
J.evol.equ. 8 (2008) 617–629
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Refined asymptotic expansions for nonlocal diffusion equations

Liviu I. Ignat and Julio D. Rossi

Abstract. We study the asymptotic behavior for solutions to nonlocal diffusion models of the form ut = J ∗u−u

in the whole R
d with an initial condition u(x, 0) = u0(x). Under suitable hypotheses on J (involving its Fourier

transform) and u0, it is proved an expansion of the form∥∥∥∥∥∥∥u(u) −
∑

|α|�k

(−1)|α|
α!

(∫
u0(x)xα dx

)
∂αKt

∥∥∥∥∥∥∥
Lq(Rd )

�Ct−A,

where Kt is the regular part of the fundamental solution and the exponent A depends on J , q, k and the dimension d.
Moreover, we can obtain bounds for the difference between the terms in this expansion and the corresponding

ones for the expansion of the evolution given by fractional powers of the Laplacian, vt(x, t) = −(−�)
s
2 v(x, t).

1. Introduction

In this paper we study the asymptotic behavior as t → ∞ of solutions to the nonlocal
evolution equation {

ut(x, t) = J ∗ u − u(x, t), t > 0, x ∈ Rd,

u(x, 0) = u0(x), x ∈ Rd,
(1.1)

where J : Rd → R verifies
∫
Rd J(x)dx = 1.

Equations like (1.1) and variations of it, have been recently widely used to model diffusion
processes, for example, in biology, dislocations dynamics, etc. See, for example, [1],
[2], [4], [5], [8], [9], [6], [11] and [12]. As stated in [8], if u(x, t) is thought of as the
density of a single population at the point x at time t, and J(x − y) is thought of as the
probability distribution of jumping from location y to location x, then (J ∗ u)(x, t) =∫
RN J(y − x)u(y, t) dy is the rate at which individuals are arriving to position x from all

other places and −u(x, t) = − ∫
RN J(y − x)u(x, t) dy is the rate at which they are leaving

location x to travel to all other sites. This consideration, in the absence of external or internal
sources, leads immediately to the fact that the density u satisfies equation (1.1).

Mathematics Subject Classifications (2000): 35B40, 45A05, 45M05.
Key words: Nonlocal diffusion, asymptotic behavior, fractional Laplacian.
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Equation (1.1), is called nonlocal diffusion equation since the diffusion of the density
u at a point x and time t does not only depend on u(x, t), but on all the values of u in
a neighborhood of x through the convolution term J ∗ u. When J is nonnegative and
compactly supported, this equation shares many properties with the classical heat equation,
ut = cuxx, such as: bounded stationary solutions are constant, a maximum principle holds
for both of them and perturbations propagate with infinite speed, see [8]. However, there
is no regularizing effect in general. For instance, if J is rapidly decaying (or compactly
supported) the singularity of the source solution, that is a solution of (1.1) with initial
condition a delta measure, u0 = δ0, remains with an exponential decay. In fact, this
fundamental solution can be decomposed as w(x, t) = e−tδ0 + Kt(x) where Kt(x) is
smooth, see Lemma 2.6. In this way we see that there is no regularizing effect since the
solution u of (1.1) can be written as u(t) = w(t) ∗ u0 = e−tu0 + Kt ∗ u0 with Kt smooth,
which means that u(·, t) is as regular as u0 is.

For the heat equation a precise asymptotic expansion in terms of the fundamental solution
and its derivatives was found in [7]. In fact, if Gt denotes the fundamental solution of the
heat equation, namely, Gt(x) = (4πt)−d/2e−|x|2/(4t), under adequate assumptions on the
initial condition, we have,∥∥∥∥∥∥∥u(x, t) −

∑
|α|�k

(−1)|α|

α!

∫
Rd

u0(x)xα

 ∂αGt

∥∥∥∥∥∥∥
Lq(Rd)

�Ct−A (1.2)

with A = ( d
2 )(

(k+1)
d

+ (1 − 1
q
)). As pointed out by the authors in [7], the same asymptotic

expansion can be done in a more general setting, dealing with the equations ut = −(−�)
s
2 u,

s > 0.
Now we need to introduce some notation. We will say that f ∼ g as ξ ∼ 0 if |f(ξ) −

g(ξ)| = o(g(ξ)) when ξ → 0 and f � g if there exists a constant c independent of the
relevant quantities such that f�cg. In the sequel we denote by Ĵ the Fourier transform
of J .

Our main objective here is to study if an expansion analogous to (1.2) holds for the
non-local problem (1.1). Concerning the first term, in [3] it is proved that if J verifies
Ĵ (ξ) − 1 ∼ −|ξ|s as ξ ∼ 0, then the asymptotic behavior of the solution to (1.1), u(x, t), is
given by

lim
t→+∞ t

d
s max

x
|u(x, t) − v(x, t)| = 0,

where v is the solution of vt(x, t) = −(−�)
s
2 v(x, t) with initial condition v(x, 0) = u0(x).

As a consequence, the decay rate is given by ‖u(·, t)‖L∞(Rd)�C t− d
s and the asymptotic

profile is as follows,
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lim
t→+∞

∥∥∥∥∥∥∥t
d
s u

(
yt

1
s , t

)
−

∫
Rd

u0

 Gs(y)

∥∥∥∥∥∥∥
L∞(Rd)

= 0,

where Gs(y) satisfies Ĝs(ξ) = e−|ξ|s .
Here we find a complete expansion for u(x, t), a solution to (1.1), in terms of the deriva-

tives of the regular part of the fundamental solution, Kt . As we have mentioned, the
fundamental solution w(x, t) of problem (1.1) satisfies

w(x, t) = e−tδ0(x) + Kt(x),

where the function Kt (the regular part of the fundamental solution) is given by

K̂t(ξ) = e−t
(
etĴ(ξ) − 1

)
.

In contrast with the previous analysis done in [3] where the long time behavior is studied
in the L∞(Rd)-norm, here we also consider Lq(Rd) norms. We focus in the case 2�q�∞
where we use Hausdorff-Young’s inequality and Plancherel’s identity as main tools. The
case 1 ≤ q < 2 will be treated elsewhere.

THEOREM 1.1. Let be s and m positive such that

Ĵ (ξ) − 1 ∼ −|ξ|s, ξ ∼ 0 (1.3)

and

|̂J(ξ)| � 1

|ξ|m , |ξ| → ∞. (1.4)

Then for any 2 � q � ∞ and k + 1 < m − d there exists a constant C =
C(q, k)‖|x|k+1u0‖L1(Rd) such that∥∥∥∥∥∥∥u(x, t) −

∑
|α|�k

(−1)|α|

α!

∫
Rd

u0(x)xα

 ∂αKt

∥∥∥∥∥∥∥
Lq(Rd)

�Ct−A (1.5)

for all u0 ∈ L1(Rd, 1 + |x|k+1). Here A = (k+1)
s

+ d
s
(1 − 1

q
).

REMARK 1.2. The condition k + 1 < m − d guarantees that all the partial derivatives
∂αKt of order |α| = k + 1 make sense. In addition if Ĵ decays at infinity faster than any
polynomial,

∀ m > 0, ∃ c(m) such that |̂J(ξ)|�c(m)

|ξ|m , |ξ| → ∞, (1.6)

then the expansion (1.5) holds for all k.
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Note that, when J has an expansion of the form Ĵ (ξ)−1 ∼ −|ξ|2 as ξ ∼ 0 (this happens
for example if J is compactly supported), then the decay rate in L∞(Rd) of the solutions
to the non-local problem (1.1) and the heat equation coincide (in both cases they decay as

t− d
2 ). Moreover, the first order term also coincide (in both cases it is a Gaussian). See [3]

and Theorem 1.1.
Our next aim is to study if the higher order terms of the asymptotic expansion that we

have found in Theorem 1.1 have some relation with the corresponding ones for the heat
equation. Our next results say that the difference between them is of lower order. Again
we deal with 2 � q � ∞.

THEOREM 1.3. Let J as in Theorem 1.1 and assume in addition that there exists r > 0
such that

Ĵ (ξ) − (1 − |ξ|s) ∼ B|ξ|s+r, ξ ∼ 0, (1.7)

for some real number B. Then for any 2 � q � ∞ and |α| � m − d there exists a positive
constant C = C(q, d, s, r) such that the following holds

‖∂αKt − ∂αGs
t‖Lq(Rd)�Ct

− d
s

(
1− 1

q

)
t−

|α|+r
s , (1.8)

where Gs
t is defined by its Fourier transform Ĝs

t (ξ) = exp(−t|ξ|s).
Note that these results do not imply that the asymptotic expansion

∑
|α|�k

(−1)|α|
α!

(∫
u0(x)xα

)
∂αKt coincides with the expansion that holds for the equation ut =

−(−�)
s
2 u:

∑
|α|�k

(−1)|α|
α!

(∫
u0(x)xα

)
∂αGs

t . They only say that the corresponding terms
agree up to a better order. When J is compactly supported or rapidly decaying at infinity,
then s = 2 and we obtain an expansion analogous to the one that holds for the heat equation.

Finally, we present a result that gives the first two terms in the asymptotic expansion
with very weak assumptions on J .

THEOREM 1.4. Let u0 ∈ L1(Rd) with û0 ∈ L1(Rd) and s < l be two positive numbers
such that Ĵ (ξ) − (1 − |ξ|s) ∼ B|ξ|l, when ξ ∼ 0, for some real number B.

Then for any 2 � q � ∞
lim
t→∞ t

d
s

(
1− 1

q

)
+ l−s

s

∥∥∥u(t) − v(t) − Bt
[
(−�)

l
2 v

]
(t)

∥∥∥
Lq(Rd)

→ 0, (1.9)

where v is the solution to vt = −(−�)
s
2 v with v(x, 0) = u0(x).

Moreover

lim
t→∞

∥∥∥∥∥∥∥t
d
s
+ l

s
−1

(
u

(
yt

1
s , t

)
− v

(
yt

1
s , t

))
− Bh(y)

∫
Rd

u0


∥∥∥∥∥∥∥

L∞(Rd)

= 0, (1.10)

where h is given by ĥ(ξ) = e−|ξ|s |ξ|l.
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Let us point out that the asymptotic expansion given by (1.5) involves Kt (and its deriva-
tives) which is not explicit. On the other hand, the two-term asymptotic expansion (1.9)
involves Gs

t , a well known explicit kernel (v is just the convolution of Gs
t and u0). However,

our ideas and methods allow us to find only two terms in the latter expansion.

2. Proofs of the results

2.1. Preliminaries

First, let us obtain a representation of the solution using Fourier variables. A proof of
existence and uniqueness of solutions using the Fourier transform (see [10]) is given in [3].
We repeat the main arguments here for the sake of completeness.

THEOREM 2.5. Let u0 ∈ L1(Rd) such that û0 ∈ L1(Rd). There exists a unique
solution u ∈ C0([0, ∞); L1(Rd)) of (1.1), and it is given by

û(ξ, t) = e(̂J(ξ)−1)t û0(ξ).

Proof. We have

ut(x, t) = J ∗ u − u(x, t) =
∫
Rd

J(x − y)u(y, t) dy − u(x, t).

Applying the Fourier transform we obtain ût(ξ, t) = û(ξ, t)(̂J(ξ) − 1). Hence, û(ξ, t) =
e(̂J(ξ)−1)t û0(ξ). Since û0 ∈ L1(Rd) and e(̂J(ξ)−1)t is continuous and bounded, the result
follows by taking the inverse of the Fourier transform. �

Now we prove a lemma concerning the fundamental solution of (1.1).

LEMMA 2.6. Let J ∈ S(Rd), the space of rapidly decreasing functions. The funda-
mental solution of (1.1), that is the solution of (1.1) with initial condition u0 = δ0, can be
decomposed as

w(x, t) = e−tδ0(x) + Kt(x), (2.1)

where the function Kt is smooth and given by

K̂t(ξ) = e−t(etĴ(ξ) − 1).

Moreover, if u is a solution of (1.1) it can be written as

u(x, t) = (w ∗ u0)(x, t) =
∫
Rd

w(x − z, t)u0(z) dz.
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Proof. By the previous result we have ŵt(ξ, t) = ŵ(ξ, t)(̂J(ξ) − 1). Hence, as the initial
datum verifies û0 = δ̂0 = 1, we get

ŵ(ξ, t) = e(Ĵ(ξ)−1)t = e−t + e−t
(
eĴ(ξ)t − 1

)
.

The first part of the lemma follows applying the inverse Fourier transform in S(Rd).
To finish the proof we just observe that w ∗ u0 is a solution of (1.1) (just use Fubini’s

theorem) with (w ∗ u0)(x, 0) = u0(x). �

REMARK 2.7. The above proof together with the fact that Ĵ (ξ) → 0 (since J ∈
L1(Rd)) shows that if Ĵ ∈ L1(Rd) then the same decomposition (2.1) holds and the result
also applies.

To prove our result we need some estimates on the kernel Kt .

2.2. Estimates on Kt

In this subsection we obtain the long time behavior of the kernel Kt and its derivatives.
The behavior of Lq(Rd)-norms with 2 � q � ∞ follows by Hausdorff-Young’s inequality

in the case q = ∞ and Plancherel’s identity for q = 2.

LEMMA 2.8. Let 2 � q �∞ and J satisfying (1.3) and (1.4). Then for all indexes α

such that |α| < m − d there exists a constant c(q, α) such that

‖∂αKt‖Lq(Rd)�c(q, α) t
− d

s

(
1− 1

q

)
− |α|

s

holds for sufficiently large t. Moreover, if J satisfies (1.6) then the same result holds with
no restriction on α.

Proof of Lemma 2.8. We consider the cases q = 2 and q = ∞. The other cases follow
by interpolation. We denote by e.s. the exponentially small terms.

First, let us consider the case q = ∞. Using the definition of Kt , K̂t(ξ) = e−t(etĴ(ξ)−1),

we get, for any x ∈ Rd ,

|∂αKt(x)| � e−t

∫
Rd

|ξ||α|
∣∣∣etĴ(ξ) − 1

∣∣∣ dξ.

Using that |ey − 1| � 2|y| for |y| small, say |y| � c0, we obtain that

|etĴ(ξ) − 1| � 2t |̂J(ξ)| � 2t

|ξ|m
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for all |ξ| ≥ h(t) = (c0t)
1
m . Then

e−t

∫
|ξ|≥h(t)

|ξ||α||etĴ(ξ) − 1| dξ � te−t

∫
|ξ|≥h(t)

|ξ||α|

|ξ|m dξ�te−tc(m − |α|)

provided that |α| < m − d.
Is easy to see that if (1.6) holds no restriction on the indexes α has to be assumed.
It remains to estimate

e−t

∫
|ξ|�h(t)

|ξ||α||etĴ(ξ) − 1|dξ.

We observe that the term e−t
∫
|ξ|�h(t)

|ξ||α|dξ is exponentially small, so we concentrate on

I(t) = e−t

∫
|ξ|�h(t)

|etĴ(ξ)||ξ||α|dξ.

Now, let us choose R > 0 such that

|̂J(ξ)| � 1 − |ξ|s
2

for all |ξ| � R. (2.2)

Once R is fixed, there exists δ > 0 with

|̂J(ξ)| � 1 − δ for all |ξ| ≥ R. (2.3)

Then

|I(t)| � e−t

∫
|ξ|�R

|etĴ(ξ)||ξ||α|dξ + e−t

∫
R�|ξ|�h(t)

|etĴ(ξ)||ξ||α|dξ

�
∫

|ξ|�R

et(|̂J(ξ)|−1)|ξ||α|dξ + e−tδ

∫
R�|ξ|�h(t)

|ξ||α|dξ

�
∫

|ξ|�R

e− t|ξ|s
2 |ξ||α| + e.s.

= t−
|α|
s

− d
s

∫
|η|�Rt

1
s

e− |η|s
2 |η||α| + e.s. � t−

|α|
s

− d
s .

Now, for q = 2, by Plancherel’s identity we have

‖∂αKt‖2
L2(Rd)

≤ e−2t

∫
Rd

|etĴ(ξ) − 1|2|ξ|2|α|dξ.
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Putting out the exponentially small terms, it remains to estimate∫
|ξ|�R

∣∣∣et(̂J(ξ)−1)
∣∣∣2 |ξ|2|α|dξ,

where R is given by (2.2). The behavior of Ĵ near zero gives∫
|ξ|�R

|et(̂J(ξ)−1)|2|ξ|2|α|dξ �
∫

|ξ|�R

e−t|ξ|s |ξ|2|α|dξ � t−
d
s
− 2|α|

s ,

which finishes the proof. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Following [7] we obtain that the initial condition u0 ∈ L1(Rd, 1+
|x|k+1) has the following decomposition

u0 =
∑

|α|�k

(−1)|α|

α!

(∫
u0x

α dx

)
Dαδ0 +

∑
|α|=k+1

DαFα

where

‖Fα‖L1(Rd)�‖u0‖L1(Rd , |x|k+1)

for all multi-indexes α with |α| = k + 1.
In view of (2.1) the solution u of (1.1) satisfies

u(x, t) = e−tu0(x) + (Kt ∗ u0)(x).

The first term being exponentially small it suffices to analyze the long time behavior of
Kt ∗ u0. Using the above decomposition and Lemma 2.8 we get∥∥∥∥∥∥Kt ∗ u0 −

∑
|α|�k

(−1)|α|

α!

(∫
u0(x)xαdx

)
∂αKt

∥∥∥∥∥∥
Lq(Rd)

�
∑

|α|=k+1

‖∂αKt ∗ Fα‖Lq(Rd)

�
∑

|α|=k+1

‖∂αKt‖Lq(Rd)‖Fα‖L1(Rd)

� t
− d

s

(
1− 1

q

)
t−

(k+1)
s ‖u0‖L1(Rd , |x|k+1).

This ends the proof. �
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2.3. Asymptotics for the higher order terms

In this subsection we prove Theorem 1.3.

Proof of Theorem 1.3. Recall that we have defined Gs
t by its Fourier transform Ĝs

t =
exp(−t|ξ|s).

We consider the case q = ∞, the case q = 2 can be handled similarly and the rest of the
cases, 2 < q < ∞, follow again by interpolation.

Writing each of the two terms in Fourier variables we obtain

‖∂αKt − ∂αGs
t‖L∞(Rd)�

∫
Rd

|ξ||α|
∣∣∣e−t(etĴ(ξ) − 1) − e−t|ξ|s

∣∣∣ dξ.

Let us choose a positive R such that∣∣̂J(ξ) − 1 + |ξ|s∣∣ �C|ξ|r+s, for |ξ|�R,

satisfying (2.3) for some δ > 0. For |ξ| ≥ R all the terms are exponentially small as t → ∞.
Thus the behavior of the difference ∂αKt − ∂αGt is given by the following integral:

I(t) =
∫

|ξ|�R

|ξ||α|∣∣et(̂J(ξ)−1) − e−t|ξ|s ∣∣dξ.

In view of the elementary inequality |ey − 1| � c(R)|y| for all |y|�R we obtain that

I(t) =
∫

|ξ|�R

|ξ||α|e−t|ξ|s
∣∣∣et(̂J(ξ)−1+|ξ|s) − 1

∣∣∣ dξ

�
∫

|ξ|�R

|ξ||α|e−t|ξ|s ∣∣t(̂J(ξ) − 1 + |ξ|s)∣∣ dξ

� t

∫
|ξ|�R

|ξ||α|e−t|ξ|s |ξ|s+rdξ

� t−
d
s
− r

s
− |α|

s .

This finishes the proof. �

2.4. A different approach

In this final subsection we obtain the first two terms in the asymptotic expansion of the
solution under less restrictive hypotheses on J .
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Proof of Theorem 1.4. The method that we use here is just to estimate the difference

‖u(t) − v(t) − Bt(−�)
l
2 v(t)‖Lq(Rd) using Fourier variables.

As before, it is enough to consider the cases q = 2 and q = ∞. We analyze the case
q = ∞, the case q = 2 follows in the same manner by applying Plancherel’s identity.

By Hausdorff-Young’s inequality we get

‖u(t) − v(t) − tB(−�)
l
2 v(t)‖L∞(Rd) �

∫
Rd

∣∣∣̂u(t, ξ) − v̂(t, ξ) − tB
̂

(−�)
l
2 v(t, ξ)

∣∣∣ dξ

=
∫
Rd

∣∣∣et(̂J(ξ)−1) − e−t|ξ|s (1 + tB|ξ|l)||û0(ξ)

∣∣∣ dξ.

As before, let us choose R > 0 such that

|̂J(ξ)|�1 − |ξ|s
2

, |ξ|�R.

Then there exists δ > 0 such that

|̂J(ξ)|�1 − δ, |ξ| ≥ R.

Hence ∫
|ξ|≥R

|et(̂J(ξ)−1)||û0(ξ)|dξ�e−δt‖û0‖L1(Rd)

and ∫
t
− 1

l �|ξ|�R

|et(̂J(ξ)−1)||û0(ξ)|dξ � ‖û0‖L∞(Rd)

∫
t
− 1

l �|ξ|�R

e−t|ξ|s/2

� t−
d
s

∫
|ξ|≥t

1
s − 1

l

e−|ξ|s/2dξ � t−
d
s e−t

1− s
l /4.

Also ∫
|ξ|≥t

− 1
l

e−t|ξ|s (1 + tB|ξ|l)|û0(ξ)|dξ � ‖û0‖L∞(Rd)

∫
|ξ|≥t

− 1
l

e−t|ξ|s t|ξ|l dξ

� t1− d
s
− l

s

∫
|η|≥t

1
s − 1

l

e−|η|s |η|l dξ

� t1− d
s
− l

s e−t
1− s

l /2
∫

|η|≥t
1
s − 1

l

e−|η|s/2|η|l dξ.
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Therefore, we have to analyze

I(t) =
∫

|ξ|�t
− 1

l

|et(̂J(ξ)−1) − e−t|ξ|s (1 + tB|ξ|l)||û0(ξ)| dξ.

We write Ĵ (ξ) = 1 − |ξ|s + B|ξ|l + |ξ|lf(ξ) where f(ξ) → 0 as |ξ| → 0. Thus

I(t)�I1(t) + I2(t)

where

I1(t) =
∫

|ξ|�t
− 1

l

e−t|ξ|s
∣∣∣eBt|ξ|l+t|ξ|lf(ξ) −

(
1 + Bt|ξ|l + t|ξ|lf(ξ)

)∣∣∣ |û0(ξ)| dξ

and

I2(t) =
∫

|ξ|�t
− 1

l

e−t|ξ|s t|ξ|lf(ξ)|û0(ξ)| dξ.

For I1 we have

I1(t) � ‖û0‖L∞(Rd)

∫
|ξ|�t

− 1
l

e−t|ξ|s (t|ξ|l + t|ξ|l|f(ξ)|)2 dξ

�
∫

|ξ|�t
− 1

l

e−t|ξ|s t2|ξ|2l dξ � t−
d
s
+2− 2l

s

and then
t

d
s
+ l

s
−1I1(t) � t1− l

s → 0, t → ∞.

It remains to prove that

t
d
s
+ l

s
−1I2(t) → 0, t → ∞.

Making a change of variable we obtain

t
d
s
−1+ l

s I2(t)�‖û0‖L∞(Rd)

∫
|ξ|�t

1
s − 1

l

e−|ξ|s |ξ|lf
(
ξt−

1
s

)
dξ.

The integrand is dominated by ‖f‖L∞(Rd)|ξ|l exp(−|ξ|s), which belongs to L1(Rd). Hence,

as f(ξ/t
1
s ) → 0 when t → ∞, this shows that

t
d
s
+ l

s
−1I2(t) → 0,

and finishes the proof of (1.9).
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Thanks to (1.9), the proof of (1.10) is reduced to show that

lim
t→∞

∥∥∥∥∥∥∥t
d
s
+ l

s

[
(−�)

l
2 v

] (
yt

1
s , t

)
− h(y)

∫
Rd

u0


∥∥∥∥∥∥∥

L∞(Rd)

= 0.

For any y ∈ Rd by making a change of variables we obtain

I(y, t) = t
d
s
+ l

s

[
(−�)

l
2 v

] (
yt

1
s , t

)
=

∫
Rd

e−|ξ|s |ξ|leiyξû0

(
ξ/t

1
s

)
.

Thus, using the dominated convergence theorem we obtain∥∥∥∥∥∥∥I(y, t) − h(y)

∫
Rd

u0

∥∥∥∥∥∥∥
L∞(Rd)

�
∫
Rd

e−|ξ|s |ξ|l|û0

(
ξ/t

1
s

)
− û0(0)| dξ → 0

as t → ∞. �
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