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Asymptotic Complexity in Filtration Equations

J. A. CARRILLO and J. L. VAZQUEZ

Abstract. We show that the solutions of nonlinear diffusion equations of the form u; = A®(u) appearing in
filtration theory may present complicated asymptotics as 1 — oo whenever we alternate infinitely many times
in a suitable manner the behavior of the nonlinearity ®. Oscillatory behaviour is demonstrated for finite-mass
solutions defined in the whole space when they are renormalized at each time ¢+ > 0 with respect to their own
second moment, as proposed in [Tos05, CDTOS5]; they are measured in the L! norm and also in the Buclidean
Wasserstein distance W5. This complicated asymptotic pattern formation can be constructed in such a way that
even a chaotic behavior may arise depending on the form of ®.

In the opposite direction, we prove that the assumption that the asymptotic normalized profile does not depend
on time implies that & must be a power-law function on the appropriate range of values. In other words, the
simplest asymptotic behavior implies a homogeneous nonlinearity.

1. Introduction

This paper is devoted to study the question of pattern formation for the family of filtration
equations of the form

L 11

Yl (u), (1.1)
where @ satisfies the basic set of hypotheses (HB): @ is a strictly increasing and continuous
real function with ®(0) = 0, and smooth for u > 0, so that the equations are parabolic, at
least in an extended way that is sufficient for the weak theories to apply. We consider finite
mass nonnegative solutions u(x, ¢) defined in RN x (0, 00). We will make below precise
assumptions that ensure that the Cauchy problem for such equation generates a continuous
semigroup u — Tyug = u(t), cf. [BC81] that conserves the total mass of the solution. A
further condition on ® is assumed to avoid loss of mass for fast diffusion, and thus, to deduce
mass-preservation together with a L[ smoothing effect (see [BB85, Ver79, Va(05]) that
we shall detail below. We impose the normalization of unit initial mass

/ uo(x)dx =1 (1.2)
RN

for the rest of the paper. This condition does not restrict the generality of the results, since it
can be obtained by arescaling of the equation. We see the solution as the evolution in time of
a probability distribution, u(¢) = u(-, t). The total mass is the same for all times ¢ > 0, but
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the mass distribution tends to spread in time. We want to discover the type of asymptotic
patterns associated to the large-time behavior of this class of equations. Because of the
spreading induced by diffusion, such patterns can only be seen after suitable normalization.

The standard cases. The question we address has been much studied for the most stan-
dard diffusion examples and admits a clear and simple answer in those cases. Thus, the
asymptotic behavior of the linear heat equation, u; = Au, is determined by the heat kernel

Bi(x, 1) = (4r)~N/2 g~ IxIP/4t (1.3)

A natural normalization in the case of the heat equation is to scale with the second moment
of the solution. It is well-known that such renormalized orbits converge to the Gaussian
profile

G(x) = Qu/N) N2 NP2, (1.4)

corresponding to the heat kernel at time + = 1/2N in which it has unit second moment.
This is related to the Central Limit Theorem, see [Tos05].

In the case of the Porous Medium Equation (PME), u;, = Au™, m > 1, it is known
that solutions converge to a Zel’dovich-Kompaneets-Barenblatt (ZKB) profile, i.e., source
solutions of the self-similar form:

Bu(x, 1) =t N Eu(x /1Y), Fu(8) = (Cn — k |s|2>ﬁ (1.5)
where
(m—1)
k= and A=N(@m—1)+2. (1.6)
2mh

The constant C,,, > 0 is determined by fixing the mass to 1. The result extends to some
range (N — 2)4/2 < m < 1 where the ZKB solutions exist and have finite mass. Here is
the precise statement, [Va03]:

THEOREM 1.1. [Self-Similar Asymptotic Convergence for PME] Let u(x, t) be the
unique weak solution of problem u; = Au™, m > (N — 2)4 /N, with initial data ug €
LL(RN ) and unit mass. Then as t — o0 we have

Tim lu(t) = B0l 1 vy = 0. (1.7)
Convergence holds also in L°°-norm in the proper scale:

tlinolotN/)‘Hu(t) — B0l oy = 0. (1.8)
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The second-moment normalization of the solutions for the homogeneous nonlinear
diffusion equation, u; = Au'", shows the convergence towards the ZKB profile B, (x, ty m)
at the time #, ,, in which it has unit second moment; see [Tos05] and next section for details.

Recently, the existence of a time-dependent asymptotic profile for second-moment nor-
malized solutions of general nonlinear filtration equations has been shown in [CDTO05]
under suitable hypotheses on the nonlinearity, see next section. These asymptotic profiles
form a one parameter family of functions indexed by time to which normalized solutions
resemble in Euclidean Wasserstein distance. However, an open problem remained in this
work, namely, the convergence or not in time of the asymptotic profile, and thus of all
normalized solutions, to a universal profile depending only on the nonlinearity .

Complicated behaviour. Based on the results for the power-law case and their pertur-
bations, there is the temptation to conjecture that the nonlinear diffusive equations of the
family (1.1) give always rise to simple asymptotic patterns, even to a universal profile, when
acting on free space, x € RY. We refer to [CDGOS5, GTOS5] for numerical work related to
this question.

Our main result disproves that claim: it says that, by choosing the behavior of the
nonlinearity & near zero in a convenient way, we can obtain a quite complicated family
of renormalized asymptotic patterns for the same equation and solution, even a chaotic
situation. The simplest nontrivial example is an equation whose asymptotic renormalized
profile oscillates infinitely many times between (increasingly accurate approaches to) the
Gaussian and the Barenblatt profiles, passing of course through a continuous family of
transition patterns. The constructions we make are quite explicit for the reader’s convenience
but the idea can be applied for quite general nonlinearities. We need a number of technical
assumptions on @ that we detail in Subsections 2.2 and 2.3.

Let us recall that complicated patterns may result from simple diffusion equations when
these are posed in bounded domains with different boundary conditions. Vazquez and
Zuazua [VZ02] find complicated behaviour for the heat and porous medium equations
as well as some hyperbolic equations posed in the whole space when the initial data are
merely bounded; in that analysis, the complicated time behaviour reproduces the complex-
ity of the initial data as |[x| — oo, something that does not happen here since the data
that we treat can be assumed to have compact support, see also the works of Cazenave et
al. [CDWO03, CDW06]. Another way patterns are formed is by interaction of diffusion
terms with other terms that are included in the equations, like convection (e.g., Burgers
patterns), reaction (e.g., blow-up patterns) or other. Patterns are a very important issue in
Mathematical Biology, associated mainly to reaction-diffusion systems of PDE’s.

In Section 2 we review and improve slightly the results concerning long-time asymp-
totics for normalized solutions. We first rephrase the results in [Tos05] from this point
of view. Later, we review the construction made in [CDTO05] of asymptotic profiles for
general nonlinear diffusion equations. Section 3 is the core of this paper and proves the
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claim concerning the complicated asymptotic pattern formation in nonlinear diffusion, see
Theorem 3.2. We conclude the article by an argument in the opposite direction. Thus, in
Section 4 we show that simple asymptotic behavior implies self-similarity and homogeneity.

2. Intermediate Asymptotic Profiles

Let us introduce the main tools in the present analysis of asymptotic pattern formation.
We will recall the main asymptotic results in [CDTO05] and we will improve slightly over
the hypotheses on the nonlinearity @ («) leading to such profiles, over the properties of the
asymptotic profile, and over the convergence of normalized solutions towards it. The main
two ingredients are an intrinsic renormalization of the solutions by their own variance and
the strict contractivity of the Euclidean Wasserstein distance between measures for such
renormalized flow map.

2.1. The Toscani map

G. Toscani [Tos05] proposed to use the second moment of the probability distribution of
the solutions

0, (1) =/ Ix|Pu(x, 1) dx .1
RN

to renormalize the flow of the porous medium equation, ®(#) = u”, in an intrinsic way,
i.e., to consider the normalized solution:

vix, 1) = 0,(ON2u@, ()" *x, 1). (2.2)

There are three intuitions about this nonlinear scaling. Firstly, the second moment cor-
responds to the kinetic energy of the probability distribution in kinetic theory, where x
represents speed, u is the particle density and 6 is the kinetic energy. In fact, solutions
where the only dependence on time is through their temperature are of asymptotic impor-
tance in several kinetic models for which related scalings have been used, see for instance
[Tos04, BCTO05, BCT06]. On the other hand, this scaling corresponds to the usual nor-
malization for the distribution function of the sum of n independent random variables with
common distribution function of fixed variance to obtain the Central Limit Theorem (see
[Tos05] for more comments about this analogy and relations to the heat equation). Moreover,
since we will prove that the variance diverges in time, then, from a geometric perspective,
scaling back with the variance will hopefully drive the solutions to a limit.
In order to define the Toscani map we take a mass distribution p € M where

M= {p € LL(RN),fRN p(x)dx = /RN x>0 (x) dx = 1},
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we find the unique solution u(x, t) to equation (1.1) with initial datum p, and consider its
projection v(x, ¢) obtained by the scaling (2.2); we then set 7¢ (¢)(p) := v(¢) by definition.
In short, we have:

DEFINITION 2.1. The Toscani map (or the normalized flow map) 7 () : M — M
is defined by

To(1)(p) := 0, ()" u(0, (1), 1), (23)
where u(x, t) is the unique solution to equation (1.1) with initial datum p.

In order for this map to be well-defined we need to show propagation of the second
moment; we will discuss this point in the next subsection. Now, let us come back to the
particular case of the porous medium equation ®(#) = u”. We show next that the ZKB
profiles are precisely the fixed points of the Toscani map, which we denote in this particular
case by 7, (¢).

LEMMA 2.2. Given m >
which

NL-i-Z’ the ZKB profile By, (x, t,,,) at the time t = t, ,, for

/ x|? By (x, o) dx = 1
RN
is a fixed point of the Toscani map Ty, (t) for all t > 0.

Proof. Let us assume m # 1, we can write that

m_  —~Nm—1)/ x|
B" =1 Con =k 575 ) Bn

and thus
RN RN
Now, we use that A=t~V |x |2 B, (x, 1) = —x - VB)) to obtain
flf X2 By (x, 1) dx =NA/ Ix|>B™ (x, 1) dx,
RN RN

which combined with the previous identity, yields the second moment of the ZKB profile:

C
em(t)=/ X2 By (x, 1) dx = —"—1*/*,
RN k Nr

hence, 1, ,, is given explicitly by

A2
— k+ /
o,m — Cm .
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Therefore, we have that
On (1) = 1o 17/
for all + > 0. Now, by a simple substitution into formula (1.5), we check that
O (OYN2 By (0 (1), 1) = B (x, to.m) 2.4)
and in particular
On (1 + 1o)™Y 2 By O (t + to.0) X, 1 + tom) = Bu(X, tom)
for all + > 0, and thus, by definition
T (1) (B (X, Lo,m)) = By (x, to,m)

for all + > 0, taking into account that the unique solution of the porous medium equation
with initial data By, (x, t5,,) 1S By (x, t 41, ). We leave the proof to the reader in the heat
equation case. O

It can be easily proved [Tos05, Va06] that the second moment for the solutions of the
porous medium equation increases with time and 6, (f) ~ 6,,(t) ~ 2 as 1 — oo
Moreover, it was proved in [Tos05], using the results of rates of convergence obtained
in [CTOO], that all solutions normalized by (2.2) converge in LRV ) to the ZKB profile
B(x,t,,,). We rephrase here this result and we slightly improve it showing convergence
in different spaces. It is worth pointing out that this observation was the starting point
in [CDTOS5] to obtain the result on existence of asymptotic profiles of general nonlinear
filtration equations.

THEOREM 2.3. [Asymptotic Convergence for normalized solutions] [Tos05, CT00]
Let u(x, t) be the unique weak solution of problem u; = Au™, m > 1, with initial data
ug € LL(RN) of unit mass such that |x|**°ug € L' (RN)for some & > 0 small enough.
Then as t — 00, we have

i) Temperature stabilization:

0. (1)
On(t)

1‘ =0 ast — oo. (2.5)

ii) L!-stabilization: given ug € M
7 (£) o) — B (to,m) |l 1 gy = 0G™%)  ast — oo (2.6)

for certain x > 0 depending on N and m.
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iii) L*-stabilization: given ug € M
tlglolo 17 (£) (u0) — B (to,m) || oo gy = 0. (2.7)

Proof. The first two points of the previous theorem are just an adaptation to our notation
of [Tos05, Theorem 4.1, Theorem 4.3] and we refer to it for the precise value of x. More-
over, one can use the decay of the temperature 2.5 and the general convergence result in
Theorem 1.1. to deduce convergence without rate in L. Let us just show this last point.
We first just decompose it into

1T (6)(t)) = B (tom) | oo vy < 1T () (t)) = 04 ()N By (0 (0)*+, D)l| oo )
+ 1. OV B (0 (1), 1) = By (to.) || poo e
=h+Db
and by using (1.8) and (2.5), we immediately deduce that

< (I)N/ZIN/)»|

1= IN/)‘ |u("t)_Bm('vt)”LOO(RN) — 0

as t — 0o. Regarding the second term, we use the scaling property of B, in (2.4) to write
6. (1) 1V 0u(t) 7'
0.ON?B, 0.0 *x, 1) =|*+=| B 1
(1) (O () ' 7x, 1) 0, (1) m N0 X, lo,m
= By (x, to,m + n(t))

where 7 (t) verifies n(r) — 0 since

Ou (1)
Om (1)

Therefore, the second term I, can be written as

— last —> o0

L= ”Bm(to,m) - Bm(to,m + n(t))||LDO(RN)

The continuity of the profile B, (x, t) in t and the convergence of temperatures (2.5) shows
that I, — O ast — oo. O

2.2. Second Moment Propagation and Evolution

As mentioned above, in order to define the Toscani map, we have to show propagation of the
second moment for the filtration equation (1.1). This problem was considered in [CDTO05]
and additional conditions on ® were given implying the propagation of the variance. While
this propagation seems easier in the degenerate diffusion case, it is not obvious in the fast
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diffusion case. We will not describe here the different hypotheses on & leading to this
variance propagation property. Instead, we assume the following hypothesis on the flow:
(HPSM) Given any initial data u, € L}‘_(RN ) with unit mass and finite second moment,
then the unique solution u(x, t) of equation (1.1) has finite second moment for all times."

The next step is to control the evolution of the second moment. The variance in the power-
law case diverges as r — oo with a rate r2/*. In order to derive an estimate from below of
the variance, we can make use of the L!1-L>® smoothing effect proved in [BB85, Ver79].
Those results give a quantitative estimate on how the solution diffuses as t — o0, and thus,
the solution becomes instantly L>°(R") and decays towards zero as t — oo with a bound
depending only on the initial mass. We refer to [Va05] for a recent account of smoothing
effects and its application in nonlinear diffusion equations.

Under the extra assumption on the nonlinearity ®
(H1: L'-L>°)3C > 0andm > (N — 2)+/N such that ®'(u) > Cu™ ! forallu > 0
the equation ((1.1)) enjoys the mass-preserving property and an L'—L regularizing prop-
erty. In fact, this assumption means that the nonlinearity ® () is more diffusive than the
power law u™, and thus, the diffusive properties of the filtration equation (1.1) have to be at
least the ones dictated by the power-law equation u, = Au™ (see [Va05] for details). The
following theorem is originally due to L. Véron [Ver79].

THEOREM 2 4. [LI—L°° regularizing effect 1] [Ver79] Let u(x, t) be the solution to
(1.1), with ug € L}‘_(RN). Let the nonlinearity ® satisfy assumptions (HB)-(H1:L'-L°)
above. Then, at any t > 0,

[ u(x, t)dx :/ ug(x)dx =1,
RN RN

u(x,t) e LOO(RN)for all t > 0, and the following estimate holds
N (T Ens
lae (-, f)||Loo(RN) <C(N,m)t Nm-D+2 ||M0||114Vl((R1\1;))+2. 2.8)
A more general regularizing effect was obtained in [BB85]. Under the assumption on the
nonlinearity:
(H2:L'-L>®) Let N > 3 and assume the function n(r) given by

o0
n(r) = / D (s) N2 g5
r
or all r > 0 is finite for all r > 0. Moreover, assume that
Jf

o0
/ sVTIP (s~ VIN=2) g5 = 00 (2.9)

r

for all r > 0 where the function T is the inverse of ®.

IWe refer to [CDTO5] for sufficient conditions implying this property.
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THEOREM 2.5. [LI—LOO regularizing effect 2] [BB85] Let u(x, t) be the solution to
(1.1), with ug € L}‘_(RN). Let the nonlinearity ® satisfy assumptions (HB)-(H2:L'=L°)
above. Then, at any t > 0,

/ u(x, t)dx =/ ug(x)dx =1,
RN RN

u(x,t) e LOO(RN)for all t > 0, and the following estimate holds
N 2
(e, Ol ooy < o! |:2(<I> o rfl) (C(N) tN=2 ||u0||1]‘vl(§RN)>] = A(@). (2.10)

REMARK 2.6. This regularizing effect is more flexible than the one given above since it
decouples the behavior of the diffusivity at oo (giving the smoothing effect) and at 0 (giving
the mass conservation). Let us point out that both smoothing effects imply that the L™
norm of the solution decays as t — oo uniformly in the set of positive integrable functions
with unit mass. This fact was used in [CDTO05] to derive a lower bound on the evolution
of the second moment. In the following, we will denote by (HL'=L>) any of the above
hypotheses leading to mass conservation and the L'—L> smoothing effect. Let us point out
that the second assumption in (H2:L'=L) is implied by a control at 0 of the nonlinearity,
for instance, there exist §, C > 0 and m > (N — 2) /N such that ®'(u) < Cu™ ! for all
u € (0, 9).

LEMMA 2.7. [Divergence in time of Second Moment] [CDTO05] Assume the nonlinear-
ity ® satisfies (HB)-(HL'=L>°)-(HPSM). Then,

lim 6, () = +00 @2.11)
11— 00

uniformly for initial data in the set M. Under the hypothesis (H1:L'=L>), we have an
explicit lower estimate:

2
Ou(t) > Ar¥a-T™2

with A constant in M.

2.3. Contractivity in Euclidean Wasserstein distance

The third ingredient we need for obtaining the asymptotic results is a contraction property.
The fact that the normalized asymptotic profile in the case of equation u; = Au" is given by
a fixed point of the Toscani map, shown in Lemma 2.2, leads us to try to prove contractivity
properties of the Toscani map for general nonlinearities ®.

The well-known fact that the flow map of the filtration equation, u; = A®(u), is Ll
contractive does not help for obtaining contractivity of the Toscani map. In fact, the scaling
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defining the Toscani map is mass-preserving. Recently, nonlinear filtration equations of the
form u; = A®(u) have been shown to have a formal gradient flow structure with respect
to the Euclidean Wasserstein distance.

More precisely, let us define the function ¥ («) by the following relation u¥” (1) = &' (u)
with W(0) = 0 and /(1) = 0 where we need to assume that W’ is integrable at 0. Let us
consider the functional

E(p) 2/ W (p(x))dx (2.12)
RN

defined on the set p € PZ“C(RN ) of probability measures with second moment bounded
and absolutely continuous with respect to Lebesgue. Let us now introduce the definition
of the Euclidean Wasserstein distance between probability measures with second moment
bounded:

1/2
W2(po, p1) = inf {/ lx — yI?dy(x,y); v €T(po, ,01)} ; (2.13)
RN xRN

here I"(po, p1) is the set of probability measures on RV x RY having marginals po and
p1. Let us remind that the convergence in W, is equivalent to the convergence weak-* as
measures plus convergence of the second moments [Vil03, Theorem 7.12].

F. Otto [Ott01] showed heuristically that the porous medium equation u, = Au" could
be seen as a gradient-flow on the space of probability measures P> (R"), endowed with a
manifold structure and local metric whose induced distance coincides with the Euclidean
Wasserstein distance W,. This point of view is easily generalized to the nonlinear filtration
equation u; = A®(u) and thus, equations (1.1) can be considered at least formally as the
gradient flow of the entropy function (2.12) on the space of probability measures P, (R"Y).

These heuristics have recently been rendered rigorous in [AGS05, CMVO05] and gen-
eralized to a general metric setting. The main outcome of this theory that is relevant to
us concerns the contractivity of the Euclidean Wasserstein distance W>. The contractivity
of W, is natural assuming the entropy functional (2.12) is convex with the right notion of
convexity. This notion of convexity, named displacement convexity, was introduced by
R.J. McCann [McC97]. We need to assume the following additional property on the
nonlinearity ®:

(HDC) ®u)u"N-D/N j5 nondecreasing on u € (0, 00).

Assumption (HDC) implies that the entropy functional (2.12) associated to equation ((1.1))
is well-defined and displacement convex [McC97]. The main conclusion out of this gradient-
flow point of view for the present discussion is that the flow map of the filtration equation
(1.1) is a non-expansive contraction in time with respect to the Euclidean Wasserstein
distance W5 in probability measures [CM V05, Stu05, AGS05, OWO05].
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THEOREM 2.8. [Non-strict contraction of W, for filtration equations] [CMVO05, Stu05,
AGS05,0WO05] Letuy(x, t) andus(x, t) be solutions to (1.1) with initial datau1(0), u3(0) €
PgC(RN ) and the nonlinearity ® verifying (HB)-(HDC), then

Wa(u1 (1), uz(t)) = W2(u1(0), u2(0)), forall t = 0. (2.14)

2.4. Asymptotic Profiles

Finally, let us summarize the main result in [CDTO0S5] and its proof since we will use it in the
sequel. We need to remind the reader a geometric property of the Euclidean Wasserstein
distance (see [CDTO05, McCO05] for a proof).

LEMMA 2.9. [Chordal Euclidean Wasserstein Distance inequality] [CDTOS] Given any
two probability densities pg, p1 € PSC(RN), then

W2 (60" o6y x), 61 016, x)) < 672 Wa (0. p1),

where 6 = min(6y, 01) with 6y and 0 being the second moment of pg and p; respectively.

The previous lemma has a geometric interpretation: we can think of the normalized
densities as the projected densities on the unit sphere of the set of probability densities
P>(RY) endowed with the Euclidean Wasserstein distance. With this interpretation, the
previous result follows from a chordal Euclidean type inequality [McCO5].

u, (1) (1)

Figure 1 Geometric Interpretation of Proposition 2.10.

A direct consequence of Lemma 2.9 and Theorem 2.8 is an estimate on the contraction
of the normalized solutions using the nonlinear scaling (2.2).
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PROPOSITION 2.10. [Strict contraction of W for normalized solutions] Let u1(x, t)
and uy(x, t) be solutions to (1.1) with initial data u1(0), u(0) € P3¢ (R™) and the nonlin-
earity ® verifying (HB)—-(HPSM)—(HL'-L>®)—(HDC), then

Wa(v1 (1), v2()) < 0() V2 Wa(u1(0), u2(0)) — 0 as t — oo, (2.15)

where 0(t) = min(0(t), 62(¢)) with 01(t) and 0,(t) being the second moment of ui(x, t)
and uy(x, t) respectively.

Moreover, taking into account the uniform estimates on the decay of the variance in the
set M obtained in Lemma 2.7, we obtain the contractivity for large times of the Toscani map
To(t) : M —> M. We refer to [CDTO5] for all the details of the proof of the following
result:

THEOREM 2.11. [Asymptotic profile for filtration equations] Given ® verifying the
hypotheses (HB)—(HPSM)—(HL'-L>°)—(HDC), there exists t, > 0 and a one parameter
curve of probability densities Vo (t) € M defined for t > t, such that, for any solution of
(1.1) with initial data uy € M,

Wo (7o (ug, Voo (1)) —> 0 as t — oo. (2.16)

Moreover, the asymptotic profile v (t) is characterized as the unique fixed point of the
Toscani map T (t) in M and it is approached by iterative iteration on Ty (t) starting with
any initial seed in M. Furthermore, the asymptotic profile vso(t) belongs to L'(RY) N
L®@RY) N CRN) and is a radially symmetric non increasing function. Moreover, if the
nonlinear diffusion function ® (u) is C* for u > 0, the fixed point veo(t) is locally C*
wherever it is positive.

Proof. The only properties stated in previous theorem not proven in [CDTO05] concern the
smoothness of the fixed points and the radial character of the asymptotic profile veo (f). Our
first remark is that the fixed points are scaled solutions of the nonlinear diffusion equation
just by definition of the Toscani map 7¢ (¢) and therefore, they enjoy the generic properties
of solutions of the nonlinear diffusion equation. Thus, we conclude the continuity of the
fixed points and the smoothness in the positive set whenever @ is smooth for positive values
of u.

Since the fixed points of the maps 74 (¢) are obtained through Banach fixed point theorem,
the asymptotic profile vy, (#) can be approximated by successive application of the Toscani
map T (7) to any initial data. Since continuous radially symmetric initial data produces con-
tinuous radially symmetric solutions, then we can assume that the approximation sequence
{v,} in W5 to the fixed point veo(#) consists of radially symmetric continuous probability
densities.
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Let us now show that the limit has to be a radially symmetric probability density. We
know that v, — v (¢) as measures, thus

lim dv, =/ dvse () 2.17)
=00 JB(0,R) B(0,R)

for any R > 0. Since the limit v (¢) is continuous, thus the mass of the sequence of
probability measures {v,} cannot concentrate at 0. We now make use the converse of the
Prokhorov theorem [AGS0S5, Remark 5.1.6] and we have that the sequence {v,,} is tight and
thus, mass is notlost at co. Both previous arguments allow us to show that this approximating
sequence seen as a sequence in the space of probability densities on the positive real line
r € (0, 0o0) with the weight 7V ~!dr is tight and therefore is relatively compact in this set,
so any adherence point ; must be a radial probability measure. Therefore, we have for any
continuous compactly supported function ¢(r) that

o0

o
lim va (N e(r)rN "V dr :/ e(ryrNldu

n—0oo 0 0

for a subsequence in n which is not relabelled. Now, by choosing a general continuous
compactly supported function ¢(x), we have that

o0 o0
lim vn(r)/ (p(rw)da)rN*Idr :/ / (p(rw)dwerldu.
0 SNl 0 N-1

n— oo

Since v, are radially symmetric, we get

/00 vn(r)/ p(rw)dw PNy = / o(x) v, (x)dx
0 SN—] ]RN

and as a consequence,

/oof (p(ra))da)rN_lduzf @(x) dvso (1)
0 SN—l ]RN

concluding that v (¢) is a radial continuous probability density.

Let us finally show that the asymptotic profile is in fact, radially non increasing. Since
the approximation sequence is made out of smooth radially non increasing functions, we
have that the radial distribution functions

Folr) = / dvn
B(0,r)

for all > 0, are non decreasing, concave functions. Moreover, by (2.17), these functions
converges pointwise to the radial distribution function Fo (f) () of voo (¢). Then, it is simple
to check that Fi, (7) () is a non-decreasing concave function and thus, the asymptotic profile
Voo () is a radial non increasing distribution, since wherever is positive, is smooth and thus
by concavity of the radial distribution function its derivative voo(¢) is non increasing. [
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REMARK 2.12. [Universal Asymptotic Profile for porous medium/fast diffusion
equations] Let us remark that taking into account Lemma 2.2, the asymptotic profile for the
porous medium type equation, u; = Au",is constantin time given by veo (t) = Bp (X, to.m)-
Moreover, now we can improve Theorem 2.3. by showing the W;-stabilization:

JMim W (Z (1) (o), B (fo,m)) = 0. (2.18)

REMARK 2.13. [Translation Invariance] It is clear from the translation invariance of
equations (1.1) that the normalization with the second moment centered at 0 made in (2.2)
does not play any particular role. In fact, it is easy to check due to the construction and
the uniqueness of solution that if one decides to scale with the second moment centered at
any other point the asymptotic profiles of the normalized solutions are just the translated
profiles centered at that point.

REMARK 2.14. [Different Fixed Variance] Let us point out that the fixed value of the
second moment chosen for the Toscani map, unit in this paper, can be arbitrarily chosen to
be 6,. Asymptotic profiles are then obtained for solutions with initial data with that given
value of the second moment. These asymptotic profiles may depend on the second moment
value 6y. Furthermore, the relation between the asymptotic profiles for different second
moment values is not explicit in general. Only in the particular case ® (1) = u™, we can
easily check they are related by the natural scaling due to homogeneity of the asymptotic
ZKB profile.

3. Asymptotic Complexity

We first need to review a result of continuous dependence of solutions with respect the
nonlinearity ®.

THEOREM 3.1. [Continuous Dependence on ®] Consider a sequence of nonlinearities
®,, converging to ® uniformly in compact sets of [0, 00), all of them verifying the hypotheses
(HB)—~(HDC) and @ satisfying (2.9). Given an initial data ug € L1 (RY) N L®°RY) with
unit mass and unit second moment such that |x|2+5u0 € LI(RN) for some § > 0 small
enough. Assume there exists a nondecreasing function ®*(u) such that ®, (1) < ®*(u) for
allu > 0 and ®*(u)/u is bounded on (0, R) for all R > 0. Then, the sequence of solutions
uy of the Cauchy problems:

a = AD,(u)
converges towards the solution u of the Cauchy problem (1.1) verifying:
i) L' N L>-convergence: u, — u in C([0, c0), L'RM)) N C([r, T1, CRM)) for all
0<t<T.
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ii) L°°-uniform bound:

||un('»t)||LOO(RN) = ||”0||L°°(RN)- 3.1)

iii) Second-moment convergence:

1m1/ Ix|?un(x, 1) — u(x, £)|dx =0 (3.2)
n— o0 ]RN

forallt > 0.
iv) W,-convergence:

Jm Wy (1), u(®)) =0 (3.3)
forallt > 0.

Proof. The convergence result stated in L! is the main result of reference [BC81] and is
where the assumption (2.9) over ® is needed, the convergence in C(RY) is consequence
of the standard regularity theory of non linear diffusions [DiB83]. The uniform bound on
the solutions follows from maximum principle. In order to deal with the second moment
convergence we compute formally the evolution of the |x|>*® moment:

2+48

X" uy(x, t)dx

— (2+a)(zv+<s)/ x|°®y, (uy) dx
dt RN RN

IA

2+ 8)(N +6>/ |x|°®* (uy) dx.
]RN

Now, since ®*(u)/u is bounded on the interval (0, lwoll oo wny), say by M > 0 large
enough, and ®*(u) is nondecreasing, then we estimate the right-hand side as

IA

M |x|8un dx
RN

M (1 +/ |x|2+8un dx)
RN

uniformly onn and 0 <t < T for all T > 0. Thus, we show that

[, it ) dx
R

IA

f|ﬁ“wmnmgc
RN

is uniformly onn and 0 < t < T for all T > 0. Now, since u,(x,t) — u(x,t) in L'RM)
for all + > 0 and the moment of order 2 + § of u,, is uniformly bounded, we deduce the
strong convergence of the second moments stated in iii). The rigorous derivation of the
above inequalities goes through an approximation to render integration-by-parts rigorous.
Finally, convergence in W, sense is just a consequence of the convergence in L' plus the
convergence of the second moments [Vil03]. O
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We proceed with the construction of a nonlinearity ® with complicated asymptotics.
Here is our main result:

THEOREM 3.2. [Asymptotic Oscillation] There exists a nonlinearity ® verifying hypoth-
esis hypotheses (HB)—(HPSM)—(HL'-L>°)—(HDC), and there exists a solution u(x, t) of
the Cauchy problem (1.1) such that it approaches two different asymptotic profilesin L' : the
heat kernel By (x, t) and the ZKB-profile B,,(x, t) with m > 1, along respective sequences
1), 1 that go to infinity.

Moreover, both the asymptotic profile v (t) associated to equation (1.1) and the normal-
ized solutions To (t) (ug) oscillate at those time sequences between the two scaled asymptotic

profiles: the Gaussian B1(x, t, 1) and By, (x, tom); in Wa and in L! respectively.

Proof. The construction produces at the same time the nonlinearity and a particular solu-
tion u(¢) of (1.1) with complicated asymptotics. It is inspired in the study of complexity of
asymptotic behaviour (chaos) for bounded solutions of diffusion equations of [VZ02].

Step 0. We need to control the behavior at zero of the nonlinearity ® but we need to satisfy
certain control at infinity of the nonlinearity ® in order to ensure the assumptions that
imply L'-L% smoothing effects. This is of no importance since for bounded solutions the
only part of the nonlinearity that counts is for 0 < u < |lugl| cogn) = Ro. Therefore,
we can always change the behaviour for u large enough in order to meet (H1:L'=L) or
(H2:L'-L>) for ®. Therefore, we will restrict to the construction for 0 < u < R,,.

On the other hand, since we need to meet condition (HDC), the interpolations between
different behaviors near zero should keep this property. Condition (HDC) is equivalent to
verify that

u®’ (u) - N —1

dwm) = N
In fact, since we will swap between a linear behavior and a power behavior with expo-
nent larger that 1 near 0, we are forced to do the regularizations in logarithmic variables,

(log ®(u), logu), and in fact our approximations will always verify for u < 1 that

ud’ (u) -m
D (u)

1< (3.4)

or equivalently, 1 < dl;lgT;(lm < m implying that for u < 1, we have

u>®dw) >u" and m>d () >u""!

where we fixed @ (1) = 1. Although we will not write explicitly all regularisations/interpola-
tions, we will graphically discuss this point later on, hoping to convince the reader.

Step 1. We start with the heat equation, ®1(s) = s, for 0 < s < R,, and take as initial
data any ug € LL(RN ) N L®(RY) with unit mass and unit second moment such that
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|x|2+5u0 € LI(RN) for some § > 0 small enough. Let us call this function u (x, t), with
x € RN, 1> 0. Letus fix ; > 0such that 6, () = 6;(r;) = 1 +2t; > 2,

lur() — Bi(t)lpieyy < €1 and  Wa(To, (11)(uo), Bi(to,1)) < €I

for a given 0 < €1 < 1. The existence of #; is ensured by Theorems 1.1 and 2.11.

Step 2. We modify the nonlinearity in the interval 0 < s < §; < 1 into the PME shape
Dy 5,(s) = cas™,

where ¢; is chosen to have agreement with ®(s) at s = §;, we now regularize in a tiny
left neighborhood of s = §; to make it smooth while keeping (3.4). This is done by
interpolating smoothly the corresponding straight lines in logarithmic variables. We keep
the value ®;5,(s) = Pi(s) for s > §;. It is easy to check that 43/2’51 (s) > s for
s < 1 from step 0, and thus, the nonlinearities ®; s, (s) verify all properties needed in
Theorem 2.11.

We now recalculate the solution to find the new evolution starting from u¢, that we call
uzs, (x,1), with x € RN, ¢t > 0. In order to compare u and u 5, at ¢t = t, we now are
entitled to use the continuous dependence of the solution with respect to variations of the
nonlinearity proved in Theorem 3.1. Let us choose in the sequel £, = &1 /2"~ !. We conclude
that for ; small enough, we have the nonlinearity ®, = ®; 5, such that its corresponding
solution uy = uy s, satisfies

lur () — w21 gyy < €2, 104, (t1) — Oy, (11)] < €2 and W (u1(t1), uz(n)) < €2,
and thus,
lur (1) — Bi(t) 1 gy < €1+ €2 and |01(t1) — Oy, (11)] < €.

Moreover, using Lemma 2.9, we have

1
Wa (o, (t1)(u0), To, (t1)(uo)) < i@y (1), 6 (1) Wa(uy(t1), uz(t1))

Wo(ui(t1), uz(t1)) < &2

IA

4—81

and thus,

Wa(Zo, (1) (uo), Bi(ts,1)) < €1 + €.

We now let the evolution continue for another long time with nonlinearity ®,. Using
(3.1), we are able to find a longer time #; > #; > 0, to be determined, where the maximum
of the solution u; is as small as we want and therefore the temperature of the solution is as
large as we want. Let us take # such that 6, () > 22 and the maximum of the solution is
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less than 61. Now, we are basically dealing with a solution of the PME, let the time goes
on even further to ensure that u, approaches the Barenblatt profile B,,:

luz(22) — Bm(t2)||L1(RN) < e, WZ(T®2(I2)(”O)a Bm(to,m))
< e and [0, (12) — 0y, (12)| < €2.

Again, the existence of #; is ensured by Theorems 11, 2.3 and 2.11.

Step 3. We want to make a transition back into the heat equation for even smaller values of
u < § < §1. Let us modify the nonlinear function ®»(s) into

D35,(5) =c35, 0<s <8y,

while we keep ®35,(s) = P2(s) for s > §,. Here, c3 is chosen to render the function
@35, (s) continuous. We need to put convenient transition values in a tiny left interval
at §, to ensure smoothness while keeping the bounds (3.4). Again, one can check that
<I>/3! 5 (s) = s ! fors < 1 from step 0, and thus the nonlinearities D35, (s) verify all
properties needed in Theorem 2.11.

We recalculate the solution starting from ug with ®3 s,, that we call u3 s, (x,t). The
continuous dependence of the solution proved in Theorem 3.1 allows us to conclude that
for 8, small enough, we have the nonlinearity ®3 = ®3, such that its corresponding
solution u3 = u3 s, satisfies

lua(r1) — uz(t)llp1yy < €3, 16wy (1) — Ouy (11| < €3 and Wa(ua(t1), uz(t1)) < €3,
and

lua(12) — uz ()1 pny < €3, [6uy(12) — iy (22)| < €3 and Wa(uz(t2), uz(t2)) < e3.
Therefore, it is easy to check that

luz(t) — Bi(t)ll 1 ryvy < €1+ €2+ €3 and [luz(t2) — By (©2) 1y < €2 + €3,
and

101(t1) — Ou; (1) < €2+ &3 and [0y (12) — Ous(12)| < €2 + &3,

Moreover, using Lemma 2.9, we have

1
Wa (o, (t1) (u0), To, (t1)(ug)) < i Gay (1), Bu () Wo(ua(t1), uz(t1))

1
2—-6)2—e —¢3)

Wa(ua(t1), us(ty)) < &3
and thus,

Wa(To;(t1)(uo), B1(t5,1)) < €1 + €2 + €3.
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Again, using Lemma 2.9, we have
1
Wa (14 , T4 % ,
2(Ta,;(12) (uo), To, (22)(up)) =< min s (), 6us (2)) 2(u2(t2), uz(t2))

Wa(uz(22), us(t2)) < &3

< -
T 44 —&3)

and thus,

Wa (T, (12) (u0), By (to,m)) < €2 + &3.

Again, we let the evolution continue for another long time with ®3. We want to find a time
13 > t such that 6,,(t3) > 23 and the maximum of the solution is less than 8. Now, we
are basically dealing with a solution of the heat equation, let the time goes on even further
to ensure that 3 approaches the Gaussian profile Bj:

luz(t3) — Bi(t3)ll 1y < €3, Wa(Ta,(13)(u0), Bi(to,1))
< e and |01(13) — 045 (13)] < €3.

Again, the existence of 3 is ensured by Theorems 1.1, 2.3 and 2.11.

Step 4. We are back to the situation at the beginning with the only difference that a long time
has been spent. But such a time is of low importance as for asymptotic behaviour. The rest
of the construction of ® (x) and its solution u(x, ) follows by induction. The nonlinearity
verifies (3.4) and therefore, taking into account step 0, it satisfies all the assumptions of
Theorem 2.11.

log(u)

log(®(w))

Figure 2 Sketch of the construction of the nonlinearity ® («) in logarithmic variables. The successive union of
long-enough pieces of parallel straight lines to the ones with slope 1 and m > 1 respectively gives (after convenient
and easy smoothing) the sought nonlinearity.
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Step 5. Concerning the solution u(x, t), there exist sequences of times f;, = fp,41 and
1 = ty, for which the solution satisfies

lu(t,) = Bi)ll 1wy < €, Wa(Za(1,)(u0), Bi(to,1)) < € and 60,(t,) — 61(1,)| < €
and
lu(@)) = Bu (&)l 1@y < € Wa(To (1)) (w0), Bu(to.m)) < € and [60,(1,)) — O (1) < €

for all € > 0 small enough. Therefore, the oscillation in L' of the solution between the
profiles By and By, is proved.

Let us show the oscillation of the asymptotic profile v () for ® given by Theorem 2.11.
This theorem ensures that

Wo (7o (t) (o), Voo (1)) —> 0 as t — oo.
Therefore, for ¢ large enough d (7o (¢) (1p), Vo (t)) < € and thus,
W2 (veo (1), B1(to,1)) < 2€ and W2(voo (1), Bu(to,m)) < 2€

for n large enough, that finishes this item of the proof.
Let us finally show the oscillation of the normalized solutions in L'. In fact, it is already
proved in [Tos05, Theorem 4.3], see also Theorem 2.3, that whenever we have

lu(s) = B ()l L1 gyy < €, and [0, (s) — Om(s)| < €,
withm > 1 and s > O then

170 () o) — B (to,m) I 1 @y < Nm(€)

where n,,(€) — 0 as € — 0. Therefore, applying the previous result to both sequences of
times and the different exponent m, we conclude the proof. O

REMARK 3.3. [Generalizations] The same result holds true with any collection of pro-
files {B,,, : m; > 1,i-1,.-. 1} for every [. This alternating behaviour entails some
curious geometrical effects. Thus, by oscillating between the Gaussian profile By and the
ZKB-profile B,,, we can keep the support of the profiles going to infinity and back all the
time (at least in a highly approximated way).

By playing an expanding game over and over at every iteration of the first 3 steps of the
proof of Theorem 3.2, we can show the following result:

COROLLARY 3.4. [Asymptotic Complexity] There exists a nonlinearity ® verifying
hypothesis hypotheses (HB)-(HPSM)—(HL ' -L%)—(HDC), such that the adherence points

of its asymptotic profile v (t) contains the whole set of profiles By, (x, tom) withm > 1.
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Note that the adherence points of v (¢) is a closed set, hence we only need to prove for
a dense numerable collection. We can also restrict the set of profiles B, (x, f, ) to belong
to a compact interval in the set of parameters m. We conjecture that the adherence points
of v () may contain a quite large set of other transition states. We are still not able to
imagine well at this moment. It is possible that vy (¢) does not approach any B, (x, ty m)
state, even if it is formed out of chunks of ZKB-profiles.

We can finally play the game of dealing with chaotic decisions defined by a general
sequence in {0, 1}" in which we perform 3-steps of oscillations between two profiles, say
By and B,,,, m1 > 1, whenever we have the 0 value and we perform 3-steps of oscillations
between the first and another profile, say By and B,,,, m> > 1, whenever we have value 1.
In the sense above, we can construct nonlinearities with chaotic behaviors:

COROLLARY 3.5. There exists a nonlinearity ® verifying hypotheses (HB)-(HPSM)-
(HL'-L>*)—(HDC), such that the oscillations between the set of profiles By, (x, to.m) follow
a chaotic behavior.

We are not using the word chaotic in the precise technical way. We recall that according
to Devaney [Dev89], a dynamical system F; is chaotic on a set § if the periodic points
are dense, the flow is topologically transitive and it has sensitive dependence on the initial
conditions. Checking these conditions for different constructions is an interesting direction
for further research.

4. Simple asymptotics implies a power law

We now examine the case where the Toscani map has a single fixed point, V (x), inde-
pendent of 7. We assume in the sequel that & is differentiable. We will prove the following
theorem

THEOREM 4.1. [Self-Similarity Characterization] If the Toscani map T4 (t) for a Fil-
tration Equation u; = A®(u) is constant in time for some open time interval I, then the
Sfunction ® is a power function on the range of V, the fixed point of T (t). This means that
®(u) = cu™ for some m and ¢ > 0 and for all u € [0, A] for some A.

Proof. Let V (x) be the fixed point with unit mass and second moment.

Step 0. Let us fix atime T € I and let us consider the solution u(x, t) of the PME in the
time interval / = (0, T) that gives rise to V. It follows from uniqueness that u(x, t) is
independent of the time 7. This solution has initial value u(x,0) = V(x). This solution
has a second moment 6,(t) = 6(t) that evolves in time from 6(0) = 1 and 6(¢) > 1 for
t > 0 and that is an increasing Lipschitz function in time since its time derivative is strictly
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positive and bounded. Moreover, we have
u(x, 1) =0~V Ve~ (1)x) 4.5)

since 7o (¢)(V) = V for all r € I. This means that the equation has a self-similar solution
in the time interval (0, 7). We will show that this implies that the equation must be scale
invariant, hence ® is a power.

Step 1. By Theorem 2.11 we know that V is a continuous, radially symmetric, and decreasing
probability density, V = V(r), r = |x|. Moreover, the function is smooth wherever
positive.

We also know that V and V' go to zero as r — oo if positive everywhere. If the solution
has compact support, then it has to be connected to zero by a decreasing curve and thus the
support will be a ball of radius rg with V. = ®(V), = 0 at the boundary of the support
r = ro. This last fact follows from general properties of radially decreasing solutions
of nonlinear filtration equations since their pressure p(r,t) = P(u(r,t)) defined by the
formula

Pu) = /M ') 4
0 N

has first derivative everywhere.
Next, we examine the consequences of the self-similarity shown above. If we substitute
the form (4.5) into the equation and write V = V (y) with y = 6~ 1/2r, we get

1 _ _
=0 NV +yVy) =y "N @@V vy, (4.6)

in the strong sense in (y, ) whenever V is positive, plus boundedness and symmetry con-
ditions at y = 0. We want to separate 6 (¢) from V (y) as much as possible.
Integration in y gives

1
'O NPVyv, = —EG’yNV +C.

The constant can be eliminated using the conditions at infinity. Fix now y > 0 and take
two different times in the interval I, fo and r. Write A(t) = (0(to)/0(t))V/?. Put z =
68=N/2(t5)V (y). Then,

N N

y
d'(2) = -0'(¢ ,
(@) (to) 2,

Y

D' (At)z) = —0'(1) AR
y

hence, calling F = @’ we get the functional equation
F(A(t)z) = F(2)G() 4.7
where G (1) = 0'(t) /0’ (19).
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Step 2. Under conditions of differentiability for the solution V (r) and the second moment
0(t), we get the conclusion that F is a power function by taking derivatives in z and ¢ and
comparing. Indeed,

AF' (M) z) = F'(Q)G(@), MNzF' (M (t)z) = F(2)G' (1),

hence, dividing and putting ¢ = 7o so that A(fp) = 1 we get

F'z)  G'() _p
F) — N@)Go)

Step 3. In general, this argument cannot be performed since we cannot ensure that the
second moment has second derivative everywhere. We can either justify the argument
by approximation or else re-think the original argument which is essentially an algebraic
problem. We choose this path. We first remark that 6 (¢) is strictly increasing and thus, the
function A(¢) is invertible. Then, the algebraic relation (4.7) is equivalent to say

F(uz) = F(z)H(w)

forall0 <z < Zand 0 < u <1, with H(s) = G (A~ 1(s)). It is now a standard exercise
in algebra to show that F is a power after taking logarithms: if n = logz, { = logu,
f(n) =log F(e") and h(n) = log H(e"), we get

Jme)=fm)+h@) (4.8)

for n in some open interval / € R and ¢ € (—oo, 0]. Itis rather standard to prove that when
f is continuous and satisfies the additive condition (4.8), then it must be a linear function
in its interval on /. It follows that F is a power function in the interior of the range of the
solution V.

Step 4. Once we know that F is a power, hence @' is a power, ®'(u) = cuf. Moreover,
coming back to (4.7), we deduce that

(@)ﬂN/Z B 9/0)
o(1) 0/(to)

and thus, we derive the growth of the moment for free:

0(t) =di(t +do)?, = —,
() 1(t +do) p 24BN

with dy, dy € R™ as expected. O
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