V0),

for f ∈ D(H).
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Proof. (analogous to the proofs of Theorem 1.9 and Theorem 3.3) Let f ∈ Cµ(�) be
such that fe

′ ∈ L1(a, b), ∂µe fe
′ exists and belongs to L2((ae, be), µe), for all e ∈ E ,

and let g ∈ D(τ ). Then, summing Eq. (1.2) (from the proof of Theorem 1.9) over the
edges we obtain

τE ( f, g) = −
∑
v∈V

(strv f ′ | trv g)KEv −
∑
e∈E

∫ be

ae

∂µe fe
′(x)g(x) dµe(x). (4.1)

Let f ∈ D(H) (⊆ D(τ )). As in the proof of Theorem 1.9 one concludes that
fe
′ ∈ L1(a, b), ∂µe fe

′ exists, ∂µe fe
′ ∈ L2((ae, be), µe), and that (H f )e = −∂µe fe

′, for
all e ∈ E . Let g ∈ D(τ ). Using (4.1) we obtain

τE ( f, g) +
∑
v∈V

(strv f ′ | trv g)KEv +
∑
v∈V

H f (v)g(v)µv = (H f |g)H�

= τ( f, g) = τE ( f, g) +
∑
v∈V

lv f (v)g(v),

i.e.,

∑
v∈V

⎛
⎝ ∑

e∈Ev,0

fe
′(ae+) −

∑
e∈Ev,1

fe
′(be−) + H f (v)µv − lv f (v)

⎞
⎠ g(v) = 0.

Let v ∈ V , and let gv ∈ D(τ ) be as in the proof of Lemma 4.1. Then we obtain that

−
∑

e∈Ev,0

fe
′(ae+) +

∑
e∈Ev,1

fe
′(be−) + lv f (v) = H f (v)µv.

If µv = 0, then this equality yields the boundary condition included in the domain of
H . If µv > 0, then we obtain H f (v) as stated in the assertion.

Conversely, let H̃ be the operator defined by the right hand sides of the assertion,
and let f ∈ D(H̃). This implies f ∈ D(τ ). Let g ∈ D(τ ). Then

(strv f ′ | trv g)KEv = (lv f (v) − H̃ f (v)µv)g(v)

for all v ∈ V . Using (4.1) we obtain

(H̃ f |g)H�
= τE ( f, g) +

∑
v∈V

(strv f ′ | trv g)KEv +
∑
v∈V

H̃ f (v)g(v)µv

= τE ( f, g) +
∑
v∈V

lv f (v)g(v) = τ( f, g)

Now the definition of H implies that f ∈ D(H), H f = H̃ f . �

REMARK 4.4. Under different hypotheses, and in a different formulation,
Theorem 4.2 and Theorem 4.3 have already been obtained in [23, Lemma 3.3,
Lemma 4.1, Proposition 5.3].
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REMARKS 4.5. (a) For v ∈ V0, the boundary condition in the description of D(H)

in Theorem 4.3 is of the kind treated in Sect. 3. Indeed, defining Xv := lin
{
1Ev

}
,

we obtain Qv = 1
nv

(
1 1 ... 1
...
...

...
1 1 ... 1

)
, where nv := #Ev is the number of elements of Ev .

Further we obtain lv f (v)g(v) = lv
1

nv
(trv f | trv g)Xv

, i.e., Lv is multiplication by lv
nv

on Xv .
(b) For v ∈ V \ V0, the value of the application of H to f is part of the boundary

condition. This is typical for Wentzell boundary conditions; cf. [2,26].

EXAMPLE 4.6. We turn Example 1.10(b) into a graph with edges e1 := [a, c],
e2 := [c, b] and vertices a, b and v, where η1(e1) = η0(e2) = v. For the vertex v we
define µv := µ({c}), lv := 0. Then Eq. (1.4) of Example 1.10(b) corresponds to the
value of H f (v) given in Theorem 4.3. Example 1.10(c) does not enter the context of
graphs within the framework treated so far.

Appendix: Sublattices of K
n

The following observations are preparations for the analysis of the glueing condi-
tions in Sect. 3.

We will use the lattice structure of K
n , i.e., K

n should be considered as the func-
tion space C({1, . . . , n}; K). Accordingly |x | = (|x1|, . . . , |xn|), for x ∈ K

n , and
x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn), for x, y ∈ R

n . The p-norm on K
n will be denoted

by | · |p, for 1 ≤ p ≤ ∞.

LEMMA A.1. Let X ⊆ K
n be a subspace, m := dim X.

(a) The following properties are equivalent.
(i) X is a sublattice (i.e., x ∈ X implies |x | ∈ X);
(ii) there exist x1, . . . , xm ∈ X+, x j ∧ xk = 0 ( j �= k), such that X = lin

{
x j ; j =

1, . . . , m
}
.

(b) The following properties are equivalent.
(iii) X is a Stonean sublattice of K

n, i.e., a sublattice satisfying x ∧ 1 ∈ X for all real
x ∈ X;
(iv) X is invariant under all normal contractions F : K → K (i.e., F � x ∈ X for all
x ∈ X);
(v) there exists a partition C1, . . . , Cm of a subset of {1, . . . , n} such that X =
lin

{
1C j ; j = 1, . . . , m

}
.

Proof. (a) It was shown by Yudin (cf. [27, Theorem III.14.1]) that an m-dimensional
Archimedean vector lattice is linearly and lattice isomorphic to K

m . This shows that
(i) implies (ii). It is obvious that (ii) implies (i).

(b) It is obvious that (v) implies (iv) and that (iv) implies (iii). In order to show that
(iii) implies (v) we note that (iii) implies (ii), by part (a) above. For j = 1, . . . , m we
define C j := {

k ∈ {1, . . . , n}; x j
k �= 0

}
. Assume that for some j ∈ {1, . . . , m} the
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element x j is not a multiple of 1C j . Then there exists γ > 0 such that (γ x j ) ∧ 1 is
not a multiple of x j , and consequently (γ x j ) ∧ 1 /∈ X , a contradiction. �

REMARKS A.2. (a) In the following we will assume that X is a sublattice of K
n ,

m = dim X , and that x1, . . . , xm ∈ X+ are as in property (ii) of Lemma A.1 and an
orthonormal basis of X . Then the mapping

J : K
m → X, α = (α j ) j=1,...,m �→

m∑
j=1

α j x j ,

is a Hilbert lattice isomorphism. If L is an operator in X , then it possesses a matrix
representation (l jk) j,k=1,...,m with respect to the orthonormal basis x1, . . . , xm . The
operator L is self-adjoint if and only if the matrix (l jk) j,k=1,...,m is self-adjoint.

(b) If X is a Stonean sublattice of K
n , and C1, . . . , Cm are as in property (v)

of Lemma A.1, then we define n j := # C j as the number of elements of C j , for
j = 1, . . . , m. In this case we use the mapping

JS : K
n → X, α �→

m∑
j=1

α j 1C j ,

which again is a lattice isomorphism, and also an isometric isomorphism of
�p({1, . . . , m}, (n j ) j=1,...,m) (i.e., K

m provided with the weighted norm

‖x‖p :=
(∑m

j=1 |x j |pn j

)1/p
, for 1 ≤ p < ∞) and (X, | · |p), for 1 ≤ p ≤ ∞.

The mapping JS also has the property that it commutes with the composition of vec-
tors with functions F : K → K.

LEMMA A.3. Let X be a sublattice of K
n, L as above, with associated matrix

(l jk) j,k=1,...,m, and L self-adjoint.
(a) The following properties are equivalent.

(i) For all x ∈ X one has
(
L|x | ∣∣ |x |) ≤ (Lx | x);

(ii) the C0-semigroup (e−t L)t≥0 on X is positive;
(iii) l jk ≤ 0 for all j, k ∈ {1, . . . , m} with j �= k.

(b) Assume additionally that X is Stonean. Then the following properties are equiv-
alent.
(iv) Property (i) holds, and for all x ∈ X+ one has (L(x ∧ 1) | x ∧ 1) ≤ (Lx | x);
(v) for all normal contractions F : K → K one has (L(F � x) | F � x) ≤ (Lx | x)

(x ∈ X);
(vi) the C0-semigroup (e−t L)t≥0 on X is submarkovian;
(vii) property (iii) holds, and

∑m
j=1

√
n j l jk ≥ 0 for all k = 1, . . . , n, where n j and

l jk are defined in Remarks A.2.

Proof. (a) In view of the mapping J of Remark A.2(a), the equivalence of (i) and (ii) is
part of the first Beurling–Deny criterion. In order to see that (ii) implies (iii) let j �= k.
Then the function t �→ (e−t L xk | x j ) is non-negative, and zero for t = 0. Therefore
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0 ≤ d
dt (e

−t L xk | x j ) t=0 = (−Lxk | x j ) = −l jk . In order so show that (iii) implies (ii)
we note that there exists γ ∈ R such that all entries of the matrix L − γ Em are ≤ 0
(where Em is the m-dimensional unit matrix). Therefore e−t L = e−γ t e−t (L−γ Em ) is
positive for all t ≥ 0.

(b) In view of the mapping JS of Remark A.2(b), the equivalence of (iv), (v) and (vi)
is part of the second Beurling–Deny criterion. We refer to [24, C-II, Theorem 1.11]
for the equivalence of (ii) and (iii) in a more general context.

In order to show the equivalence of (vi) and (vii) we assume that the
C0-semigroup (e−t L)t≥0 is positive. Let 0 ≤ x ∈ X , i.e., x = ∑m

j=1 α j x j , with
α1, . . . , αm ≥ 0. Then

∣∣∣e−t L x
∣∣∣
1

=
∣∣∣

m∑
j,k=1

(e−t L) jkαk x j
∣∣∣
1

=
m∑

k=1

⎛
⎝ m∑

j=1

(e−t L) jk
√

n j

⎞
⎠ αk,

d

dt

∣∣∣e−t L x
∣∣∣
1 t=0

= −
m∑

k=1

⎛
⎝ m∑

j=1

(l jk
√

n j )

⎞
⎠αk .

This shows that the C0-semigroup (e−t L)t≥0 is substochastic in (X, | · | 1) (or equiv-
alently, (e−t L)t≥0 is submarkovian) if and only if

∑m
j=1

√
n j l jk ≥ 0 for all k =

1, . . . , m. �
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