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The Neumann problem for nonlocal nonlinear diffusion equations
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Abstract. We study nonlocal diffusion models of the form

(γ (u))t (t, x) =
∫
�

J(x − y)(u(t, y) − u(t, x)) dy.

Here � is a bounded smooth domain and γ is a maximal monotone graph in R
2. This is a nonlocal diffusion problem

analogous with the usual Laplacian with Neumann boundary conditions. We prove existence and uniqueness of
solutions with initial conditions in L1(�). Moreover, when γ is a continuous function we find the asymptotic
behaviour of the solutions, they converge as t → ∞ to the mean value of the initial condition.

1. Introduction

First, let us introduce what kind of nonlocal diffusion problems we consider. Nonlocal
evolution equations of the form

ut (t, x) = J ∗ u − u(t, x) =
∫

R
N

J (x − y)u(t, y) dy − u(t, x), (1.1)

and variations of it, have been recently widely used to model diffusion processes, see [2],
[4], [9], [11], [12], [16], [17], [18], [19] and [20]. As stated in [16], if u(t, x) is thought of
as the density of a single population at the point x at time t , and J (x − y) is thought of as
the probability distribution of jumping from location y to location x, then the convolution
(J ∗u)(t, x) = ∫

R
N J (y−x)u(t, y) dy is the rate at which individuals are arriving to position

x from all other places and −u(t, x) = − ∫
R

N J (y−x)u(t, x) dy is the rate at which they are
leaving location x to travel to all other sites. This consideration, in the absence of external
or internal sources, leads immediately to the fact that the density u satisfies equation (1.1).
Moreover, a nonlinearity of the form

∫
J (x −y) (F (u(y)) − F(u(x))) dy may also appear

in population models, see [9] and references therein.
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Equation (1.1) is called nonlocal diffusion equation since the diffusion of the density
u at a point x and time t does not only depend on u(t, x), but on all the values of u in a
neighborhood of x through the convolution term J ∗u. This equation shares many properties
with the classical heat equation, ut = cuxx , such as: bounded stationary solutions are
constant, a maximum principle holds for both of them and, even if J is compactly supported,
perturbations propagate with infinite speed, [16]. However, there is no regularizing effect
in general.

In this paper we turn our attention to nonlinear evolutions with Neumann boundary
conditions. We study

P J
γ (z0)




zt (t, x) =
∫

�

J (x − y)(u(t, y) − u(t, x)) dy, x ∈ �, t > 0,

z(t, x) ∈ γ (u(t, x)), x ∈ �, t > 0,

z(0, x) = z0(x), x ∈ �.

Here � is a bounded domain, z0 ∈ L1(�), γ is a maximal monotone graph in R
2 such that

0 ∈ γ (0), and J : R
N → R is a nonnegative continuous radial function with

∫
R

N J (r)dr =
1 and 0 ∈ int[supp(J )].

In this model the right hand side takes into account the diffusion inside �. In fact,
as we have explained, the integral

∫
J (x − y)(u(t, y) − u(t, x)) dy takes into account the

individuals arriving or leaving position x from or to other places. Since we are integrating in
�, we are imposing that diffusion takes place only in �. There is no flux of individuals across
the boundary. This is the analogous of what is called homogeneous Neumann boundary
conditions in the literature.

Solutions to P J
γ (z0) will be understood in the following sense.

DEFINITION 1.1. A solution of P J
γ (z0) in [0, T ] is a function z ∈ W 1,1(]0, T [; L1(�))

which satisfies z(0, x) = z0(x), a.e. x ∈ �, and for which there existsu ∈ L2(0, T ; L2(�)),
z ∈ γ (u) a.e. in QT = �×]0, T [, such that

zt (t, x) =
∫

�

J (x − y)(u(t, y) − u(t, x)) dy a.e in ]0, T [×�.

Our main results can be summarized as follows.

“Under some natural assumptions about the initial condition z0, there exists a unique
global solution to P J

γ (z0). Moreover, a contraction principle holds, given two solutions zi

of P J
γ (zi0), i = 1, 2, then

∫
�

(z1(t) − z2(t))
+ ≤

∫
�

(z10 − z20)
+.
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Respect to the asymptotic behaviour of the solution we prove that if γ is a continuous
function, then

lim
t→∞ z(t) = 1

|�|
∫

�

z0,

strongly in L1(�)".
Concerning previous references for this model, we cite [10], [12] and [13] where only

the linear case, γ (s) = s, was considered. In [10] and [12] the asymptotic behaviour for the
linear model is studied and in [13] it is proved that solutions to the linear problem converge
to the solution of the classical heat equation with Neumann boundary conditions when the
convolution kernel J is rescaled in a suitable way.

We can consider different maximal monotone graphs γ . For example, if γ (r) = rm,
problem P J

γ (z0) corresponds to the nonlocal version of the porous medium equation if
0 < m < 1, or to the fast diffusion equation if m > 1. Note also that γ may be multivalued,
so we are considering the nonlocal version of various phenomena with phase changes like
the multiphase Stefan problem, for which

γ (r) =



r − 1 if r < 0,

[−1, 0] if r = 0,

r if r > 0.

Even γ can have a domain different from R, which corresponds to obstacle problems.
We have to point out that the right hand side of the equation in P J

γ (z0) has no regularizing
effect. Hence the analysis becomes more involved (due to the lack of compactness) that the
one that can be done for the usual Laplacian with Neumann boundary conditions.

Organization of the paper. The rest of the paper is organized as follows: in Section
2 we collect some preliminaries and fix the notation. In Section 3, by means of Nonlinear
Semigroup Theory, we construct a mild solution and we prove uniqueness of solutions,
in fact we prove a contraction principle. In Section 4 we prove that the mild solution is
indeed a solution in the sense of Definition 1.1. Finally, Section 5 deal with the asymptotic
behaviour of the solutions.

2. Notations and preliminaries

In this section we collect some preliminaries and notations that will be used in the
sequel. For a maximal monotone graph η in R × R and r ∈ N we denote by ηr the Yosida
approximation of η, given by ηr = r(I−(I+ 1

r
η)−1). The function ηr is maximal monotone

and Lipschitz. We recall the definition of the main section η0 of η

η0(s) :=




the element of minimal absolute value of η(s) if η(s) �= ∅,

+∞ if [s, +∞) ∩ D(η) = ∅,

−∞ if (−∞, s] ∩ D(η) = ∅,
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where D(η) denotes the domain of η. The following properties hold: if s ∈ D(η), |ηr(s)| ≤
|η0(s)| and ηr(s) → η0(s) as r → +∞, and if s /∈ D(η), |ηr(s)| → +∞ as r → +∞.

We will use the following notations, η− := inf Ran(η) and η+ := sup Ran(η), where
Ran(η) denotes the range of η. If 0 ∈ D(η), jη(r) = ∫ r

0 η0(s)ds defines a convex l.s.c.
function such that η = ∂jη. If j∗

η is the Legendre transform of jη then η−1 = ∂j∗
η .

Also we will denote by J0 and P0 the following sets of functions,

J0 = {j : R → [0, +∞], convex and lower semi-continuos with j (0) = 0},
P0 = {

p ∈ C∞(R) : 0 ≤ p′ ≤ 1, supp(p′) is compact, and 0 /∈ supp(p)
}
.

In [6] the following relation for u, v ∈ L1(�) is defined,

u 
 v if and only if
∫

�

j (u) dx ≤
∫

�

j (v) dx, ∀ j ∈ J0,

and the following facts are proved.

PROPOSITION 2.1. Let � be a bounded domain in R
N .

(i) For any u, v ∈ L1(�), if
∫
�

up(u) ≤ ∫
�

vp(u) for all p ∈ P0, then u 
 v.
(ii) If u, v ∈ L1(�) and u 
 v, then ‖u‖q ≤ ‖v‖q for any q ∈ [1, +∞].
(iii) If v ∈ L1(�), then {u ∈ L1(�) : u 
 v} is a weakly compact subset of L1(�).

The following Poincaré’s type inequality is given in [10].

PROPOSITION 2.2. Given J and � the quantity

β1 := β1(J, �) = inf
u∈L2(�),

∫
� u=0

1

2

∫
�

∫
�

J (x − y)(u(y) − u(x))2 dy dx∫
�

(u(x))2 dx

(2.1)

is strictly positive. Consequently

β1

∫
�

∣∣∣∣u − 1

|�|
∫

�

u

∣∣∣∣
2

≤ 1

2

∫
�

∫
�

J (x − y)(u(y) − u(x))2 dy dx, ∀u ∈ L2(�).

(2.2)

In order to obtain a generalized Poincaré’s type inequality we need the following result.

PROPOSITION 2.3. Let � ⊂ R
N be a bounded open set and k > 0. There exists a

constant C > 0 such that for any K ⊂ � with |K| > k, it holds

‖u‖L2(�) ≤ C

(∥∥∥∥u − 1

|�|
∫

�

u

∥∥∥∥
L2(�)

+
∣∣∣∣
∫

K

u

∣∣∣∣
)

, ∀ u ∈ L2(�). (2.3)
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Proof. Assume the conclusion does not hold. Then, for every n ∈ N there exists Kn ⊂ �

with |Kn| > k, and un ∈ L2(�) satisfying

‖un‖L2(�) ≥ n

(∥∥∥∥un − 1

|�|
∫

�

un

∥∥∥∥
L2(�)

+
∣∣∣∣
∫

Kn

un

∣∣∣∣
)

, ∀ n ∈ N. (2.4)

We normalize un by ‖un‖L2(�) = 1 for all n ∈ N, and consequently we can assume that

un ⇀ u weakly in L2(�). (2.5)

Moreover, by (2.4), we have∥∥∥∥un − 1

|�|
∫

�

un

∥∥∥∥
L2(�)

≤ 1

n
, and

∣∣∣∣
∫

Kn

un

∣∣∣∣ ≤ 1

n
, ∀ n ∈ N. (2.6)

Hence

un − 1

|�|
∫

�

un → 0 in L2(�),

and by (2.5) we get u(x) = 1
|�|
∫
�

u = α for almost all x ∈ �, and un → α strongly in

L2(�). Since ‖un‖L2(�) = 1 for each n ∈ N, α �= 0. On the other hand, (2.6) implies

lim
n→∞

∫
Kn

un = 0.

Since χ
Kn is bounded in L2(�), we can extract a subsequence (still denoted by χ

Kn ) such
that

χ
Kn ⇀ φ weakly in L2(�).

Moreover, φ is nonnegative and verifies

k ≤ lim
n→∞ |Kn| = lim

n→∞

∫
�

χ
Kn =

∫
�

φ.

Now, since un → α strongly in L2(�) and χ
Kn → φ weakly in L2(�) we have

0 = lim
n→∞

∫
Kn

un = lim
n→∞

∫
�

χ
Knun = α

∫
�

φ �= 0,

a contradiction. �

To simplify the notation we define the linear self-adjoint operator A : L2(�) → L2(�)

by

Au(x) =
∫

�

J (x − y)(u(y) − u(x)) dy, x ∈ �.

As a consequence of the above results we have the next proposition, which plays the role
of the classical generalized Poincaré’s inequality for Sobolev spaces.
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PROPOSITION 2.4. Let � ⊂ R
N be a bounded open set and k > 0. There exists a

constant C = C(J, �, k) such that, for any K ⊂ � with |K| > k,

‖u‖L2(�) ≤ C

((
−
∫

�

Au u

)1/2

+ ‖u‖L2(K)

)
∀u ∈ L2(�). (2.7)

Using the above result and working as in the proof of Lemma 4.2 in [1], we obtain the
following lemma, of which we give the proof for the sake of completeness.

LEMMA 2.5. Let γ be a maximal monotone graph in R
2 such that 0 ∈ γ (0). Let

{un}n∈N ⊂ L2(�) and {zn}n∈N ⊂ L1(�) such that, for every n ∈ N, zn ∈ γ (un) a.e. in �.
Let us suppose that

(i) if γ+ = +∞, there exists M > 0 such that∫
�

z+
n < M, ∀n ∈ N,

(ii) if γ+ < +∞, there exists M ∈ R and h > 0 such that∫
�

zn < M < γ+|�|, ∀n ∈ N

and ∫
{x∈�:zn(x)<−h}

|zn| <
γ+|�| − M

4
, ∀n ∈ N.

Then, there exists a constant C = C(M, �) in case (i), C = C(M, �, γ, h) in case (ii),
such that

‖u+
n ‖L2(�) ≤ C

((
−
∫

�

Au+
n u+

n

)1/2

+ 1

)
, ∀n ∈ N. (2.8)

Let us suppose that
(iii) if γ− = −∞, there exists M > 0 such that∫

�

z−
n < M, ∀n ∈ N,

(iv) if γ− > −∞, there exists M ∈ R and h > 0 such that∫
�

zn > M > γ−|�|, ∀n ∈ N

and ∫
{x∈�:zn(x)>h}

zn <
M − γ−|�|

4
, ∀n ∈ N.
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Then, there exists a constant C̃ = C̃(M, �) in case (iii), C̃ = C̃(M, �, γ, h) in case (iv),
such that

‖u−
n ‖L2(�) ≤ C̃

((
−
∫

�

Au−
n u−

n

)1/2

+ 1

)
, ∀n ∈ N. (2.9)

Proof. Let us only prove (2.8), since the proof of (2.9) is similar. First, consider the case
γ+ = +∞. Then, by assumption, there exists M > 0 such that∫

�

z+
n < M, ∀n ∈ N.

For n ∈ N let Kn =
{
x ∈ � : z+

n (x) < 2M
|�|
}

. Then

0 ≤
∫

Kn

z+
n =

∫
�

z+
n −

∫
�\Kn

z+
n ≤ M − (|�| − |Kn|)2M

|�| = |Kn|2M

|�| − M.

Therefore,

|Kn| ≥ |�|
2

,

and

‖u+
n ‖L2(Kn) ≤ |Kn|1/2 sup γ −1

(
2M

|�|
)

.

Then, by Proposition 2.4, for all n ∈ N,

‖u+
n ‖L2(�) ≤ C̃(J, �)

((
−
∫

�

Au+
n u+

n

)1/2

+ |�|1/2 sup γ −1
(

2M

|�|
))

.

Now, let us consider the case γ+ < +∞. Let

δ = γ+|�| − M.

By assumption, for every n ∈ N, we have,∫
�

zn < γ+|�| − δ. (2.10)

For n ∈ N, let Kn =
{
x ∈ � : zn(x) < γ+ − δ

2|�|
}

. Then, by (2.10),

∫
Kn

zn =
∫

�

zn −
∫

�\Kn

zn < − δ

2
+ |Kn|

(
γ+ − δ

2|�|
)

.

Moreover,∫
Kn

zn = −
∫

Kn∩{x∈�:zn<−h}
|zn| +

∫
Kn∩{x∈�:zn≥−h}

zn ≥ − δ

4
− h|Kn|.
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Therefore,

|Kn|
(

h − δ

2|�| + γ+
)

≥ δ

4
.

Hence |Kn| > 0, h − δ
2|�| + γ+ > 0 and

|Kn| ≥ δ

4
(
h − δ

2|�| + γ+
) .

Consequently,

‖u+
n ‖L2(Kn) ≤ |Kn|1/2 sup γ −1

(
γ+ − δ

2|�|
)

.

Then, by Proposition 2.4,

‖u+
n ‖L2(�) ≤ C̃(J, �, γ, h)

((
−
∫

�

Au+
n u+

n

)1/2

+ |�|1/2 sup γ −1
(

γ+ − δ

2|�|
))

.

This ends the proof of (2.8). �

Finally, we have the following monotonicity result. Its proof is straightforward.

LEMMA 2.6. Let T : R → R a nondecreasing function. For every u ∈ L2(�) such
that T (u) ∈ L2(�), it holds

−
∫

�

Au(x)T (u(x)) dx = −
∫

�

∫
�

J (x − y)(u(y) − u(x)) dy T (u(x)) dx

= 1

2

∫
�

∫
�

B(x, y)(u(y) − u(x))2 dy dx,

where B(x, y) is the non negative symmetric function given by

B(x, y) =




J (x − y)
T (u(y)) − T (u(x))

u(y) − u(x)
if u(y) �= u(x),

0 if u(y) = u(x).

In particular we have

−
∫

�

Au(x) u(x) dx = 1

2

∫
�

∫
�

J (x − y)(u(y) − u(x))2 dy dx.
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3. Mild solutions and contraction principle

In this section we obtain a mild solution to our problem studying the associated integral
operator.

Given a maximal monotone graph γ in R
2 such that 0 ∈ γ (0), γ− < γ+, we consider

the problem,
(S

γ
φ ) γ (u) − Au � φ in �.

DEFINITION 3.1. Let φ ∈ L1(�). A pair of functions (u, z) ∈ L2(�) × L1(�) is a
solution of problem (S

γ
φ ) if z(x) ∈ γ (u(x)) a.e. x ∈ � and z(x) − Au(x) = φ(x) a.e.

x ∈ �, that is,

z(x) −
∫

�

J (x − y)(u(y) − u(x)) dy = φ(x) a.e. x ∈ �.

With respect to uniqueness of problem (S
γ
φ ), we have the following maximum principle.

THEOREM 3.2. (i) Let φ1 ∈ L1(�) and (u1, z1) a subsolution of (Sγ
φ1

), that is, z1(x) ∈
γ (u1(x)) a.e. x ∈ � and z1(x) − Au1(x) ≤ φ1(x) a.e. x ∈ �, and let φ2 ∈ L1(�) and
(u2, z2)a supersolution of (Sγ

φ2
), that is, z2(x) ∈ γ (u2(x)) a.e. x ∈ �and z2(x)−Au2(x) ≥

φ2(x) a.e. x ∈ �. Then ∫
�

(z1 − z2)
+ ≤

∫
�

(φ1 − φ2)
+.

Moreover, if φ1 ≤ φ2, φ1 �= φ2, then u1(x) ≤ u2(x) a.e. x ∈ �.

(ii) Let φ ∈ L1(�), and (u1, z1), (u2, z2) two solutions of (S
γ
φ ). Then, z1 = z2 a.e. and

there exists a constant c such that u1 = u2 + c, a.e.

Proof. To prove (i), let (u1, z1) a subsolution of (S
γ
φ1

) and (u2, z2) a supersolution of

(S
γ
φ2

). Then

−(Au1(x) − Au2(x)) + z1(x) − z2(x) ≤ φ1(x) − φ2(x).

Multiplying the above inequality by 1
k
T +

k (u1 − u2 + k sign+
0 (z1 − z2)) and integrating we

get,∫
�

(z1 − z2)
1

k
T +

k (u1 − u2 + k sign+
0 (z1 − z2))

−
∫

�

(Au1(x) − Au2(x))
1

k
T +

k (u1(x) − u2(x) + k sign+
0 (z1(x) − z2(x))) dx

≤
∫

�

(φ1 − φ2)
1

k
T +

k (u1 − u2 + k sign+
0 (z1 − z2)) ≤

∫
�

(φ1(x) − φ2(x))+ dx.

(3.1)
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Let us write u = u1 − u2 and z = sign+
0 (z1 − z2), then, by the monotonicity proved in

Lemma 2.6,

lim
k→0

∫
�

(Au1(x) − Au2(x))
1

k
T +

k (u1(x) − u2(x) + k sign+
0 (z1(x) − z2(x))) dx

= lim
k→0

∫
�

Au(x)
1

k
T +

k (u(x) + kz(x)) dx

= lim
k→0

∫
�

A(u + kz)(x)
1

k
T +

k (u(x) + kz(x)) dx ≤ 0.

Therefore, taking limit as k goes to 0 in (3.1), we obtain∫
�

(z1 − z2)
+ ≤

∫
�

(φ1 − φ2)
+.

Let us now suppose that φ1 ≤ φ2, φ1 �= φ2. By the previous calculations we know that
z1 ≤ z2. Since ∫

�

z1 ≤
∫

�

φ1 <

∫
�

φ2 ≤
∫

�

z2,

z1 �= z2. Going back to (3.1), if u = u1 − u2, we get

−
∫

�

Au(x) T +
k (u(x)) dx = 0,

and therefore,

−
∫

�

Au(x) u+(x) dx = 0.

Consequently, by Lemma 2.6, there exists a null set C ⊂ � × � such that

J (x − y)(u+(y) − u+(x))(u(y) − u(x)) = 0 for all (x, y) ∈ � × � \ C. (3.2)

Let B a null subset of � such that if x /∈ B, the section Cx = {y ∈ � : (x, y) ∈ C} is
null. Let x /∈ B, if u(x) > 0 then, since there exists r0 > 0 such that J (z) > 0 for every z

such that |z| ≤ r0, by a compactness argument and having in mind (3.2), it is easy to see
that u(y) = u(x) > 0 for all y /∈ Cx . Therefore u1(y) > u2(y) for all y /∈ Cx in � and
consequently z1(y) ≥ z2(y) a.e. in � which contradicts that z1 ≤ z2, z1 �= z2.

Let us now prove (ii). As (ui, zi) are solutions of (S
γ
φ ) we have that

−(Au1(x) − Au2(x)) + z1(x) − z2(x) = 0.

Now, by (i), z1 = z2, a.e. Consequently,

0 = −(Au1(x) − Au2(x)) = −A(u1 − u2)(x).
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Therefore, multiplying the above equation by u = u1 − u2 and integrating we obtain

1

2

∫
�

∫
�

J (x − y)(u(y) − u(x))2 dy dx = 0.

From here, by (2.2), u is constant a.e. in �. �

In particular we have the following result.

COROLLARY 3.3. Let k > 0 and u ∈ L2(�) such that

ku − Au ≥ 0 a.e. in �,

then u ≥ 0 a.e. in �.

Proof. Since (u, ku) is a supersolution of (S
γ

0 ), where γ (r) = kr , and (0, 0) is a subso-
lution of (S

γ

0 ), by Theorem 3.2, the result follows. �

To study the existence of solutions of problem (S
γ
φ ) we start with the following two

lemmas.

LEMMA 3.4. Assume γ : R → R is a nondecreasing Lipschitz continuous function
with γ (0) = 0 and γ− < γ+. Let φ ∈ C(�) such that γ− < φ < γ+. Then, there exists a
solution (u, γ (u)) of problem (S

γ
φ ). Moreover, γ (u) 
 φ.

Proof. Since γ− < φ < γ+ and φ ∈ C(�), we can find c1 ≤ c2 such that

γ− < γ (c1) ≤ φ(x) ≤ γ (c2) < γ+ ∀ x ∈ �. (3.3)

Since γ is a nondecreasing Lipschitz continuous function there exists k > 0 for which
the function s �→ ks − γ (s) is nondecreasing. Let us see by induction that we can find a
sequence {ui} ⊂ L2(�) such that

u0 = c1, ui ≤ ui+1 ≤ c2,

kui+1 − Aui+1 = φ − γ (ui) + kui, ∀ i ∈ N. (3.4)

Since k > 0, as a consequence of being A self-adjoint, it is easy to see that k does not
belong to the spectrum of A, then there exists u1 ∈ L2(�) such that

ku1 − Au1 = φ − γ (c1) + kc1.

Then, by (3.3), we have

ku1 − Au1 = φ − γ (c1) + kc1 ≥ kc1 = kc1 − Ac1.



200 F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo J.evol.equ.

Hence, from Corollary 3.3 we get that u0 = c1 ≤ u1. Analogously, there exists u2 such
that

ku2 − Au2 = φ − γ (u1) + ku1.

Now, since c1 ≤ u1, we get

ku2 − Au2 ≥ φ − γ (c1) + kc1 = ku1 − Au1.

Again by Corollary 3.3, we get u1 ≤ u2, and by induction we obtain that ui ≤ ui+1. On
the other hand, since the function s �→ ks − γ (s) is nondecreasing, c1 ≤ c2 and (3.3), we
have

kc2 − Ac2 ≥ φ − γ (c2) + kc2 ≥ φ − γ (c1) + kc1 = ku1 − Au1.

Applying again Corollary 3.3, we get c2 ≥ u1, and by an inductive argument we deduce
that ui ≤ c2 for all i ∈ N. Hence (3.4) holds. Consequently, there exists u ∈ L∞(�), such
that u(x) = limi→+∞ ui(x) a.e. in �. Taking limits in (3.4), we obtain that

ku − Au = φ − γ (u) + ku,

and (u, γ (u)) is a solution of problem (S
γ
φ ), that is,

γ (u) − Au = φ. (3.5)

Finally, given p ∈ P0, multiplying (3.5) by p(γ (u)), and integrating in �, we get∫
�

γ (u(x))p(γ (u(x))) dx −
∫

�

Au(x)p(γ (u(x))) dx =
∫

�

φ(x)p(γ (u(x))) dx.

Now, by Lemma 2.6, the second term in the above equality is nonnegative, therefore∫
�

γ (u(x))p(γ (u(x))) dx ≤
∫

�

φ(x)p(γ (u(x))) dx.

By Proposition 2.1, we conclude that γ (u) 
 φ. �

LEMMA 3.5. Assume γ is a maximal monotone graph in R
2, ] − ∞, 0] ⊂ D(γ ),

0 ∈ γ (0), γ− < γ+. Let γ̃ (s) = γ (s) if s < 0, γ̃ (s) = 0 if s ≥ 0. Assume γ̃ is Lipschitz
continuous in ] − ∞, 0]. Let φ ∈ C(�) such that γ− < φ < γ+. Then, there exists a
solution (u, z) of (S

γ
φ ). Moreover, z 
 φ.

Proof. If γ− < 0, let c1 such that γ (c1) = {m1}, γ− < m1 < 0 and m1 ≤ φ. And if
γ− = 0 let c1 = m1 = 0. Let γr , r ∈ N, be the Yosida approximation of γ and let the
maximal monotone graph

γ r(s) =
{

γ (s) if s < 0,

γr (s) if s ≥ 0.
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Observe that γ r is a nondecreasing Lipschitz continuous function with γ r(0) = 0 and, for
r large enough, γ− = γ r− < φ < γ r+, γ r ≤ γ r+1, and converges in the sense of maximal
monotone graphs to γ . From the previous lemma, for each γ r we obtain a solution (ur , zr )

of (S
γ r

φ ), that is, zr = γ r(ur) a.e. and

zr − Aur = φ. (3.6)

Moreover, zr 
 φ, and consequently, zr ≥ m1. Moreover, ur ≥ c1. Let

ẑr (x) =
{

zr(x) if ur(x) ≤ 0,

γr+1(ur(x)) if ur(x) > 0.

Then, since γr is nondecreasing,
ẑr ≥ zr ,

and also,
ẑr ∈ γ r+1(ur).

Therefore, (ur , ẑr ) is a supersolution to (S
γ r+1

φ ). Using Theorem 3.2, we obtain that

ẑr ≥ zr+1.

Now, if ẑr = zr then
zr ≥ zr+1,

and if ẑr �= zr , by Theorem 3.2,
ur ≥ ur+1.

So, there exists a monotone non increasing subsequence of {ur}, denoted equal, with ur ≥
ĉ1, or there exists a monotone non increasing subsequence of {zr}, denoted equal, with
zr ≥ m1. In the first case, we have that

ur → u in L2(�),

and also, since zr 
 φ,

zr → z weakly in L1(�).

And in the second case, we obtain

zr → z in L1(�). (3.7)

In fact, since zr 
 φ, we get that

zr → z in L2(�). (3.8)
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Now, in this second case, multiplying (3.6) by ur − us and integrating we get

−
∫

�

Aur(ur − us) =
∫

�

φ (ur − us) −
∫

�

zr(ur − us).

Moreover,

−
∫

�

Aus(ur − us) =
∫

�

φ (ur − us) −
∫

�

zs(ur − us).

Hence, since
∫
�

zr = ∫
�

zs ,

−
∫

�

A(ur − us)(ur − us) = −
∫

�

(zr − zs)(ur − us)

= −
∫

�

(zr − zs)

(
ur − 1

|�|
∫

�

ur −
(

us − 1

|�|
∫

�

us

))

and, by Proposition 2.2,

β1

∥∥∥∥
(

ur − 1

|�|
∫

�

ur

)
−
(

us − 1

|�|
∫

�

us

)∥∥∥∥
L2(�)

≤ ‖zr − zs‖L2(�).

From (3.8) we get,

ur − 1

|�|
∫

�

ur → w in L2(�).

Let us see that
{

1
|�|
∫
�

ur

}
is bounded. If not, we can assume, passing to a subsequence

if necessary, that it converges to −∞. Then, ur → −∞ a.e. in �. Since zr ∈ γ r(ur),
γ r → γ and (3.7), z = γ− a.e. in �. Consequently,

∫
�

φ = ∫
�

z = |�|γ− which

contradicts that φ > γ−. Thus,
{

1
|�|
∫
�

ur

}
is bounded and we have that there exists a

subsequence of {ur}, denoted equal, such that

ur → u in L2(�).

Therefore, in both cases, z ∈ γ (u) a.e. in �, z 
 φ, and, taking limit in

zr − Aur � φ,

we obtain
z − Au � φ,

which concludes the proof. �

With this lemma in mind we proceed to extend the result for general monotone graphs.

THEOREM 3.6. Assume γ is a maximal monotone graph in R
2, 0 ∈ γ (0) and γ− < γ+.

Let φ ∈ C(�) such that γ− < φ < γ+. Then, there exists a solution (u, z) of (S
γ
φ ).

Moreover, z 
 φ.
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Proof. Let γr , r ∈ N, be the Yosida approximation of γ and let the maximal monotone
graph

γ r(s) =
{

γ (s) if s > 0,

γr (s) if s ≤ 0.

Observe that γ r satisfies the hypothesis of Lemma 3.5, γ r− < φ < γ r+ for r large enough,
γ r ≥ γ r+1 and converges in the sense of maximal monotone graphs to γ . From the previous
lemma, for each γ r we obtain a solution (ur , zr ) of (S

γ r

φ ), zr 
 φ. Now, we can proceed
similarly to the previous lemma passing to the limit to conclude. �

The natural space to study the problem P J
γ (z0) from the point of view of Nonlinear

Semigroup Theory is L1(�). In this space we define the following operator,

Bγ :=
{
(z, ẑ) ∈ L1(�) × L1(�) : ∃u ∈ L2(�) such that (u, z) is a solution of (S

γ

z+ẑ
)
}

,

in other words, ẑ ∈ Bγ (z) if and only if there exists u ∈ L2(�) such that z(x) ∈ γ (u(x)) a.e.

in �, and

−
∫

�

J (x − y)(u(y) − u(x)) dy = ẑ(x), a.e. x ∈ �. (3.9)

The operator Bγ allows us to rewrite P J
γ (z0) as the following abstract Cauchy problem in

L1(�), {
z′(t) + Bγ (z(t)) � 0 t ∈ (0, T )

z(0) = z0.
(3.10)

A direct consequence of Theorems 3.2 and 3.6 is the following result.

COROLLARY 3.7. Assume γ is a maximal monotone graph in R
2, 0 ∈ γ (0). Then,

the operator Bγ is T -accretive in L1(�) and satisfies{
φ ∈ C(�) : γ− < φ < γ+

} ⊂ Ran(I + Bγ ).

The following theorem is a consequence of the above result.

THEOREM 3.8. Let T > 0 and zi0 ∈ L1(�), i = 1, 2. Let zi be a solution in [0, T ] of
P J

γ (zi0), i = 1, 2. Then ∫
�

(z1(t) − z2(t))
+ ≤

∫
�

(z10 − z20)
+ (3.11)

for almost every t ∈]0, T [.
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Proof. Let (ui(t), zi(t)) be solutions of P J
γ (z0i ), i = 1, 2. Then, since they are strong

solutions of (3.10) and Bγ is T -accretive, (3.11) follows from the Nonlinear Semigroup
Theory ([7]). �

In the next result we characterize D(Bγ )
L1(�)

.

THEOREM 3.9. Assume γ is a maximal monotone graph in R
2. Then, we have

D(Bγ )
L1(�) =

{
z ∈ L1(�) : γ− ≤ z ≤ γ+

}
.

Proof. It is obvious that

D(Bγ )
L1(�) ⊂

{
z ∈ L1(�) : γ− ≤ z ≤ γ+

}
.

To obtain the another inclusion, it is enough to take φ ∈ C(�), satisfying γ− < φ < γ+,

and to prove that φ ∈ D(Bγ )
L1(�)

. Let a, b ∈ R such that γ− < a < φ < b < γ+.

Now, by Theorem 3.6, for any n ∈ N, there exists vn :=
(
I + 1

n
Bγ
)−1

φ ∈ D(Bγ ). Then,

(vn, n(φ − vn)) ∈ Bγ , thus there exists un ∈ L2(�) such that vn ∈ γ (un) a.e. in � and

vn(x) − 1

n

∫
�

J (x − y)(un(y) − un(x)) dy = φ(x) ∀ x ∈ �. (3.12)

Moreover, vn 
 φ. Then,

−∞ < inf γ −1(a) ≤ un ≤ sup γ −1(b) < +∞. (3.13)

Hence, from (3.12) and (3.13) it follows that vn → φ in L1(�). �

As a consequence of the above results we have the following theorem concerning mild
solutions (see [7]).

THEOREM 3.10. Assume γ is a maximal monotone graph in R
2. Let T > 0 and let

z0 ∈ L1(�) satisfying γ− ≤ z0 ≤ γ+. Then, there exists a unique mild solution z of (3.10).
Moreover z(t) 
 z0 for all t ≥ 0.

Proof. For n ∈ N, let ε = T/n, and consider a subdivision t0 = 0 < t1 < · · · < tn−1 <

T = tn with ti − ti−1 = ε. Let zε
0 ∈ C(�) with

γ− < zε
0 < γ+

and
‖zε

0 − z0‖L1(�) ≤ ε.
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By Theorem 3.6, for n large enough, there exists a solution (uε
i , z

ε
i ) of

γ (uε
i ) − εAuε

i � zε
i−1 (3.14)

for i = 1, . . . , n, with

zε
i 
 zε

i−1. (3.15)

That is, there exists a unique solution zε
i ∈ L1(�) of the time discretized scheme associated

with (3.10),
zε
i + εBγ zε

i � εzε
i−1, for i = 1, . . . , n.

Therefore, if we define zε(t) by{
zε(0) = zε

0,

zε(t) = zε
i , for t ∈]ti−1, ti], i = 1, . . . , n,

it is an ε-approximate solution of problem (3.10).

By using now the Nonlinear Semigroup Theory (see [5], [7], [14]), on account of
Corollary 3.7 and Theorem 3.9, problem (3.10) has a unique mild-solution z(t) ∈ C([0, T ] :
L1(�)), obtained as z(t) = L1(�)-limε→0 zε(t) uniformly for t ∈ [0, T ]. Finally, from
(3.15) we get z 
 z0. �

By Crandall-Liggett’s Theorem, [14], the mild solution obtained above is given by the
well-known exponential formula,

e−tBγ

z0 = lim
n→∞

(
I + t

n
Bγ

)−n

z0. (3.16)

The nonlinear contraction semigroup e−tBγ
generated by the operator −Bγ will be denoted

in the sequel by (S(t))t≥0.
In principle, it is not clear how these mild solutions have to be interpreted respect to

P J
γ (z0). In the next section we will see that they coincide with the solutions defined in the

Introduction.

4. Existence of solutions

In this section we prove that the mild solution of (3.10) is in fact a solution in the sense
of Definition 1.1 of problem P J

γ (z0).

THEOREM 4.1. Let z0 ∈ L1(�) such that γ− ≤ z0 ≤ γ+, γ− < 1
|�|
∫
�

z0 < γ+ and∫
�

j∗
γ (z0) < +∞. Then, there exists a unique solution z to P J

γ (z0) in [0, T ] for every
T > 0. Moreover, z(t) 
 z0 for all t ≥ 0.
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Proof. We divide the proof in three steps.
Step 1. First, let us suppose that

there exist c1, c2 such that c1 ≤ c2, m1 ∈ γ (c1), m2 ∈ γ (c2)

and γ− < m1 ≤ z0 ≤ m2 < γ+.
(4.1)

Let z(t) be the mild solution of (3.10) given by Theorem 3.10. We shall show that z is a
solution of problem P J

γ (z0).
For n ∈ N, let ε = T/n, and consider a subdivision t0 = 0 < t1 < · · · < tn−1 < T = tn

with ti − ti−1 = ε. Then, it follows that

z(t) = L1(�)- limε zε(t) uniformly for t ∈ [0, T ], (4.2)

where zε(t) is given, for ε small enough, by{
zε(t) = z0 for t ∈] − ∞, 0],

zε(t) = zn
i , for t ∈]ti−1, ti], i = 1, . . . , n,

(4.3)

where (un
i , z

n
i ) ∈ L2(�) × L1(�) is the solution of

−Aun
i + zn

i − zn
i−1

ε
= 0, i = 1, 2, . . . , n. (4.4)

Moreover, zn
i 
 z0. Hence γ− < m1 ≤ zn

i ≤ m2 < γ+ and consequently,

inf γ −1(m1) ≤ un
i ≤ sup γ −1(m2).

Therefore, if we write uε(t) = un
i , t ∈]ti−1, ti], i = 1, . . . , n, we can suppose that

uε ⇀ u weakly in L2(0, T ; L2(�)) as ε → 0+. (4.5)

Since zε ∈ γ (uε) a.e. in QT , zε → z in L1(QT ), having in mind (4.5), we obtain that
z ∈ γ (u) a.e. in QT . On the other hand, from (4.4),

zε(t) − zε(t − ε)

ε
⇀ zt weakly in L2(0, T ; L2(�)) as ε → 0+.

Step 2. Let now z0 ∈ L1(�) such that γ− ≤ z0 ≤ γ+, γ−|�| <
∫
�

z0 < γ−|�|,∫
�

j∗
γ (z0) < +∞, and

there exists c1 and m1 ∈ γ (c1) with γ− < m1 ≤ z0

and (4.1) is not satisfied.
(4.6)

Let z0n ∈ L∞(�),
z0n ↗ z0 as n goes to + ∞,
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such that
∫
�

z0n <
∫
�

z0n+1 and z0n ≤ m2(n) < γ+, m2(n) ∈ γ (c2(n)) for some c2(n).
By Step 1, there exists a solution zn of problem P J

γ (z0n), which is the mild solution of
(3.10) with initial datum z0n and satisfies zn(t) 
 z0n for all t ≥ 0. It is obvious that

lim
n→∞ zn = z in C([0, T ] : L1(�)),

being z the mild solution of (3.10) with initial datum z0, moreover z(t) 
 z0 for all t ≥ 0.
Next we prove that z is the solution of P J

γ (z0).

Since zn is a solution of problem P J
γ (z0n), there exists un ∈ L2(0, T , L2(�)), zn ∈

γ (un) a.e. in �×]0, T [, such that

(zn)t − Aun = 0. (4.7)

Moreover, we can suppose that (see Theorem 3.2)

un is non decreasing in n. (4.8)

Multiplying (4.7) by un, we obtain

d

dt

∫
�

(∫ zn(t)

0
(γ −1)0(s)ds

)
=
∫

�

Aun(t)un(t)dt (4.9)

in D′(]0, T [). Indeed, since un(t) ∈ γ −1(zn(t)) = ∂j∗
γ (zn(t)),

(zn(t + τ) − zn(t))un(t) ≤
∫ zn(t+τ)

zn(t)

(γ −1)0(s)ds for all τ.

Consequently, ∫
�

(zn)t (t)un(t) = d

dt

∫
�

(∫ zn(t)

0
(γ −1)0(s)ds

)

and (4.9) holds.
Integrating now (4.9) between 0 and T we get

−
∫ T

0

∫
�

Aun(t) un(t) dt ≤
∫

�

j∗
γ (z0). (4.10)

Let us see that {un} is bounded in L2(QT ). In the case γ+ = +∞, let

M = sup
t∈[0,T ]

∫
�

z+(t) + 1.

Then, there exists n0 ∈ N such that

sup
t∈[0,T ]

∫
�

(zn)
+(t) < M, ∀n ≥ n0.
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In the case γ+ < +∞, since we have conservation of mass, there exists M ∈ R and n0 ∈ N

such that, for all n ≥ n0,

sup
t∈[0,T ]

∫
�

zn(t) < M < γ+|�|,

moreover, since zn 
 z0, we have that zn ≥ m1 and, since it is not difficult to see that
|m1| <

γ+|�|−M
4|�| , we have

sup
t∈[0,T ]

∫
{
x∈�:zn(t)(x)<−4(m2

1+1)|�|/(γ+|�|−M)
} |zn(t)| <

γ+|�| − M

4
, ∀n ∈ N.

Therefore, in both cases, by Lemma 2.5, there exists C > 0 such that

‖(un(t))
+‖L2(�) ≤ C

((
−
∫

�

A(un(t))
+ (un(t))

+
)1/2

+ 1

)
, ∀ t ∈ [0, T ]. (4.11)

Hence, by (4.10), since un is non decreasing in n, {un} is bounded in L2(QT ).
Passing to a subsequence if necessary, we can assume

un ⇀ u weakly in L2(0, T ; L2(�)) as n → +∞,

and, by (4.8),

un → u in L2(0, T ; L2(�)) as n → +∞.

Consequently,
z ∈ γ (u) a.e. in QT .

Since also {Aun} is bounded in L2(QT ), passing to the limit in (4.7) we get

zt − Au = 0.

Step 3. Let now z0 ∈ L1(�), γ− ≤ z0 ≤ γ+ and γ−|�| <
∫
�

z0 < γ−|�|, ∫
�

j∗
γ (z0) <

+∞ such that (4.6) is not satisfied. Let z0n ∈ L∞(�),

z0n ↘ z0 as n goes to + ∞,

such that
∫
�

z0n >
∫
�

z0n+1 and z0n ≥ m1(n) > γ−, m1(n) ∈ γ (c1(n)) for some c1(n).
By Step 2, there exist a solution zn of problem P J

γ (z0n), which is the mild solution of (3.10)
with initial datum z0n and satisfies zn(t) 
 z0 for all t ≥ 0. It is obvious that

lim
n→∞ zn = z in C([0, T ] : L1(�)), (4.12)

being z the mild solution of (3.10) with initial datum z0. Moreover z(t) 
 z0 for all t ≥ 0.
We shall see that z is the solution of P J

γ (z0). The proof is similar to the above step and we
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only need to take care in the proof of the boundedness of {un} in L2(QT ). To this end we
need a formula like (4.11) for u−

n , that is, we need to prove that there exists C > 0 such that

‖(un(t))
−‖L2(�) ≤ C

((
−
∫

�

A(un(t))
− (un(t))

−
)1/2

+ 1

)
, ∀ t ∈ [0, T ]. (4.13)

Let us consider first that γ− = −∞, and let

M = sup
t∈[0,T ]

∫
�

z−(t) + 1.

Then, there exists n0 ∈ N such that

sup
t∈[0,T ]

∫
�

(zn)
−(t) < M, ∀n ≥ n0.

In the case γ− > −∞, there exists M ∈ R, h > 0 and n0 ∈ N such that, for all n ≥ n0,

inf
t∈[0,T ]

∫
�

zn(t) > M > γ−|�| (4.14)

and

sup
t∈[0,T ]

∫
{x∈�:zn(t)(x)>h}

zn(t) <
M − γ−|�|

4
. (4.15)

Formula (4.14) is straightforward and (4.15) follows from (4.12). Indeed, by (4.12), there
exists n0 ∈ N, δ > 0 and h > 0 such that, for all n ≥ n0 and for all t ∈ [0, T ],∫

E

|zn(t)| <
M − γ−|�|

4
, ∀E ⊂ �, |E| < δ,

and we can take h satisfying

|{x ∈ � : zn(t)(x) > h}| < δ.

Therefore, in both cases, by Lemma 2.5, (4.13) is proved.
Uniqueness of solutions follows from Theorem 3.8. �

5. Asymptotic behaviour

In this section we study the asymptotic behaviour of the solutions to P J
γ (z0). Note

that since the solution preserves the total mass it is natural to expect that solutions to our
diffusion problem converge to the mean value of the initial condition as t → ∞. We shall
see that this is the case, for instance, when γ is a continuous function, nevertheless this fails
when γ has jumps.
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Let us introduce the ω−limit set for a given initial condition z0,

ω(z0) =
{
w ∈ L1(�) : ∃ tn → ∞ with S(tn)z0 → w, strongly in L1(�)

}
and the weak ω−limit set

ωσ (z0) =
{
w ∈ L1(�) : ∃ tn → ∞ with S(tn)z0 ⇀ w, weakly in L1(�)

}
.

Since S(t)z0 
 z0, ωσ (z0) �= ∅ always. Moreover since S(t) preserves the total mass, for
all w ∈ ωσ (z0), ∫

�

w =
∫

�

z0.

We denote by F the set of fixed points of the semigroup (S(t)), that is,

F =
{
w ∈ D(Bγ )

L1(�)
: S(t)w = w ∀ t ≥ 0

}
.

It is easy to see that

F =
{
w ∈ L1(�) : ∃k ∈ D(γ ) such that w ∈ γ (k)

}
. (5.1)

THEOREM 5.1. Let z0 ∈ L1(�) such that γ− ≤ z0 ≤ γ+, γ− < 1
|�|
∫
�

z0 < γ+ and∫
�

j∗
γ (z0) < +∞. Then, ωσ (z0) ⊂ F . Moreover, if ω(z0) �= ∅, then ω(z0) consists of a

unique w ∈ F , and consequently,

lim
t→∞ S(t)z0 = w strongly in L1(�).

Proof. Along this proof we denote by z(t) = S(t)z0 the solution to problem P J
γ (z0) and

u(t) the corresponding function that appears in Definition 1.1.
Multiplying the equation in P J

γ (z0) by u(t) and integrating, we deduce

−
∫ +∞

0

∫
�

Au(t) u(t) dt ≤
∫

�

j∗
γ (z0). (5.2)

Therefore, thanks to (2.2), we obtain that there exists a constant C such that

∫ +∞

0

∫
�

∣∣∣∣u(t) − 1

|�|
∫

�

u(t)

∣∣∣∣
2

dt ≤ C. (5.3)

Let w ∈ ωσ (z0), then there exists a sequence tn → +∞ such that S(tn)z0 ⇀ w. By
(5.3), we have

αn :=
∫ +∞

tn

∫
�

∣∣∣∣u(t) − 1

|�|
∫

�

u(t)

∣∣∣∣
2

dt → 0.



Vol. 8, 2008 Nonlocal Nonlinear Diffusion Equations 211

Take sn → 0 such that

lim
n→∞

αn

sn
= 0. (5.4)

By contradiction it is easy to see that there exists t̄n ∈ [tn, tn + C
sn

] such that

∫
�

∣∣∣∣u(t̄n) − 1

|�|
∫

�

u(t̄n)

∣∣∣∣
2

≤ sn,

and consequently, ∫
�

∣∣∣∣u(t̄n) − 1

|�|
∫

�

u(t̄n)

∣∣∣∣
2

→ 0. (5.5)

Let us prove that
1

|�|
∫

�

u(t̄n)

is bounded. In fact, assume there exists a subsequence (still denoted by t̄n) such that

1

|�|
∫

�

u(t̄n) → +∞.

By (5.5) we get that u(t̄n) → +∞ a.e. Since z(t̄n) ∈ γ (u(t̄n)), then z(t̄n) → γ+ a.e.

Moreover, as z(t̄n) 
 z0 and γ + ≥ 0, we can deduce that limn→∞ z(t̄n) = limn→∞ z(t̄n)
+

weakly in L1(�). Hence, applying Fatou’s Lemma, we get∫
�

z0 = lim
n→∞

∫
�

z(t̄n)
+ ≥ γ+|�|,

a contradiction. A similar argument shows that
1

|�|
∫

�

u(t̄n) is bounded from below. There-

fore, passing to a subsequence if necessary, we may assume that

1

|�|
∫

�

u(t̄n) → k

for some constant k. Using again (5.5),

u(t̄n) → k, strongly in L2(�) and a.e. (5.6)

Since z(t̄n) 
 z0, we can assume, taking a subsequence if necessary, that z(t̄n) ⇀ ŵ

weakly in L1(�). Then, from (5.6) it follows that ŵ ∈ γ (k), and consequently ŵ ∈ F . Let
us show now that w = ŵ. By (5.4), we have

∥∥z(t̄n) − z(tn)
∥∥ =

∥∥∥∥∥
∫ t̄n

tn

zt (s) ds

∥∥∥∥∥
L1(�)

=
∥∥∥∥∥
∫ t̄n

tn

Au(s) ds

∥∥∥∥∥
L1(�)

≤ M(t̄n − tn)
1/2

(∫ +∞

tn

∫
�

∣∣∣∣u(s) − 1

|�|
∫

�

u(s)

∣∣∣∣
2

ds

)1/2

≤ M

(
C

αn

sn

)1/2

→ 0,
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where M is a constant depending of |�|. Therefore, taking limit, we get z(t̄n)− z(tn) → 0,
strongly in L1(�), since it converges weakly to w − w, it follows that w = w, which is a
fixed point. Finally, if ω(z0) �= ∅, since ω(z0) ⊂ ωσ (z0) ⊂ F and (S(t)) is a contraction
semigroup, we have that ω(z0) = {w} ⊂ F and

lim
t→∞ S(t)z0 = w strongly in L1(�).

�

REMARK 5.2. Note that in order to proof that ω(z0) �= ∅, a usual tool is to show that the
resolvent of Bγ is compact. In our case this fails in general as the following example shows.
Let γ any maximal monotone graph with γ (0) = [0, 1], zn ∈ L∞(�), 0 ≤ zn ≤ 1 such
that {zn} is not relatively compact in L1(�). It is easy to check that zn = (I + Bγ )−1(zn).
Hence (I +Bγ )−1 is not a compact operator in L1(�). On the other hand, since the nonlocal
operator does not have regularizing effects, here we cannot prove regularity properties of
the solutions that would help to find compactness of the orbits. Nevertheless, we shall see
in the next result that when γ is a continuous function we are able to prove that ω(z0) �= ∅.

Let us see now some cases in which ω(z0) �= ∅ and

lim
t→∞ S(t)z0 = 1

|�|
∫

�

z0 strongly in L1(�).

Given a maximal monotone graph γ in R × R, we set

γ (r+) := inf γ (]r, +∞[), γ (r−) := sup γ (] − ∞, r[)

for r ∈ R, where we use the conventions inf ∅ = +∞ and sup ∅ = −∞. It is easy to see
that

γ (r) = [γ (r−), γ (r+)] ∩ R for r ∈ R.

Moreover, γ (r−) = γ (r+) except at a countable set of points, which we denote by J (γ ).

COROLLARY 5.3. Let z0 ∈ L1(�) such that γ− ≤ z0 ≤ γ+, γ− < 1
|�|
∫
�

z0 < γ+
and

∫
�

j∗
γ (z0) < +∞. The following statements hold.

1. If 1
|�|
∫
�

z0 �∈ γ (J (γ )) or 1
|�|
∫
�

z0 ∈ {γ (k+), γ (k−)} for some k ∈ J (γ ), then

lim
t→∞ S(t)z0 = 1

|�|
∫

�

z0 strongly in L1(�).

2. If γ is a continuous function then

lim
t→∞ S(t)z0 = 1

|�|
∫

�

z0 strongly in L1(�).
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3. If 1
|�|
∫
�

z0 ∈]γ (k−), γ (k+)[ for some k ∈ J (γ ), then

ωσ (z0) ⊂
{
w ∈ L1(�) : w ∈ [γ (k−), γ (k+)] a.e.,

∫
�

w =
∫

�

z0

}
.

and consequently, for any w ∈ ωσ (z0), there exists a non null set in which w ∈
]γ (k−), γ (k+)[.

Proof. (1). Along this proof we denote by z(t) = S(t)z0 the solution to problem P J
γ (z0)

and u(t) the corresponding function that appears in Definition 1.1. First, let us assume that
1

|�|
∫
�

z0 �∈ γ (J (γ )) and z0 ∈ L∞(�). Working as in the above theorem, we have that
there exists a constat k such that

u(tn) → k, strongly in L2(�) and a.e. (5.7)

Since z(tn) 
 z0, there exists a subsequence such that z(tn) ⇀ w weakly in L1(�). Now,
from z(tn) ∈ γ (u(tn)) we deduce that w ∈ γ (k) and consequently, since 1

|�|
∫
�

z0 =
1

|�|
∫
�

w, k �∈ J (γ ). Then, there exists δ > 0 such that γ is univalued and continuous on
]k − δ, k + δ[. Hence, w = γ (k) and z(tn) → γ (k) a.e. Therefore, Since z(tn) is bounded
in L∞(�), z(tn) → γ (k) = 1

|�|
∫
�

z0 strongly in L1(�). Then, by the above theorem we
get that

z(t) → 1

|�|
∫

�

z0, as t → ∞.

The general case z0 ∈ L1(�) follows easily from the previous arguments using again that
we deal with a contraction semigroup.

Assume now that 1
|�|
∫
�

z0 ∈ {γ (k+), γ (k−)} for some k ∈ J (γ ). It is easy to see that

we can find z0,n ∈ L1(�), with γ− ≤ z0,n ≤ γ+, γ− < 1
|�|
∫
�

z0,n < γ+ and
∫
�

j∗
γ (z0,n) <

+∞, such that z0,n → z0 strongly in L1(�) and verifying 1
|�|
∫
�

z0,n �∈ γ (J (γ )) for all n.
Then, by the above step, we have

S(t)z0,n → 1

|�|
∫

�

z0,n, strongly in L1(�),

from where it follows, using again that (S(t)) is a contraction semigroup, that

S(t)z0 → 1

|�|
∫

�

z0, strongly in L1(�).

Statement (2) is an obvious consequence of (1) since in this case J (γ ) = ∅.
Finally, we prove (3). Given w ∈ ωσ (z0), by Theorem 5.1, there exists k0 ∈ D(γ ), such

that w ∈ γ (k0). Then, k0 = k. In fact, if we assume, for instance, that k0 < k, then

γ (k0+) ≥ 1

|�|
∫

�

w = 1

|�|
∫

�

z0 > γ (k−) > γ (k0+),
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a contradiction. Hence, we have w ∈ γ (k), and

1

|�|
∫

�

w = 1

|�|
∫

�

z0 ∈]γ (k−), γ (k+)[.

Thus, w ∈ [γ (k−), γ (k+)] a.e. and, moreover, there exists a non null set in which w ∈
]γ (k−), γ (k+)[. �

REMARK 5.4. An alternative proof of the fact that ω(z0) ⊂ F is the following. Let

� : L1(�) →] − ∞, +∞]

the functional defined by

�(z) :=



∫

�

j∗
γ (z) if j∗

γ (z) ∈ L1(�),

+∞ if j∗
γ (z) �∈ L1(�).

Since j∗
γ is continuous and convex, � is lower semi-continuous ([8], pag.160). Moreover,

since S(t)z0 
 z0 for all t ≥ 0, we have �(S(t)z0) ≤ �(z0) for all t ≥ 0. Therefore,
� is a lower semi-continuous Liapunov functional for (S(t)). Then, by the Invariance
Principle of Dafermos ([15]), � is constant on ω(z0). Consequently, given w0 ∈ ω(z0), if
w(t) = S(t)w0, we have �(w(t)) is constant for all t ≥ 0. Letu(t) such that w(t) ∈ γ (u(t))

and wt = A(u(t)). Working as in the proof of (4.9), we get

0 = d

dt
�(w(t)) = d

dt

∫
�

j∗
γ (w(t)) = d

dt

∫
�

jγ −1(w(t)) =
∫

�

Au(t) u(t).

Then, by Proposition 2.2, we obtain that

u(t) = 1

|�|
∫

�

u(t).

Hence, w(t) ∈ F for all t > 0, and consequently, w0 ∈ F .
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