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Asymptotic Complexity in Filtration Equations

J. A. Carrillo and J. L. Vázquez

Abstract. We show that the solutions of nonlinear diffusion equations of the form ut = ��(u) appearing in
filtration theory may present complicated asymptotics as t → ∞ whenever we alternate infinitely many times
in a suitable manner the behavior of the nonlinearity �. Oscillatory behaviour is demonstrated for finite-mass
solutions defined in the whole space when they are renormalized at each time t > 0 with respect to their own
second moment, as proposed in [Tos05, CDT05]; they are measured in the L1 norm and also in the Euclidean
Wasserstein distance W2. This complicated asymptotic pattern formation can be constructed in such a way that
even a chaotic behavior may arise depending on the form of �.

In the opposite direction, we prove that the assumption that the asymptotic normalized profile does not depend
on time implies that � must be a power-law function on the appropriate range of values. In other words, the
simplest asymptotic behavior implies a homogeneous nonlinearity.

1. Introduction

This paper is devoted to study the question of pattern formation for the family of filtration
equations of the form

∂u

∂t
= ��(u), (1.1)

where � satisfies the basic set of hypotheses (HB): � is a strictly increasing and continuous
real function with �(0) = 0, and smooth for u > 0, so that the equations are parabolic, at
least in an extended way that is sufficient for the weak theories to apply. We consider finite
mass nonnegative solutions u(x, t) defined in R

N × (0, ∞). We will make below precise
assumptions that ensure that the Cauchy problem for such equation generates a continuous
semigroup u �→ Ttu0 = u(t), cf. [BC81] that conserves the total mass of the solution. A
further condition on � is assumed to avoid loss of mass for fast diffusion, and thus, to deduce
mass-preservation together with a L1–L∞ smoothing effect (see [BB85, Ver79, Va05]) that
we shall detail below. We impose the normalization of unit initial mass∫

R
N

u0(x) dx = 1 (1.2)

for the rest of the paper. This condition does not restrict the generality of the results, since it
can be obtained by a rescaling of the equation. We see the solution as the evolution in time of
a probability distribution, u(t) = u(·, t). The total mass is the same for all times t > 0, but
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the mass distribution tends to spread in time. We want to discover the type of asymptotic
patterns associated to the large-time behavior of this class of equations. Because of the
spreading induced by diffusion, such patterns can only be seen after suitable normalization.

The standard cases. The question we address has been much studied for the most stan-
dard diffusion examples and admits a clear and simple answer in those cases. Thus, the
asymptotic behavior of the linear heat equation, ut = �u, is determined by the heat kernel

B1(x, t) = (4πt)−N/2 e−|x|2/4t . (1.3)

A natural normalization in the case of the heat equation is to scale with the second moment
of the solution. It is well-known that such renormalized orbits converge to the Gaussian
profile

G(x) = (2π/N)−N/2 e−N |x|2/2, (1.4)

corresponding to the heat kernel at time t = 1/2N in which it has unit second moment.
This is related to the Central Limit Theorem, see [Tos05].

In the case of the Porous Medium Equation (PME), ut = �um, m > 1, it is known
that solutions converge to a Zel’dovich-Kompaneets-Barenblatt (ZKB) profile, i.e., source
solutions of the self-similar form:

Bm(x, t) = t−N/λFm(x/t1/λ), Fm(ξ) = (Cm − k |ξ |2)
1

m−1+ (1.5)

where

k = (m − 1)

2mλ
and λ = N(m − 1) + 2. (1.6)

The constant Cm > 0 is determined by fixing the mass to 1. The result extends to some
range (N − 2)+/2 < m < 1 where the ZKB solutions exist and have finite mass. Here is
the precise statement, [Va03]:

THEOREM 1.1. [Self-Similar Asymptotic Convergence for PME] Let u(x, t) be the
unique weak solution of problem ut = �um, m > (N − 2)+/N , with initial data u0 ∈
L1+(RN) and unit mass. Then as t → ∞ we have

lim
t→∞ ‖u(t) − Bm(t)‖L1(RN) = 0. (1.7)

Convergence holds also in L∞-norm in the proper scale:

lim
t→∞ tN/λ‖u(t) − Bm(t)‖L∞(RN) = 0. (1.8)
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The second-moment normalization of the solutions for the homogeneous nonlinear
diffusion equation, ut = �um, shows the convergence towards the ZKB profile Bm(x, to,m)

at the time to,m in which it has unit second moment; see [Tos05] and next section for details.
Recently, the existence of a time-dependent asymptotic profile for second-moment nor-

malized solutions of general nonlinear filtration equations has been shown in [CDT05]
under suitable hypotheses on the nonlinearity, see next section. These asymptotic profiles
form a one parameter family of functions indexed by time to which normalized solutions
resemble in Euclidean Wasserstein distance. However, an open problem remained in this
work, namely, the convergence or not in time of the asymptotic profile, and thus of all
normalized solutions, to a universal profile depending only on the nonlinearity �.

Complicated behaviour. Based on the results for the power-law case and their pertur-
bations, there is the temptation to conjecture that the nonlinear diffusive equations of the
family (1.1) give always rise to simple asymptotic patterns, even to a universal profile, when
acting on free space, x ∈ R

N . We refer to [CDG05, GT05] for numerical work related to
this question.

Our main result disproves that claim: it says that, by choosing the behavior of the
nonlinearity � near zero in a convenient way, we can obtain a quite complicated family
of renormalized asymptotic patterns for the same equation and solution, even a chaotic
situation. The simplest nontrivial example is an equation whose asymptotic renormalized
profile oscillates infinitely many times between (increasingly accurate approaches to) the
Gaussian and the Barenblatt profiles, passing of course through a continuous family of
transition patterns. The constructions we make are quite explicit for the reader’s convenience
but the idea can be applied for quite general nonlinearities. We need a number of technical
assumptions on � that we detail in Subsections 2.2 and 2.3.

Let us recall that complicated patterns may result from simple diffusion equations when
these are posed in bounded domains with different boundary conditions. Vazquez and
Zuazua [VZ02] find complicated behaviour for the heat and porous medium equations
as well as some hyperbolic equations posed in the whole space when the initial data are
merely bounded; in that analysis, the complicated time behaviour reproduces the complex-
ity of the initial data as |x| → ∞, something that does not happen here since the data
that we treat can be assumed to have compact support, see also the works of Cazenave et
al. [CDW03, CDW06]. Another way patterns are formed is by interaction of diffusion
terms with other terms that are included in the equations, like convection (e.g., Burgers
patterns), reaction (e.g., blow-up patterns) or other. Patterns are a very important issue in
Mathematical Biology, associated mainly to reaction-diffusion systems of PDE’s.

In Section 2 we review and improve slightly the results concerning long-time asymp-
totics for normalized solutions. We first rephrase the results in [Tos05] from this point
of view. Later, we review the construction made in [CDT05] of asymptotic profiles for
general nonlinear diffusion equations. Section 3 is the core of this paper and proves the
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claim concerning the complicated asymptotic pattern formation in nonlinear diffusion, see
Theorem 3.2. We conclude the article by an argument in the opposite direction. Thus, in
Section 4 we show that simple asymptotic behavior implies self-similarity and homogeneity.

2. Intermediate Asymptotic Profiles

Let us introduce the main tools in the present analysis of asymptotic pattern formation.
We will recall the main asymptotic results in [CDT05] and we will improve slightly over
the hypotheses on the nonlinearity �(u) leading to such profiles, over the properties of the
asymptotic profile, and over the convergence of normalized solutions towards it. The main
two ingredients are an intrinsic renormalization of the solutions by their own variance and
the strict contractivity of the Euclidean Wasserstein distance between measures for such
renormalized flow map.

2.1. The Toscani map

G. Toscani [Tos05] proposed to use the second moment of the probability distribution of
the solutions

θu(t) =
∫

R
N

|x|2u(x, t) dx (2.1)

to renormalize the flow of the porous medium equation, �(u) = um, in an intrinsic way,
i.e., to consider the normalized solution:

v(x, t) = θu(t)
N/2u(θu(t)

1/2x, t). (2.2)

There are three intuitions about this nonlinear scaling. Firstly, the second moment cor-
responds to the kinetic energy of the probability distribution in kinetic theory, where x

represents speed, u is the particle density and θ is the kinetic energy. In fact, solutions
where the only dependence on time is through their temperature are of asymptotic impor-
tance in several kinetic models for which related scalings have been used, see for instance
[Tos04, BCT05, BCT06]. On the other hand, this scaling corresponds to the usual nor-
malization for the distribution function of the sum of n independent random variables with
common distribution function of fixed variance to obtain the Central Limit Theorem (see
[Tos05] for more comments about this analogy and relations to the heat equation). Moreover,
since we will prove that the variance diverges in time, then, from a geometric perspective,
scaling back with the variance will hopefully drive the solutions to a limit.

In order to define the Toscani map we take a mass distribution ρ ∈ M where

M =
{
ρ ∈ L1+(RN),

∫
R

N
ρ(x) dx =

∫
R

N
|x|2ρ(x) dx = 1

}
,
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we find the unique solution u(x, t) to equation (1.1) with initial datum ρ, and consider its
projection v(x, t) obtained by the scaling (2.2); we then set T�(t)(ρ) := v(t) by definition.
In short, we have:

DEFINITION 2.1. The Toscani map (or the normalized flow map) T�(t) : M −→ M
is defined by

T�(t)(ρ) := θu(t)
N/2u(θu(t)

1/2·, t), (2.3)

where u(x, t) is the unique solution to equation (1.1) with initial datum ρ.

In order for this map to be well-defined we need to show propagation of the second
moment; we will discuss this point in the next subsection. Now, let us come back to the
particular case of the porous medium equation �(u) = um. We show next that the ZKB
profiles are precisely the fixed points of the Toscani map, which we denote in this particular
case by Tm(t).

LEMMA 2.2. Given m > N
N+2 , the ZKB profile Bm(x, to,m) at the time t = to,m for

which∫
R

N
|x|2Bm(x, to,m) dx = 1

is a fixed point of the Toscani map Tm(t) for all t > 0.

Proof. Let us assume m �= 1, we can write that

Bm
m = t−N(m−1)/λ

(
Cm − k

|x|2
t2/λ

)
Bm

and thus

kt−1
∫

R
N

|x|2Bm(x, t) dx = t−N(m−1)/λCm −
∫

R
N

Bm
m(x, t) dx.

Now, we use that λ−1 t−1|x|2Bm(x, t) = −x · ∇Bm
m to obtain

t−1
∫

R
N

|x|2Bm(x, t) dx = Nλ

∫
R

N
|x|2Bm

m(x, t) dx,

which combined with the previous identity, yields the second moment of the ZKB profile:

θm(t) =
∫

R
N

|x|2Bm(x, t) dx = Cm

k + 1
Nλ

t2/λ,

hence, to,m is given explicitly by

to,m =
(

k + 1
Nλ

Cm

)λ/2

.



476 J. A. Carrillo and J. L. Vázquez J.evol.equ.

Therefore, we have that

θm(t) = t
−2/λ
o,m t2/λ

for all t ≥ 0. Now, by a simple substitution into formula (1.5), we check that

θm(t)N/2Bm(θm(t)1/2x, t) = Bm(x, to,m) (2.4)

and in particular

θm(t + to,m)N/2Bm(θm(t + to,m)1/2x, t + to,m) = Bm(x, to,m)

for all t ≥ 0, and thus, by definition

Tm(t)(Bm(x, to,m)) = Bm(x, to,m)

for all t ≥ 0, taking into account that the unique solution of the porous medium equation
with initial data Bm(x, to,m) is Bm(x, t + to,m). We leave the proof to the reader in the heat
equation case. �

It can be easily proved [Tos05, Va06] that the second moment for the solutions of the
porous medium equation increases with time and θu(t) 	 θm(t) 	 t2/λ as t → ∞.
Moreover, it was proved in [Tos05], using the results of rates of convergence obtained
in [CT00], that all solutions normalized by (2.2) converge in L1(RN) to the ZKB profile
B(x, to,m). We rephrase here this result and we slightly improve it showing convergence
in different spaces. It is worth pointing out that this observation was the starting point
in [CDT05] to obtain the result on existence of asymptotic profiles of general nonlinear
filtration equations.

THEOREM 2.3. [Asymptotic Convergence for normalized solutions] [Tos05, CT00]
Let u(x, t) be the unique weak solution of problem ut = �um, m > 1, with initial data
u0 ∈ L1+(RN) of unit mass such that |x|2+δu0 ∈ L1(RN) for some δ > 0 small enough.
Then as t → ∞, we have

i) Temperature stabilization:∣∣∣∣ θu(t)

θm(t)
− 1

∣∣∣∣ = 0(t−2/λ) as t → ∞. (2.5)

ii) L1-stabilization: given u0 ∈ M

‖Tm(t)(u0) − Bm(to,m)‖L1(RN) = 0(t−χ ) as t → ∞ (2.6)

for certain χ > 0 depending on N and m.
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iii) L∞-stabilization: given u0 ∈ M

lim
t→∞ ‖Tm(t)(u0) − Bm(to,m)‖L∞(RN) = 0. (2.7)

Proof. The first two points of the previous theorem are just an adaptation to our notation
of [Tos05, Theorem 4.1, Theorem 4.3] and we refer to it for the precise value of χ . More-
over, one can use the decay of the temperature 2.5 and the general convergence result in
Theorem 1.1. to deduce convergence without rate in L∞. Let us just show this last point.
We first just decompose it into

‖Tm(t)(u(t)) − Bm(to,m)‖L∞(RN) ≤ ‖Tm(t)(u(t)) − θu(t)
N/2Bm(θu(t)

1/2·, t)‖L∞(RN)

+ ‖θu(t)
N/2Bm(θu(t)

1/2·, t) − Bm(to,m)‖L∞(RN)

= I1 + I2

and by using (1.8) and (2.5), we immediately deduce that

I1 ≤ θu(t)
N/2

tN/λ
tN/λ‖u(·, t) − Bm(·, t)‖L∞(RN) → 0

as t → ∞. Regarding the second term, we use the scaling property of Bm in (2.4) to write

θu(t)
N/2Bm(θu(t)

1/2x, t) =
[

θu(t)

θm(t)

]N/2

Bm

([
θu(t)

θm(t)

]1/2

x, to,m

)

= Bm(x, to,m + η(t))

where η(t) verifies η(t) → 0 since

θu(t)

θm(t)
→ 1 as t → ∞

Therefore, the second term I2 can be written as

I2 = ‖Bm(to,m) − Bm(to,m + η(t))‖L∞(RN)

The continuity of the profile Bm(x, t) in t and the convergence of temperatures (2.5) shows
that I2 → 0 as t → ∞. �

2.2. Second Moment Propagation and Evolution

As mentioned above, in order to define the Toscani map, we have to show propagation of the
second moment for the filtration equation (1.1). This problem was considered in [CDT05]
and additional conditions on � were given implying the propagation of the variance. While
this propagation seems easier in the degenerate diffusion case, it is not obvious in the fast
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diffusion case. We will not describe here the different hypotheses on � leading to this
variance propagation property. Instead, we assume the following hypothesis on the flow:

(HPSM) Given any initial data uo ∈ L1+(RN) with unit mass and finite second moment,
then the unique solution u(x, t) of equation (1.1) has finite second moment for all times.1

The next step is to control the evolution of the second moment. The variance in the power-
law case diverges as t → ∞ with a rate t2/λ. In order to derive an estimate from below of
the variance, we can make use of the L1–L∞ smoothing effect proved in [BB85, Ver79].
Those results give a quantitative estimate on how the solution diffuses as t → ∞, and thus,
the solution becomes instantly L∞(RN) and decays towards zero as t → ∞ with a bound
depending only on the initial mass. We refer to [Va05] for a recent account of smoothing
effects and its application in nonlinear diffusion equations.

Under the extra assumption on the nonlinearity �

(H1: L1–L∞) ∃C > 0 and m > (N − 2)+/N such that �′(u) ≥ Cum−1 for all u > 0
the equation ((1.1)) enjoys the mass-preserving property and an L1–L∞ regularizing prop-
erty. In fact, this assumption means that the nonlinearity �(u) is more diffusive than the
power law um, and thus, the diffusive properties of the filtration equation (1.1) have to be at
least the ones dictated by the power-law equation ut = �um (see [Va05] for details). The
following theorem is originally due to L. Véron [Ver79].

THEOREM 2.4. [L1–L∞ regularizing effect 1] [Ver79] Let u(x, t) be the solution to
(1.1), with u0 ∈ L1+(RN). Let the nonlinearity � satisfy assumptions (HB)-(H1:L1–L∞)
above. Then, at any t > 0,∫

R
N

u(x, t)dx =
∫

R
N

u0(x)dx = 1,

u(x, t) ∈ L∞(RN) for all t > 0, and the following estimate holds

‖u(·, t)‖L∞(RN) ≤ C(N, m) t
− N

N(m−1)+2 ‖u0‖
2

N(m−1)+2

L1(RN)
. (2.8)

A more general regularizing effect was obtained in [BB85]. Under the assumption on the
nonlinearity:
(H2:L1–L∞) Let N ≥ 3 and assume the function η(r) given by

η(r) =
∫ ∞

r

�(s)−N/(N−2) ds

for all r > 0 is finite for all r > 0. Moreover, assume that∫ ∞

r

sN−1�(s−1/(N−2)) ds = ∞ (2.9)

for all r > 0 where the function � is the inverse of �.

1We refer to [CDT05] for sufficient conditions implying this property.
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THEOREM 2.5. [L1–L∞ regularizing effect 2] [BB85] Let u(x, t) be the solution to
(1.1), with u0 ∈ L1+(RN). Let the nonlinearity � satisfy assumptions (HB)-(H2:L1–L∞)
above. Then, at any t > 0,∫

R
N

u(x, t)dx =
∫

R
N

u0(x)dx = 1,

u(x, t) ∈ L∞(RN) for all t > 0, and the following estimate holds

‖u(·, t)‖L∞(RN) ≤ �−1
[

2(� ◦ η−1)

(
C(N) t

N
N−2 ‖u0‖

2
N−2

L1(RN)

)]
= (t). (2.10)

REMARK 2.6. This regularizing effect is more flexible than the one given above since it
decouples the behavior of the diffusivity at ∞ (giving the smoothing effect) and at 0 (giving
the mass conservation). Let us point out that both smoothing effects imply that the L∞
norm of the solution decays as t → ∞ uniformly in the set of positive integrable functions
with unit mass. This fact was used in [CDT05] to derive a lower bound on the evolution
of the second moment. In the following, we will denote by (HL1–L∞) any of the above
hypotheses leading to mass conservation and the L1–L∞ smoothing effect. Let us point out
that the second assumption in (H2:L1–L∞) is implied by a control at 0 of the nonlinearity,
for instance, there exist δ, C > 0 and m > (N − 2)+/N such that �′(u) ≤ Cum−1 for all
u ∈ (0, δ).

LEMMA 2.7. [Divergence in time of Second Moment] [CDT05] Assume the nonlinear-
ity � satisfies (HB)-(HL1–L∞)-(HPSM). Then,

lim
t→∞ θu(t) = +∞ (2.11)

uniformly for initial data in the set M. Under the hypothesis (H1:L1–L∞), we have an
explicit lower estimate:

θu(t) ≥ At
2

N(m−1)+2

with A constant in M.

2.3. Contractivity in Euclidean Wasserstein distance

The third ingredient we need for obtaining the asymptotic results is a contraction property.
The fact that the normalized asymptotic profile in the case of equation ut = �um is given by
a fixed point of the Toscani map, shown in Lemma 2.2, leads us to try to prove contractivity
properties of the Toscani map for general nonlinearities �.

The well-known fact that the flow map of the filtration equation, ut = ��(u), is L1-
contractive does not help for obtaining contractivity of the Toscani map. In fact, the scaling
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defining the Toscani map is mass-preserving. Recently, nonlinear filtration equations of the
form ut = ��(u) have been shown to have a formal gradient flow structure with respect
to the Euclidean Wasserstein distance.

More precisely, let us define the function �(u) by the following relation u� ′′(u) = �′(u)

with �(0) = 0 and � ′(1) = 0 where we need to assume that � ′ is integrable at 0. Let us
consider the functional

E(ρ) =
∫

R
N

�(ρ(x)) dx (2.12)

defined on the set ρ ∈ Pac
2 (RN) of probability measures with second moment bounded

and absolutely continuous with respect to Lebesgue. Let us now introduce the definition
of the Euclidean Wasserstein distance between probability measures with second moment
bounded:

W2(ρ0, ρ1) = inf

{∫
R

N×R
N

|x − y|2 dγ (x, y); γ ∈ �(ρ0, ρ1)

}1/2

; (2.13)

here �(ρ0, ρ1) is the set of probability measures on R
N × R

N having marginals ρ0 and
ρ1. Let us remind that the convergence in W2 is equivalent to the convergence weak-* as
measures plus convergence of the second moments [Vil03, Theorem 7.12].

F. Otto [Ott01] showed heuristically that the porous medium equation ut = �um could
be seen as a gradient-flow on the space of probability measures P2(R

N), endowed with a
manifold structure and local metric whose induced distance coincides with the Euclidean
Wasserstein distance W2. This point of view is easily generalized to the nonlinear filtration
equation ut = ��(u) and thus, equations (1.1) can be considered at least formally as the
gradient flow of the entropy function (2.12) on the space of probability measures P2(R

N).
These heuristics have recently been rendered rigorous in [AGS05, CMV05] and gen-

eralized to a general metric setting. The main outcome of this theory that is relevant to
us concerns the contractivity of the Euclidean Wasserstein distance W2. The contractivity
of W2 is natural assuming the entropy functional (2.12) is convex with the right notion of
convexity. This notion of convexity, named displacement convexity, was introduced by
R.J. McCann [McC97]. We need to assume the following additional property on the
nonlinearity �:

(HDC) �(u) u−(N−1)/N is nondecreasing on u ∈ (0, ∞).

Assumption (HDC) implies that the entropy functional (2.12) associated to equation ((1.1))
is well-defined and displacement convex [McC97]. The main conclusion out of this gradient-
flow point of view for the present discussion is that the flow map of the filtration equation
(1.1) is a non-expansive contraction in time with respect to the Euclidean Wasserstein
distance W2 in probability measures [CMV05, Stu05, AGS05, OW05].
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THEOREM 2.8. [Non-strict contraction of W2 for filtration equations] [CMV05, Stu05,
AGS05, OW05] Letu1(x, t)andu2(x, t)be solutions to (1.1) with initial datau1(0), u2(0) ∈
Pac

2 (RN) and the nonlinearity � verifying (HB)–(HDC), then

W2(u1(t), u2(t)) ≤ W2(u1(0), u2(0)), for all t ≥ 0. (2.14)

2.4. Asymptotic Profiles

Finally, let us summarize the main result in [CDT05] and its proof since we will use it in the
sequel. We need to remind the reader a geometric property of the Euclidean Wasserstein
distance (see [CDT05, McC05] for a proof).

LEMMA 2.9. [Chordal Euclidean Wasserstein Distance inequality] [CDT05] Given any
two probability densities ρ0, ρ1 ∈ Pac

2 (RN), then

W2(θ
N/2
0 ρ0(θ

1/2
0 x), θ

N/2
1 ρ1(θ

1/2
1 x)) ≤ θ−1/2W2(ρ0, ρ1),

where θ = min(θ0, θ1) with θ0 and θ1 being the second moment of ρ0 and ρ1 respectively.

The previous lemma has a geometric interpretation: we can think of the normalized
densities as the projected densities on the unit sphere of the set of probability densities
P2(R

N) endowed with the Euclidean Wasserstein distance. With this interpretation, the
previous result follows from a chordal Euclidean type inequality [McC05].

u u

u

v

(t)

(t)
v (t)

(0)

(0)u1

(t)1

1

2

2

2

M

δ0

Figure 1 Geometric Interpretation of Proposition 2.10.

A direct consequence of Lemma 2.9 and Theorem 2.8 is an estimate on the contraction
of the normalized solutions using the nonlinear scaling (2.2).
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PROPOSITION 2.10. [Strict contraction of W2 for normalized solutions] Let u1(x, t)

and u2(x, t) be solutions to (1.1) with initial data u1(0), u2(0) ∈ Pac
2 (RN) and the nonlin-

earity � verifying (HB)–(HPSM)–(HL1–L∞)–(HDC), then

W2(v1(t), v2(t)) ≤ θ(t)−1/2W2(u1(0), u2(0)) → 0 as t → ∞, (2.15)

where θ(t) = min(θ1(t), θ2(t)) with θ1(t) and θ2(t) being the second moment of u1(x, t)

and u2(x, t) respectively.

Moreover, taking into account the uniform estimates on the decay of the variance in the
set M obtained in Lemma 2.7, we obtain the contractivity for large times of the Toscani map
T�(t) : M −→ M. We refer to [CDT05] for all the details of the proof of the following
result:

THEOREM 2.11. [Asymptotic profile for filtration equations] Given � verifying the
hypotheses (HB)–(HPSM)–(HL1–L∞)–(HDC), there exists t∗ > 0 and a one parameter
curve of probability densities v∞(t) ∈ M defined for t ≥ t∗ such that, for any solution of
(1.1) with initial data u0 ∈ M,

W2 (T�(t)u0, v∞(t)) −→ 0 as t → ∞. (2.16)

Moreover, the asymptotic profile v∞(t) is characterized as the unique fixed point of the
Toscani map T�(t) in M and it is approached by iterative iteration on T�(t) starting with
any initial seed in M. Furthermore, the asymptotic profile v∞(t) belongs to L1(RN) ∩
L∞(RN) ∩ C(RN) and is a radially symmetric non increasing function. Moreover, if the
nonlinear diffusion function �(u) is C∞ for u > 0, the fixed point v∞(t) is locally C∞
wherever it is positive.

Proof. The only properties stated in previous theorem not proven in [CDT05] concern the
smoothness of the fixed points and the radial character of the asymptotic profile v∞(t). Our
first remark is that the fixed points are scaled solutions of the nonlinear diffusion equation
just by definition of the Toscani map T�(t) and therefore, they enjoy the generic properties
of solutions of the nonlinear diffusion equation. Thus, we conclude the continuity of the
fixed points and the smoothness in the positive set whenever � is smooth for positive values
of u.

Since the fixed points of the maps T�(t) are obtained through Banach fixed point theorem,
the asymptotic profile v∞(t) can be approximated by successive application of the Toscani
map T�(t) to any initial data. Since continuous radially symmetric initial data produces con-
tinuous radially symmetric solutions, then we can assume that the approximation sequence
{vn} in W2 to the fixed point v∞(t) consists of radially symmetric continuous probability
densities.
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Let us now show that the limit has to be a radially symmetric probability density. We
know that vn ⇀ v∞(t) as measures, thus

lim
n→∞

∫
B(0,R)

dvn =
∫

B(0,R)

dv∞(t) (2.17)

for any R > 0. Since the limit v∞(t) is continuous, thus the mass of the sequence of
probability measures {vn} cannot concentrate at 0. We now make use the converse of the
Prokhorov theorem [AGS05, Remark 5.1.6] and we have that the sequence {vn} is tight and
thus, mass is not lost at∞. Both previous arguments allow us to show that this approximating
sequence seen as a sequence in the space of probability densities on the positive real line
r ∈ (0, ∞) with the weight rN−1dr is tight and therefore is relatively compact in this set,
so any adherence point µ must be a radial probability measure. Therefore, we have for any
continuous compactly supported function ϕ(r) that

lim
n→∞

∫ ∞

0
vn(r)ϕ(r)rN−1 dr =

∫ ∞

0
ϕ(r)rN−1 dµ

for a subsequence in n which is not relabelled. Now, by choosing a general continuous
compactly supported function ϕ(x), we have that

lim
n→∞

∫ ∞

0
vn(r)

∫
SN−1

ϕ(rω) dω rN−1 dr =
∫ ∞

0

∫
SN−1

ϕ(rω) dω rN−1 dµ.

Since vn are radially symmetric, we get∫ ∞

0
vn(r)

∫
SN−1

ϕ(rω) dω rN−1 dr =
∫

R
N

ϕ(x) vn(x) dx

and as a consequence,∫ ∞

0

∫
SN−1

ϕ(rω) dω rN−1 dµ =
∫

R
N

ϕ(x) dv∞(t)

concluding that v∞(t) is a radial continuous probability density.
Let us finally show that the asymptotic profile is in fact, radially non increasing. Since

the approximation sequence is made out of smooth radially non increasing functions, we
have that the radial distribution functions

Fn(r) =
∫

B(0,r)

dvn

for all r > 0, are non decreasing, concave functions. Moreover, by (2.17), these functions
converges pointwise to the radial distribution function F∞(t)(r) of v∞(t). Then, it is simple
to check that F∞(t)(r) is a non-decreasing concave function and thus, the asymptotic profile
v∞(t) is a radial non increasing distribution, since wherever is positive, is smooth and thus
by concavity of the radial distribution function its derivative v∞(t) is non increasing. �
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REMARK 2.12. [Universal Asymptotic Profile for porous medium/fast diffusion
equations] Let us remark that taking into account Lemma 2.2, the asymptotic profile for the
porous medium type equation, ut = �um, is constant in time given by v∞(t) = Bm(x, to,m).
Moreover, now we can improve Theorem 2.3. by showing the W2-stabilization:

lim
t→∞ W2(Tm(t)(u0), Bm(to,m)) = 0. (2.18)

REMARK 2.13. [Translation Invariance] It is clear from the translation invariance of
equations (1.1) that the normalization with the second moment centered at 0 made in (2.2)
does not play any particular role. In fact, it is easy to check due to the construction and
the uniqueness of solution that if one decides to scale with the second moment centered at
any other point the asymptotic profiles of the normalized solutions are just the translated
profiles centered at that point.

REMARK 2.14. [Different Fixed Variance] Let us point out that the fixed value of the
second moment chosen for the Toscani map, unit in this paper, can be arbitrarily chosen to
be θo. Asymptotic profiles are then obtained for solutions with initial data with that given
value of the second moment. These asymptotic profiles may depend on the second moment
value θ0. Furthermore, the relation between the asymptotic profiles for different second
moment values is not explicit in general. Only in the particular case �(u) = um, we can
easily check they are related by the natural scaling due to homogeneity of the asymptotic
ZKB profile.

3. Asymptotic Complexity

We first need to review a result of continuous dependence of solutions with respect the
nonlinearity �.

THEOREM 3.1. [Continuous Dependence on �] Consider a sequence of nonlinearities
�n converging to � uniformly in compact sets of [0, ∞), all of them verifying the hypotheses
(HB)–(HDC) and � satisfying (2.9). Given an initial data u0 ∈ L1+(RN) ∩ L∞(RN) with
unit mass and unit second moment such that |x|2+δu0 ∈ L1(RN) for some δ > 0 small
enough. Assume there exists a nondecreasing function �∗(u) such that �n(u) ≤ �∗(u) for
all u > 0 and �∗(u)/u is bounded on (0, R) for all R > 0. Then, the sequence of solutions
un of the Cauchy problems:

∂u

∂t
= ��n(u)

converges towards the solution u of the Cauchy problem (1.1) verifying:

i) L1 ∩ L∞-convergence: un → u in C([0, ∞), L1(RN)) ∩ C([τ, T ], C(RN)) for all
0 < τ < T .
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ii) L∞-uniform bound:

‖un(·, t)‖L∞(RN) ≤ ‖u0‖L∞(RN). (3.1)

iii) Second-moment convergence:

lim
n→∞

∫
R

N
|x|2|un(x, t) − u(x, t)| dx = 0 (3.2)

for all t > 0.
iv) W2-convergence:

lim
n→∞ W2(un(t), u(t)) = 0 (3.3)

for all t > 0.

Proof. The convergence result stated in L1 is the main result of reference [BC81] and is
where the assumption (2.9) over � is needed, the convergence in C(RN) is consequence
of the standard regularity theory of non linear diffusions [DiB83]. The uniform bound on
the solutions follows from maximum principle. In order to deal with the second moment
convergence we compute formally the evolution of the |x|2+δ moment:

d

dt

∫
R

N
|x|2+δun(x, t) dx = (2 + δ)(N + δ)

∫
R

N
|x|δ�n(un) dx

≤ (2 + δ)(N + δ)

∫
R

N
|x|δ�∗(un) dx.

Now, since �∗(u)/u is bounded on the interval (0, ‖u0‖L∞(RN)), say by M > 0 large
enough, and �∗(u) is nondecreasing, then we estimate the right-hand side as∫

R
N

|x|δ�∗(un) dx ≤ M

∫
R

N
|x|δun dx

≤ M

(
1 +

∫
R

N
|x|2+δun dx

)

uniformly on n and 0 ≤ t ≤ T for all T > 0. Thus, we show that∫
R

N
|x|2+δun(x, t) dx ≤ C

is uniformly on n and 0 ≤ t ≤ T for all T > 0. Now, since un(x, t) → u(x, t) in L1(RN)

for all t > 0 and the moment of order 2 + δ of un is uniformly bounded, we deduce the
strong convergence of the second moments stated in iii). The rigorous derivation of the
above inequalities goes through an approximation to render integration-by-parts rigorous.
Finally, convergence in W2 sense is just a consequence of the convergence in L1 plus the
convergence of the second moments [Vil03]. �
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We proceed with the construction of a nonlinearity � with complicated asymptotics.
Here is our main result:

THEOREM 3.2. [Asymptotic Oscillation] There exists a nonlinearity� verifying hypoth-
esis hypotheses (HB)–(HPSM)–(HL1–L∞)–(HDC), and there exists a solution u(x, t) of
the Cauchy problem (1.1) such that it approaches two different asymptotic profiles in L1: the
heat kernel B1(x, t) and the ZKB-profile Bm(x, t) with m > 1, along respective sequences
t ′n, t ′′n that go to infinity.

Moreover, both the asymptotic profile v∞(t) associated to equation (1.1) and the normal-
ized solutions T�(t)(u0) oscillate at those time sequences between the two scaled asymptotic
profiles: the Gaussian B1(x, to,1) and Bm(x, to,m); in W2 and in L1 respectively.

Proof. The construction produces at the same time the nonlinearity and a particular solu-
tion u(t) of (1.1) with complicated asymptotics. It is inspired in the study of complexity of
asymptotic behaviour (chaos) for bounded solutions of diffusion equations of [VZ02].

Step 0. We need to control the behavior at zero of the nonlinearity � but we need to satisfy
certain control at infinity of the nonlinearity � in order to ensure the assumptions that
imply L1-L∞ smoothing effects. This is of no importance since for bounded solutions the
only part of the nonlinearity that counts is for 0 ≤ u ≤ ‖u0‖L∞(RN) = Ro. Therefore,
we can always change the behaviour for u large enough in order to meet (H1:L1–L∞) or
(H2:L1–L∞) for �. Therefore, we will restrict to the construction for 0 ≤ u ≤ Ro.

On the other hand, since we need to meet condition (HDC), the interpolations between
different behaviors near zero should keep this property. Condition (HDC) is equivalent to
verify that

u�′(u)

�(u)
≥ N − 1

N
.

In fact, since we will swap between a linear behavior and a power behavior with expo-
nent larger that 1 near 0, we are forced to do the regularizations in logarithmic variables,
(log �(u), log u), and in fact our approximations will always verify for u ≤ 1 that

1 ≤ u�′(u)

�(u)
≤ m (3.4)

or equivalently, 1 ≤ d log �(u)
d log u

≤ m implying that for u ≤ 1, we have

u ≥ �(u) ≥ um and m ≥ �′(u) ≥ um−1

where we fixed�(1) = 1. Although we will not write explicitly all regularisations/interpola-
tions, we will graphically discuss this point later on, hoping to convince the reader.

Step 1. We start with the heat equation, �1(s) = s, for 0 < s < Ro, and take as initial
data any u0 ∈ L1+(RN) ∩ L∞(RN) with unit mass and unit second moment such that
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|x|2+δu0 ∈ L1(RN) for some δ > 0 small enough. Let us call this function u1(x, t), with
x ∈ R

N , t > 0. Let us fix t1 > 0 such that θu1(t1) = θ1(t1) = 1 + 2t1 > 2,

‖u1(t1) − B1(t1)‖L1(RN) ≤ ε1 and W2(T�1(t1)(u0), B1(to,1)) ≤ ε1

for a given 0 < ε1 < 1. The existence of t1 is ensured by Theorems 1.1 and 2.11.

Step 2. We modify the nonlinearity in the interval 0 < s < δ1 < 1 into the PME shape

�2,δ1(s) = c2s
m,

where c2 is chosen to have agreement with �1(s) at s = δ1, we now regularize in a tiny
left neighborhood of s = δ1 to make it smooth while keeping (3.4). This is done by
interpolating smoothly the corresponding straight lines in logarithmic variables. We keep
the value �2,δ1(s) = �1(s) for s ≥ δ1. It is easy to check that �′

2,δ1
(s) ≥ sm−1 for

s ≤ 1 from step 0, and thus, the nonlinearities �2,δ1(s) verify all properties needed in
Theorem 2.11.

We now recalculate the solution to find the new evolution starting from u0, that we call
u2,δ1(x, t), with x ∈ R

N , t > 0. In order to compare u1 and u2,δ1 at t = t1, we now are
entitled to use the continuous dependence of the solution with respect to variations of the
nonlinearity proved in Theorem 3.1. Let us choose in the sequel εn = ε1/2n−1. We conclude
that for δ1 small enough, we have the nonlinearity �2 = �2,δ1 such that its corresponding
solution u2 = u2,δ1 satisfies

‖u1(t1) − u2(t1)‖L1(RN) ≤ ε2, |θu1(t1) − θu2(t1)| ≤ ε2 and W2(u1(t1), u2(t1)) ≤ ε2,

and thus,

‖u1(t1) − B1(t1)‖L1(RN) ≤ ε1 + ε2 and |θ1(t1) − θu2(t1)| ≤ ε2.

Moreover, using Lemma 2.9, we have

W2(T�1(t1)(u0), T�2(t1)(u0)) ≤ 1

min(θu1(t1), θu2(t1))
W2(u1(t1), u2(t1))

≤ 1

4 − ε1
W2(u1(t1), u2(t1)) ≤ ε2

and thus,

W2(T�2(t1)(u0), B1(to,1)) ≤ ε1 + ε2.

We now let the evolution continue for another long time with nonlinearity �2. Using
(3.1), we are able to find a longer time t2 > t1 > 0, to be determined, where the maximum
of the solution u2 is as small as we want and therefore the temperature of the solution is as
large as we want. Let us take t2 such that θu2(t2) > 22 and the maximum of the solution is
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less than δ1. Now, we are basically dealing with a solution of the PME, let the time goes
on even further to ensure that u2 approaches the Barenblatt profile Bm:

‖u2(t2) − Bm(t2)‖L1(RN) ≤ ε2, W2(T�2(t2)(u0), Bm(to,m))

≤ ε2 and |θm(t2) − θu2(t2)| ≤ ε2.

Again, the existence of t2 is ensured by Theorems 11, 2.3 and 2.11.

Step 3. We want to make a transition back into the heat equation for even smaller values of
u ≤ δ2 < δ1. Let us modify the nonlinear function �2(s) into

�3,δ2(s) = c3s, 0 < s ≤ δ2,

while we keep �3,δ2(s) = �2(s) for s ≥ δ2. Here, c3 is chosen to render the function
�3,δ2(s) continuous. We need to put convenient transition values in a tiny left interval
at δ2 to ensure smoothness while keeping the bounds (3.4). Again, one can check that
�′

3,δ2
(s) ≥ sm−1 for s ≤ 1 from step 0, and thus the nonlinearities �3,δ2(s) verify all

properties needed in Theorem 2.11.
We recalculate the solution starting from u0 with �3,δ2 , that we call u3,δ2(x, t). The

continuous dependence of the solution proved in Theorem 3.1 allows us to conclude that
for δ2 small enough, we have the nonlinearity �3 = �3,δ2 such that its corresponding
solution u3 = u3,δ2 satisfies

‖u2(t1) − u3(t1)‖L1(RN) ≤ ε3, |θu2(t1) − θu3(t1)| ≤ ε3 and W2(u2(t1), u3(t1)) ≤ ε3,

and

‖u2(t2) − u3(t2)‖L1(RN) ≤ ε3, |θu2(t2) − θu3(t2)| ≤ ε3 and W2(u2(t2), u3(t2)) ≤ ε3.

Therefore, it is easy to check that

‖u3(t1) − B1(t1)‖L1(RN) ≤ ε1 + ε2 + ε3 and ‖u3(t2) − Bm(t2)‖L1(RN) ≤ ε2 + ε3,

and

|θ1(t1) − θu3(t1)| ≤ ε2 + ε3 and |θm(t2) − θu3(t2)| ≤ ε2 + ε3,

Moreover, using Lemma 2.9, we have

W2(T�2(t1)(u0), T�3(t1)(u0)) ≤ 1

min(θu2(t1), θu3(t1))
W2(u2(t1), u3(t1))

≤ 1

(2 − ε2)(2 − ε2 − ε3)
W2(u2(t1), u3(t1)) ≤ ε3

and thus,

W2(T�3(t1)(u0), B1(to,1)) ≤ ε1 + ε2 + ε3.



Vol. 7, 2007 Asymptotic Complexity in Filtration Equations 489

Again, using Lemma 2.9, we have

W2(T�3(t2)(u0), T�2(t2)(u0)) ≤ 1

min(θu3(t2), θu2(t2))
W2(u2(t2), u3(t2))

≤ 1

4(4 − ε3)
W2(u2(t2), u3(t2)) ≤ ε3

and thus,

W2(T�3(t2)(u0), Bm(to,m)) ≤ ε2 + ε3.

Again, we let the evolution continue for another long time with �3. We want to find a time
t3 > t2 such that θu3(t3) > 23 and the maximum of the solution is less than δ2. Now, we
are basically dealing with a solution of the heat equation, let the time goes on even further
to ensure that u3 approaches the Gaussian profile B1:

‖u3(t3) − B1(t3)‖L1(RN) ≤ ε3, W2(T�3(t3)(u0), B1(to,1))

≤ ε3 and |θ1(t3) − θu3(t3)| ≤ ε3.

Again, the existence of t3 is ensured by Theorems 1.1, 2.3 and 2.11.

Step 4. We are back to the situation at the beginning with the only difference that a long time
has been spent. But such a time is of low importance as for asymptotic behaviour. The rest
of the construction of �(u) and its solution u(x, t) follows by induction. The nonlinearity
verifies (3.4) and therefore, taking into account step 0, it satisfies all the assumptions of
Theorem 2.11.

log(u)

Φ(u))log(

Figure 2 Sketch of the construction of the nonlinearity �(u) in logarithmic variables. The successive union of
long-enough pieces of parallel straight lines to the ones with slope 1 and m > 1 respectively gives (after convenient
and easy smoothing) the sought nonlinearity.
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Step 5. Concerning the solution u(x, t), there exist sequences of times t ′n = t2n+1 and
t ′′n = t2n for which the solution satisfies

‖u(t ′n) − B1(t
′
n)‖L1(RN) ≤ ε, W2(T�(t ′n)(u0), B1(to,1)) ≤ ε and |θu(t

′
n) − θ1(t

′
n)| ≤ ε

and

‖u(t ′′n ) − Bm(t ′′n )‖L1(RN) ≤ ε, W2(T�(t ′′n )(u0), Bm(to,m)) ≤ ε and |θu(t
′′
n ) − θm(t ′′n )| ≤ ε

for all ε > 0 small enough. Therefore, the oscillation in L1 of the solution between the
profiles B1 and Bm is proved.

Let us show the oscillation of the asymptotic profile v∞(t) for � given by Theorem 2.11.
This theorem ensures that

W2 (T�(t)(u0), v∞(t)) −→ 0 as t → ∞.

Therefore, for t large enough d2 (T�(t)(u0), v∞(t)) ≤ ε and thus,

W2(v∞(t ′n), B1(to,1)) ≤ 2ε and W2(v∞(t ′′n ), Bm(to,m)) ≤ 2ε

for n large enough, that finishes this item of the proof.
Let us finally show the oscillation of the normalized solutions in L1. In fact, it is already

proved in [Tos05, Theorem 4.3], see also Theorem 2.3, that whenever we have

‖u(s) − Bm(s)‖L1(RN) ≤ ε, and |θu(s) − θm(s)| ≤ ε,

with m ≥ 1 and s > 0 then

‖T�(t)(u0) − Bm(to,m)‖L1(RN) ≤ ηm(ε)

where ηm(ε) → 0 as ε → 0. Therefore, applying the previous result to both sequences of
times and the different exponent m, we conclude the proof. �

REMARK 3.3. [Generalizations] The same result holds true with any collection of pro-
files {Bmi

: mi ≥ 1, i=1, · · · , l} for every l. This alternating behaviour entails some
curious geometrical effects. Thus, by oscillating between the Gaussian profile B1 and the
ZKB-profile Bm, we can keep the support of the profiles going to infinity and back all the
time (at least in a highly approximated way).

By playing an expanding game over and over at every iteration of the first 3 steps of the
proof of Theorem 3.2, we can show the following result:

COROLLARY 3.4. [Asymptotic Complexity] There exists a nonlinearity � verifying
hypothesis hypotheses (HB)–(HPSM)–(HL1–L∞)–(HDC), such that the adherence points
of its asymptotic profile v∞(t) contains the whole set of profiles Bm(x, to,m) with m ≥ 1.
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Note that the adherence points of v∞(t) is a closed set, hence we only need to prove for
a dense numerable collection. We can also restrict the set of profiles Bm(x, to,m) to belong
to a compact interval in the set of parameters m. We conjecture that the adherence points
of v∞(t) may contain a quite large set of other transition states. We are still not able to
imagine well at this moment. It is possible that v∞(t) does not approach any Bm(x, to,m)

state, even if it is formed out of chunks of ZKB-profiles.
We can finally play the game of dealing with chaotic decisions defined by a general

sequence in {0, 1}N in which we perform 3-steps of oscillations between two profiles, say
B1 and Bm1 , m1 > 1, whenever we have the 0 value and we perform 3-steps of oscillations
between the first and another profile, say B1 and Bm2 , m2 > 1, whenever we have value 1.
In the sense above, we can construct nonlinearities with chaotic behaviors:

COROLLARY 3.5. There exists a nonlinearity � verifying hypotheses (HB)–(HPSM)–
(HL1–L∞)–(HDC), such that the oscillations between the set of profiles Bm(x, to,m) follow
a chaotic behavior.

We are not using the word chaotic in the precise technical way. We recall that according
to Devaney [Dev89], a dynamical system Ft is chaotic on a set S if the periodic points
are dense, the flow is topologically transitive and it has sensitive dependence on the initial
conditions. Checking these conditions for different constructions is an interesting direction
for further research.

4. Simple asymptotics implies a power law

We now examine the case where the Toscani map has a single fixed point, V (x), inde-
pendent of t . We assume in the sequel that � is differentiable. We will prove the following
theorem

THEOREM 4.1. [Self-Similarity Characterization] If the Toscani map T�(t) for a Fil-
tration Equation ut = ��(u) is constant in time for some open time interval I , then the
function � is a power function on the range of V , the fixed point of T�(t). This means that
�(u) = c um for some m and c > 0 and for all u ∈ [0, A] for some A.

Proof. Let V (x) be the fixed point with unit mass and second moment.

Step 0. Let us fix a time T ∈ I and let us consider the solution u(x, t) of the PME in the
time interval I = (0, T ) that gives rise to V . It follows from uniqueness that u(x, t) is
independent of the time T . This solution has initial value u(x, 0) = V (x). This solution
has a second moment θu(t) = θ(t) that evolves in time from θ(0) = 1 and θ(t) > 1 for
t > 0 and that is an increasing Lipschitz function in time since its time derivative is strictly
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positive and bounded. Moreover, we have

u(x, t) = θ−N/2(t)V (θ−1/2(t)x) (4.5)

since T�(t)(V ) = V for all t ∈ I . This means that the equation has a self-similar solution
in the time interval (0, T ). We will show that this implies that the equation must be scale
invariant, hence � is a power.

Step 1. By Theorem 2.11 we know thatV is a continuous, radially symmetric, and decreasing
probability density, V = V (r), r = |x|. Moreover, the function is smooth wherever
positive.

We also know that V and V ′ go to zero as r → ∞ if positive everywhere. If the solution
has compact support, then it has to be connected to zero by a decreasing curve and thus the
support will be a ball of radius r0 with V = �(V )r = 0 at the boundary of the support
r = r0. This last fact follows from general properties of radially decreasing solutions
of nonlinear filtration equations since their pressure p(r, t) = P(u(r, t)) defined by the
formula

P(u) =
∫ u

0

�′(s)
s

ds

has first derivative everywhere.
Next, we examine the consequences of the self-similarity shown above. If we substitute

the form (4.5) into the equation and write V = V (y) with y = θ−1/2r , we get

−1

2
θ ′(NV + yVy) = y1−N(�′(θ−N/2V )Vy)y (4.6)

in the strong sense in (y, t) whenever V is positive, plus boundedness and symmetry con-
ditions at y = 0. We want to separate θ(t) from V (y) as much as possible.

Integration in y gives

�′(θ−N/2V )Vy = −1

2
θ ′yNV + C.

The constant can be eliminated using the conditions at infinity. Fix now y > 0 and take
two different times in the interval I , t0 and t . Write λ(t) = (θ(t0)/θ(t))N/2. Put z =
θ−N/2(t0)V (y). Then,

�′(λ(t) z) = −θ ′(t) yNV

2Vy

, �′(z) = −θ ′(t0)
yNV

2Vy

,

hence, calling F = �′ we get the functional equation

F(λ(t) z) = F(z)G(t) (4.7)

where G(t) = θ ′(t)/θ ′(t0).
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Step 2. Under conditions of differentiability for the solution V (r) and the second moment
θ(t), we get the conclusion that F is a power function by taking derivatives in z and t and
comparing. Indeed,

λF ′(λ(t) z) = F ′(z)G(t), λ′zF ′(λ(t) z) = F(z)G′(t),

hence, dividing and putting t = t0 so that λ(t0) = 1 we get

zF ′(z)
F (z)

= G′(t0)
λ′(t0)G(t0)

= β.

Step 3. In general, this argument cannot be performed since we cannot ensure that the
second moment has second derivative everywhere. We can either justify the argument
by approximation or else re-think the original argument which is essentially an algebraic
problem. We choose this path. We first remark that θ(t) is strictly increasing and thus, the
function λ(t) is invertible. Then, the algebraic relation (4.7) is equivalent to say

F(µ z) = F(z)H(µ)

for all 0 < z < Z̄ and 0 < µ ≤ 1, with H(s) = G(λ−1(s)). It is now a standard exercise
in algebra to show that F is a power after taking logarithms: if η = log z, ζ = log µ,
f (η) = log F(eη) and h(η) = log H(eη), we get

f (η ζ ) = f (η) + h(ζ ) (4.8)

for η in some open interval I ∈ R and ζ ∈ (−∞, 0]. It is rather standard to prove that when
f is continuous and satisfies the additive condition (4.8), then it must be a linear function
in its interval on I . It follows that F is a power function in the interior of the range of the
solution V .

Step 4. Once we know that F is a power, hence �′ is a power, �′(u) = cuβ . Moreover,
coming back to (4.7), we deduce that

(
θ(t0)

θ(t)

)βN/2

= θ ′(t)
θ ′(t0)

and thus, we derive the growth of the moment for free:

θ(t) = d1(t + d2)
p, p = 2

2 + βN
,

with d1, d2 ∈ R
+ as expected. �
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