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evolution equations
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Dedicated to Giuseppe Da Prato on the occasion of his 70th birthday

Abstract. Theorems on weak convergence of the laws of the Wong-Zakai approximations for evolution equation

dX(t) = (AX(t)+ F(X(t)))dt +G(X(t))dW(t)

X(0) = x ∈ H
are proved. The operator A in the equation generates an analytic semigroup of linear operators on a Hilbert
space H . The tightness of the approximating sequence is established using the stochastic factorisation formula.
Applications to strongly damped wave and plate equations as well as to stochastic invariance are discussed.

1. Introduction.

LetW(t) = (β1(t), . . . , βd(t)), be a d-dimensional standard Wiener process defined on
a probability space (�,F,R) equipped with filtration (Ft ) satisfying the usual conditions.
A natural way to solve numerically the stochastic Ito equations in Rm:

dX(t) = F(X(t))dt +
d∑
j=1

Gj(X(t))dβj (t), X(0) = x, (1.1)

is to replace in (1.1) the Wiener process W by its polygonal approximation

Wn(t) = W(tn)+ 2n(t − tn)(W(t
+
n )−W(tn)), (1.2)

where

tn = [2nt]/2n and t+n = ([2nt] + 1)/2n. (1.3)

The equation (1.1) becomes an ordinary differential equation with random coefficients:

dyn(t)

dt
= F(yn(t))+

d∑
j=1

Gj(yn(t))
dβ

j
n(t)

dt
, yn(0) = x. (1.4)
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Approximations yn of the described form have been first considered by E. Wong and
M. Zakai in [39] and [40], in the one dimensional case, and by D. W. Stroock and
S. R. S. Varadhan in [38], in the general m− dimensional case. It turned out that the
processes yn converge, in a proper sense, to a solution of the modified equation:

dy(t) =

F(y(t))+ 1

2

d∑
j=1

∇Gj(y(t))Gj (y(t))

 dt + d∑

j=1

Gj(y(t))dβj (t), (1.5)

y(t) = x,

where ∇G stands for the gradient of the mapping G. The expression 1
2

∑d
j=1 ∇

Gj(y(t))Gj (y(t)), is called the Wong − Zakai correction term.
The results by E. Wong and M. Zakai and D. W. Stroock and S. R. S. Varadhan were

extended and generalised in various directions in particular to stochastic parabolic equations
which are the main subject of the present paper.

Typical examples to which the theory developed in the paper is applicable are non-linear,
stochastic heat equations:

∂u

∂t
(t, ξ) = �ξu(t, ξ)+ f (u(t, ξ))+ g(u(t, ξ))

∂β

∂t
, (1.6)

u(0, ξ) = x(ξ), ξ ∈ O, u(t, ξ) = 0, t > 0, ξ ∈ ∂O, (1.7)

and strongly damped, non-linear, stochastic wave equations:

∂2u

∂t2
(t, ξ) = �ξu(t, ξ)+ ρ�ξ

∂u

∂t
(t, ξ)+ f (u(t, ξ))+ g(u(t, ξ))

∂β

∂t
(1.8)

u(t, ξ) = 0, t > 0, ξ ∈ ∂O, (1.9)

u(0, ξ) = x0(ξ),
∂u

∂t
(0, ξ) = x1(ξ), ξ ∈ O. (1.10)

In the above equations O stands for a domain in Rm, �ξ is the Laplace operator and ρ a
positive constant. The modified limiting equations are of the form:

∂u

∂t
(t, ξ) = �ξu(t, ξ)+

(
f + 1

2
g′g
)
(u(t, ξ))+ g(u(t, ξ))

∂β

∂t
, (1.11)

∂2u

∂t2
(t, ξ) = �ξu(t, ξ)+ ρ�ξ

∂u

∂t
(t, ξ)+

(
f + 1

2
g′g
)
(u(t, ξ)) (1.12)

+ g(u(t, ξ))
∂β

∂t
.

We are concerned with Wong-Zakai approximations of weak solutions of general stochastic
evolution equation, in a separable Hilbert space H , of the form

dX(t) = (AX(t)+ F(X(t)))dt +G(X(t))dW(t), (1.13)

X(0) = x ∈ H,
where the operator A generates an analytic semi-group of linear operators S(t) on H .
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Let yn(t), t ≥ 0 be the weak solution of the equation:

dyn(t)

dt
= Ayn(t)+ F(yn(t))+G(yn(t))Ẇn(t), yn(0) = x (1.14)

called the Wong-Zakai approximation of the solutionX of (1.13). To emphasise the depen-
dence of the solution on the initial data we will also write yn(t, x) instead of yn(t) only.

The content of the paper can be described as follows.
In Preliminaries we gather basic notations and results related to analytic semi-groups

and evolution equations needed in the sequel. Section 3 is devoted to the proof of
Theorem 3.5 stating conditions under which the Wong-Zakai approximations are bounded
in p− moments in some Sobolev type norms. Tightness of the approximations is studied
in Section 4. It turns out, see Theorem 4.7, that for tightness an additional condition of
compactness of the operators S(t), t > 0, is needed. The convergence of the approxima-
tions, see Theorem 5.8, is established in the second half of Chapter 5. In the first part we
prove an auxiliary result of independent interest, see Theorem 5.9, that martingale problem
associated with the equation has a unique solution. Applications of the results to stochastic
invariance are sketched in Section 6.

The main difficulty of the present generalization is due to the unboundedness of the
operator A and the lack of local compactness of the Hilbert space H . Moreover in order to
allow applications to the case in which F and G are Nemytskii (evaluation) operators over
spaces of summable functions, see §2.1 and in particular Remark 2.3, we just assume that
F and G are once Gâteaux differentiable (and never require any Fréchet differentiability).
For simplicity of the presentation we cover only finite dimensional noise but the techniques
used in the paper allow some generalizations to infinite dimensional noise as well. In the
proofs we are using basic properties of analytic semi-groups and interpolation spaces and
the factorization formula for stochastic convolutions.To some extent we follow the scheme
developed for finite dimensional equations in the paper [38].

There exists a substantial number of publications devoted to the Wong- Zakai approxima-
tions of stochastic evolution equations. Among the earliest one should mention papers by
P. Acquistapace and B. Terreni, [1], Z. Brzezniak, M. Capinski, and F. Flandoli [6],
I. Gyöngy [9], and Gyöngy and T. Pröhle [13]. Important recent contributions are due
to V. Bally, A. Millet and M. Sanz-Solé [5], I. Gyöngy, D. Nualart and M. Sanz- Solé [12],
A. Millet and M. Sanz- Solé [22], [23] and [24]. Those papers investigate either linear
stochastic evolution equations or stochastic partial differential equations in one space vari-
able. They often prove path convergence of the approximations and in the present paper we
are concerned with the boundedness and the weak convergence of the laws only. However
our theory, based on the reformulation of the stochastic partial differential equations as a
stochastic evolution equation in Hilbert spaces, gives a single abstract result that, due to the
generality of our assumptions, can be applied to several cases discused in earlier papers as
well as to stochastic partial differential equations in many space variables and systems of
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such equations, not treated in the literature. Moreover we can also cover equations with
elliptic operators A of order higher than 2 and systems of reaction-diffusion equations.

Approximations for some stochastic evolution equations in Hilbert spaces, with the
operator A generating a strongly continuous semi-group, were studied by K. Twardowska,
[37], [36], under strong assumptions on A and G. Recently, in T. Nakayama [27], the Lp

convergence of the Wong-Zakai approximations of a stochastic evolutions equation similar
to (1.13) was obtained in the case in whichA is the infinitesimal generator of aC0 semigroup
(not necessarily analytic) but coefficients F andG are twice Fréchet differentiable. On the
one hand first order (and a fortriori second order) Fréchet differentiability of coefficients is,
in general, a restrictive assumption that, for instance, is not verified by any of the examples
we present here, see Remark 2.3 and Examples 6.15, 6.16 and 6.17. On the other hand
the results in [27] have applications to important financial models such as Heath-Jarrow-
Morton equation for the evolution of forward rate curves, in which the coefficients F and
G are constant and the differential operator A is of the first order, that that do not fit our
framework, see [28].

Preliminary version of the paper appeared as Warwick Preprint:9/2001, May 2001, under
the title Wong- Zakai approximations of stochastic evolution equations.

2. Preliminaries

2.1. Analytic semigroups

To state our results we need to fix some notations. The norm and the scalar products on H
are denoted by | · | and 〈·, ·〉. We fix constants M and a such that

|S(t)| ≤ Meat , t ≥ 0.

By Vα , α ∈ (0, 1), we denote the domainsD(λI −A)α of the fractional powers (λI −A)α
where λ is any fixed number greater than ω. The set Vα is a separable Hilbert space with
the norm

|x|α = (|x|2 + |(λI − A)αx|2)1/2, x ∈ Vα.

We will frequently use the following estimates for analytic semigroups valid for suitable
constants Cα , Cα,β and t ∈]0, T ]:

|S(t)x|α ≤ Cα,βt
β−α|x|β for all 0 ≤ β ≤ α ≤ 1, x ∈ Vβ

|S(t)x − x| ≤ Cαt
α|x|α for all α ∈ [0, 1], x ∈ Vα (2.1)
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2.2. A class of Gateâux differentiable functions

Stochastic evolution equations which one often meets in applications have coefficients
which are not Fréchet differentiable. Following [8] and [42] we introduce a class of maps
acting among Banach spaces, possessing regularity properties weaker than Fréchet dif-
ferentiability. This class is sufficiently large and includes operators commonly used as
Nemytskii (evaluation) operators. It is well known that the Nemytskii operators are Fréchet
differentiable only in trivial cases.

LetU , V ,Z denote Banach spaces. We recall that for a mapping
 : U → V the directional
derivative at point x ∈ U in the direction h ∈ U is defined as

∇
(x;h) = lim
s→0


(x + sh)−
(x)

s
,

whenever the limit exists in the topology of V . The mapping 
 is called Gâteaux differ-
entiable at point x if it has directional derivative in every direction at point x and there
exists an element of L(U, V ), denoted ∇
(x) and called Gâteaux derivative, such that
∇
(x;h) = ∇
(x)h for every h ∈ U . We say that a mapping 
 : U → V belongs to the
class G1(U ;V ) if it is continuous, Gâteaux differentiable on U , and ∇
 : U → L(U, V )

is strongly continuous.
The last requirement of the definition means that for everyh ∈ U the map ∇
(·)h : U → V

is continuous. Note that ∇
 : U → L(U, V ) is, in general, not continuous if L(U, V ) is
endowed with the norm operator topology. If this happens then 
 is Fréchet differentiable
on U . Some features of the class G1(U, V ) are collected below.

LEMMA 2.1. Suppose 
 ∈ G1(U, V ). Then

(i) (x, h) 	→ ∇
(x)h is continuous from U × U to V ;
(ii) If � ∈ G1(V , Z) then �(
) ∈ G1(U,Z) and

∇(�(
))(x) = ∇�(
(x))∇
(x).

(iii) For all x, h ∈ U it holds 
(x + h) = 
(x)+
∫ 1

0
∇
(x + θh)hdθ .

That a map belongs to G1(U, V ) may be often checked by an application of the following
lemma.

LEMMA 2.2. A map 
 : U → V belongs to G1(U, V ) provided the following condi-
tions hold:

(i) the directional derivatives ∇
(x;h) exist at every point x ∈ U and in every direction
h ∈ U ;
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(ii) the mapping ∇
(·; ·) : U × U → V is continuous.

The proofs of the above lemmas are left to the reader.

REMARK 2.3. Let O be a bounded open subset of Rm and let H = L2(O). For
ψ ∈ C1(R) bounded and Lipschitz define � : H → H by �(x)(ξ) = ψ(x(ξ)), x ∈ H ,
ξ ∈ O. It is immediate to check that� is of classG1(H)with [∇�(x)h](ξ) = ψ

′
(x(ξ))h(ξ)

but it is never Fréchet differentiable (unlessψ is affine). Moreover� is never twice Gâteaux
differentiable (again unless ψ is affine).

2.3. Probabilistic estimate

We will need also the following lemma.

LEMMA 2.4. Let K be a Hilbert space and fix r ≥ 1. There exists cr such that for all
φ ∈ Lr(�,L2([a, b],K)) and 0 ≤ a < b with φ(s), Fsn -measurable for s ∈ [sn, s+n [ it
holds

E

∣∣∣∣
∫ b

a

φ(s)β̇n(s)ds

∣∣∣∣
2r

K

≤ crE

(∫ b

a

|φ(s)|2Kds
)r

Proof. We have:

E

∣∣∣∣
∫ b

a

φ(s)β̇n(s)ds

∣∣∣∣
2r

K

= E

∣∣∣∣∣∣
[2nb]∑
k=[2na]

(∫ 2−n(k+1)∧b

2−nk∨a
φ(s)ds

)
β̇n(2

−nk ∨ a)ds
∣∣∣∣∣∣
2r

K

≤ cpE


2n

[2nb]∑
k=[2na]

∣∣∣∣∣
∫ 2−n(k+1)∧b

2−nk∨a
φ(s)ds

∣∣∣∣∣
2

K



r

≤

≤ crE


 [2nb]∑
k=[2na]

∫ 2−n(k+1)∧b

2−nk∨a
|φ(s)|2Kds



r

≤ crE

(∫ b

a

|φ(s)|2Kds
)r

�

3. Boundedness of the approximations

The approximating sequence yn can be regarded as a sequence of random variables taking
values in some function spaces. In this section we show that the sequence is bounded in p−
moments in appropriate function spaces of regular trajectories. To state our first theorem
we formulate first the required assumptions.
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Let us recall that if F is a mapping from H into H then its Gateâux derivative at point
x ∈ H is denoted by ∇F(x). If for each h ∈ H , the mapping ∇F(x)h, x ∈ H is continuous
then, by definition, F belongs to the class G1(H).

We will need the following conditions.

(A.1) F and G1, . . . ,Gd belong to G1(H) and

sup
x∈H


|F(x)| + |∇F(x)| +

d∑
j=1

(
|Gj(x)| + |∇Gj(x)|

) < +∞ .

(A.2) There exist α ∈ ( 1
2 , 1), ε ∈ (α2 , 1

2 ] and c > 0 such that

|Gj(x)|ε ≤ c(1 + |x|α), x ∈ Vα, j = 1, . . . , d.

(A.3) There exists a set � ⊂ H and a constant c > 0 such that

Gj(x) ∈ �, ∇Gj(x)Gj (x) ∈ �, for x ∈ H , j = 1, . . . , d

and

d∑
j=1

|∇Gj(x)u− ∇Gj(y)u| ≤ c|x − y|

for all x, y ∈ H and u ∈ �.

Here is the main result of the present section.

THEOREM 3.5. Assume that the operator A generates an analytic C0-semi-group and
that conditions (A.1), (A.2) and (A.3) are satisfied. Then for all p > 0 and all R > 0

sup
{
E
(
tαp|yn(t, x)|pα

) ; |x| ≤ R, n ∈ N, t ∈ [0, T ]
}
< +∞.

Let us remark that the boundedness is formulated in stronger norms then the basic norm in
H. To treat all initial conditions in H , also those which are not in Vα we had to introduce
the mollifier tαp.

To simplify presentation we assume that d = 1 and identify W with β.

It is well known that under the assumptions of the theorem for all initial datum x ∈ H there
exists a unique adapted process y ∈ L2(�; C([0, T ], H)) solving equation (1.13) in the
usual weak, or equivalently, mild sense that is

y(t) = S(t)x +
∫ t

0
S(t − s)F (y(s))ds +

∫ t

0
S(t − s)G(y(s))dβ(s)

for all t ∈ [0, T ], R-a.s.
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LEMMA 3.6. Fix n ∈ N. For all x ∈ H there exists a unique measurable process
yn : � → C([0, T ], H), such that for all t ∈ [0, T ], R-a.s.:

yn(t, ω) = S(t)x +
∫ t

0
S(t − s)

[
F(yn(s, ω))+G(yn(s, ω))β̇n(s, ω)

]
ds. (3.1)

Moreover supt∈(0,T ] t
α|yn(t, ω)|α < +∞, R-a.s. for all α ∈ (0, 1). Finally for all p > 0

E
(

sup
t∈(0,T ]

tαp|yn(t, ω)|pα
)
< +∞. (3.2)

Proof. The existence of yn verifying (3.1) and its measurability is a straight-forward
consequence of standard fixed point arguments in C([0, T ], H), because F and G are
uniformly Lipschitz. Moreover by (2.1) we get, for a suitable constant C:

|yn(t, ω)|α ≤ t−α|x| + C

∫ t

0
(t − s)−α(1 + |β̇n(s, ω)|)ds.

If we choose p > (1 − α)−1 and 1/p + 1/q = 1 then by Holder’s inequality:

|yn(t, ω)|pα ≤ t−αp|x| + Ct(1/q−α)p
∫ T

0
(1 + |β̇n(s, ω)|)pds.

Since E

(∫ T

0
(1 + |β̇n(s, ω)|)pds

)
< +∞, the required inequality holds. It is also clear

that if the claim holds for some p > 0 then it holds for all 0 < p′ ≤ p. �

Proof of Theorem 3.5. We start by noticing again that if the claim holds for some p > 0
then it holds for all 0 < p′ ≤ p. We introduce the following notation: for all γ, p > 0,
and all φ ∈ Lp(�,C(]0, T ], Vα)) let

‖φ‖γ,α,p = sup
{
tαe−γ t

(
E(|φ(t)|pα)

)1/p : t ∈]0, T ]
}
, (3.3)

and

‖φ‖α,p = sup
{
tα
(
E(|φ(t)|pα)

)1/p : t ∈]0, T ]
}
. (3.4)

By Lemma 3.6, ‖yn‖γ,α,p < +∞. We claim that for all p large enough there exist γ and a
constant �γ,α,p,R such that ‖yn‖γ,α,p ≤ �γ,α,p,R for all n ∈ N and all x ∈ H with |x| ≤ R.

Relation (3.1) can be rewritten as:

yn(t) = S(t)x +
∫ t

0
S(t − s)F (yn(s))ds +

∫ 2−n∧t

0
S(t − s)G(yn(s))β̇n(0)ds+

+
∫ t

2−n∧t
S(t − s)G(yn(sn))β̇n(s)ds

+
∫ t

2−n∧t
S(t − s) [G(yn(s))−G(yn(sn))] β̇n(s)ds

:= S(t)x + I 1
n (t)+ I 2

n (t)+ I 3
n (t)+ I 4

n (t)
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It is evident that sup|x|≤R‖S(·)x‖α,γ,p < ∞.
We start estimating the terms I in, i = 1, 2, 3, 4.

In the following by c we denote a generic constant which depends only on F , G, x, α, T
and p but not on γ , t and n. Its value can change from line to line.

To start with by (2.1) we immediately get:

|I 1
n |α ≤ c

∫ t

0
(t − s)−αds (3.5)

Coming now to I2 we get:

E|I 2
n (t)|pα ≤ ctαpE(|β̇n(0)|p)

(∫ 2−n∧t

0
(t − s)−αds

)p

≤ ctαp2np/2
(∫ 2−n∧t

0
(t − s)−αds

)p

If t ≤ 2−n+1 then:

tαp2np/2
(∫ 2−n∧t

0
(t − s)−αds

)p
≤ tαp2np/2

(∫ t

0
s−αds

)p
≤ c2−np/2.

Moreover if t > 2−n+1 then t/(t − s) ≤ 2 for s ≤ 2−n and therefore:

tαp2np/2
(∫ 2−n∧t

0
(t − s)−αds

)p
≤ c2np/2

(∫ 2−n

0

(
t

t − s

)α
ds

)p
≤ c2np/2

(
2−n2α

)p ≤ c2−np/22αp.

We can therefore conclude that:

‖I 2
n‖pα,γ,p ≤ c (3.6)

We examine now I 3
n . Clearly I 3

n (t) = 0 if t ≤ 2−n We therefore assume that t > 2−n. By
Lemma 2.4. we get:

tαpe−γptE|I 3
n (t)|pα ≤ tαpe−γptE

(∫ t

2−n
|S(t − s)G(yn(sn)|2αds

)p/2

≤ ctαpe−γpt
(∫ t/2

0
(t − s)−2αds

)p/2
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+ctαpe−γptE
(∫ t

t/2∨2−n
(t − s)−2(α−ε)(1 + |yn(sn)|α)2ds

)p/2
≤ ctαpe−γpt t (1−2α)p/2

+ctαpe−γptE
(∫ t

t/2∨2−n
(t − s)−2(α−ε)(1 + |yn(sn)|2α)ds

)p/2

≤ ctp/2e−γpt + ctαpe−γpt
(∫ t

t/2∨2−n
(t − s)−2(α−ε))ds

)p/2

+ctαpe−γptE
(∫ t

t/2∨2−n
(t − s)−2(α−ε)|yn(sn)|2α)ds

)p/2

Clearly tαp(t/2)−αptp/2 is uniformly bounded when t ∈ [0, T ]. Moreover, since α − ε <

1/2 we have: e−γpt tαp
(∫ t
t/2(t − s)−2(α−ε)ds

)p/2 ≤ c.

We are left with:

tαpe−γptE
(∫ t

t/2∨2−n
(t − s)−2(α−ε)|yn(sn)|2α)ds

)p/2
=

tαpE

(∫ t

t/2∨2−n
(t − s)−2(α−ε)s−2αe−2γ (t−s)(s2α

n e
−2γ sn |yn(sn)|2α)ds

)p/2

where we have used the fact that, for all s ≥ 2−n, s(sn)−1 ≤ 2. Applying Holder inequality
with exponents p/2 and q∗ such that 2/p + 1/q∗ = 1 we get:

tαpE

(∫ t

t/2∨2−n
(t − s)−2(α−ε)s−2αe−2γ (t−s)(s2α

n e
−2γ sn |yn(sn)|2α)ds

)p/2
≤

≤ tαp
(∫ t

t/2
(t − s)−2q∗(α−ε)s−2q∗αds

)p/2q∗

‖yn‖α,γ,p
∫ t

t/2
e−γp(t−s)ds

≤ c(γp)−1tp/2q
∗(1−2q∗(−α+ε))‖yn‖α,γ,p ≤ c

γ
‖yn‖α,γ,p

where we have chosen p large enough so that 2q∗(α− ε) < 1. Notice that by our assump-
tions α − ε ≤ α/2 ≤ 1/2. Summarising we again get, for p large enough:

‖I 3
n‖pα,γ,p ≤ c[1 + γ−1‖yn‖pα,γ,p] (3.7)

Finally we have to deal with I 4
n . Since G ∈ G1 we can write, for t > 2−n

I 4
n (t) =

∫ t

2−n
S(t − s)�n(s) (yn(s)− yn(sn)) β̇n(sn)ds

where

�n(s) =
∫ 1

0
∇G(yn(sn)+ θ(yn(s)− yn(sn))dθ. (3.8)
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Notice that for all ω ∈ �, �n(·, ω) is a strongly continuous map with values in L(H) such
that sup

{|�n(t, ω)|L(H) : t ∈ [0, T ], n∈ N, ω ∈ �
}
< ∞. Using the definition of mild

solution of equation (1.14) with initial datum yn(sn) at initial time sn we get:

I 4
n (t) =

∫ t

2−n
S(t − s)�n(s) (S(s − sn)− I ) yn(sn)β̇n(sn)ds+

+
∫ t

2−n
S(t − s)�n(s)

(∫ s

sn

S(s − σ)F (yn(σ )dσ

)
β̇n(sn)ds+

+
∫ t

2−n
S(t − s)�n(s)

(∫ s

sn

S(s − σ)G(yn(σ )dσ

) (
β̇n(sn)

)2
ds

:= I 4.1
n (t)+ I 4.2

n (t)+ I 4.3
n (t)

We start again estimating I 4.1:

e−γpt tαpE

∣∣∣I 4.1(t)

∣∣∣p
α

≤
≤ ctαpE

(∫ t

2−n
((t−s)sn)−α(s−sn)αeγ (sn−t)

[
sαn e

−γ sn |yn(sn)|α
] |β̇n(sn)|ds

)p
Applying again Holder inequality with 1/p + 1/q + 1/r = 1 and choosing q such that
αq < 1 and recalling again that s/sn ≤ 2 we get:

e−γpt tαpE

∣∣∣I 4.1(t)

∣∣∣p
α

≤

≤ ctαp
(∫ t

0
((t − s)s)−αqds

)p/q
γ−p/r×

×E

∫ t

2−n
(s − sn)

αp
[
s
αp
n e

−γ snp|yn(sn)|pα
] (
β̇n(sn)

)p
ds.

Recalling that random variables β̇n(sn) and yn(sn) are independent:

e−γpt tαpE

∣∣∣I 4.1(t)

∣∣∣p
α

≤ ct(1/q−α)pγ−p/r2np/2‖yn‖pα,γ,p
∫ t

0 (s − sn)
αpds

≤ cγ− p
r t1+(1/q−α)p2−np(α−1/2)‖yn‖pα,γ,p.

Choosing again p, q and r so that 1/q ≥ α and r ≤ p we can conclude:

e−γpt tαpE

∣∣∣I 4.1(t)

∣∣∣p
α

≤ cγ−1‖yn‖pα,γ,p (3.9)

Moreover:

e−γpt tαpE

∣∣∣I 4.2(t)

∣∣∣p
α

≤ e−γpt tαpE

(∫ t

2−n
(t − s)−α(s − sn)|β̇n(sn)|ds

)p

≤ ctαp2np/2
(∫ t

0
(t − s)−αq

)p/q ∫ t

0
(s − sn)

pds ≤ ctp/q2−np/2
(3.10)
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Finally:

e−γpt tαpE

∣∣∣I 4.3(t)

∣∣∣p
α

≤ e−γpt tαpE

(∫ t

2−n
(t − s)−α(s − sn)

(
β̇n(sn)

)2
ds

)p

≤ ctαp2np
(∫ t

0
(t − s)−αq

)p/q ∫ t

0
(s − sn)

pds ≤ ctp/q
(3.11)

By (3.5), (3.6), (3.7), (3.9), (3.10) and (3.11) we get:

‖yn‖pα,γ,p ≤ c
(

1 + γ−1‖yn‖pα,γ,p
)

where c does not depend on γ . The claim follows choosing γ large enough.

4. Tightness of the approximations

We pass now to the tightness of the laws of the approximations and show the following
theorem.

THEOREM 4.7. Assume in addition to the conditions of Theorem 3.5. that for each
t > 0, S(t) is a compact operator from H into H . Then for each x, the laws L(yn(·, x)),
n = 1, 2, . . . are tight on C(0, T ;H). Moreover

sup
n

E

(
sup
t∈[0,T ]

|yn(t, x)|
)
< +∞

Proof of Theorem 4.7. LetCx([0, T ], H) be the space of continuous functions φ : [0, T ] →
H such that φ(0) = x.

We write yn as in (3.1). We only show that the sequence of laws of the processes:

ỹn(t) =
∫ t

0
S(t − s)G(yn(s))β̇n(s)ds

is tight in Cx([0, T ], H) and

sup
n

E

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0
S(t − s)G(yn(s))β̇n(s)ds

∣∣∣∣
p
)
< ∞.

The proof of the same property for the deterministic convolution∫ t

0
S(t − s)F (yn(s))ds

is similar and easier.
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We use the factorisation formula, see [7], and write ỹn(t) as:

ỹn(t) = �α̃Yn,α̃(t), (4.1)

where for all α̃ ∈ (0, 1) and all f ∈ Lp([0, T ], H) with 1/p < α̃:

�α̃f (t) =
∫ t

0
(t − s)α̃−1S(t − s)f (s)ds

and

Yn,α̃(t) =
∫ t

0
(t − s)−α̃S(t − s)G(yn(s))β̇n(s)ds

(the proof of (4.1) follows by Fubini-Tonelli theorem, see [7]). Since, see Proposition 8.4
in [7], operators�α̃ are compact from Lp([0, T ], H) to C([0, T ], H) it is enough to show
that there exist p, α̃ and � with 1/p < α̃ < 1/2 and:

E

∫ T

0
|Yn,α̃(t)|pdt ≤ � ∀n ∈ N

Again we divide

Yn,α̃(t) =
∫ 2−n∧t

0
(t − s)−α̃S(t − s)G(yn(s))β̇n(0)ds

+
∫ t

2−n∧t
(t − s)−α̃S(t − s)G(yn(sn))β̇n(s)ds

+
∫ t

2−n∧t
(t − s)−α̃S(t − s) [G(yn(sn))−G(yn(s))] β̇n(s)ds

= I 1
n (t)+ I 2

n (t)+ I 3
n (t)

In the following by � we denote a generic constant and its value can change from line to
line. We have:

E

∫ T

0
|I 1
n (t)|pdt ≤ �

∫ T

0

(
2n/2

∫ 2−n∧t

0
(t − s)−α̃ds

)p
dt

≤ �

∫ T

0

(
2n/2

∫ t

(t−2−n)∨0
σ−α̃dσ

)p
dt

≤ �T

(
2n/2

∫ 2−n

0
σ−α̃dσ

)p
≤ �T 2np/22−n(1−α̃)p ≤ �

since 1 − α̃ > 1/2. Moreover by Lemma 2.4.

E

∫ T

2−n
|I 2
n (t)|pdt ≤ �E

∫ T

0

(∫ t

2−n
(t − s)−2α̃ds

)p/2
≤ �

∫ T

0
t (1−2α̃)p/2dt ≤ �
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We come to the estimate of I 3
n . We choose α̃ such that α̃ < 1 − α and p > α̃−1 ∨ p with

p selected similarly as in the proof of Theorem 3.5. We again split the expression:

I 3
n (t) =

∫ t

2−n
(t − s)−α̃S(t − s)�n(s) (S(s − sn)− I ) yn(sn)β̇n(sn)ds+

+
∫ t

2−n
(t − s)−α̃S(t − s)�n(s)

(∫ s

sn

S(s − σ)F (yn(σ )dσ

)
β̇n(sn)ds+

+
∫ t

2−n
(t − s)−α̃S(t − s)�n(s)

(∫ s

sn

S(s − σ)G(yn(σ )dσ

) (
β̇n(sn)

)2
ds

:= I 3.1
n (t)+ I 3.2

n (t)+ I 3.3
n (t)

We proceed as in the proof of Theorem 3.5.

E|I 3.1
n (t)|p ≤ �E

(∫ t

2−n
(t − s)−α̃(s − sn)

αs−αn
[
sαn |yn(sn)|α

] |β̇n(sn)|ds
)p

≤ �

(∫ t

2−n
(t − s)−α̃q s−αqn ds

)p/q ∫ t

2−n
(s − sn)

αpE
[
s
αp
n |yn(sn)|pα |β̇n(sn)|p

]
ds

Since for s ≥ 2−n, s/sn ≤ 2 and yn(sn) is independent from β̇n(sn) we get by
Theorem 3.5 and definition (3.4)

E|I 3.1
n (t)|p≤�

(∫ t

2−n
(t − s)−α̃q s−αq

)p/q (∫ t

2−n
(s − sn)

αpds

)
2np/2‖yn‖pα,p

≤c�tp/q t−(α+α̃)pt2−nαp2np/2 ≤ c�tp(1−α−α̃).

Since α + α̃ ≤ 1 this implies E|I 3.1
n (t)|p ≤ � for all t ∈ [0, T ]. To complete the proof we

estimate
∫ T

0 E|I 3.3
n (t)|pdt . The estimate of the term

∫ T
0 E|I 3.2

n (t)|pdt is similar and easier.

It holds∫ T

0
E|I 3.3

n (t)|pdt ≤ �E

(∫ t

2−n
(t − s)−α̃(s − sn)|β̇n(sn)|2ds

)p

≤
(∫ t

2−n
(t − s)−α̃qds

)p/q (∫ t

2−n
(s − sn)

pds

)
2np

≤ �t1+(1−α̃q)p/q ≤ �

since α̃ ≤ 1/2 ≤ 1/q = 1 − 1/p and this completes the proof.

5. Convergence to the solution of the modified equation

Here is the main result of the paper
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THEOREM 5.8. Under the conditions of Theorem 4.7, the laws L(yn(·, x)) converge
weakly on C(0, T ;H) to the law of the solution of the following evolution equation

dy(t) =

Ay(t)+ F(y(t))+ 1

2

d∑
j=1

∇Gj(y(t))Gj (y(t))

 dt (5.1)

+
d∑
j=1

Gj(y(t))dβj (t),

y(t) = x.

To prove the theorem we need a result on the solution of the martingale problem in infinite
dimensions of independent interest.

5.1. Martingale problem and weak solutions of evolution equations

We recall first basic definitions related to the martingale problem and establish a uniqueness
result needed to prove the convergence Theorem 5.8.

Denote by ν(t), t ≥ 0, the canonical process on Cx([0, T ], H):

ν(t, ω) = ω(t), t ≥ 0, ω ∈ Cx([0, T ], H),

and let Ft = σ {ν(τ) : τ ≤ t}, t ≥ 0, F = σ {ν(τ) : τ ≥ 0} be the canonical σ− field.
Let F : H → H and G : H → L(Rd ,H) be given measurable functions and A the
infinitesimal generator of a C0-semi-group S(t), t ≥ 0, on H . Coordinate functions of G
are denoted respectively as G1, . . . ,Gd .

We say that ϕ : Cx([0, T ], H) → R is a regular, cylindrical function if there exist a natu-
ral numberm, aC∞-functionψ on Rmwith compact support, and elementsa1, a2, . . . , am ∈
D(A∗) such that

ϕ(x) = ψ
(〈x, a1〉, . . . , 〈x, am〉). (5.2)

If ϕ is a regular, cylindrical function, then we set

Lϕ(x)

= 〈x,A∗Dxϕ(x)〉 + 〈F(x),Dxϕ(x)〉 + 1

2
TraceG∗(u)D2

xxϕ(u)G(x)

=
m∑
k=1

∂ψ

∂ξk

(〈x, a1〉, . . . , 〈x, ad〉
)[〈x,A∗ak〉 + 〈F(x), ak〉

]

+ 1

2

d∑
n=1

m∑
k,l=1

∂2ψ

∂ξk ∂ξl

(〈x, a1〉, . . . , 〈x, ad〉
)〈ak,Gn(x)〉〈al,Gn(x)〉

(5.3)
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A probability measure Q on
(
Cx([0, T ], H),F) is a solution to martingale problem with

parameters (x,A, F,GG∗) if the process

ϕ(ν(t))−
∫ t

0
Lϕ(ν(s)) ds, t ≥ 0, (5.4)

is an Ft -martingale on
(
Cx([0, T ], H),F,Q) for an arbitrary regular cylindrical function.

In the formulation of the theorem below, νd(t), t ≥ 0, is the canonical process on
C0([0, T ],Rd):

νd(t, ωd) = ωd(t), t ≥ 0, ωd ∈ C0([0, T ],Rd),

and Gt = σ {νd(τ ) : τ ≤ t}, G = σ {νd(τ ) : τ ≥ 0}.

THEOREM 5.9. Assume that F,G1, . . . ,Gd are Lipschitz functions and a probability
measure Q on

(
Cx([0, T ], H),F) is a solution to the martingale problem (x,A, F,GG∗).

Then there exists a d-dimensional Wiener process Ŵ (t), t ≥ 0, on (�̂, F̂, Q̂), �̂ =
Cx([0, T ], H) × C0([0, T ],Rd), F̂ = F ⊗ G, Q̂ = Q × W , such that the process ν(t),
t ≥ 0, extended from � to �̂ by the formula

ν(t, (ω, ωd)) = ν(t, ω), t ≥ 0, (ω, ωd) ∈ �̂,
is a weak solution of the stochastic Itô equation

dν(t) = (
Aν(t)+ F(ν(t))

)
dt +G(ν(t)) dŴ (t), ν(0) = x. (5.5)

It is well known that under the conditions of Theorem 5.9 the equation (5.5) has a unique
weak solution, see e.g. [7], therefore the measure Q is identical with the law of the solution
and we have the following corollary.

THEOREM 5.10. Under the conditions of Theorem 5.9. the solution to the martingale
problem (x,A, F,GG∗) is unique.

Proof of Theorem 5.9. Let us choose an orthonormal and complete basis (em) inH composed
of vectors from D(A∗) and such that the set {em : m ∈ N} is linearly dense in D(A∗)
equipped with the graph norm. It is enough to construct a Wiener process ω̂(t), t ≥ 0, such
that for each m

d〈em, ν(t)〉 = [〈A∗em, ν(t)〉 + 〈em, F (ν(t)〉
]
dt + 〈em,G(ν(t)) dω̂(t)〉.

Define xm = 〈em, x〉, νm(t) = 〈em, ν(t)〉,

Mm(t) = νm(t)− xm −
∫ t

0

[〈A∗em, ν(s)〉 + 〈em, F (ν(s))〉
]
ds,

n = 1, 2, . . . , t ≥ 0,
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and let ψR ∈ C∞
0 (R) be such that

ψR(σ) = σ, if |σ | ≤ R.

Considering martingales (5.4) for ϕ1(x) = ψR
(〈em, x〉), ϕ2(x) = ψR

(〈em, x〉)ψR(〈el, x〉),
x ∈ H , and taking into account that ,

ϕ1(ν(t)) = νm(t), ϕ2(ν(t)) = νm(t)νl(t),

for t ≤ τR = inf{t ≥ 0 : |ν(t)| ≥ R},

one can easily show that processes Mm, m = 1, 2, . . . , are local martingales, with the
quadratic covariation given by the formulae

〈〈Mm,Ml〉〉t =
∫ l

0
〈G∗(ν(s))em,G∗(ν(s))el〉 ds, t ≥ 0.

For arbitary natural k ≤ l define

Mk,l(t) =
m∑
j=k

Mj (t)ej , t ≥ 0.

Then Mk,l is an H -valued local martingale with continuous paths. By Doob’s maximal
inequality

E sup
0≤t≤T

∣∣Mk,l(t ∧ τR)
∣∣2 ≤ 4 sup

0≤t≤T
E|Mk,l(t ∧ τR)

∣∣2

≤ 4E

∫ T

0

( l∑
j=k

∣∣G∗(ν(s ∧ τR))ej
∣∣2) ds, k ≤ l.

However,

E

∫ T

0

( ∞∑
j=k

∣∣G∗(ν(s ∧ τR)ej )
∣∣2) ds ≤ T sup

y∈H
‖G(y)‖2

L(H,H) < +∞.

Consequently,

lim
k,l→∞ E sup

0≤t≤T
∣∣Mk,l(t ∧ τR)

∣∣2 → 0

and therefore the series

M(t) =
+∞∑
j=1

Mj(t)ej , t ≥ 0,
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defines anH -valued, continuous local martingale. Since the processesMk,l(t ∧ τR), t ≥ 0,
are square integrable martingales, the process M(t), t ≥ 0, is a continuous, local square
integrable martingale with the square bracket

〈〈M,M〉〉t =
∫ t

0

( d∑
k=1

Gk(ν(s))⊗Gk(ν(s))

)
ds, t ≥ 0,

where a ⊗ b is the one-dimensional operator a ⊗ b(y) = a〈b, y〉, y ∈ H .
The Wiener process Ŵ from the formulation of the theorem is constructed similarly to

the classical finite-dimensional case, see vol. 2, V.20 of [32]. Let, for each y ∈ H ,G−1(y)

be the pseudoinverse of G(y) acting from RangeG(y) into Rd and π(y) the orthogonal
projection of H onto RangeG(y). Since the range of G(y) is a finite-dimensional space,
the operator�(y) = G−1(y)π(y) is well defined, linear bounded operator for each y ∈ H .
Moreover, the operators

G(y)�(y) = G(y)G−1(y)π(y) = π(y) (5.6)

�(y)G(y) = G−1(y)π(y)G(y) = π1(y) (5.7)

are orthogonal projectors and

G(y)�(y)G(y) = π(y)G(y) = G(y) (5.8)

�(y)G(y)�(y) = �(y)π(y) = �(y), y ∈ H. (5.9)

Define

ρ(y) = I − π1(y), y ∈ H. (5.10)

Then ρ(y) is an orthogonal projector as well.
We finally define

Ŵ (t) =
∫ t

0
�(ν(s)) dM(s)+

∫ t

0
ρ(ν(s)) dW(s)

where W is a d-dimensional, canonical Wiener process on
(
C0([0, T ],Rd),G) trivially

extended to �̂. The same calculations as in finite dimensions, based on (5.6)–(5.10), show
that

〈〈Ŵ , Ŵ 〉〉t = I,〈〈
M(·)−

∫ ·

0
G(ν(s)) dŴ (s),M(·)−

∫ ·

0
G(ν(s)) dŴ (s)

〉〉
t
= 0, t ≥ 0,
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and therefore Ŵ is a d-dimensional Wiener process. Moreover,

∫ t

0
G(ν(s)) dŴ (s)

=
∫ t

0
G(ν(s))�(ν(s)) dM(s)+

∫ t

0
G(ν(s))ρ(ν(s)) dW(s) = M(t).

This completes the proof of the theorem.

5.2. Convergence of the approximations

We go back to the proof of Theorem 5.8.
Let Qn be the measure induced on Cx([0, T ], H) by yn(·) and assume that Qn ⇀ Q

weakly on Cx([0, T ], H) as n → ∞. To identify the limiting measure Q we compute

EQ (h · (f (ν(t))− f (ν(s)))) with t > s > 0

where ν(t), t ≥ 0 is the canonical process in Cx([0, T ], H), h is a generic bounded,
continuous, Fs = σ {ν(τ) : τ ≤ s} measurable function on Cx([0, T ], H) and we assume
that f is of the form

f (y) = ϕ(〈v1, y〉, . . . , 〈vr , y〉); v1, . . . , vr ∈ D(A∗), ϕ ∈ C∞
c (R

r ). (5.11)

In the following proofs we denote by EQ, respectively EQn , the expectation with respect to
measure Q, respectively Qn, on Cx([0, T ], H) and by E the expectation with respect to the
original probability measureP.

Theorem 5.8 is an immediate corollary of the following proposition.

PROPOSITION 5.11. For all f of the form (5.11), all 0 ≤ s ≤ t and all h bounded and
Fs measurable it holds:

EQ [h · (f (ν(t))− f (ν(s)))] = 1

2
EQ

[
h ·
∫ t

s

〈D2f (ν(τ ))G(ν(τ)),G(ν(τ))〉dτ
]

+EQ
[
h ·
∫ t

s

r∑
i=1

∂ϕ

∂vi
(〈v1, ν(τ )〉, . . . , 〈vr , ν(τ )〉)×

× (〈A∗vi, ν(τ )〉 + 〈vi, F (ν(τ ))〉
)
dτ
]

+ 1

2
EQ

[
h ·
∫ t

s

Df (ν(τ ))∇G(ν(τ))G(ν(τ))dτ
]
.

Thus Q is the law of the unique solution of equation (5.1)

The following lemma will be frequently used in the proof of the proposition.
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LEMMA 5.12. If µn ⇀ µ weakly and ∃c > 0 such that
∫
H

|x|1+εµn(dx) ≤ c, n =
1, 2, . . . then ∀ψ ∈ C(H) with |ψ(x)| ≤ C(1 + |x|), x ∈ H , it holds:∫

H

ψ(x)µn(dx) →
∫
H

ψ(x)µ(dx).

Proof. Note first that
∫
H

|x|1+εµ(dx) ≤ c. Define ψN = ψI{|x|≤N}. Then∫
H

ψ(x)µm(dx)−
∫
H

ψ(x)µ(dx) =
=
∫
H

ψN (µm − µ) (dx)+
∫
H

(ψ − ψN)µm(dx)+
∫
H

(ψN − ψ)µ(dx)

The first and the third term converge to 0. The first, for all N fixed, as m → ∞ and the
third as N → ∞. We have to prove that the second term goes to 0 as N → ∞ uniformly
in m.∣∣∣∣

∫
H

(ψN − ψ)µm(dx)

∣∣∣∣ ≤ C

∫
H

|x|I{|x|≥N}µm(dx) ≤ C [µm({|x| > N})]1/q

with 1
1+ε + 1

q
= 1. However µm{|x| > N} ≤ 1

N

∫ |x|µm(dx) → 0, asN → ∞ uniformly
in m, and the result follows. �

Proof. We pass to the proof of Proposition 5.11.
Let 0 ≤ s ≤ t ,

EQ [h · (f (ν(t))− f (ν(s)))]
= lim
n→∞ EQn [h · (f (ν(t))− f (ν(s)))]

= lim
n→∞ E

[
h ·
∫ t

s

Df (yn(τ ))ẏ
(n)(τ )dτ

]

= lim
n→∞ E

[
h ·
[ ∫ t

s

r∑
i=1

∂ϕ

∂vi
(〈v1, yn(τ )〉, . . . , 〈vr , yn(τ )〉)〈A∗vi, yn(τ )〉dτ

+
∫ t

s

r∑
i=1

∂ϕ

∂vi
(〈v1, yn(τ )〉, . . . , 〈vr , yn(τ )〉)〈vi, F (yn(τ ))〉dτ

+
∫ t

s

Df (yn(τ ))G(yn(τ ))β̇n(τ )dτ

]]

By Lemma 5.12. the first two terms converge to

= EQ

[
h ·
[ ∫ t

s

r∑
i=1

∂ϕ

∂vi
(〈v1, ν(τ )〉, . . . , 〈vr , ν(τ )〉)〈A∗vi, ν(τ )〉dτ

+
∫ t

s

r∑
i=1

∂ϕ

∂vi
(〈v1, ν(τ )〉, . . . , 〈vr , ν(τ )〉)〈vi, F (ν(τ ))〉dτ

]]
.
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We are therefore left with the limit of

E

[
h·
∫ t

s

Df (yn(τ ))G(yn(τ ))β̇n(τ )dτ

]

= E

[
h ·
∫ t

s

Df (yn(τ ))G(yn(τn))β̇n(τ )dτ

]

+E

[
h ·
∫ t

s

Df (yn(τ )) (G(yn(τ ))−G(yn(τn))) β̇n(τ )dτ

]
=: J 1

n + J 2
n .

But

J 1
n = E

[
h ·
∫ t

s

[Df (yn(τ ))−Df (yn(τn))]G(yn(τn))β̇n(τ )dτ

]
,

because: E

[
h ·
∫ t

s

Df (yn(τn))G(yn(τn))β̇n(τ )dτ

]
= 0. Therefore

J 1
n = E

[
h ·
∫ t

s

∫ τ

τn

r∑
ij=1

∂2ϕ

∂vi∂vj
(〈v1, yn(ζ )〉, . . . , 〈vr , yn(ζ )〉)〈vi,G(yn(τn))〉

[〈A∗vj , yn(ζ )〉 + 〈vj , F (yn(ζ ))〉β̇n(τn)
]
dζdτ

]

+E

[
h ·
∫ t

s

∫ τ

τn

r∑
ij=1

∂2ϕ

∂vi∂vj
(〈v1, yn(ζ )〉, . . . , 〈vr , yn(ζ )〉)

〈vi,G(yn(τn))〉〈vj ,G(yn(ζ ))(β̇n(σn))2dζdτ
]

=: J 1.1
n + J 1.2

n .

We notice that

J 1.1
n = Eh ·

∫ t

s

(∫ τ

τn

�n(ζ, τn)dζ

)
β̇n(τn)dτ

and

|�n(ζ, τn)| =
∣∣∣∣

r∑
ij=1

∂2ϕ

∂vi∂vj
(〈v1, yn(ζ )〉, . . . , 〈vr , yn(ζ )〉)

〈vi,G(yn(τn))〉
[〈A∗vj , yn(ζ )〉 + 〈vj , F (yn(ζ ))〉

] ∣∣∣∣
≤ c(1 + |yn(ζ )|).
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Consequently

|J 1.1
n | ≤ cE

(∫ t

s

(∫ τ

τn

(1 + |yn(ζ )|)dζ
)

|β̇n(τn)|dτ
)

≤ c

∫ t

s

(
E

(∫ τ

τn

(1 + |yn(ζ )|)dζ
)p)1/p (

E|β̇n(τn)|q
)1/q

dτ

≤ c2n/2
∫ t

s

(
E

(∫ τ

τn

(1 + |yn(ζ )|)dζ
)p)1/p

dτ

≤ c2n/2
∫ t

s

(
E

(
(τ − τn)

1/q
(∫ τ

τn

(1 + |yn(ζ )|)pdζ
)1/p

)p)1/p

dτ

≤ c2n/2
∫ t

s

(τ − τn)
1/q
(∫ τ

τn

E(1 + |yn(ζ )|)pdζ
)1/p

dτ

≤ c2n/2
∫ t

s

(τ − τn)
1+1/qdτ

≤ c2n/22n(t − s)

(
1

2n

)2+ 1
q = o(1)

where by o(1) we denote a generic function of n, infinitesimal as n → ∞.

J 1.2
n = E

[
h ·
∫ t

s

∫ τ

τn

r∑
i,j=1

∂2ϕ

∂vi∂vj
(〈v1, yn(ζ )〉, . . . , 〈vr , yn(ζ )〉)

〈vi,G(yn(ζ ))〉〈vj ,G(yn(τn))〉(β̇n(τn))2dζdτ
]

= E


h ·

∫ t

s

∫ τ

τn

r∑
i,j=1

µi,j (yn(ζ ))νj (yn(τn))(β̇n(τn))
2dζdτ




wereµi,j (y) = ∂2ϕ
∂vi∂vj

(〈v1, y〉, . . . , 〈vr , y〉)〈vi,G(y)〉 andνj (y) = 〈vj ,G(y)〉 are bounded
and Lipschitz. But

J 1.2
n =

r∑
i,j=1

E


h ·

∫ t

s

∫ τ

τn

r∑
i,j=1

µi,j (yn(τn))νj (yn(τn))(β̇n(τn))
2dζdτ




+E

[
h ·
∫ t

s

∫ τ

τn

(µ(yn(ζ ))− µ(yn(τn))) ν(yn(τn))(β̇n(τn))
2dζdτ

]

=: J 1.2.1
n + J 1.2.2

n
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We start from the second term:

|J 1.2.2
n | ≤

∫ t

s

∫ τ

τn

E

(
|yn(ζ )− yn(ζn)|(β̇n(τn))2

)
dζdτ

≤
∫ t

s

∫ τ

τn

E

( ∣∣∣(e(ζ−ζn)A − I
)
yn(ζn)

∣∣∣ (β̇n(τn))2
)
dζdτ

+
∫ t

s

∫ τ

τn

E

(∣∣∣∣
∫ ζ

ζn

e(ζ−σ)A
(
F(yn(σ ))+G(yn(σ ))β̇n(σ )

)
dσ

∣∣∣∣
×(β̇n(τn))2

)
dζdτ

=: J 1.2.2.1
n + J 1.2.2.2

n

J 1.2.2.1
n ≤ c

∫ 2−n

s∧2−n

(∫ τ

0
1dζ

)
2ndτ

+cE
[∫ t

s∨2−n

∫ τ

τn

(ζ − τn)
ατ−α
n (ταn |yn(τn)|α)(β̇n(τn))2dζdτ

]

≤ c2n2−2n + cE

[∫ t

2−n
(τ − τn)

1+ατ−α
n (ταn |yn(τn)|α)(β̇n(τn))2dτ

]

≤ c2−n + c

(∫ t

2−n
τ

−αq
n dτ

)1/q

×
(

E

[∫ t

2−n
(τ − τn)

p(1+α)(ταn |yn(τn)|α)p(β̇n(τn))2pdτ
])1/p

≤ c2−n + c
(
t1−αq)1/q

(
2np

∫ t

2−n
(τ − τn)

p(1+α)dτ
)1/p

≤ c2−n + c2np+12−n[(1+α)p+1] ≤ c2−n + c2−npα = o(1)

We have used that supn,τ E
(
ταp|yn(τ )|pα

) ≤ c. Moreover

J 1.2.2.2
n ≤ cE

∫ t

s

∫ τ

τn

[(∫ ζ

ζn

(1 + |β̇n(σ )|)dσ
)
(β̇n(τn))

2
]
dζdτ

≤ cE

∫ t

s

∫ τ

τn

(ζ − ζn)
(
β̇n(τn)+ |β̇n(τn)|3

)
dζdτ

≤ c2
3
2n

∫ t

s

(τ − τn)
2dτ ≤ c2

3
2n+n2−3n = o(1).
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Therefore J 1.2.2
n = o(1). Coming back to J 1.2.1

n we have:

J 1.2.1
n = E

[
h ·
∫ t

s

∫ τ

τn

r∑
ij=1

∂2ϕ

∂vi∂vj
(〈v1, yn(ζn)〉, . . . , 〈vr , yn(ζn)〉)×

×〈vi,G(yn(τn))〉〈vj ,G(yn(τn))〉22n(β(τ+
n )− β(τn))

2dζdτ

]
.

Define

�(z) = 〈D2f (z)G(z),G(z)〉, z ∈ H.
Then

J 1.2.1
n = E

[
h · 2n

∫ t

s

(τ − τn)�(yn(σn))dσ

]
= 1

2
E


h2−n(

[2nt]−1∑
k=[2ns]+1

�(yn(
k

2n
))




+1

2
E

[
h2n(s − sn)

2�(yn(sn))
]

+ 1

2
E

[
h2n(t − tn)

2�(yn(tn))
]

= 1

2
E

[
h

∫ tn

s+n
�(yn(σn))dσ + h2n[(s − sn)

2�(yn(sn))+ (t − tn)
2�(yn(tn))]

]

= 1

2
Eh

∫ t

s

�(yn(σn))dσ

+1

2
E

[
h[(2n(t − tn)

2 − (t − tn))�(yn(tn))+ (2n(s − sn)
2 − (s − sn))�(yn(sn))]

]
= 1

2
Eh

∫ t

s

�(yn(σn))dσ + εn,

where

εn = 1

2
E

[
h[(2n(t − tn)

2 − (t − tn))�(yn(tn))+ (2n(s − sn)
2 − (s − sn))�(yn(sn))]

]
.

It is clear that εn → 0 as n → ∞. Consequently

E

[
h · 2n

∫ t

s

(τ − τn)�(yn(σn))dσ

]
= 1

2
E

[
h ·
∫ t

s

�(yn(τn))dτ

]
+ εn

= 1

2
EQn

[
h ·
∫ t

s

�(ν(τn))dτ

]
+ εn → 1

2
EQ

[
h ·
∫ t

s

�(ν(τ ))dτ

]

= 1

2
EQ

[
h ·
∫ t

s

〈D2f (ν(τ ))G(ν(τ)),G(ν(τ))〉dτ
]
,

by the lemma below.

LEMMA 5.13. Assume that a sequence (µn) of probability measures on a Polish space
E converges weakly to a probability measure µ. If a uniformly bounded sequence (ϕn) of
continuous functions on E converges to a function ϕ uniformly on any compact set then

lim
n

∫
E

ϕn(x)µn(dx) =
∫
E

ϕ(x)µ(dx).
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We pass now to the term J 2
n

J 2
n = E

[
h ·
∫ t

s

Df (yn(τ )) [G(yn(τ))−G(yn(τn))] β̇n(τn)dτ

]

= E

[
h ·
∫ t

s

Df (yn(τ ))�n(τ ) (yn(τ )− yn(τn)) β̇n(τn)dτ

]

= E

[
h ·
∫ t

s

Df (yn(τ ))�n(τ )
(
e(τ−τn)Ayn(τn)− yn(τn)

)
β̇n(τn)dτ

]

+E

[
h ·
∫ t

s

Df (yn(τ ))�n(τ )

(∫ τ

τn

e(τ−σ)AF (yn(σ ))dσ
)
β̇n(τn)dτ

]

+E

[
h ·
∫ t

s

Df (yn(τ ))�n(τ )

(∫ τ

τn

e(τ−σ)AG(yn(σ ))dσ
)
(β̇n(τn))

2dτ

]

=: J 2.0
n + J 2.1

n + J 2.2
n ,

where

�n(τ) =
∫ 1

0
∇G(yn(τn)+ θ(yn(τ )− yn(τn)))νdθ.

But

|J 2.0
n | ≤ c2−nE

(|β̇n(0)|)+
∫ t

2−n
E(τ − τn)

ατ−α
n |ταn yn(τn)|α|β̇n(τn)|dτ

≤ c2−n/2 +
(∫ t

2−n
(τ − τn)

αpE
(|β̇n(τn)|p)E

(|ταpn yn(τn)|pα
)
dτ

)1/p

×

×
(∫ t

2−n
τ

−αq
n dτ

)1/q

≤ c2−n/2 + c
(
t1−αq)1/q [

2nt2np/22−n(1+αp)]1/p

≤ c2−n/2 + ct
1
q
−α
t

1
p 2n(

1
2 −α) = o(1) if α >

1

2
.

Moreover

|J 2.1
n | ≤

∫ t

s

c(τ − τn)E|β̇n(τn)| ≤ c2n/22n2−2n = o(1)

Finally

J 2.2
n = E

[
h ·
∫ t

s

(τ − τn)Df (yn(τn))∇G(yn(τn))G(yn(τn))
(
β̇n(τn)

)2
dτ

]

+E

[
h ·
∫ t

s

Df (yn(τ ))�n(τ )×
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×
[∫ τ

τn

{
e(τ−σ)AG(yn(σ ))−G(yn(σ ))

}
dσ

] (
β̇n(τn)

)2
dτ

]

+E

[
h ·
∫ t

s

Df (yn(τ ))�n(τ )×

×
[∫ τ

τn

{G(yn(σ ))−G(yn(σn))} dσ
] (
β̇n(τn)

)2
dτ

]

+E

[
h ·
∫ t

s

[Df (yn(τ ))�n(τ )−Df (yn(τn))∇G(τn)]

×(τ − τn)G(yn(τn))dσ
(
β̇n(τn)

)2
dτ

]
=: J 2.2.1

n + J 2.2.2
n + J 2.2.3

n + J 2.2.4
n

However, by Lemma 5.13,

J 2.2.1
n = 1

2

1

22n
2nE


h ·

[2nt]∑
k=[2ns]

Df (yn(k))∇G(yn(k))G(yn(k))



= 1

2
EQ

[
h ·
∫ t

s

Df (ν(τn))∇G(ν(τn))G(ν(τn))dτ
]

→ 1

2
EQ

[
h ·
∫ t

s

Df (ν(τ ))∇G(ν(τ))G(ν(τ))dτ
]

as n → ∞.

To conclude the proof we have to show that |J 2.2.2
n | + |J 2.2.3

n | + |J 2.2.4
n | = o(1). We start

from

|J 2.2.2
n | ≤ c

∫ t

s

E

(∣∣∣∣
∫ τ

τn

(
e(τ−σ)AG(yn(σ ))−G(yn(σ ))

)
dσ

∣∣∣∣ (β̇n(τn))2
)
dτ.

Since

E

(∣∣∣∣
∫ τ

τn

(
e(τ−σ)AG(yn(σ ))−G(yn(σ ))

)
dσ

∣∣∣∣ (β̇n(τn))2
)

≤ c(τ − τn)E
(
(β̇n(τn))

2
) ≤ c2−n2n = c

it is enough to prove that ∀τ > 0 fixed

E

[ ∣∣∣∣
∫ τ

τn

(
e(τ−σ)A − I

)
G(yn(σ ))dσ

∣∣∣∣ (β̇n(τn))2
]

→ 0.
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But

E

[ ∣∣∣∣
∫ τ

τn

(
e(τ−σ)A − I

)
G(yn(σ ))dσ

∣∣∣∣ (β̇n(τn))2
]

≤ E

[∫ τ

τn

∣∣∣(e(τ−σ)A − I
)
G(yn(σ ))

∣∣∣ (β̇n(τn))2dσ
]

≤ cE

[∫ τ

τn

(τ − σ)ε (|yn(σ )|α + 1) (β̇n(τn))
2dσ

]

≤ c2n
∫ τ

τn

(τ − σ)εdσ+

c
(
E
(
β̇n(τn)

)2q)1/q
(τ − τn)

1/q
(∫ τ

τn

(τ − σ)εpE|yn(σ )|pα
)1/p

≤ c2n(2−n)1+ε + c2n2−n/q2−n(1+εp) 1
p ≤ c2−nε → 0,

because sup0≤σ≤T σαpE
(|yn(σ )|pα) < +∞.

Moreover G is Lipschitz and therefore

|J 2.2.3
n | ≤ E

[
|h| ·

∫ t

s

|Df (yn(τ ))||�n(τ)|×
×
∫ τ

τn

|G(yn(σ ))−G(yn(τn))| dσ
(
β̇n(τn)

)2
dτ
]

≤ cE

[
|h| ·

∫ t

s

|Df (yn(τ ))||�n(τ)|×

×
∫ τ

τn

∣∣∣(e(σ−τn)A − I
)
yn(τn)

∣∣∣ dσ (β̇n(τn))2 dτ
]

+cE
[
|h| ·

∫ t

s

|Df (yn(τ ))||�n(τ)|
(
β̇n(τn)

)2 ×

×
∫ τ

τn

∣∣∣e(ζ−τn)A∣∣∣ (|F(yn(ζ ))| + |G(yn(ζ ))|
∣∣β̇n(τn)∣∣) dζ dσ dτ

]

=: J 2.2.3.1
n + J 2.2.3.2

n

We notice that

|J 2.2.3.1
n | ≤

∫ t

s

∫ τ

τn

E

∣∣∣(e(σ−τn)A − I
)
yn(τn)

∣∣∣ (β̇n(τn))2 dσdτ = o(1)

proceeding as in the estimate of the term J 1.2.2.1
n . Moreover

|J 2.2.3.2
n | ≤ c

∫ t

s

∫ τ

τn

E(|β̇n(τn)|2 + |β̇n(τn)|3)dτdσ

≤ c

∫ t

s

∫ τ

τn

(σ − τn)2
3
2ndσ
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≤ c

∫ t

s

(τ − τn)
2dτ · 2− 3

2n

≤ c2n2−3n2
3
2n = o(1)

We are left with

J 2.2.4
n = E

[
h ·
∫ t

s

(Df (yn(τ ))�n(τ )−Df (yn(τn))∇G(yn(τn)))

×G(yn(τn))(τ − τn)
(
β̇n(τn)

)2
dτ

]

= E

[
h ·
∫ t

s

Df (yn(τ )) (�n(τ )− ∇G(yn(τn)))

×G(yn(τn))(τ − τn)
(
β̇n(τn)

)2
dτ

]

+E

[
h ·
∫ t

s

(Df (yn(τ ))−Df (yn(τn)))∇G(yn(τn))

×G(yn(τn))(τ − τn)
(
β̇n(τn)

)2
dτ

]
=: J 2.2.4.1

n + J 2.2.4.2
n

Since

E

∣∣∣Df (yn(τ )) (�n(τ )− ∇G(yn(τn)))G(yn(τn))(τ − τn)
(
β̇n(τn)

)2∣∣∣
≤ c(τ − τn)E

((
β̇n(τn)

)2) ≤ c,

to prove that |J 2.2.4.1
n | = o(1) it is enough, by dominated convergence theorem, to show

that for all τ > 0

E

∣∣∣Df (yn(τ )) (�n(τ )− ∇G(yn(τn)))G(yn(τn))(τ − τn)
(
β̇n(τn)

)2∣∣∣
≤ E |(�n(τ )− ∇G(yn(τn)))G(yn(τn))(τ − τn)|2

= E

∣∣∣∣∣
∫ 1

0
(∇G(yn(τn)+ θ(yn(τ )− yn(τn)))− ∇G(yn(τ)n))G(yn(τn))dθ

∣∣∣∣∣
2

≤ c

∫ 1

0
E |(∇G(yn(τn)+ θ(yn(τ )− yn(τn)))− ∇G(yn(τn)))G(yn(τn))|2 dθ

is infinitesimal as n → ∞ so it is enough to prove that ∀θ ∈ [0, 1]

E[|(∇G(yn(τn)+ θ(yn(τ )− yn(τn)))− ∇G(yn(τn)))G(yn(τn))|]2 → 0 (5.12)

We need the following

LEMMA 5.14. sup
τ∈[t0,T ]

E |yn(τ )− yn(τn)|2 → 0, for all t0 ∈]0, T ].
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Proof. For n sufficiently large, α as in Theorem 3.5,

sup
τ,n

E

(
|yn(τn)|2α

)
< +∞,

and

yn(τ )− yn(τn) =
(
e(τ−τn)A − I

)
yn(τn)+

∫ τ

τn

e(σ−τn)AF (yn(σ ))dσ

+
(∫ τ

τn

e(σ−τn)AG(yn(σ ))dσ
)
β̇n(τn).

Therefore

E
∣∣y(n)(τ )− y(n)(τn)

∣∣2 ≤ (τ − τn)
2αE|y(n)(τn)|2α + (τ − τn)

2(1 + 2n)
≤ c(2−2nα + 2−2n + 2−2n2n) → 0.

�

Coming back to (5.12), by assumption (A.3),

E |[∇G(yn(τn)+ θ(yn(τ )− yn(τn)))− ∇G(yn(τn))]G(yn(τn)|2
≤ cθ2E|yn(τ )− yn(τn)|2 → 0.

Exactly in the same way it can be proved that

J 2.2.4.2
n = E

[
h ·
∫ t

s

(Df (yn(τ ))−Df (yn(τn)))∇G(yn(τn))×

×G(yn(τn))(τ − τn)
(
β̇n(τn)

)2
dτ

]
→ 0.

and this completes the proof. �

6. Applications

6.1. Specific examples

We consider here specific examples to show how the general theory applies.

EXAMPLE 6.15. Stochastic nonlinear heat equation

∂u

∂t
(t, ξ) = �ξu(t, ξ)+ f (u(t, ξ))+ g(u(t, ξ))

∂β

∂t
, (6.1)

u(0, ξ) = x(ξ), ξ ∈ O, u(t, ξ) = 0, t > 0, ξ ∈ ∂O, O ⊂ R1. (6.2)
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Here we takeH = L2(O), A = �,D(A) = H 2(O)∩H 1
0 (O). It is known (see [34], [35])

that

Vα = H 2α(O), if α ∈ ]0, 1
4 [

Vα = H 2α
0 (O), if α ∈ ] 1

4 , 1[.

If β ∈ (0, 1) then

‖x‖2
Hβ(O) = ‖x‖2

L2(O)

+
∫
O

∫
O

( |x(ξ)− x(η)|
|ξ − η|β

)2 1

|ξ − η|d dξ dη,
and if β ∈ (1, 2)

‖x‖2
Hβ(O) = ‖x‖2

L2(O) + ‖Dξx‖2
L2(O,Rd

)

+
∫
O

∫
O

( |Dξx(ξ)−Dξx(η)|
|ξ − η|β−1

)2 1

|ξ − η|d dξ dη.
We set

F(x)(ξ) = f (x(ξ)), G(x)(ξ) = g(x(ξ)), ξ ∈ O, x ∈ H.
Then

∇F(x)u(ξ) = f ′(x(ξ))u(ξ), ∇G(x)u(ξ) = g′(x(ξ))u(ξ), ξ ∈ O, x, u ∈ H
and

|∇F(x)| = sup
z∈R

1
|f ′(z)|, |∇G(x)| = sup

z∈R
1
|g′(z)|.

Assumption (A.1) is therefore satisfied if f, f ′, g, g′ are continuous and
bounded functions. Assumption (A.2) is equivalent to existence of c > 0 such that

|G(x)|β ≤ c(1 + |x|α), x ∈ Vα,
provided that 0 < α

2 < β < 1
2 < α < 1. For this it is enough that g′ is continuous and

bounded as then G transforms Vα into Vα .
Finally, the assumption (A.3) is satisfied if |g| and |g′| are functions bounded by a γ > 0,

as then it is enough to define

� = {
x : ess sup |x(ξ)| ≤ (1 + γ )γ

}
.

The heat semigroup S(t), t ≥ 0, generated by the operator A is analytic, and operators
S(t), t > 0, are compact and therefore all the assumptions of Theorems 3.5.–5.8. hold so
the Wong-Zakai approximations for the non-linear stochastic heat equation are bounded in
the proper norms and converge weakly to the solution of the equation

∂v

∂t
(t, ξ) = �ξ(v(t, ξ)+

(
f + 1

2
gg′)(v(t, ξ))+ g(v(t, ξ))

∂β

∂t
,

v(0, ξ) = x(ξ), t > 0.
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EXAMPLE 6.16. Strongly damped stochastic wave equation.
Let O be an open, bounded subset of Rm with a regular boundary. The equation we have
in mind can be formally written as follows

∂2u

∂t2
(t, ξ) = �ξu(t, ξ)+ ρ�ξ

∂u

∂t
(t, ξ)+ f (u(t, ξ))+ g(u(t, ξ))

∂β

∂t
(6.3)

u(t, ξ) = 0, t > 0, ξ ∈ ∂O,
u(0, ξ) = x0(ξ),

∂u

∂t
(0, ξ) = x1(ξ), ξ ∈ O,

where ρ is a positive constant. Let� = −�with the domainD(�) = H 2(O)∩H 1
0 (O) ⊂

L2(O). Then � is a self-adjoint, positive definite operator in L2(O). The equation (6.3)
can be written in an abstract form (1.13) in the Hilbert space H = D(�1/2)⊕L2(O) with
the operator A:

D(A) =
{(
x0

x1

)
∈ H ; x0 + ρx1 ∈ D(�)

}

A

(
x0

x1

)
=
(

0 I

−� −ρ�
)(

x0

x1

)
,

(
x0

x1

)
∈ D(A).

The operator A generates a strongly continuous analytic semigroup of contractions S(t).
Moreover

Vα = D(�α)⊕D(�α).

Since the embeddings D(�α) ⊂ D(�β) ⊂ L2(O), 0 < β < α < 1, are compact and
S(t)H ⊂ Vα for all α ∈ (0, 1), the operators S(t), t > 0 are compact as well.
Assume that functions f , g are continuously differentiable, bounded together with their
first derivatives. We define

F

(
x0

x1

)
(ξ) =

(
0

f (x0(ξ))

)
, G

(
x0

x1

)
(ξ) =

(
0

g(x0(ξ))

)
.

Then the transformations F and G satisfy all the assumptions of the theorems with ε = 1
2

and α > 1
2 . As the set � one can take the product of D(�1/2) with a ball in L∞(O) of

suitable radius.

EXAMPLE 6.17. Strongly damped plate equation.
In a similar way one can treat the equation

∂2u

∂t2
(t, ξ) = −�2

ξ u(t, ξ)+ ρ�ξ
∂u

∂t
(t, ξ)+ f (u(t, ξ))+ g(u(t, ξ))

∂β

∂t
u(t, ξ) = 0, �u(t, ξ) = 0, t > 0, ξ ∈ ∂O,
u(0, ξ) = x0(ξ),

∂u

∂t
(t, ξ) = x1(ξ), ξ ∈ O,
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where ρ is a positive constant. In this case H = D(�) ⊕ L2(O) and D(A) = D(�2) ⊕
D(�),

A

(
x0

x1

)
=
(

0 I

−�2 −ρ�
)(

x0

x1

)
,

(
x0

x1

)
∈ D(A).

Again the operator A generates a strongly continuous analytic semigroup of compact con-
tractions on H . Moreover

Vα = D(�1+α)⊕D(�α), α ∈ (0, 1).

Moreover F and G are as in the previous example and still satisfy our assumptions.

6.2. Stochastic invariance

A setK ⊂ H is said to be invariant for the stochastic equation (1.13) if for solutionsX(t, x),
t ≥ 0, x ∈ H of (1.13) one has

R(X(t, x) ∈ K) = 1, for all t ≥ 0, x ∈ K .

The literature on stochastic invariance is rather extensive, both for finite dimensional sys-
tems, see [14], [21], and [4] and references therein, and for infinite dimensional ones, see
e.g. [34], [17] and [41]. In this section we deduce some sufficient conditions for stochas-
tic invariance using results from deterministic theory. The following characterization was
proved by Pavel [30, 31] in the case of compact operators S(t), t ≥ 0, and for general
C0-semigroups by Jachimiak [15].

THEOREM 6.18. Assume that the operator A generates a C0-semigroup on a Banach
space H and F is a Lipschitz transformation from H into H . A closed set K ⊂ H is
invariant for

dy

dt
= Ay(t)+ F(y(t)), y(0) = x ∈ H

if and only if for arbitrary x ∈ K

lim inf
t→0

1

t
dist [S(t)x + tF (x),K] = 0. (6.4)

If the set K is contained in the domain D(A) of the generator A then the condition (6.4)
can be replaced by the classical Nagumo’s condition

lim inf
t→0

1

t
dist [x + t (Ax + F(x)),K] = 0, for all x ∈ K . (6.5)
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We have also the following invariance result for the stochastic equation (1.13).

THEOREM 6.19. Assume that (A.1), (A.2) and (A.3) hold for G1, . . . ,Gd and for F
replaced by F̃ = F − 1

2∇GjGj . Moreover assume that the conditions of Theorem 6.18.
are satisfied and for arbitrary x ∈ K and u1, . . . , ud ∈ R

lim inf
t→0

1

t
dist


S(t)x + t


F(x)+

d∑
j=1

[
ujG

j (x)− 1

2
∇Gj(x)Gj (x)

] ,K

= 0. (6.6)

Then the set K is invariant for (1.13).

Proof. If (6.6) holds then the set K is invariant for the deterministic equations

dz

dt
(t) = Az(t)+ F(z(t))− 1

2

d∑
j=1

∇Gj(z(t))Gj (z(t))+
d∑
j=1

Gj(z(t))vj (t),

z(0) = x,

for any piecewise constant function v1, . . . , vd . Consequently the set K is also invariant
for the solutions ỹn(t), t ≥ 0 of the equations

dỹn

dt
(t) = Aỹn(t)+ F(ỹn(t))− 1

2

d∑
j=1

∇Gj(ỹn(t))Gj (ỹn(t))

+
d∑
j=1

Gj(ỹn(t))β̇
j
n (t),

ỹn(0) = x.

But by Theorem 6.18. the laws of ỹn(·) on C(0, T ;H) converge to the law of the solution
X of (1.13). However the supports of the laws of ỹn are contained in C(0, T ;K) so the
same is true for the law of X. This proves the result. �

Specific results can be obtained for sets

K =
{
x ∈ L2(O); x(ξ) ≥ 0, ξ ∈ O

}
or

K =
{(
x

y

)
∈ L2(O)× L2(O); x(ξ) ≥ y(ξ), ξ ∈ O

}

leading to explicit condition for positivity of the solutions or to comparison like results.
The analysis of the condition (6.6) is simplified if the set K is invariant for the semigroup
S(t), t ≥ 0, (which is often the case).
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