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Second order evolution equations with time-dependent subdifferentials

Masahiro Kubo

Abstract. We study an abstract second order nonlinear evolution equation in a real Hilbert space. We consider
time-dependent convex functions and their subdifferentials operating on the first derivative of the unknown function.
Introducing appropriate assumptions on the convex functions and other data, we prove the existence and uniqueness
of a strong solution, and give some applications of the abstract theorem to hyperbolic variational inequalities with
time-dependent constraints.

1. Introduction

In this paper, we prove the existence and uniqueness of a strong solution of the following
evolution equation and initial condition in a real Hilbert space H :

u′′(t)+ Au(t)+ νAu′(t)+ ∂ϕt (u′(t)) � f (t), 0 < t < T, (1.1)

u(0) = u0, u′(0) = u1, (1.2)

whereA is a non-negative self-adjoint operator inH ; ν ≥ 0 is a constant; ∂ϕt is the subdif-
ferential of a proper, l.s.c. (lower semi-continuous), and convex function ϕt depending on
t ∈ [0, T ]; f is a given H -valued function; u0 and u1 are given initial values. By a strong
solution, we mean that all the terms u′′, Au and Au′ exist, belong to the Hilbert space H
and satisfy the equation (1.1) and the initial condition (1.2). A precise definition will be
given in Section 2.

J.L. Lions [11] initiated the study of this type of problem which refers to unilateral
problems or variational inequalities for hyperbolic equations. Then, Brézis [4], Barbu [2],
Sasaki [13] and Bernardi-Luterotti [3] studied various aspects of the problem.

In these studies, except for that of Sasaki [13], the case of a time-independent convex
function (or a convex constraint), i.e., ϕt ≡ ϕ in (1.1), was treated.

However, as was proposed by Lions [12, Open Problem 9.7] and Duvaut-Lions [8, Intro-
duction], problems with time-dependent convex functions (or constraints) are important
and interesting from both a theoretical view point and in respect to application.
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In this respect, Sasaki [13] proved the existence and uniqueness of a strong solution in the
case where the convex functions are the indicator functions of time-dependent convex sets
K(t), that is, ϕt = IK(t), by employing the time-dependence condition onK(t) introduced
by Brézis [5] for parabolic variational inequalities (cf. (1.3) below).

The present paper aims to establish the existence of a unique strong solution of the
problem {(1.1),(1.2)} with time-dependent subdifferentials ∂ϕt in general and thus to unify
the relevant precedent results.

For the time-dependence condition on ϕt , we employ the standard in the theory of the
first order time-dependent subdifferential evolution equation:

u′(t)+ ∂ϕt (u(t)) � f (t), 0 < t < T, (1.3)

as developed by Kenmochi [9], Yamada [14] and Yotsutani [16], in a form as given in Kubo
[10, Section 5, (E)]. See the condition (B) given below. This condition, in a slightly weaker
form [10, Section 4,(D)], is necessary and sufficient for the equation (1.3) (with an initial
condition u(0) = u0) to admit a unique solution obeying a class of energy inequality. See
[10, Section 4] for details. In this paper, we employ the framework and the results of [10]
to control the time-dependence of ϕt .

We need another condition on ϕt for relating it to the operator A. For this purpose, we
generalize the conditions used by Brézis [4, Théorème III.2], [5, (1)] and Sasaki [13, (A.1)
and (A.2)]. See the condition (C) below and Lemma 5.1 in Section 5.

The main theorem is given in Section 2, and is proved in Sections 3 and 4 except for the
proofs of some technical lemmas. In Section 5, we give some applications of our abstract
theorem to variational inequalities for hyperbolic equations. The technical lemmas are
proved in Section 6. In Appendix, for the convenience of readers, we give standard notions
and notations related to convex functions and their subdifferentials. The basic notations and
assumptions in this paper are given below.

Notation and assumptions

Throughoutofthispaper,H denotesarealHilbertspacewithitsnormandinnerproductdenoted
by | · |H and (·, ·), respectively. For a proper, l.s.c., and convex function ϕ : H → R ∪ {∞},
its subdifferential and their Yosida-approximations are denoted by ∂ϕ, ϕλ and ∂ϕλ (λ > 0),
respectively. For their definitions and fundamental properties, refer to the Appendix.

The following conditions (A)–(D) for the data A, ϕt , f, u0 and u1 are always assumed.

(A) A is a non-negative self-adjoint operator in H . The domains D(A) and D(A1/2) of
A and of its fractional power A1/2 are supposed to be Hilbert spaces with the graph
norms. The Yosida-approximation of A is denoted by Aλ (λ > 0). We write A1/2

λ for
the fractional power (Aλ)1/2 of Aλ.

(B) (cf. [10, Section 5, (E)]) {ϕt ; 0 ≤ t ≤ T } is a family of proper, l.s.c., and convex
functions on H . There exists a constant α ∈ [0, 1], and for each r > 0 there are a
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constant Kr ≥ 0 and two functions pr ∈ W 1,β(0, T ) (β = 2 if α ∈ [0, 1/2] and
= 1/(1 − α) if α ∈ [1/2, 1]) and qr ∈ W 1,1(0, T ) such that for each 0 ≤ s ≤ t ≤ T

and z ∈ D(ϕs) with |z|H ≤ r there exists an element z̃ ∈ D(ϕt ) satisfying

|z̃− z|H ≤ |pr(t)− pr(s)|(ϕs(z)+Kr)
α

and
ϕt (z̃)− ϕs(z) ≤ |qr(t)− qr(s)|(ϕs(z)+Kr).

(C) (a) There exists a non-negative function g ∈ L2(0, T ) such that for all t ∈ [0, T ],
z ∈ H and λ > 0 and there holds

(∂ϕtλ(z), Aλz) ≥ −g(t)|∂ϕtλ(z)|H .

(b) There exists h ∈ W 1,1(0, T ;D(A1/2)) such that the function t 
→ ϕt (h(t))

belongs to L1(0, T ).
(D) f ∈ L2(0, T ;D(A1/2)), u0 ∈ D(A), u1 ∈ D(A1/2) ∩D(ϕ0).

2. Main Theorem

We denote by (E) the problem {(1.1),(1.2)}. The notion of a strong solution of (E) is
defined below.

DEFINITION. A function u : [0, T ] → H is called a strong solution of (E) if the
following items are satisfied.

(a) u ∈ W 2,2(0, T ;H) ∩W 1,∞(0, T ;D(A1/2)) ∩ L∞(0, T ;D(A)). In particular, when
ν > 0, u ∈ W 1,2(0, T ;D(A)).

(b) There holds for a.e. t ∈ (0, T )

u′′(t)+ Au(t)+ νAu′(t)+ ∂ϕt (u′(t)) � f (t).

(c) u(0) = u0 and u′(0) = u1.

The uniqueness of a strong solution can be proved easily by a standard argument using
the positivity ofA and the monotonicity of ∂ϕt . Therefore, we omit the proof of uniqueness.

The main result of this paper is stated below.

THEOREM. Under the conditions (A)–(D), there exists a strong solution of (E) satis-
fying sup0≤t≤T |ϕt (u′(t))| < ∞.

We will prove this theorem in the next two sections.
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3. Proof of Theorem

Note that our condition (B) is the same as [10, Section 5, (E)]. Therefore, we have the
following lemma (cf. [10, Lemma 2.1, Lemmas 3.1–3.3]).

LEMMA 3.1. (a) There exists a constant γ > 0 such that for all t ∈ [0, T ], z ∈ H

and λ ∈ (0, 1] there holds
ϕtλ(z)+ γ |z|H + γ ≥ 0.

(b) For each z ∈ H and λ ∈ (0, 1], t 
→ ϕtλ(z) and t 
→ ∂ϕtλ(z) are measurable real-
valued and H -valued functions, respectively.

(c) There exists a constant δ > 0 such that for all t ∈ [0, T ], z ∈ H and λ ∈ (0, 1] and
there holds

|J tλz|H ≤ |z|H + δ and |∂ϕtλ(z)|H ≤ 2|z|H + δ

λ
,

where J tλ = (I + λ∂ϕt )−1.

By Lemma 3.1 and a standard argument, we can prove the following.

PROPOSITION 3.2. For eachλ ∈ (0, 1], there exists a unique solutionu ∈ W 2,2(0, T ;H)
of the following problem:

u′′
λ(t)+ Aλuλ(t)+ νAλu

′
λ(t)+ ∂ϕtλ(u

′
λ(t)) = f (t) a.e. t ∈ (0, T ),

uλ(0) = u0, u′
λ(0) = u1.

The crucial step in the proof of the Theorem is to derive the following uniform estimate.

PROPOSITION 3.3. There exists a constant M0 > 0 independent of λ ∈ (0, 1] and
ν ∈ [0, ν0] with a fixed ν0 > 0 such that the solution uλ in Proposition 3.2 has the bound:

|uλ|W 2,2(0,T ;H) + |A1/2
λ uλ|W 1,∞(0,T ;H) + |Aλuλ|L∞(0,T ;H)

+√
ν|Aλu′

λ|L2(0,T ;H) + sup
0≤t≤T

|ϕtλ(u′
λ(t))| ≤ M0.

The proof of this proposition will be given in Section 4.
We now prove the main Theorem. First, we have by Proposition 3.3, taking a subsequence

of λ ↓ 0 if necessary, that

uλ → uweakly in W 2,2(0, T ;H),
A

1/2
λ uλ → v1/2weakly-∗ in W 1,∞(0, T ;H),
Aλuλ → v1weakly-∗ in L∞(0, T ;H),
∂ϕ

(·)
λ (u

′
λ) → u∗weakly in L2(0, T ;H),
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and, if ν > 0,
Aλu

′
λ → w weakly in L2(0, T ;H)

for some u, v1/2, v1, u
∗ and w.

It is straightforward that

u′′(t)+ v1(t)+ νw(t)+ u∗(t) = f (t) a.e. t ∈ (0, T )
and

uλ(0) = u0, u′
λ(0) = u1.

All we have to show is that v1/2 = A1/2u, v1 = Au,w = Au′, u∗(t) ∈ ∂ϕt (u(t)) for a.e.
t ∈ (0, T ) and sup0≤t≤T |ϕt (u′(t))| < ∞.

Note first that

(I + λA)−1uλ − u = (I + λA)−1uλ − uλ + uλ − u = −λAλuλ + uλ − u,

hence we have
(I + λA)−1uλ → u weakly in L2(0, T ;H).

On the other hand,

A(I + λA)−1uλ = Aλuλ → v1 weakly in L2(0, T ;H).
Therefore, by the closedness (in the weak topology) of A extended as an operator in
L2(0, T ;H), we have Au ∈ L2(0, T ;H) and v1 = Au. From this and noting D(A) ⊂
D(A1/2), we can also derive A1/2u ∈ L2(0, T ;H) and v1/2 = A1/2u. When ν > 0, we
can show in the same way

w = Au′.
In order to prove u∗(t) ∈ ∂ϕt (u(t)) for a.e. t ∈ (0, T ), take an arbitrary v ∈ L2(0, T ;H)

with ∫ T

0
ϕt (v(t))dt < ∞.

Then, we have by the approximate equation∫ T

0
ϕt (v(t))dt −

∫ T

0
ϕtλ(u

′
λ(t))dt

∫ T

0
ϕtλ(v(t))dt −

∫ T

0
ϕtλ(u

′
λ(t))dt

≥
∫ T

0
(f − u′′

λ − Aλuλ − νAλu
′
λ, v − u′

λ)dt

=
∫ T

0
{(f − u′′

λ − Aλuλ − νAλu
′
λ, v)− (f, u′

λ)}dt

+
∫ T

0
(u′′
λ + Aλuλ + νAλu

′
λ, u

′
λ)dt

=
∫ T

0
{(f − u′′

λ − Aλuλ − νAu′
λ, v)− (f, u′

λ)}dt +
1

2
|u′
λ(T )|2H − 1

2
|u1|2H

+1

2
|A1/2
λ uλ(T )|2H − 1

2
|A1/2
λ u0|2H + ν

∫ T

0
|A1/2
λ u′

λ|2dt. (3.1)
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Since for all t ∈ [0, T ]

u′
λ(t) → u′(t) and A

1/2
λ uλ(t) → A1/2u(t) weakly in H, (3.2)

we have

|u′(T )|2H ≤ lim inf
λ→0

|u′
λ(T )|2H and |A1/2uλ(T )|2H ≤ lim inf

λ→0
|A1/2
λ uλ(T )|2H .

Similarly, since
A

1/2
λ u′

λ → A1/2u′ weakly in L2(0, T ;H),
we have ∫ T

0
|A1/2u′|2dt ≤ lim inf

λ→0

∫ T

0
|A1/2
λ u′

λ|2dt.
Furthermore by (3.2), (A.1) in Appendix and Fatou’s lemma we have

∫ T

0
ϕt (u′(t))dt ≤

∫ T

0
lim inf
λ→0

ϕtλ(u
′
λ(t))dt ≤ lim inf

λ→0

∫ T

0
ϕtλ(u

′
λ(t))dt.

Now, taking these into account, we let λ → 0 in (3.1) and we obtain
∫ T

0
ϕt (v(t))dt −

∫ T

0
ϕt (u′(t))dt ≥

∫ T

0
{(f − u′′ − Au− νAu′, v)− (f, u′)}dt

+1

2
|u′(T )|2H − 1

2
|u1|2H + 1

2
|A1/2uλ(T )|2H

−1

2
|A1/2u0|2H + ν

∫ T

0
|A1/2u′|2dt

=
∫ T

0
(f − u′′ − Au− νAu′, v − u′)dt

=
∫ T

0
(u∗, v − u′)dt.

Therefore, we obtain u∗(t) ∈ ∂ϕt (u(t)) for a.e. t ∈ (0, T ) with the aid of the following
lemma.

LEMMA 3.4. Let 	 : L2(0, T ;H) → R ∪ {∞} be defined by

	(v) :=
∫ T

0
ϕt (v(t))dt.

Then, 	 is proper, l.s.c., and convex. Moreover, for v, v∗ ∈ L2(0, T ;H), v∗ ∈ ∂	(v) if
and only if

v∗(t) ∈ ∂ϕt (v(t)) for a.e. t ∈ (0, T ).
The proof of this lemma is given in Section 6.1.
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Finally, by (3.2) and (A.1) again, we have

sup
0≤t≤T

|ϕt (u′(t))| < M ′
0,

whereM ′
0 > 0 depends only onM0 andγ in Proposition 3.3 and Lemma 3.1-(a), respectively.

Thus the proof of Theorem is completed except for the proofs of Proposition 3.3 and
Lemma 3.4, which are given in Sections 4 and 6, respectively.

4. Proof of Proposition 3.3

4.1. Estimate I

The following lemma will be used in deriving the first estimate.

LEMMA 4.1. There exists a function k ∈ W 2,2(0, T ;H) ∩ W 1,∞(0, T ;D(A1/2)) ∩
W 1,2(0, T ;D(A)) such that sup0≤t≤T |ϕt (k′(t))| < ∞.

The proof of this lemma is given in Section 6.2.
In what follows, we often write simply u for the approximate solution uλ. Note first by

the approximate equation

u′′ − k′′ + Aλ(u− k)+ νAλ(u
′ − k′)+ ∂ϕtλ(u

′) = fλ (:= f − k′′ − Aλk − νAλk
′).

Multiplying this by u′ − k′ and adding γ |u′|H + γ to both sides, we obtain

1

2

d

dt
|u′ − k′|2H + 1

2

d

dt
|A1/2
λ (u− k)|2H + ν|A1/2

λ (u′ − k′)|2H + ϕtλ(u
′)+ γ |u′|H + γ

≤ (fλ, u
′ − k′)+ ϕtλ(k

′)+ γ |u′|H + γ.

Hence, by Lemma 4.1, Lemma 3.1-(a) and Gronwall’s inequality, we obtain the following
estimate.

PROPOSITION 4.2. There exists a constant M1 > 0 such that for all λ ∈ (0, 1] there
holds

|uλ|W 1,∞(0,T ;H) + |A1/2
λ uλ|L∞(0,T ;H) + √

ν|A1/2
λ u′

λ|L2(0,T ;H) + |ϕ(·)λ (u′
λ)|L1(0,T ) ≤ M1.

4.2. Estimate II

The second and main estimate is based on the following lemma. For the proof we refer to
[10, Lemma 3.4].
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LEMMA 4.3. (a) For anyv ∈ W 1,1(0, T ;H)andλ ∈ (0, 1], the function t 
→ ϕtλ(v(t))

is of bounded variation and its positive variation is absolutely continuous on [0, T ].

(b) There exists a family {(ar , br , cr , dr ); r > 0} ⊂ [0, 1)×L1(0, T )×L1(0, T )× [0,∞)

such that for any v ∈ W 1,1(0, T ;H), λ ∈ (0, 1] and r ≥ |v|L∞(0,T ;H) there holds
for a.e. t ∈ (0, T )

d

dt
ϕtλ(v(t))− (∂ϕtλ(v(t)), v

′(t)) ≤ ar |∂ϕtλ(v(t))|2H + br(t)+ cr(t)ϕ
t
λ(v(t))

+dr
(
ϕtλ(v(t))

)2
.

First, multiply the approximate equation byAλu′. Then, using the condition (C)–(a) and
the Schwarz inequality, we have

d

dt

{
1

2
|A1/2
λ u′|2H + 1

2
|Aλu|2H

}
+ν|Aλu′|2H ≤ 1

2
|A1/2
λ f |2H+ 1

2
|A1/2
λ u′|2H+g(t)|∂ϕtλ(u′)|H .

(4.1)
Second, by Lemma 4.3 and Proposition 4.2 we have for r ≥ M1

d

dt
ϕtλ(u

′)− (∂ϕtλ(u
′), u′′) ≤ ar |∂ϕtλ(u′)|2H + br(t)+ (

cr(t)+ drϕ
t
λ(u

′)
)
ϕtλ(u

′).

Hence, by the approximate equation, we have

d

dt
ϕtλ(u

′)+ |u′′|2H+(Aλu, u′′)+ ν(Aλu
′, u′′) ≤ (f, u′′)+ ar |u′′ + Aλu+ νAλu

′ − f |2H
+br(t)+ (

cr(t)+ drϕ
t
λ(u

′)
)
ϕtλ(u

′).

Notice here that

(Aλu, u
′′) = d

dt
(A

1/2
λ u,A

1/2
λ u′)− |A1/2

λ u′|2H .
Then, we obtain

d

dt

{
ϕtλ(u

′)+ (A
1/2
λ u,A

1/2
λ u′)+ ν

2
|A1/2
λ u′|2H

}
+ |u′′|2H

≤ |A1/2
λ u′|2H + (f, u′′)+ ar |u′′ + Aλu+νAλu′−f |2H

+br(t)+ (
cr(t)+ drϕ

t
λ(u

′)
)
ϕtλ(u

′).

Therefore, we have

d

dt

{
ϕtλ(u

′)+ (A
1/2
λ u,A

1/2
λ u′)+ ν

2
|A1/2
λ u′|2H

}
+ (1 − ar − ε)|u′′|2H

≤ A
1/2
λ u′|2H + Cε(|f |2H + |Aλu|2H + ν2|Aλu′|2H )

+br(t)+ (
cr(t)+ drϕ

t
λ(u

′)
)
ϕtλ(u

′), (4.2)

where ε > 0 is chosen so that 1 − ar − ε > 0 and Cε > 0 depends on ε.
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Now, let C1 := max{1, Cεν} + 1 and calculate C1 × (4.1)+ (4.2). Then, we have

d

dt
U + (C1 − Cεν)ν|Aλu′|2H + (1 − ar − ε)|u′′|2H

≤ C1

(
1

2
|A1/2
λ f |2H + 1

2
|A1/2
λ u′|2H + g(t)|∂ϕtλ(u′)|H

)

+|A1/2
λ u′|2H + Cε(|f |2H + |Aλu|2H )+ br(t)+ V (t)|ϕtλ(u′)|,

where

U(t) := C1

(
1

2
|A1/2
λ u′|2H + 1

2
|Aλu|2H

)
+ ϕtλ(u

′)+ (A
1/2
λ u,A

1/2
λ u′)+ ν

2
|A1/2
λ u′|2H ,

V (t) := ∣∣cr(t)+ drϕ
t
λ(u

′(t))
∣∣ .

Here we again use the Schwarz inequality to the term

C1g(t)|∂ϕtλ(u′)|H = C1g(t)|u′′ + Aλu+ νAλu
′ − f |H .

Then, we obtain

d

dt
U + (C1 − Cεν − ε′ν)ν|Aλu′|2H + (1 − ar − ε − ε′)|u′′|2H

≤ Cε,ε′
(
|f |2H + |A1/2

λ f |2H + g(t)2 +W(t)
)

+ br(t)+ V (t)|ϕtλ(u′)|, (4.3)

where ε′ > 0 is chosen so thatC1−Cεν−ε′ν > 0 and 1−ar−ε−ε′ > 0;Cε,ε′ > 0 depends
on ε and ε′ and is independent of other data, especially of λ ∈ (0, 1] and of ν ∈ [0, ν0 with
a fixed ν0 > 0; and we have put

W := |A1/2
λ u′|2H + |Aλu|2H .

Here note by Proposition 4.2 and Lemma 3.1-(a)

|A1/2
λ u|2H ≤ |u|2H + |Aλu|2H ≤ M2

1 + |Aλu|2H ,
|ϕtλ(u′)| ≤ ϕtλ(u

′)+ 2γ |u′|H + 2γ ≤ ϕtλ(u
′)+ 2γ (M1 + 1).

Therefore we have

U ≥ ϕtλ(u
′)+ C1 − 1

2
|A1/2
λ u′|2H + +C1 − 1

2
|Aλu|2H − 1

2
M2

1 .

≥ |ϕtλ(u′)| + C′
1

(
|A1/2
λ u′|2H + |Aλu|2H

)
−M ′

1,

C′
1 := C1 − 1

2
, M ′

1 := 1

2
M2

1 + 2γ (M1 + 1).
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Hence we have
W ≤ (C′

1)
−1(U +M ′

1), |ϕtλ(u′)| ≤ U +M ′
1.

Using these inequalities and noting by Proposition 4.2

|V |L1(0,T ) ≤ |cr |L1(0,T ) + drM1,

we obtain the estimates desired in Proposition 3.3, by applying Gronwall’s inequality in
(4.3).

5. Application

In this section, we apply the abstract Theorem to some variational inequalities for a wave
equation with (ν > 0) or without (ν = 0) the dissipation term:

utt −�u− ν�ut = f.

The following lemma is useful in verifying the condition (C)–(a).

LEMMA 5.1. Let ϕ be a proper, l.s.c., and convex function on H , and A be a non-
negative self-adjoint operator. Assume that there exists g ∈ H such that for all z ∈ H and
λ > 0

ϕ((I + λA)−1(z+ λg)) ≤ ϕ(z). (5.1)

Then, we have

(∂ϕλ(z), Aλz) ≥ (∂ϕλ(z), (I + λA)−1g).

Note that |(I+λA)−1g|H ≤ |g|H . Therefore, by this lemma, the condition (5.1) is sufficient
for the condition (C)–(a). This lemma will be proved in Section 6.3.

In what follows, � denotes a bounded domain in RN (N ≥ 1) with a smooth boundary
∂�, and we putH := L2(�) and Az := −�z for z ∈ D(A) := H 2(�)∩H 1

0 (�). We give
some example of convex functions satisfying the conditions (B) and (C).

5.1. Unilateral constraints

Let j : R → R ∪ {∞} be proper, l.s.c., and convex and put β := ∂j . Let ψ ∈
W 1,2(0, T ;H)∩L2(0, T ;H 1(�)) satisfy�ψ ∈ L2(0, T ;H) and β(−ψ(t, x)) � 0 for all
(t, x) ∈ [0, T ] × ∂�, and q ∈ W 1,1(0, T ) be q ≥ 0 on [0, T ].

Define for t ∈ [0, T ] and z ∈ H

ϕt(z) :=
∫
�

q(t)j (z(x)− ψ(t, x))dx.
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To verify the condition (B), put

z̃ := z− ψ(s)+ ψ(t).

Then,

|z̃− z|H = |ψ(t)− ψ(s)|H ≤
∫ t

s

|ψ ′(τ )|Hdτ

and

ϕt (z̃)− ϕs(z) = (q(t)− q(s))ϕs(z).

Therefore, we can choose

pr(t) :=
∫ t

0
|ψ ′(τ )|Hdτ and qr(t) := q(t).

To verify the condition (C)–(a), first note that for µ > 0

ϕtµ(z) =
∫
�

q(t)jµ(z(x)− ψ(t, x))dx,

where ϕtµ and jµ are the Yosida-approximations of ϕt and j , respectively. Next, put
zλ := (I+λA)−1(z−λ�ψ) and note that ∂jµ = βµ, where βµ is the Yosida-approximation
of β. Then, we have

ϕtµ(z)− ϕtµ(zλ) ≥
∫
�

q(t)βµ(zλ(x)− ψ(t, x))(z(x)− zλ(x))dx

= λ

∫
�

q(t)βµ(zλ(x)− ψ(t, x))(−�(zλ(x)− ψ(t, x)))dx

= λ

∫
�

q(t)β ′
µ(zλ(x)− ψ(t, x))|∇(zλ − ψ(t))|2dx

≥ 0,

where we have used the relation

z− λ�ψ − zλ = (I − (I + λA)−1)(z− λ�ψ) = λA(I + λA)−1(z− λ�ψ) = −λ�zλ
and

βλ(zλ(x)− ψ(t, x)) = βλ(−ψ(t, x)) = 0 on ∂�.

By letting µ → 0, we have ϕt (zλ) ≤ ϕt (z). Thus by Lemma 5.1, we have (C)–(a) with
g := −�ψ .

The condition (C)–(b) is easily verified by taking h ≡ 0.
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5.2. Bilateral constraints

Here we define ϕt to be the indicator function of a convex set K(t):

ϕt := IK(t),

where
K(t) := {z ∈ H ; ψ1(t) ≤ z ≤ ψ2(t) in �}

with ψi ∈ W 1,2(0, T ;H) ∩ L2(0, T ;H 1(�)),�ψi ∈ L2(0, T ;H), i = 1, 2, ψ1 ≤ ψ2 in
[0, T ] ×�, ψ1 ≤ 0 ≤ ψ2 on [0, T ] ×�.

The condition (B) is verified by choosing

z̃ := [z− ψ2(s)+ ψ2(t)− ψ1(t)]
+ + ψ1(t),

since we then have (cf. Yamazaki [15, Lemma 2.1])

|z̃− z|H ≤
∫ t

s

(|ψ ′
1(τ )|H + |ψ ′

2(τ )|H )dτ
and we can take

pr(t) :=
∫ t

0
(|ψ ′

1(τ )|H + |ψ ′
2(τ )|H )dτ and qr ≡ 0.

To verify (C)–(a), note first that

ϕt = ϕt1 + ϕt2,

where ϕti = IKi(t), i = 1, 2, with

K1(t) := {z ∈ H ; z ≥ ψ1(t) in �}, K2(t) := {z ∈ H ; z ≤ ψ2(t) in �}.
By the maximal principle, we can show for i = 1, 2

ϕti ((I + λA)−1(z− λ�ψi(t))) ≤ ϕti (z)

and therefore by Lemma 5.1

(∂ϕti,λ(z), Aλz) ≥ (∂ϕti,λ(z), (I + λA)−1(−�ψi(t))) ≥ −|�ψi(t)|H |∂ϕti,λ(z)|H .
Here note that

∂ϕtλ(z) = − [z− ψ1]−

λ
+ [z− ψ2]+

λ
= ∂ϕt1,λ(z)+ ∂ϕt2,λ(z)

and
|∂ϕtλ(z)|H = |∂ϕt1,λ(z)|H + |∂ϕt2,λ(z)|H .

Therefore we have

(∂ϕtλ(z), Aλz) ≥ − (|�ψ1(t)|H + |�ψ1(t)|H ) |∂ϕtλ(z)|H
and the condition (C)–(a) is satisfied.

The condition (C)–(b) is verified easily by taking h = (ψ1 ∧ 0) ∨ ψ2.
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5.3. Constraints on the gradients

Here we assume that the domain � is convex and put ϕt := IK3(t) with

K3(t) := {z ∈ H 1
0 (�); |∇z(x)| ≤ a(t) in �},

where a ∈ W 1,2(0, T ) and a(t) ≥ c0 for some constant c0 > 0. Then, the condition (B) is
verified by choosing

z̃ := a(t)

a(s)
z, pr(t) := r

c0

∫ t

0
|a′(τ )|dτ and qr ≡ 0.

Since the domain � is convex, we have by [7, Lemma III.4] that the condition (5.1) is
satisfied and hence (C)–(a) as well by Lemma 5.1.

Finally, the condition (C)–(b) is verified by choosing h ≡ 0.

6. Proof of Lemmas

6.1. Proof of Lemma 3.4

Since our condition (B) is the same as [10, Section 5, (E)], it implies the condition [10,
(a.2)], and hence 	 is proper; that is, not identically equal to infinity. Also, its convexity
and lower semi-continuity are consequences of those of ϕt , [10, (a.1)] and Fatou’s lemma.

Now, to characterize the subdifferential of 	 as in Lemma 3.4, we define an operator
A : L2(0, T ;H) → L2(0, T ;H) as follows: for v, v∗ ∈ L2(0, T ;H), v∗ ∈ Av if and
only if

v∗(t) ∈ ∂ϕt (v(t)) a.e. t ∈ (0, T ).
Then, it is easy to see that A is monotone and A ⊂ ∂	. We can also verify that the inverse
of I + A is defined by: v∗ = (I + A)−1v if and only if

v∗(t) = (I + ∂ϕt )−1(v(t)) a.e. t ∈ (0, T ).

By Lemma 3.1, this is well-defined and defined everywhere onL2(0, T ;H). Therefore (cf.
[6, Proposition 2.2]), A is maximal monotone and hence equal to ∂	.

6.2. Proof of Lemma 4.1

As the function k we can take

k(t) :=
∫ t

0
k̃(s)ds,
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where k̃ ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;D(A1/2)) ∩ L2(0, T ;D(A)) is the solution of the
following problem:

k̃′(t)+ Ak̃(t)+ ∂ϕt (k̃(t)) � 0 a.e. t ∈ (0, T ), (4.1)

k̃(0) = u1 (∈ D(A1/2) ∩D(ϕ0)).

We also have sup0≤t≤T |ϕt (k̃(t))| < ∞. To show the existence of such a solution, we first
solve the approximate problem for λ > 0

k̃′
λ(t)+ Aλk̃λ(t)+ ∂ϕtλ(k̃λ(t)) = 0 a.e. t ∈ (0, T ),

k̃λ(0) = u1.

We can derive the uniform estimate of {k̃λ}0<λ≤1 in a way similar to that in Section 4 as
follows.

First, take the functionh in (C)–(b) and multiply (4.1) by k̃λ−h to obtain as Proposition 4.2

|k̃λ|L∞(0,T ;H) + |A1/2
λ k̃λ|L2(0,T ;H) + |ϕ(·)λ (k̃λ)|L1(0,T ) ≤ N1,

where N1 > 0 is independent of λ ∈ (0, 1].
Next, multiply (4.1) by Ak̃λ to obtain

1

2

d

dt
|A1/2
λ k̃λ|2 + |Aλk̃λ|2 + (∂ϕtλ(k̃λ), Ak̃λ) = 0

and by k̃′
λ to obtain

|k̃′
λ|2 + 1

2

d

dt
|A1/2
λ k̃λ|2 + (∂ϕtλ(k̃λ), k̃

′
λ) = 0.

Then, using the condition (C)–(a) and Lemma 4.3 to these equalities, respectively, we can
derive a uniform estimate

|k̃λ|W 1,2(0,T ;H) + |A1/2
λ k̃λ|L∞(0,T ;H) + |Aλk̃λ|L2(0,T ;H) + sup

0≤t≤T
|ϕtλ(k(t))| ≤ N2,

where N2 > 0 is independent of λ ∈ (0, 1], in the same way as in Section 4.2. We note
here that, in applying Lemma 4.3-(b), we have to choose the number r > 0 so that r ≥ N1.

Now, as in Section 3, we can take a limit to obtain the desired solution k̃. Therefore the
function k defined above has the desired properties.

6.3. Proof of Lemma 5.1

By (5.1), we have for z∗ ∈ ∂ϕ(z)

(z∗, z− (I + λA)−1(z+ λg)

λ
) ≥ 1

λ

{
ϕ(z)− ϕ((I + λA)−1(z+ λg))

}
≥ 0.
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Hence
(z∗, Aλz) ≥ (z∗, (I + λA)−1g).

Here, noting ∂ϕλ(z) ∈ ∂ϕ((I + λ∂ϕ)−1z), we choose ∂ϕλ(z) and (I + λ∂ϕ)−1z for z∗ and
z respectively to obtain

(∂ϕλ(z), Aλ(I + λ∂ϕ)−1z) ≥ (∂ϕλ(z), (I + λA)−1g).

Therefore, by the non-negativity of Aλ, we have

(∂ϕλ(z), Aλz) = 1

λ
(z− (I + λ∂ϕ)−1z,Aλz)

≥ 1

λ
(z− (I + λ∂ϕ)−1z,Aλ(I + λ∂ϕ)−1z)

= (∂ϕλ(z), Aλ(I + λ∂ϕ)−1z)

≥ (∂ϕλ(z), (I + λA)−1g).

Thus the lemma is proved.

Appendix: Convex functions and subdifferentials

Here we recall some basic notions and properties concerning convex functions and their
subdifferentials. We refer to Brézis [6] for the details and proofs.

Let ϕ : H → {∞} be a proper, i.e., not identically equal to ∞, l.s.c. (lower semi-
continuous), and convex function. Its effective domain D(ϕ) is defined by D(ϕ) := {z ∈
H ;ϕ(z) < ∞}.

For a closed convex set K in H , the indicator function IK of K is defined by:

IK(z) :=
{

0 for z ∈ K
∞ for z ∈ H \K .

IK is a proper, l.s.c., and convex function.
The subdifferential ∂ϕ of a proper l.s.c., and convex function ϕ is a (possibly multi-

valued) operator in H defined by: z∗ ∈ ∂ϕ(z) if and only if z ∈ D(ϕ) and

(z∗, y − z) ≤ ϕ(y)− ϕ(z)

for all y ∈ D(ϕ). The domain D(∂ϕ) of ∂ϕ is defined by D(∂ϕ) := {z ∈ H ; ∂ϕ(z) �= ∅}.
It is easy to see that ∂ϕ is monotone, that is, there holds

(z∗1 − z∗2, z1 − z2) ≥ 0

for any z∗i ∈ ∂ϕ(zi), zi ∈ D(∂ϕ), i = 1, 2. Moreover ∂ϕ is maximal monotone, that is, its
graph is maximal with respect to the inclusion relation in the family of graphs of monotone
operators.
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By the maximal monotonicity of ∂ϕ, the operator Jλ := (I + λ∂ϕ)−1 is defined every-
where on H and is a contraction for all λ > 0 (cf. [6, Proposition 2.2]). For λ > 0, the
Yosida-approximation ∂ϕλ of ∂ϕ is defined by

∂ϕλ := I − Jλ

λ
.

It is known (cf. [6, Proposition 2.6]) that ∂ϕλ is maximal monotone with D(∂ϕ) = H and
is Lipschitz continuous with a Lipschitz constant 1/λ.

For λ > 0 the Yosida-approximation ϕλ of ϕ is defined by

ϕλ(z) := inf
y∈H

{
ϕ(y)+ 1

2λ
|z− y|2

}
.

Then, we have (cf. [6, Proposition 2.11]) that ϕλ is continuous and convex on H ,

ϕλ(z) = ϕ(Jλz)+ 1

2λ
|z− Jλz|2.

and ϕλ(z) ↑ ϕ(z) as λ ↓ 0 for all z ∈ H . From this, we can show (cf. [1, Definition 1.2])
that if zn → z weakly in H and λn → 0, then

ϕ(z) ≤ lim inf
n→0

ϕλn(zn). (A.1)

The subdifferential, in fact, the Fréchet derivative, ofϕλ is equal to the Yosida-approximation
∂ϕλ of ∂ϕ.
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