
J. Evol. Equ. 9 (2009), 419–428
© 2009 Birkhäuser Verlag Basel/Switzerland
1424-3199/09/030419-10, published onlineMay 5, 2009
DOI 10.1007/s00028-009-0011-0

Journal of Evolution
Equations

On the principal eigenvalue of linear cooperating elliptic systems
with small diffusion

E. N. Dancer

Abstract. We use cone methods combined with distribution theory and blow ups to find the asymptotic
limit of the principal eigenvalue of a cooperative elliptic linear system when the diffusion is small.

We are interested in the principal eigenvalue of the linear eigenvalue problem

− ε2
(

ai
mj

∂2ui

∂xm∂x j
+ bi

j
∂ui

∂x j
+ ci ui

)
=

k∑
s=1

Fisus + λui (1)

on �, ui = 0 on ∂�, i = 1, . . . , k, where � is a smooth bounded domain in R
N ,

ai
mj are C1 on �, bi

j , ci and Fis are continuous functions on �, Fis(x) ≥ 0 on � if

i �= s, ci (x) ≥ 0 on� and there exists µ > 0 such that ai
mjηmη j ≥ µ|η|2 for η ∈ R

N ,

x ∈ �. Here we are using the summation convention on j,m.
It is well known from positive operator theory (that is, cone theory) that for ε > 0,

the problem has a least real eigenvalue λ1(ε) (this is discussed later). More precisely,
any other real eigenvalue λ of the system (1) satisfies λ ≥ λ1(ε). Our main result
is that λ1(ε) → − supx∈�(λ̄(F(x))) as ε → 0, where F(x) is the k × k matrix
(Fi j (x)) and λ̄(F(x)) is the principal eigenvalue of the cooperative matrix F(x) (note
that the principal eigenvalue depends continuously on x and hence the supremum
is achieved). In fact, we can allow other boundary conditions (including Neumann
boundary conditions). We discuss this later.

The interest in the problem arises because such equations arise when we study non-
linear cooperative population models in mathematical biology when the diffusion is
small. In particular, if we are interested in the stability of a stationary solution for small
ε, the above formula is very useful. (The principal eigenvalue largely determines the
stability.) Indeed, the equation was first posed to me by Professor Yuan Lou of Ohio
State University for this reason. I thank him for useful discussions.

We could also apply our methods to the case where a cone C̃ is preserved (where C̃
is a cone where some coordinates are non-negative and some are non-positive), with
appropriate conditions on Fi j for i �= j . This can be reduced to the above case by
a simple change of variables. Note that this covers population models where k − 1
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species cooperate but all compete with the kth species. It seems likely that the formula
will have other uses.

Our proof proceeds by sub and supersolutions and a blowing up argument to reduce
the problem to a problem for constant coefficients operators on R

N or half spaces and
then using Fourier transforms of distributions and convolutions to complete the proof.
We believe our techniques would be useful for other problems. We previously (with
Hess) used blow up methods for scalar periodic parabolic eigenvalue problems [5].

I should like to thank referee for helpful suggestions and the IMA in Minneapolis
where part of this work was done. This work was partially supported by the ARC.

1. Statement of the theorem and reduction to a constant coefficient problem

We write our problem in the abbreviated form

−ε2 Ai ui = (Fu)i + λui in �

ui = 0 on ∂�

for 1 ≤ i ≤ k, or

−ε2 Āū = Fū + λū.

(We stress that the leading order term of Aiv is ai
mj

∂2v
∂xm∂x j

). First we need to explain
why a principal eigenvalue exists. We only sketch this because it is standard (see [15]).
Our method, in particular Eq. (2), is useful for us later. Purely for simplicity, assume
that ε = 1. By adding a constant to λ, we can assume that ci (x) ≥ 0 for each i and
Fii ≥ 0 on � for each i , and thus −ε2 Ai (with the boundary condition) is invertible,
and its inverse Vi preserves positivity in C(�). Hence we have an equivalent system

ui = Vi ((Fu)i + λui )

for 1 ≤ i ≤ k on C(�)k . This system preserves the cone C of non-negative functions in
C(�)k and is increasing in λ on this cone. Moreover, as we explain below, we arrange
our problem (by adding a constant to λ and the ci ’s) so that the map V̄ ū = {Vi (Fū)i }
has norm less that 1 on C(�)k . Then the principal eigenvalue is

inf
λ>0

r(W̄ (λ)) = 1, (2)

where r is the spectral radius and W̄ (λ) = V̄ + λZ . Here Zū = {Vi ui }. Note that
here we are using that r(V̄ ) < 1. Equivalently, we could take the infimum of λ > 0
such that r(W̄ (λ)) ≥ 1. Similar arguments appear in Hess [9] or [10] and are well
known. Note that r(W̄ (λ)) > 1 for λ large positive since W̄ (λ) ≥ λZ and hence
r(W̄ (λ)) ≥ λr(Z) if λ > 0. Note also by the Krein-Rutman theorem (cp. [12]) that
if r(W̄ (λ)) = 1, λ is an eigenvalue of (1) to which there corresponds a non-negative
eigenfunction.
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It remains to prove that r(W̄ (0)) < 1 if we arrange things carefully. It suffices to
prove that we can ensure that each Vi has small norm on C(�). Equivalently, we need
to prove that if ci (x) ≥ α on�where α is large positive then Ai

−1 (with the boundary
condition) has small norm (in fact norm at most α−1). By positivity, it suffices to
estimate the sup norm of the solution v̂i of −Aivi = 1 in �, v = 0 on ∂�. Since v
is non-negative, it suffices to find an upper bound for v. Since the constant function
α−1 is easily seen to be a supersolution of this problem, ‖v̂i‖∞ ≤ α−1 and hence
‖Vi‖ ≤ α−1, as required.

In fact, it is not difficult to use Kato’s inequality [12] to prove that the principal
eigenvalue is the eigenvalue of smallest real part.

We can prove the existence of a (real) principal eigenvalue for the matrix F(x) for
a fixed x by similar arguments. This time it is the eigenvalue of largest real part. This
is the well-known Perron-Frobenius Theorem (see [14]). It is denoted by λ̄(F(x)).

If the infimum in (2) occurs for λ = τ , then r(W̄ (λ)) > 1 for λ > τ . To see this, we
note that since r(W̄ (λ)) increases in λ (by Theorem 2.5 in [13]), either r(W̄ (λ)) > 1
for λ > τ or there is a δ > 0 such that r(W̄ (λ)) = 1 on (τ, τ + δ). In the latter case,
every λ ∈ (τ, τ + δ) is an eigenvalue of (1). This is impossible since the spectrum of
(1) is discrete by standard theory. The above result implies that τ changes continuously
if the terms of our equation are perturbed slightly.

We need one more property of the principal eigenvalue. If �1 ⊂ �2, then
λ1(ε,�1) ≥ λ1(ε,�2), with the obvious notation. Note that λ1(ε) was defined in
the introduction. Once again it suffices to assume that ε = 1. If ū = {ui }k

i=1 is a non-
negative eigenfunction corresponding to the eigenvalue λ1(1,�1) on �1, we extend
each ui to �2 by defining

ũi (x) =
{

ui (x) if x ∈ �1

0 if x ∈ �2 \�1.

By the proof of Lemma I.1 in Berestycki and Lions [2]

Ai ũi ≤ (Fũ)i + λ1(1,�1)ũi

on �2 in the sense of distributions for 1 ≤ i ≤ k and hence

Āũ ≤ Fũ + λ1(1,�1)ũ

on �2 in the sense of distributions. Thus by the positivity of inverses,

ũ ≤ V̄ (Fũ + λ1(1,�1)ũ)

where the inverses are now on �2. Hence by Theorem 2.5 in [13],
r(V̄ (F̄ + λ1(1,�1)I )) ≥ 1 and thus by (2), λ1(1,�2) ≤ λ1(1,�1), as required.
With care, one can prove strict inequality holds.

Our main theorem is then the following.
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THEOREM 1. Under the assumptions of the introduction,

λ1(ε) → − sup
x∈�

λ̄(F(x)) as ε → 0.

Note that λ1(ε) and λ̄(F(x)) were defined in the introduction. In the rest of this
section, we reduce the proof of Theorem 1 to an eigenvalue problem for constant coef-
ficient equations on R

N or a half space. We will then resolve this constant coefficient
problem in Sect. 2.

If x0 ∈ �, there is a δ > 0 such that Bδ(x0) ⊂ �. We consider R > 0 such
that εR ≤ δ (thus if ε is small, R can be large). By our earlier comparison result,
λ1(ε, BεR(x0)) ≥ λ1(ε,�). Now by rescaling, λ1(ε, BεR(x0)) is the principal eigen-
value of the problem

−ai
mj (x0 + εy)

∂2ui

∂ym∂y j
− εbi

j (x0 + εy)
∂ui

∂y j
− ε2ci (x0 + εy)ui

= Fis(x0 + εy)us + λui on BR

ui = 0 on ∂BR

Hence, by the continuity of the principal eigenvalue under perturbations,
λ1(ε, BεR(x0)) → λ̃(x0, R) as ε → 0 where λ̃(x0, R) is the principal eigenvalue
of the problem

− ai
mj (x0)

∂2ui

∂xm∂x j
= Fis(x0)us + λui , 1 ≤ i ≤ k,

u = 0 on ∂BR . (3)

Note that this new problem has constant coefficients. By our earlier comments, λ̃(x0, R)
decreases in R and by our earlier results, they are bounded below and so λ̃(x0) :=
limR→∞ λ̃(x0, R) exists. Hence we see that lim supε→0 λ1(ε) ≤ λ̃(x0) for x0 ∈ �

and hence for x0 ∈ �. Moreover, by rather standard limiting arguments as on p. 435
of [3], either system (3) on R

N has a non-trivial bounded non-negative solution for
λ = λ̃(x0) or system (3) on a half space R

N +
with zero boundary condition on the

boundary has a non-trivial bounded non-negative solution on R
N +

for λ = λ̃(x0)

such that max{ui (x) : 1 ≤ i ≤ k, x ∈ R
N +} is achieved (we normalize the non-neg-

ative eigenfunction on BR so that maxi {‖ui‖∞} = 1). Which of the two cases occur
depends on whether the component ui with ‖ui‖∞ = 1 has its maximum at a bounded
distance from ∂BR for large R (at least for a subsequence) or the distance tends to
infinity with R.

We explain the limit argument a little more. If Rn → ∞ as n → ∞, let {un
i }k

i=1
be a normalized positive eigenfunction for R = Rn and choose xn ∈ BRn such that
un

i (xn) ≥ 1
2 for some i (where i depends on n). By standard elliptic estimates as in

[8], {un
i } are bounded in C2 and hence by choosing a subsequence, we can find a

subsequence of n’s so that un
i (x − xn) → wi in C1 as n → ∞ on compact sets. Since
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for large n, the boundary is becoming flatter, the limit function will be defined on a
half space or the full space R

N and will satisfy the natural limit equation. Note that
since un

i (xn) ≥ 1
2 for some i for each n, wi (0) will be positive for some i .

We will prove in Proposition 3 that this implies that −λ̃(x0) is an eigenvalue of the
matrix F(x0) corresponding to a non-negative eigenfunction. In particular the required
upper bound for lim supε→0 λ1(ε) follows if Fi j (x0) > 0 if i �= j and x0 ∈ � since in
this case λ̃(x0) is the only eigenvalue of the matrix F(x0) to which there corresponds
a non-negative eigenfunction (cp. [14], Proposition 1.6.3).

We now obtain the lower bound, once again by a blow up argument. Suppose by way
of contradiction there exist εi → 0 and δ > 0 such that λ1(εi )+δ ≤ − supx0∈� λ̃(x0).
We first prove λ1(ε) are uniformly bounded below (in ε). If not, there exist εn → 0
such that λ1(εn) → −∞ as n → ∞. Now our eigenvalue problem can be written as
the system

ui = (−εn Ai − λn I )−1(F(ū))i

for 1 ≤ i ≤ k, where λn = λ1(εn). Since infx∈�(ci (x) − λn) → ∞ as n → ∞,
we see as before that ‖(−εn Ai − λn I )−1‖ → 0 as n → ∞ and hence ū satisfies an
equation ū = Sū where ‖S‖ < 1. This is impossible and so our claim follows.

Suppose now that {un
i }k

i=1 are the non-negative eigenfunctions corresponding to
λ1(εn), normalized so that supi ‖un

i ‖∞ = 1 for each i , where the maximum occurs
at xn ∈ �. We choose a subsequence so that xn → x̃ ∈ �. If we rescale and blow
up again much as before we find that there exists λ̂ ≤ −δ − λ̃(x̃) such that either the
system

−ai
mj (x̃)

∂2ui

∂xm∂x j
= Fis(x̃)us + λ̂ui on R

N

for 1 ≤ i ≤ k has a non-trivial non-negative bounded solution, or the same equation
on a half space T has a non-trivial non-negative bounded solution vanishing on ∂T . In
either case, this contradicts Proposition 3 since that result implies −λ̂ is an eigenvalue
of the matrix F(x̃) corresponding to a non-negative eigenfunction. Thus we have
proved the lower bound in all cases (assuming the result of Sect. 2). Moreover, we
have proved Theorem 1 in the cases of strict cooperativity.

We now remove the strict cooperativity assumption. If δ > 0 is small, denote by
Fδ(x0) the matrix where we add δ to each of the off diagonal entries of F(x0). Define
λ̃δ(x0, R) to be the corresponding principal eigenvalue on BR when we replace F(x0)

by Fδ(x0). Note that λ̃(x0, R) is defined just before Eq. (3). By what we have already
proved, λ̃δ(x0, R) → −λ̄(Fδ(x0)) as R → ∞. (Note that by [14], λ̄(Fδ(x0)) is the
only eigenvalue of Fδ(x0) to which there corresponds a non-negative eigenfunction.)
Suppose by way of contradiction λ̃(x0, R) → −µ > −λ̄(F(x0)) as R → ∞. Now
if δ is small the spectrum of Fδ(x0) is close to that of F(x0) and hence we can find
s ∈ (−λ̄(F(x0)),−µ) such that −s is not an eigenvalue of Fδ(x0) for all 0 ≤ δ ≤ δ0

and s > −λ̄(Fδ(x0)) for all 0 ≤ δ ≤ δ0. Here δ0 is small (remember that λ̄(Fδ(x0))
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depends continuously on δ). Since λ̃(x0, R) → −µ we find that for all R large,
λ̃(x0, R) > s. Fix R large with λ̃(x0, R) > s. Now λ̃δ(x0, R) depends continuously on
δ for 0 < δ ≤ δ0 and λ̃δ0(x0, R) → −λ̄(Fδ0(x0)) as R → ∞, by what we have already
proved. But −λ̄(Fδ0(x0)) < s. Hence there exists δ ∈ (0, δ0) with λ̃δ(x0, R) = s.
Repeating, we can find Rn → ∞ and δn ∈ (0, δ0) such that λ̃δn (x0, Rn) = s for all n.
By choosing a subsequence we can assume δn → γ ∈ [0, δ0] as n → ∞. By repeating
our blow up argument, we find λ̃δn (x0, Rn) (or at least a subsequence) converges to
s as n → ∞, where (3) (with F replaced by Fγ and λ = s) has a non-trivial non-
negative bounded solution on R

N or a half space T with Dirichlet boundary conditions.
Hence by Proposition 3, s is an eigenvalue of −Fγ (x0) to which there corresponds
a non-negative eigenfunction. This contradicts our choice of δ0 and hence we have a
contradiction. Hence λ̃(x0, R) → −λ̄(F(x0)) as claimed. This completes the proof
of Theorem 1.

REMARK 2. We can easily modify our proof to cover Neumann boundary condi-
tions or Robin boundary conditions ∂ui

∂n + fi (x)ui = 0 provided fi (x) ≤ 0 on ∂�,
where the normal is the outer normal. (Note that after the blow up, Robin boundary
conditions become Neumann boundary conditions.) We could allow some components
to have Dirichlet boundary conditions and some to have Robin boundary conditions
of the above type. This follows because it is easy to use comparison results for linear
operators to show that the principal eigenvalue in this case lies between the principal
eigenvalue in the case of Robin boundary conditions and the principal eigenvalue with
Dirichlet boundary conditions.

2. The technical result for constant coefficient problems

We consider the problem

− ai
mj

∂2u

∂x j∂xm
= Fisus + λui (4)

for i = 1, . . . , k, where ai
mj , Fis are constants, Fis ≥ 0 if i �= s and, for each i , ai

mj
is elliptic.

PROPOSITION 3.

(i) If there is a constant bounded non-trivial non-negative solution of (4), then
−λ is an eigenvalue of F corresponding to a non-negative eigenfunction.

(ii) If there is a non-constant bounded non-trivial solution of (4) on a half space
T such that ū = 0 on ∂T (or ∂ ū

∂n = 0 on ∂T ), then −λ is an eigenvalue of F
corresponding to a non-negative eigenfunction.

REMARK 4. The proof of (i) does not use the cooperativity.

The problem with the proof of (i) is that in many cases we can separate variables
(in x) and get many sign changing bounded solutions for an interval of λ’s. Because
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of this and because we do not know solutions decay, we use distributions. We first
remind the reader of some notation. The basic theory can be found in Chapter 0 of [6]
or Chapters 2 and 7.1 in [11] or in [7].

We let L denote the set of C∞ functions φ on R
N for which φ and all its partial

derivatives of all orders decay faster than any negative power of ‖x‖. Then L′, the
set of tempered distributions is the dual of L (which we do not write down but can
be found in [11]). As an example of a tempered distribution, we can take any C∞
function f such that f and all its derivatives have at most polynomial growth. This
generates a tempered distribution f by

f (φ) =
∫

f φ dx for φ ∈ L.

The integral is easily seen to make sense and is often written 〈 f, φ〉. More generally,
〈F, φ〉 also denotes F evaluated at φ if F ∈ L′, φ ∈ L.

Note that the classical Fourier transform is a bijection on L (if we allow complex-
valued functions). We can define the Fourier transform of a tempered distribution F
by 〈F̂, φ〉 = 〈F, φ̂〉 for φ ∈ L. Then F̂ is a tempered distribution. The map F → F̂
is one-to-one on the space L′.

Crucial to our proof of Proposition 3 is the following lemma.

LEMMA 5. If n > 0, there exists a smooth non-trivial non-negative ψ ∈ L such
that ψ̂ has support in B1/n.

Note that we cannot choose ψ to have compact support.

Proof. By scalings, we see that it suffices to findψ smooth non-negative in L so ψ̂ has
compact support. If φ ∈ L is even and of compact support the convolution φ ∗ φ ∈ L
has compact support, and (φ̂ ∗ φ)(λ) = |φ(λ)|2 ≥ 0 which is non-negative. (Note that
if φ is even then φ̂(λ) is real.)

We then simply take ψ = (φ̂ ∗ φ). Then except for a complex conjugation and
multiplication by a positive number ψ̂ is φ ∗φ and our claim follows (more precisely,
if g = ¯̂f where f ∈ L, then f = c ¯̂g where c > 0, cp. [1]. Here at this point and only
at this point − denotes complex conjugation). �

We now prove Proposition 3(i). Suppose that ū = (u1, . . . , uk) is a non-trivial
bounded non-negative solution of (4) on R

N . First note that each component is a tem-
pered distribution. By our earlier comments, it suffices to prove that Dαui has at most
polynomial growth on R

N for each multi index α. Now by standard elliptic estimates
on balls Bi (cp. Gilbarg and Trudinger [8], Section 3.4) |∇ui | is uniformly bounded
on R

N (since u is bounded). Now, by differentiating our system, { ∂ui
∂x j

}k
i=1 is also a

solution. Thus we can use an inductive argument on R
N , as required.

Suppose now thatψn is as in Lemma 5 with support ψ̂n in B1/n . Note thatψn is non-
negative and non-trivial. Define ui

n := ui ∗ψn . It is easy to see that ui
n is bounded and

non-negative on R
N and ui

n > 0 on R
N unless ui

n ≡ 0 (by the maximum principle
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applied to the i th equation of (4), ui ≡ 0 or ui (x) > 0 on R
N ). Let ūn = {ui

n}k
i=1.

Then ūn is a non-trivial non-negative bounded solution of (4). This follows by a simple
calculation if we prove ∂

∂x j
ui

n = ∂ui
∂x j

∗ ψn . But this follows easily since it is easy to
use the dominated convergence theorem to justify differentiating under the integral
sign in the definition of the convolution. Now if E1 ∈ L and g is a tempered distri-
bution (Ê1 ∗ g) = Ê1ĝ where the right hand side means multiplication of a tempered
distribution by a function in L (cp. [11]). Hence ûi

n have support in B1/n . (Note that
translating in x does not affect the property that the support of ûi

n lies in B1/n .)

Hence the Fourier transform of each component of ūn has support in B1/n . Hence by
translating and multiplying our solution by a constant, we can obtain a non-negative
bounded solution vi

n of (4) such that supi {‖vi
n‖∞} ≤ 1, supi {vi

n(0)} ≥ 1
2 and v̂i

n

has support in B1/n for each i . By the Gilbarg-Trudinger estimate, vi
n are all bounded

in C1 uniformly in n on R
N and hence we can choose a subsequence converging

uniformly on compact sets to ṽi for each i as n → ∞, where {̃vi } is a weak (and hence
strong) bounded non-negative solution of (4). It is non-trivial since vi

n(0) → ṽi (0)
for each i and supi {vi

n(0)} ≥ 1
2 . Moreover the support of the Fourier transform of ṽi

is {0} for each i . To see this, note that if E ∈ L with support not including zero,

〈̂̃vi , E 〉 = 〈 ṽi , Ê 〉 = lim
n→∞〈 vi

n, Ê 〉

since the vi
n are uniformly bounded and converge uniformly to ṽi on compact sets

(note that Ê ∈ L and thus decays rapidly). Thus 〈̂̃vi , E 〉 = limn→∞〈 vi
n, Ê 〉. But v̂i

n

has support in B1/n and hence for large n 〈 v̂i
n, E 〉 = 0. Hence 〈̂̃vi , E 〉 = 0 if E ∈ L

and 0 is not in the support of E . Hence ṽi is a non-negative tempered distribution such
that the support of ̂̃vi consists only of zero. Hence ̂̃vi is Cδ0 and thus ṽi is constant.
(One proves that ̂̃vi is a finite linear combinations of derivatives of the delta function
at 0 by [11, Theorem 2.3.4] and hence ṽi is a polynomial. Since ṽi is bounded, ṽi is
constant.)

Hence we have the required non-negative constant solution. This proves (i).

To prove (ii), we may assume that the half space T is
{

x ∈ R
N : x1 > 0

}
. In this

case, we reduce to the one dimensional case by proving that we can find a non-negative
bounded solution, where the components depend only on x1.

This step is very similar to the previous case except we do our convolutions etc
only in (x2, . . . , xN ) and take Fourier transforms purely in (x2, . . . , xN ). We can then
repeat the earlier arguments to obtain a solution which for each x1 has Fourier trans-
form (in x2, . . . , xN ) with support only at x2 = · · · = xN = 0 and hence is constant
for each x1 and thus we have the solution we have claimed. There are only two points
to note. It is easy to see that the convolution preserves the boundary condition. Second
we need to be rather more careful to check that we have a non-trivial limit. As before,
we have solutions ūn such that supi ‖ui

n‖∞ = 1. Let S be the class of non-trivial
non-negative solutions with this property. We then have that given ε > 0, there is an
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a > 0 such that

sup
i

sup
x1≥a

vi (x1, x2, . . . , xN ) ≤ ε

if v = (v1, . . . , vk) ∈ S (otherwise we could translate and pass to the limit much
as before and obtain a non-trivial non-negative bounded solution on all of R

N and
apply part (i)). Moreover, by elliptic estimates much as before (though this time we
also have to use estimates up to the boundary), sup{∇v(x) : x ∈ T, v ∈ S} is finite.
This implies that ui

n(x) is small if x is close to ∂T uniformly in n. Hence we see
translating in (x2, . . . , xN ), we can assume un

i (x1
n, 0, 0, . . . , 0) ≥ 1

2 for some i such
that δ ≤ x1

n ≤ δ−1 where δ is independent of n. If we choose a subsequence so that
{x1

n} converges, it is easy to see that we have a non-trivial limit as required. Thus we
have proved our claim that we can choose our solution to be a function of x1 only.

There are several ways to complete the proof of (ii). One way is by explicitly solv-
ing the ordinary differential equations. Alternatively, we can use moving planes. First,
much as earlier each component ui satisfies ui ≡ 0 on T or ui (x) > 0 on T . By
shrinking our system, we can assume ui (x) > 0 for 1 ≤ i ≤ k (this does not affect
the cooperativity property). We can then apply the proof of Theorem 2 in [4] to prove
∂ui (x)
∂x1

> 0 if x1 > 0 and 1 ≤ i ≤ k. There are a couple of comments to be made

here. First, the derivative term is possibly different positive constants times − ∂2u
∂x2

1
in

each equation. However, we can easily reduce to the usual case. Second in [4], the
difficulties occur because lateral translates (that is, translates in x2, . . . , xN ) of our
solution may approach zero. This does not occur in our case because solutions are
functions of x1 only. Hence we see that ui (x1) has a non-zero limit as x1 → ∞ for
each i . This contradicts what we have already proved. This completes the proof of the
proposition.

REMARK 6.

(i) The analogue of Proposition 3(ii) is easier in the case of Neumann boundary
conditions. We use our convolution trick again to reduce to the case where
our solution is a function of x1 only and then reduce to the full space case by
reflecting evenly across x1 = 0.

(ii) Many of our arguments in this section also seem to apply to higher order
elliptic operators.

(iii) There is one case where our proofs can be simplified. If the second order terms
in (4) are all multiples of the same operator, we can rotate and stretch axes
so that all the second order derivatives are multiples of the Laplacian. We can
then use integration over spheres to reduce the proof of part (i) to an ordinary
differential equation problem, which can be solved by ordinary differential
equation methods.

(iv) It seems that the main use of the positivity is to ensure that the convolution
with ψn does not vanish identically.
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